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ABSTRACT

In this report we develop an approximation scheme for the identification
of hybrid systems describing the transverse vibrations of flexible beams with

attached tip bodies. In particular, problems involving the estimation of

functional parameters (spatially varying stiffness and/or linear mass density,
temporally and/or spatially varying loads, etc.) are considered. The

identification problem is formulated as a least squares fit to data subject to

the coupled system of partial and ordinary differential equations describing

the transverse displacement of the beam and the motion of the tip bodies
respectively. A cubic spline-based Galerkin method applied to the state

equations in weak form and the discretization of the admissible parameter
space yield a sequence of approximting finite dimensional identification

problems. We demonstrate that each of the approximating problems admits a

solution and that from the resulting sequence of optimal solutions a

convergent subsequence can be extracted, the limit of which is a solution to

the original identification problem. The approximating identification

problems can be solved using standard techniques and readily available

software. Numerical results for a variety of examples are provided.
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SECTION1

INTRODUCTION

In this report we develop an approximation scheme for the identifi-

cation of systems describing the transverse vibration of flexible beams

with attached tip bodies. The equations of motion for this type of prob-

lem generally take the form of a hybrid system of coupled partial (gov-

erning the vibration of the beam) and ordinary (describing the motion of

the tip bodies) differential equations with appropriate geometric bound-

ary conditions and initial data. The resulting identification problems,

therefore, tend to have infinite dimensional constraints. Moreover, if

the parameters to be identified are functional (spatially and/or tempor-

arily varying), the admissible parameter space is a function space and as

such is infinite dimensional as well. The solution of the resulting

constrained optimization problem, therefore, necessitates the use of some

form of finite dimensional approximation.

The scheme we develop here is based upon the reformulation of the

equations of motion in weak form. A cubic spline based Rayleigh-Ritz-

Galerkin method is used tO define a finite dimensional approximation to

the state equations. Using finite dimensional subspaces to discretize

the admissible parameter space, we obtain a doubly indexed sequence of

approximating identification problems. Using standard variational argu-

ments, we derive a convergence result for the state approximations. We

show next that each of the approximating identification problems admits a



solution and that from the resulting sequence of optimal parameter values

a convergent subsequence can be extracted whose limit is a solution to

the original infinite dimensional identification problem. In addition to

convergence results, we present numerical results which demonstrate the

feasibility of our method.

The approach described in this report represents a significant

improvement over the method developed in [22]. Indeed, we have developed

a schemewhich is computationally simpler and, by relaxing the necessary

hypotheses on the admissible parameter space, is applicable to a wider

class of problems. Our results are similar in spirit to those presented

in [7] in the context of parabolic systems, in [8] for hyperbolic systems

and in a forthcoming paper by Banks and Crowley [5] for beam equations

with standard boundary conditions (e.g., clamped, simply supported,

cantilevered, etc.). Other work regarding approximation methods for

inverse problems in elasticity can be found in [2], [3], [4], [i0] and

[14].

We simplify our presentation by onZy considering a cantilevered

beamwith an attached tip (point) mass. As is discussed in Section 4,

however, our general approach is applicable to a broad class of beam-tip

body vibration problems. In Section 2 we derive the weak form of the

equations of motion, define weak and strong solutions, and formulate the

identification problem. In Section 3 we define the approximation scheme

and discuss convergence. Numerical results are presented in Section 4.

Weemploy standard notation throughout. The Sobolev spaces of real

valued functions on the interval [a,b] whose kth derivatives are L2

are denoted by Hk(a,b), k = 0,1,2 .... The corresponding Sobolev inner

products and their induced norms are denoted by <'">k and l'Ik

respectively. For Z a normed linear space with norm I.IZ and

| l

1 1

f : [O,T] * Z, we say that f_L2([O,T],Z) if f f (t) Z
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Similarly, f will be said to be an element in C_([O,T],Z) if the map

t . f(t) from [O,T] into Z is _ times continuously differentiable on

(O,T). Finally, for a function of one or more real variables the symbol

Dof (Dkof) will be used to denote the I st (kth) derivative of f with
respect to the independent variable o. If f is a function of a single

variable only, the subscript may be deleted. On occasion the short-hand

notation Dof(O0) or Df(O0)will be used in place of Doflo 0 or Dflo 0 toJ

denote the derivative of f evaluated at oO.



SECTION2

THE IDENTIFICATIONPROBLEM

We consider a long slender beam of length _ with spatially varying

stiffness El and linear mass density p which is clamped at one end and

free at the other with an attached tip mass of magnitude m (see

Figure 2.1).

Figure 2.1.

Using the Euler-Bernoulli theory and elementary Newtonian mechanics, we

obtain the partial differential equation

p(x)D2u(t,x) + D_El(x)D_u(t,x) =
(2.1)

Dxo(t,x)DxU(t,x) + f(t,x) xc(O,_) t_(O,t)

and boundary condition at the free end



2 2
mDtu(t,_) - DxEl(_)Dxu(t,_)

(2.2)
- _(t,_)DxU(t,_)+ g(t) tc(O,T)

describing the transverse displacement of the beam and tip mass

respectively where _ is the internal tension (as a result of axial

loading) f is a distributed lateral load applied to the beamand g is a

force directed transversely which acts on the tip mass (see [9] and

[26]). Rotational equilibrium at the free end yields

D2xu(t,_) = 0 tc[O,T] , (2.3)

while at the clamped end we have the usual geometric boundary conditions

u(t,O) = 0 DxU(t,O) = 0 tc[O,T]. (2.4)

The temporal boundary conditions, or initial conditions, are assumed to
be of the form

u(O,x) : @(x) Dtu(O,x) = @(x) xc[O,_] . (2.5)

We make the standingassumptionsthat m > O, El,pcL (0,_)with El,p > O,

ocL2([O,T],HI(o,_)),gcL2(O,T),fcL2([O,T],HO(o,T)), @cH2(O,_),and

@cHO(o,_)with @(_) specifiedin R. Define the Hilbertspace

H = R x HO(o,_)with inner product

< (n,@), (C,_) >H = n_ + < _,_ >0"



We then rewrite Equations (2.1) - (2.5) as

MoD_u(t) + Aou(t) = Bo(t)O(t) + Fo(t) tc(O,T) (2.6)

YoU(t)l = I = 0 y2G(t)l = 0 tc[O,T] (2.7)x=O 0 yiG(t) x=O x=_

G(O) : $ Dtu(O) : _ (2.8)

where u(t) = (u(t,_),u(t,.))_H, Fo(t ) = (g(t),f(t,.)], $ = (_(_),@),

= (@(_),@) and the operators MO, AO, Bo(t ) and Yi' i=0'1'2 on H are
defined formally by

Mo(n,@) = (mn,p@),

Ao(n,@) = (- DEI(_)D2@(_), D2EID2ap),

Bo(t)(n, @) = (- a(t,_)D_(_), DoD_),

yi(q,@) = DI_ , i = 0,1,2

respectively.

