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ABSTRACT

In this report we develop an approximation scheme for the identification
of hybrid systems describing the transverse vibrations of flexible beams with
attached tip bodies. In particular, problems involving the estimation of
functional parameters (spatially varying stiffness and/or linear mass density,