There exist several ways in which the notion of a solution to the

system (2.6) - (2.8) can be made precise. Of particular interest to us

here are the ideas of a weak or variational solution and a strong
solution.
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Define the Hilbert space {V, < .,. >V} by

V = {(n,@)cH : @cH2(0,£), @(0) : D@(O)= O, n : @(_)} ,

< (@(_)'@)' (_(_)'_) >V = < D2@' D2¢ >0"

It is not difficult to show that V can be densely embedded in H.

Choosing H as our pivot space, we have therefore that VCHcV' where V'

denotes the space of continuous linear functionals on V. Consider the

second order initial value problem

< MoD_u(t)' 0 >H + aC_(t), 9) =
(2.9)

b(t)(_(t),_) + < Fo(t), _ >H tc(O,T), _cV

_(0) = $ Dt_(O ) : _ (2.10)

where _ = (e(_),o) and the bilinear forms a: VxV . R and b(t): VxV . R

are given by

a($,_) = < EID2@, D2¢ >0

and

: <- oD , >0

7



respectively. A solution G to (2.9) and (2.10) with _(t)cV is known as

weak or variational solution to (2.6) - (2.8). Indeed, if the deriva-

tives in (2.6) and (2.7) are taken in the distributional sense, A0

and Bo(t) become bounded linear operators from V into V' with

< AO$'_ >H = a($,_)

and

< Bo(t)$'_ >H : b(t)($,_)

where the H inner product is interpreted as its natural extension to the

duality pairing between V and V' (see [1], [19], [24]). Since

Fo(t)cHcV' we have therefore that the systems (2.6) - (2.8) and (2.9)

and (2.10) are two representations for the same initial value problem in
V i .

Under the assumptions which we have made above, standard arguments

(see [16], [17]) can be used to demonstrate the existence of a unique

solution _ to (2.9) and (2.10) with O_C([O,T],V), DtOEC([O,T],H ) and

D_u_L2([O,T],V' ).

In order to characterize strong solutions we rewrite (2.6) - (2.8)

as an equivalent abstract first order system and then rely upon the

theory of semigroups and evolution operators. Let Z = V x H with inner

product

< (Vl'hl)'(v2'h2)>Z = a(vl'v2)+ < Mohl'h2>H "



We assumethat EIcH2(O,_)and occl([o,T],-HI(o,_)]-and define the opera-

A: Dom(A)cZ . Z by

Dom(A) = Dom(Ao) x V

where I is the identity on V, M0 and AO are as they were defined

above, and

Dom(Ao) = {$ = (@(_), @) cV: @cH4(O,_), D2@(_) = 0}.

Similarly, define the operators B(t): Z . Z by

I(O 1Bo ]

0 0
B(t) =

(t) 0

and let A(t): Dom(A)cZ . Z be given by A(t) = A + B(t). Let F(t)cZ be

defined by F(t) : (0, MoZFo(t)) , zoEZ by Zo= ($,_) and consider the
initial value problem

Dtz(t) = A(t)z(t) + F(t) tc(O,T) (2.11)

z(O) = zO. (2.12)



It is not difficult to argue that the operator A is densely defined and

conservative. That is

< Az,z >Z : 0 z_Dom(A). (2.13)

Moreover, we have

Theorem 2.1: The operator A:Dom(A)cZ . Z is skew self adjoint.

Proof

We first argue that -AcA*. That is Dom(A)cDom(A*) and for

zcDom(A), A*z = -Az. Let Zl,Z 2 _Dom(A) with zi = ($i'$i)" Then

< AZl'Z2 >Z = a($I'$2) + < - A051'$2 >H

= < EID2@1'D2@2>0 - < EID2@1'D2@2>0

: - < $I'-A052 >H - a($i,$2 )

- <zl'AZ2 >Z

where we have used integration by parts, the definition of Dom(Ao) and

the definition of V in performing the above computation. This, of

course, implies that z2cDom(A*) and A*z 2 : -Az2.

We next argue that Dom(A*)cDom(A). Let wcDom(A*) and y = A*w.

Then for z_Dom(A)

< z,y >Z = < z,A*w >Z = < Az,w >Z"

i0



Recallingthat z,w,y_Z,let z = (_i,_2),-- w = ^ ^"(Wl,W2) and y = £Yl,Y2_-

Then

0 = <z,y>z " <Az,w>Z

= a(_l,yI) + <MoZ2,Y2>H- a(_2,_1) + <Ao_I,W2>H

^2

= <EID2zl,D2yl>O + mz2(g)Y _ + <pz2,Y2>o -

^2 (2.14)
<EID2z2,D2Wl>o - DEI(g)D2Zl(g)w_ + <D2EID2Zl,W2>o

^ ,^I .2, ,^2 ^2,sH Let o_H2(O,g)be definedby
where Y2 = £Y2'Y2;_H and w2 = £w2'w2) "

^1

D20 = p_, o(2) = 0 and DO(2) = - mY2 •

Then substitutinginto (2.14)and integratingby parts,we obtain

0 = - DEI(2)D2zI(2)_Yl(_) + w_]
.

^2 D2
< D2EID2Zl,Yl+ w2 >0 + < z2, 0 - EID2Wl >0

which implies

(i) -DEI(_)D2zI(_)(Yl(_) + w_) + <D2EID2zI'Yl+ _V_>O : 0

and

(ii) < D2z2,0 - EID2Wl >0
O.
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Let (n,@) be an arbitrary element in H. Choose Zl_H4(O,_) which

satisfies

D2EID2zI = _, DEI(_)D2zI(_) = -n, D2Zl(_) = O, DZl(O) = 0

and

Zl(O) : O.

Then Zl = (Zl(_),Zl)_Dom(Ao) and (i) therefore implies that

< (yl(_,)+ w2,Y1 + w ), (n,(F)>H : 0 (n,@)_H

^2 H0from which it follows that yl(_) = -_ and Yl = -w2 in (0,_). We

have, therefore, that w2 = -Yl cv"

Next, let @ be an arbitrary element in HO(o,_). Choosing

z2 = f f @, (ii) implies thatO0

< e - EID2wl,@ >0 = 0 @EHO(o,_)

and hence that E)= EID2Wl. This in turn implies that WlmH4(O,_) and

D2Wl( 1 ^_) = _ o(_) = O. Since wcZ, WlcV and therefore GlCDOm(Ao),We

conclude that w = (_l,_2)cDom(A O) x V = Dom(A) and the theorem is proven.

12



Since A is densely defined [12, Theorem 3, page 142] implies that A*

is closed and, by Theorem 2.1 above, that A is closed as well. This fact

together with (2.13) and Theorem 2.1 yield that A is maximal dissipative,

and hence by [13, Theorem 4.2, page 84] that it is the infinitesimal

generator of a CO semigroup of contractions {S(t): t _ O} on Z. It is
in fact the case that (see [13], [28]) S(t) is defined for t < 0 and that

{S(t): - _ < t < _} forms a CO group of unitary operators on Z. Since

the operators B(t), 0 _t _T are bounded [20, Theorem 2.3, page 132]

implies that {A(t)}t_[O,T ] is a stable family of infinitesimal

generators. Since Dom(A) is independent of t, [20, Theorem 4.8, page

145] yields that the family {A(t)}tc[O,T ] generates an evolution system

{U(t,s): 0 _ s _t _T} on Z.

Define

z(t) = (u(t),_(t)) (2.15)

inZby

t

z(t) = U(t,O)z 0 + I U(t,s)F(s)ds. (2.16)0

The continuous function z given by (2.16) above is the unique mild

solution to the initial valve problem (2.11), (2.12). If, in addition,

zocDom(A) (that is $cDom(Ao) and _V) then z is a strong solution to

(2.11), (2.12). Indeed z is differentiable almost everywhere on [O,T]

wi_h D2zcL2([O,T],Z], satisfies (2.12) and satisfies (2.11) for almost
every t_[O,T] and is such that z(t)cDom(A) a.e. on [O,T].

13



We shall call u given by (2.15) and (2.16) a strong solution to the

initial value problem (2.6) - (2.8). The following result is easily

obtained.

Theorem 2.2: Suppose EIcH2(O,_), _ccl([o,T], HI(o,_)), $cDom(Ao),and

_cV. Then O given by (2.15) and (2.16) is the unique strong solution to

the initial value problem (2.6) - (2.8). Wehave that O satisfies (2.8)

and (2.6) and (2.7) a.e. on [O,T]. Moreover, _ is twice differentiable

in H and differentiable in V almost everywhere on [O,T] with

D2_ct2([O,T],H ) and Dt_ck2([O,T],V ).
A

It is also not difficult to show that if a strong solution u to

(2.6) - (2.8) exists it coincides with the weak solution, and in which

case, it is given either by (2.15) and (2.16) or as the solution to the

initial value problem (2.9), (2.10).

In formulating the identification problem, for ease of exposition,

we consider a (reasonably broad) class of inverse problems which are of

particular interest in the structural modeling of large flexible

spacecraft and shuttle attached payloads (see [25], [27]). We assume

that we are only interested in estimating the parameters m_R, El,

pcL_(O,£), and ocL2([O,T],HI(O,_)) where o = a(ao,m,p) with

ao_L2(O,T). It is not difficult to further generalize the results

which follow to allow for the identification of initial data, the

external loads f and g, and more general forms of the internal tension o

(see [7]). The motivation for choosing _ to be a function of a time

varying function ao, the magnitude of the tip mass m,and the linear

mass density of the beamp will be made clear below.

14



Let _= R x L_(O,_)x L_(O,_)x L2(O,T)with the usual product

topology. Let Q be a subsetof_which satisfies

(H1) Q is compact.

(H2) There exist constantsmi, Mi, i=1,2,3such that

0 < mI <m<M 1

0 < m2 < El < M2

O<m 3 <p <M 3

for all q = (m, EI,p,ao)_Q.

(H3) For all qcQ, o(q)cL2([O,T]),Hl(O,_))with the mapping

q . o(q) continuousfrom Q into L2([O,T],HI(O,_)).

We assumethat we have been providedwith displacementmeasurements

{_(ti,xj)}i=l,..._ for the beam at positionsxjc[O,_],j = 1,2,...v,at
j=l,...v

times tic[O,T],i = 1,2,..._,which result from a known input distur-

bance appliedto the system in a known initialstate and formulatethe

identificationproblemas a least squaresfit to data:

(ID)

Find q = (m,El,p,ao)cQwhich minimizes

J(q;u(q)) = Z Z l_(ti,xj)- u(ti,xj,q)12 (2.17)
i=1 j=l

where _(t;q) = (u(t,_;q),u(t,.;q))is the solutionto (2.9), (2.10)

correspondingto qcQ.

The infinitedimensionalityof both the state,which is governedby

the system (2.9), (2.10),and the admissibleparameterspace Q (beinga

15



function space) necessitates the use of some form of approximation in

solving Problem (ID). We develop and analyze one particular scheme in

the next section. We note that the approximation theory to be developed

below will also permit the formulation of the identification problem

based upon criteria other than displacement; for example, velocity (see

[22]).

16



SECTION3

AN APPROXIMATIONSCHEME

Our scheme is based upon the construction of a sequence of

approximating identification problems, in each of which both the state

constraint and the admissible parameter space are finite dimensional. We

argue that each of the approximating problems admits a solution. The

resulting sequence is shown to have a sub-sequential limit which is a

solution to the original identification problem. The state approximation

is constructed using a spline based Galerkin method. The admissible

parameter space is discretized using splines as well. Webegin by

discussing the state approximation.

Working abstractly at first, let vNcv be a finite dimensional

subspace of H and let pN denote the orthogonal projection of H onto VN

with respect to the H inner product. The Galerkin equations

corresponding to (2.9), (2.10) are given by

< MoDerN(t), _N >H + a(uN(t)'eN ) =
(3.1)

b(t)(uN(t)'oN] + < Fo(t)'°N >g tc(O,T), 6NovN

_N(o ) = pN$ Dt_N(o ) = pN_ (3,2)

where _N(t) = (uN(t,_),uN(t,o))_V N. We define the following sequence of

approximating identification problems.

17



(IDN)

Find q = (m,EI,p,ao)cQwhich minimizesj(q;GN(q))where J is given

AN UN •by (2.17) and u (t;q) = ( (t,_;q),uN(t, • , q)) is the solution to

(3.1), (3.2) corresponding to qcQ.

B-_.,N+ILet { _j=-I denotethe standardcubic B-splineson the interval

[0,_] correspondingto the uniformpartitionAN = {0 _-- 2_____4} (see'N'N'""
N N+I

[21]). Let {Bj}j=1 denotethe modifiedcubic B-splineswhich satisfy

B_(O) = DB_(O) = O, j = 1,2,..N+1. That is

=
BN. = _ j = 2,3...N+1.
J J

AN BN N N
Let Bj : (j(_),Bj) and let V cV be defined by

N ^N N+I

V = SPaN _.IBj_j=I"

The Galerkinequations(3.1), (3.1)take the form

N -IsNw (0)= (WN) _N(o) = (wN)-I_ N (3.4)

18



where

[A_]ij= I_EIO2_O2B".0 J

= o(t,.)DB".DB".[B (t)]i j - i 0 I J

f(t,-)B_[F_(t)]i = g(tlB_(_)+I°

[_N]i = _(_)B_(_)+I_O_B_

[.N]_j = B_(_)B_(_)+I_BNBN0 1J

N+I^N N ^N

= wj (t)Bj.i,j : 1,2..N+1 and u (t) jZ__1

Our convergence arguments are based upon the approximation

B-_N+Iproperties of spline functions. Let _3(A N) = SPAN{ }j=-1 and let
N N+I

S3(AN) = SPAN{Bj}j= I. For @a function defined on the interval [0,_] let

I-N@denote that element in _3(AN) which satisfies the interpolatory

constraints ITN_)(_-_) = _(_--_), j = 0,1,2...N, DII4_]I_-)= D_I_- ) j = 0

19



and N and let IN@denote that element in S3(AN) which satisfies the

interpolatory constraints (IN@)(-_] : @(_-_-_)j : 1,2...N, DcIN@)(_) :

D@(_). The interpolatory spline I_@ will be well defined whenever @is

well defined at the node points and D@at the end points. A similar

statement can be made for IN@.

We require the following two standard results concerning the

approximation properties of interpolatory splines (see [23]).

Proposition 3.1: For @cH2(0,£)

< C_N'2+klD2@I0 k = 0,I IIo

where CIk is independent of @and N.

Proposition3.2: For @_H4(O,_)

2
where Ck is independent of @ and N.

Lemma3.1

^ ^N N^ N N
(1) Let @N: [@(_),@)cV and let @ : P @ = I@ (_),@)" Then

@N H2( ;N ^+ @ in 0,_) and consequently . @ in V.

(2) pN . I strongly in H.

2O



Proof

(1)

I_"_lo<I_"_l.<l_ _l,

l_"__lo I_ _lo
<c_N21D2_Io_OasN_o

where (INS) = c(IN@)(4),IN¢].

<_"i_"_lo._"_lo_lo

<_,i_"_io+_.i#__lo+c_,_l_lo

. .cIN11D2_lo<klc_N11o2_loklC_NIIO2_IO

where we have made use of the Schmidtinequality(see [23]) in makingthe

estimatesabove.

Using the Schmidtinequalitytogetherwith the first integral

relation(see [23]),we obtain

21



2io_"i_< _io___i_io_io

<2k2,41_"_l_ _21o2_I_21o2__I 2o

< 2k2,41_"_I_2k2,41__io_.21D2_io_
2

< _21D2@I0

where _ is independent of @ and N. Let Oc{o: ocH4(O,_),o(O) = Do(O) =

0}. Using arguments similar to those used above together with

Proposition 3.2, it can be shown that

lo_I_"_llo< _._lo_lo

where k is independent of O and N. Then

l_I_"Ollo< lo_Io"-o"llo.lo_<o"Ollo+l_Io_Io
_<c_._I_<__IIo._,_l_%lo

Standard density arguments guarantee that _ can be chosen so as to make

the first term arbitrarily small and therefore that

]D2(@N- @)I0 + 0 as N +

which proves statement (1) of the theorem.
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Statement (2) follows from Statement (1) and the fact that V is

dense in H and the pN being orthogonal projections are uniformly
bounded.

Theorem 3.1: Let {qN}cQ with qN . q as N . -. Let _ denote the

solution to (2.9), (2.10) corresponding to q and let i N denote the

solution to (3.1), (3.2) corresponding to qN. Suppose further that _ is

^N Dt_Na strong solution (see Theorem 2.2). Then u . _ in V and . Dt_ in
H as N . _ for each tc[O,T].

Proof

Our argument is similar in spirit to the one used in [11] to

demonstrate the convergence of a Galerkin method for the integration of a

class of hyperbolic systems. We adopt the convention that the

superscript N on a form or operator indicatesthat it be computed with

respect to qN (mN,EIN N N= ,p ,a O) while no superscript indicatesthat it be

computed with respect to q = (m,El,p,ao).

Applying the triangle inequality, we have

^N "N N̂ N̂ "
I_-_Iv-<Iu-__Iv.I_u-ulv _-_

and

^N "N " N ^ ^
I_u _I. <I_u _"uI,. I_o_u_ul, _o_

^

Lemma3.1 and the fact that u has been assumed to be a strong solution

N ^ Dtu
t_[O, T].
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^N ^
Since u satisfies (3.1) and (3.2) and since u satisfies (2.9) and (2.10)

#%

then for (_N_vN we have

<MD (uN- pNu), + aN(uN - P u, eN)

= < MoDt(u - P u), ON >H + <(Mo - M )Dtu,

^ ^ BN)^ N̂ ^ _ aN ^+ aN(u - P u, ON) + a(u, oN) (u,

^ N̂ ^ bN N̂+ bN(t)(u N - P u, eN) + (t)(P u - u, GN)

^ ^ A

+ bN(t)(u, eN) - b(t)(u, oN).

^ N̂ ^N vN vN ^N ^Let uN = (UN(_), uN) = P u, let v = ( (4), ) = u - uN and choose

^ vNeN = Dt NcV . Then

, N_2^N ^N aN ^N ^NmoUtV ' Dtv >H + (v , Dtv )

N̂ ^ ^N: P " >H- Dtv >H + <(Mo - MO

N̂ ^N ^N ^ ^N
+ aN(u - P u, Otv ) + a(u, mtv ) - aN(u, Dtv )

^N ^N bN N̂ ^N+ bN(t)(v , mtv ) + (t)(P u - u, Otv )

^N ^N
+ bN(t)(u, Dtv ) - b(t)(u, Dtv )
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or

1 _ ^N ^N aN ^N ^NDt(<M Dtv , Dtv >H + (v , v ))

N 2^ ^ N 2^= <M (I - P )Dtu, D-vN>,, + < - D'vN>"n (Mo Mo)Dtu' I; m

+ DtamI(l - pN)u, vN) - aN((l - pN)Dtu, vN)

+ Dt(a(u, vN) -aN(u, vN)) -(a(Dtu, vN) -aN(Dt u, vN))

+ bN(t)(vN ' DtvN) + bN(t)(pN ^ ^Nu-u,Dtv)

N ^ ^N ^ ^N
+ b (t)(u,Dtv ) - b(t)(u,Dtv ).

Integratingboth sides of the above expressionfrom 0 to t, invoking

hypotheses(H1) - (H3)on Q and using standardestimateswe obtain

min (mI, m2, m3)(IDtvNl_ + IvNl_)

2

<_ {max (M_, M_)I(I- pN)D2sUI_+ IDsVNIH

•_I• _"l_,l° "_ I._s | s

N ^ 2 ^2
+ M_I(I - P )DsU{_+ IvNl_+ IEI- EINI_IDsUlV

2

I s

+ - D vN121

1 pN _N ^ 2._l<_-_ul_._Ivl_+l(_-_"_Iv
2

25



where CO and C1 are constants which are independent of N and C2 and

C3 may be chosen arbitrarily. Choosing C2 and C3 sufficiently

small (C2 + C3 < rain (ml, m2, m3)),we obtain

D vN ^NI_ 1_"Ivi_v<_A,_.,:_-,-s_,<"o_flo_v"l_.,-i_"l_tv-_
where

^ 2_"_ _II_ _"_I_+I__-_"_Iv

+S_{l(: P")O_G(s)l_+max(Ira mNl2, Ip-pNI2)

I_'c_l_" I_- _" "_• s >_u<s_l_-"I_'-_' Io!_s'-'<s_l_

and

,<,_ls/: K?{,<3-,-Iols..; q"/llt
where Ki, i = 1, 2, 3 are constants independent of N. Using the fact

that qN + q in Q as N + _ and u(q) is a strong solution together with

Lemma3.1, the compactness of Q and Hypothesis (H3) we have that AN . 0

and K_ is uniformly bounded in L2(O, T) as N . _. An application of
the Gronwall inequality therefore yields

Dtv + v + 0 as N +

^N N̂ ^N pNulvfo_each_[o,T] Con_equen_l_Iho hpUtH_o_n_lu . o
as N . _ which together with (3,5) and (3.6) proves the theorem,
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The continuous dependence results given in Theorems 3.2 and 3.3

below can be verified using arguments similar to those used in the proof
of Theorem 3.1.

Theorem 3.2: Let {qk} c @ with qk . q* as k + -. If for each N fixed,

^N
u (q) denotes the solution to (3.1), (3.2) correspondingly to q then
AN ^N ^N ^N
u (qk) . u (q*) in V and Dtu (qk) . Dtu (q*) in H for each to[O, T] as

mapping q . (uN(q), DtuN(q)) from Q into V x H is
k + That is,_m the

continuous for each N = I, 2, ...

Theorem 3.3: Let {qk} c _ with qk . q* as k . - and let u(q) denote the

solution to (2.9), (2.10) corresponding to q. If u(q*) is a strong solu-
^

tion then u(qk) . u(q*) in V and DtU(qk) . Dtu(q* ) in H for each to[O, T]

as k . _. The mapping q . (u(q), Dtu(q)) is continuous from Q into V x H^

in neighborhoods of those qcQ for which u(q) is a strong solution.

We are now prepared to prove our first major convergence result.

Theorem 3.4: For each N = 1, 2, ... fixed, problem (IDN) has a solution

_-N. The sequence {q--N}admits a convergent subsequence {q-Nk} with

_Nk _
q . q € Q as k . -. If u(q-) is a strong solution to (2.9), (2.10)

then q is a solution to Problem (ID).

Proof

^N
Theorem 3.2 implies that the mapping q . J(q; u (q)) from Q into R

is continuous. This together with the fact that Q is compact yields the

existence of a solution _N to problem (IDN). The existence of a conver-

gent subsequence {_ Nk}c{q --N} also follows from the compactness of Q. If
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_Nk
q . q- as k . _ and u(q-) is a strong solution to (2.9), (2.10) then

Theorem 3.1 implies

Nk ^Nk _-Nk))a(q, u(q)) = lim J(q- ; u (
k._

A

< lim J(q; uNk(q)) = J(q; u(q))
k._

for all q c Q and the theorem is proven.

Turning our attention next to the other infinite dimensional aspect

of Problem (ID),we introduce a second level of finite dimensional approx-

imation to effect a discretization of the admissible parameter space.

For each M = 1,2, ... let the sets QMc_be given byjH(Q) where

the mappings_ M satisfy

(PI) _M:Q ._ is continuous.

(P2) jM(q) . q as M . _ uniformly in q for all q _ Q.

We assume further that the sets QMhave the property

(P3) For each qcQM, u(q) is a strong solution.

Wedefine a doubly indexed sequence of approximating identification prob-

I ems by

(IDNM)

AN
q = (m,El,p,a0)_Q M which minimizes J(q; u ) subjectFind to

^N AN
J(q; u ) subject to u being the solution to (3.1), (3.2)

corresponding to q.

Note that if the sets QMare of dimension KM < _ then the optimiza-

tion in Problem (IDNM) is simply over a compact subset of the space

RkM and is subject to finite dimensional constraints; a computa-

tionally tractable problem.
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The convergence arguments now go as follows. Property (P1) and Q

compact imply that the sets QMare compact as well. For each N = I, 2,

... and each M = I, 2, ... Problem (IDNM) therefore has a solution

--N -N_
qM" For each M = I, 2, ... fixed, the sequence {qM}N=I admits a con-

_N Nk _
vergent subsequence {qMk} with _M . qM as k . _. Recalling property

(P3) and arguing as we have in the proof of Theorem 3.4,we conclude that

_M is a solution to the problem of minimizing J(q; u) over QM. Since

QM = _M(Q) there exists qM E e such that _M = _M(qM)" Now {qM}CQ

and Q compact imply the existence of a convergent subsequence {qM. }
J

M°

with qM. . _ as j . _. Property (P2) then implies thatg J(qM.) . _as
3 j

j . _ and hence that qM. . q as j . _ as well. Then
3

M °

J(q-M.; u) < J(q; u) qcQ j
J

Mo M.

and Q J : _ 3(Q) yield

M. M.

J(q-M.; u(qM.))--< J(JJ(q); u(gJ(q)) qcQ. (3.7)
J 3

Taking the limit as j . - on both sides of (3.7) and recalling Theorem

3.3 and Property (P3),we obtain

J(q-; u(_)) < J(q; u(q)) qcQ
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from which we conclude that _is a solution to Problem (ID). In summary,

we have

Theorem 3.5: Each of the approximating identification problems

(IDNM) has a solution qM" From the tableau { } a sequence {q-(k)} can

be extracted with q-(k) . q--, a solution to Problem (ID), as k . _.

Typically an appropriate choice for the sets QMare the spaces of

linear or cubic interpolatory spline functions with the mappings_ M

being constructed from the usual interpolation operators. If the ele-

ments in Q are sufficiently regular, it is not difficult to verify that

Properties (PI) - (P3) are satisfied for this approximation. A detailed

discussion and several examples of this particular choice for the QMin

the context of inverse problems for parabolic systems can be found in

[6]. Similar results for identification problems involving the estima-

tion of functional parameters in beamequations with simple boundary con-

ditions (clamped, simply supported, cantilevered, etc.) are presented in

[5] and [14].
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SECTION4

NUMERICALRESULTS

In this section we discuss numerical results for a variety of ex-

amples. Although the analysis presented in the previous sections was

based primarily on a simple example involving a cantilevered beamwith

tip mass, only minor modifications would be required so as to make our

general approach applicable to a broad class of inverse problems for beam

vibration. Someof these will be considered and outlined below.

Although one of the major features of our scheme is its ability to

identify or estimate functional (spatially and/or temporally varying)

parameters, our numerical findings for this important class of problems

are, at present, incomplete. For this reason, this report includes exam-

ples involving the identification of constant parameters only. Our

results for functional parameters will appear in a forthcoming paper.

In all of the examples below, the fits were based upon artificially

generated observations. By this we mean that so-called "true" values for

the parameters were selected and a modal based Galerkin method was used

to generate the solution to the resulting system of equations from which

the sampled displacement measurements {_(t i, xj)}i=l,...,_ were obtained.
j=l,...,u

Results for examples involving fits based upon actual experimental data

will be discussed elsewhere.

31



The finite dimensional optimization problems were solved using an

iterative steepest descent routine, ZXSSQ,from the IMSL Library. The

algorithm used is the one suggested in the papers by Levenberg [15] and

Marquardt [18]. The finite dimensional second order initial value prob-

lem given by (3.3), (3.4) which has to be solved at each iteration to

compute the value of the least squares payoff functional J and approxima-

tions to its gradient and the corresponding Jacobian matrix is integrated

using a variable order Adams predictor corrector method (IMSL routine

DGEAR). The system (3.3), (3.4) did not in general demonstrate stiff

behavior.

The integral inner products in the generalized mass and stiffness

matrices and the generalized Fourier coefficient vectors for the external

loads and initial data were computed using a composite two point Gauss-

Legendre quadrature rule. The four subinterval support of the cubic

B-splines and their derivatives leads to 7-banded matrices and conse-

quently contributes to the overall computational efficiency of the

method.

All examples were run on the IBM 3081 processor at Draper Labora-

tory.

Example 4.1

In this example we consider a cantilevered beamof length 1.0 with

an attached tip mass. Weseek to identify the spatially invariant stiff-

ness El and linear mass density _ of the beam and the magnitude m of the

tip mass. We assume that the system is initially at rest (_ = O, @= O)

and then excited by the distirbuted lateral load along the beam given by

f(t, x) = ex sin 2_t

and the point force applied to the tip mass

g(t) = 2e'2t.

Weassume that there is no axial loading, or, _ = O.
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Displacementobservationswere generatedby taking El = 1.0,p : 3.0

and m = 1.5 to be the true values of the parameters. Measurementswere

taken at positionsxj = 0.25j,j = 2, 3, 4, at times ti --0.5i, i =

1, 2, ... 10, from a solutionto the system (2.1) - (2.5) generatedusing

a Galerkinmethod and the first two naturalmodes of the unforcedsystem

(see [25]). The "startup" valuesfor the steepestdescentroutinewere

El0 = 0.7, PO = 2.7 and mo = 0.7. The final convergedvaluesfor

-E_, _p, and _ togetherwith the residualsum of squaresj--Nand re-

quired CPU times for variousvalues of N are given in Table 4.1 below.

Table 4.1.

CPU
N E-T" -" (re:s)p m

2 1.00057 3.04455 1.48957 0.12 x 10-3 0:9.19

3 1.00067 3.01256 1.49707 0.11 x 10-3 0:22.10

4 1.00027 3.00922 1.49721 0.11 x 10-3 0:57.60

5 1.00016 2.98936 1.50262 0.11 x 10-3 1:22.52

6 0.9991_ 2.99720 1.49952 0.11 x 10-3 2:52.76

Example4.2

We considerthe system describedin the previousexample. We assume

that it is initiallyat rest and then excitedby the distributedload

f(t, x) = ex sin 2_t

along the beam and the point force

g(t) = 2e-t
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acting on the tip mass. We also assume that the entire system is sub-

jected to a base acceleration which is given by

1 O<t<l.5
ao(t) = -- -- (4.1)

0 otherwise.

The internal tension resulting from the axial load (see [26], [27]) is
given by

_(t, x) = -ao(t)(p(_- x) + m).

We are interestedonce again in estimatingthe stiffnessEl, linearmass

densityp,and the magnitudeof the tip mass m. The true values of the

parameterswere taken to be El = 1.0, p = 3.0, and m = 1.5 with the

referencesolutionbeing generatedusing the first two naturalmodes of

vibrationfor the unforced,unacceleratedsystem. Displacementmeasure-

ments were taken at positionsxj = 0.75, 0.875, 1.0, j = 1, 2, 3, at

times ti = 0.5i, i = 1, 2, ..., 10. The start up values for the itera-

tive search routinewere taken as El0 = 0.7, PO, and mo = 1.7. Our
results are summarizedin Table 4.2.

Table 4.2.

CPU
N E-TN -Np _m j-N (m:s)

2 1.00057 3.09966 1.47928 0.17 x 10-4 0:18.01

3 1.00121 3.06360 1.48727 0.18 x 10-4 0:35.93

4 1.00092 3.04144 1.49207 0.19 x 10-4 1:26.19

5 1.00057 3.03063 1.49413 0.19 x 10-4 4:15.87

6 1.00117 3.03186 1.49436 0.35 x 10-4 5:21.34
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We note that although strictly speaking the convergence theory

developed in Section 3 requires that aocCI, the scheme performed

satisfactorily with a0 given by (4.7) above.

Example 4.3

In this example we consider a free-free beamof length 1.0 with an

attached tip body at each end (see Figure 4.7).

Figure 4.1.

The tip bodies are assumed to have known mass properties which are given

by:

Tip Body 0 (at x = 0):

m0 = 0.75, co = 0.7, a0 = _/6, Jo = 0.6

Tip Body I (at x = 7):

mI : 1.5, Cl : 0.2, al = _/3, Jl = 0.4
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where for tip body i, i = O, 1, mi, ci, 6i, and Ji are respectively its
mass, the distance from its center of mass to the tip of the beam, its

mass center offset as measured from the extension of the longitudinal

axis of the beam,and its moment of inertia about its center of mass.

The equations describing the transverse displacement of the beamand

the translational and rotational equilibrium of the tip bodies are given

by (see [25], [27])

PDtu_+ D2EID2Uxx = f' xc (0, 1), tc (O,T) (4.2)

moD_u- mOc0 cos aoD_DxU+ DxEID_u : O, x = O, tc (0, t)

2 2
-mOc0 cos aoD_u + (Jo + mOcO)DtDxu - EID2xU= O, x = O, tc (0, T)

mlD_U + mlc I cos alDt2Dxu - DxEID2xu = O, x : I, tc (0, T)

2 2
+mlcI cos61D_u+ (J1+ mlCl)DtDxu + EID_u = O, x = 1,tc (0,T).

The initial conditions are of the form

u : @ Dtu = ¢ xc (0, 1), t : O. (4.3)

LettingH R4 O(= x H O, 1) with inner product

T
<(n, _), (_, _)>H : n _ + <_, _>0

and

V = {@oH:@ = (n, @), @cH2(O,1), n = (@(0),D@(O), @(1), D@(1))T}
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with inner product

A A

<_P'_>V = <_' 4>2.

The weak form of the system given by (4.2), (4.3)above becomes

^ ^ ^<MoD (t), O>H + a(u(t), e) = <Fo(t), O>H tc (0, T), OcV (4.4)

^ u( ^u(O) = , Dt O) , (4.5)

where

u(t) = ((u(t, 0), Dxu(t , 0), u(t, 1), DxU(t , 1)) T, u(t, .))cV,

M0(n, *) : (M0n, p@)

with

m0 -mOc0 cos 60
0

2
-m0c0 cos 60 J0 + m0c0

m1 mlc 1 cos 61
0

2
m c cos 6 d + m c
11 1 1 11

a: V x V . R given by

a(;, ;1 = <EID2¢, D2,>O,

F0(t) = (0, f(t, .))

A

€ : ((@(0), D_p(O), @(i), D@(1))T, @)
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and

A

_, = ((_(0),D_(O), _(I), D_(1))T _)

The appproximation scheme for the system (4.4), (4.5) is then constructed

in essentially the same manner as it was in Section 3.

In this example we seek to identify El and p. The system was as-

sumed to be initially at rest and then excited via the input disturbance

f(t, x) = lOex sin 2_t.

Observations at positions xj = 0.25j, j = O, 1, ..., 4, at times t i =

0.2i, i = I, 2, ..., I0, were generated using the first six natural modes

of the system; four flexible modes plus rigid body rotation and transla-

tion. The true values of the parameters were assumed to be El = 1.0 and

p : 3.0 with start up values taken as El 0 = 0.7 and PO = 2.7. Our

results are given in Table 4.3.

Table 4.3.

N -NP

2 0.99567 3.00092 0.20 × 10-4

3 0.99374 2.99900 0.16 x 10-4

4 0.99849 2.99798 0.78 x 10-5

5 0.99888 2.99910 0.28 x 10-5
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Example 4.4

In this example we estimate the flexural stiffness El and linear

mass density p for a cantilevered beam of length 1.0 with an attached tip

body (see Figure 4.2).

0
£ X.

Figure 4.2.

We assume that the system is initially at rest and then acted upon by the

distributed load

f(t, x) : 20e-2t e-20(l-x)

and base acceleration

1.0 0<t<1.5

0 1.5 < t < 3.0

ao(t ) = 1.0 3.0 < t < 4.0

0 4.0 < t.
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The equations of motion are given by (see [26], [27])

pD_u + EID4xu = -aoDx(P(1- x) + m)DxU + f xc(0,1),tc(O,T)

mD#u+ mc cos cSD2Dxu - EID3xu = maoDxU, x = 1, t_(O,T) (4.6)

mc cos 6D_u + (J + mc2)D_DxU+ EID2xU = mc cos 6a0 DxU + mc sin 6ao,

x = I, t_(O,T)

with boundary and initial conditions

u = 0 DxU = 0 x : O, to[O, T] (4.7)

and

u : _ Dtu : ¢ x_[O, I], t : 0 (4.8)

respectively where the quantities m, c, a, and J are as they were defined

in Example 4.3. Once again only minor modifications (similar to those

outlined in the previous Example) are necessary so as to make the theory

presented in Sections 2 and 3 applicable to the system given by (4.6) -

(4.8) above. Taking the true values of El and p to be 1.0 and 2.0 re-

spectively and setting m = 4.0, c = 0.2, a = _/3, and J = 0.4, displace-

ment observations at positions xj = 0.75, 0.875, 1.0, j = i, 2, 3, at

times t i = 4.0, 4.5, 5.0, i = 1, 2, 3, were generated using the first

three natural modes of the unforced, unaccelerated system. The start up

values were taken as El 0 : 0.7 and PO = 2.5. The final converged

values for _I N and--pN together with the residual sum of squares--J N for

several values of N are given in Table 4.4 below.
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Table 4.4.

N -N j-NP

2 1.00046 2.07731 0.4 x 10-3

3 1.00135 2.06652 0.22 x 10-3

4 1.00117 2.05180 0.23 x 10-3

5 1.00086 2.04776 0.26 x 10-3

ACKNOWLEDGEMENT

The authors would like to acknowledge Professor J.S. Gibson, Major

J.M. Crowley, Mr. J. Storch, and Mr. S. Gates for the many fruitful dis-

cussions in which they participated throughout the preparation of this

report.

41



REFERENCES

[1] Aubin, J.P., Approximationof EllipticBoundary-ValueProblems,

Wiley-lnterscience,New York, 1972.

[2] Banks, H.T. and J.M. Crowley, "ParameterEstimationfor Distri-

buted SystemsArisingin Elasticity,"to appear in Proceedingsof

the NCKU/AASSymposiumon EngineeringSciences and Mechanics,

NationalCheng Kung University,Taiwan,1982.

[3] Banks, H.T. and J.M. Crowley, "ParameterEstimationin Timoshenko

Beam Models," ICASE ReportNo. 82-22, Institutefor Computer

Applicationsin Scienceand Engineering,NASA LangleyResearch

Center,Hampton,VA, 1982.

[4] Banks,H.T. and J.M. Crowley, "ParameterEstimationin Continuum

Models,"NASA CR-172132,Institutefor ComputerApplica-

tions in Scienceand Engineering,NASA LangleyResearchCenter,

Hampton,VA, 1983.

[5] Banks, H.T. and J.M. Crowley, "Estimationof Material Parameters

in ElasticSystems,"LefschetzCenter for DynamicalSystemsTech-

nical Report No. 84-20,Brown UniversityDivisionof AppliedMath-

ematics,Providence,RI, June 1984.

[6] Banks, H.T. and P.L. Daniel, "Estimationof VariableCoefficients

in ParabolicDistributedSystems,"IEEE Trans.Auto. Control, to

appearw1985.

42



[7] Banks, H.T., P.L. Daniel, and P. Kareiva, "Estimation Techniques

for Transport Equations," Lefschetz Center for Dynamical Systems,

Technical Report No. 83-23, Brown University Division of Applied

Mathematics, Providence, RI, July 1983.

[8] Banks, H.T. and K. Murphy, "Estimation of Coefficients and Bound-

ary Parameters in Hyperbolic Systems," Lefschetz Center for Dynam-

ical Systems, Technical Report No. 84-5, Brown University

Division of Applied Mathematics, Providence RI, February 1984.

[9] Clough, R.W. and J. Penzien, Dynamics of Structures, McGrawHill,

New York, 1975.

[I0] Crowley, J.M., Numerical Methods of Parameter Identification for

Problems Arising in Elasticity, Ph.D. Thesis, Brown University,

May 1982.

[Ii] Dupont, T., "L2-Estimates for Galerkin Methods for Second Order

" SIAM J Numer. Anal , Vol I0, pp 880-889,Hyperbolic Equations, ....

1973.

[12] Helmberg, G., Introduction to Spectral Theory in Hilbert Space,

North Holland, Amsterdam, 1969.

[13] Krein, S.G., Linear Differential Equations in Banach Space, Ameri-

can Mathematical Society, Providence, RI, 1971.

[14] Kunisch, K. and E. Graif, "Parameter Estimation for the Euler-

Bernoulli-Beam,"ICASE Report No. 84-22, NASA CR-172417, 1984.

[15] Levenberg, K., "A Method for the Solution of Certain Non-linear

Problems in Least Squares," Quart. Appl. Math., Vol. 2, pp. 164-

168, 1944.

[16] Lions, J.L., Optimal Control of Systems Governed by Partial Dif-

ferential Equations, Springer Verlag, New York, 1971.

[17] Lions, J.L. and E. Magenes, Non-HomogeneousBoundary Value Prob-

lems and Applications, Vol. I, Springer Verlag, NewYork, 1972.

[18] Marquardt, D.W., "An Algorithm for Least-Squares Estimation of

" J SIAM, Vol 11 (2), 1963.Nonlinear Parameters, .

43



[19] Oden, J.T. and J.N. Reddy, An Introduction to the Mathematical

Theory of Finite Elements, Wiley-lnterscience, New York, 1976.

[20] Pazy, A., Semigroups of Linear Operators and Applications to

Partial Differential Equations, Springer-Verlag, New York, 1983.

[21] Prenter, P.M., Splines and Variational Methods, John Wiley and

Sons, New York, 1975.

[22] Rosen, I.G., "A Numerical Scheme for the Identification of Hybrid

Systems Describing the Vibration of Flexible Beamswith Tip Bod-

ies," J. Math. Anal. and Applic., to appear,1985.

[23] Schultz, M.H., Spline Analysis, Prentice Hall, Englewood Cliffs,
1973.

[24] Showalter, R.E., Hilbert Space Methods for Partial Differential

Equations, Pitman, London, 1977.

[25] Storch, J. and S. Gates, "Planar Dynamics of a Uniform Beamwith

Rigid-Bodies Affixed to the Ends," Report CSDL-R-1619, Charles

Stark Draper Laboratory, Cambridge, MA, 1983.

[26] Storch, J. and S. Gates, "Transverse Vibration and Buckling of a

Cantilevered Beamwith Tip Body under Axial Acceleration," J.

Sound and Vibration, 99, 1985.

[27] Storch, J. and S. Gates, "Transverse Vibration and Buckling of a

Cantilevered Beamwith Tip Body under Axial Acceleration," Report

CSDL-R-1675, Charles Stark Draper Laboratory, Cambridge, 1983.

[28] Yosida, K., Functional Analysis, Springer-Verlag, New York, 1966.

44









1.Repc_tno NASA CR-172537 2 GovtrnmentA_c_ionNo. 3. R_,p,,n!°l _UI_ No

ICASE Report No. 85-7

4 T_Ile and Subtitle S. Re_ Dire

A GALERKIN METHOD FOR THE ESTIMATION OF PARAMETERS February 1985
IN HYBRID SYSTEMS GOVERNING THE VIBRATION 6.P,norm;n_Or_n_zati_Co_

OF FLEXIBLE BEAMS WITH TIP BODIES

7. Aurar(s) 8. Per|ormingO+_n;z_tlonReposiNG.

H. Thomas Banks and I. Gary Rosen 85-7
10.W_k UnitNo.

9 Perf_m;ng Organization Name and Addre_

Institute for Computer Applications in Science

and Engineering I1. _ntrzctor GrantNo.
Mall Stop 132C, NASA Langley Research Center NASI-17070

Hampton, VA 23665 13.Ty_ o!Re_ andP_i_Cover_

12. S_nsoring A_ncy NameandAddr_s
Contractor Report

National Aeronautics and Space Administration ]4.S_n_nringA_ncyCo_

Washington, D.C. 20546 505-31-83-01

15._pplementaryNote= Additional support: NSF Grant MCS-8205355, AFOSR Contract 81-

0198, ARO Contract ARO-DAAG-29-83-K-0029, and AFOSR Grant AFOSR-84-0390.

Langley Technical Monitor: J. C. South, Jr.
Final Report

16. Abslra_

In thls report we develop an approximation scheme for the identification of

hybrid systems describing the transverse vibrations of flexible beams wlth attached

tip bodies. In particular, problems involving the estimation of functional

parameters (spatially varying stiffness and/or linear mass density, temporally

and/or spatially varying loads, etc.) are considered. The identification problem is

formulated as a least squares flt to data subject to the coupled _ystem of partial

and ordinary differential equations describing the transverse displacement of the

beam and the motion of the tip bodies respectively. A cubic spllne-based Galerkln
method applied to the state equations in weak form and the discretlzatlon of the

admissible parameter space yield a sequence of approximtlng finite dimensional

identification problems. We demonstrate that each of the approximating'problems

admits a solution and that from the resulting sequence of optimal solutions a

convergent subsequence can be extracted, the limit of which is a solution to the

original identification problem. The approximating identification problems can be

solved uslnK standard techniques and readily available software. Numerical results

for a varlety of examples are provided.

17. Key Words (Suggested by Author(s)) 18. D;strlbution Stitement

parameter estimation 64 - Numerical Analysis

flexible structures 66 - Systems Analysis
Galerkin methods

Unclassified - Unlimited

19. S_u_y _a_if._i_e_rt) 20. Secwiw_la_if,_It_s _) 21, No. of Pa_$ 22. _ice
unc±asszczea unciassz_zea 48 A03

Forsaleby theNalionalTechnicalInfo(malionService.Sprinp.field.V.£inia 2216!
NASA-Langley,1985






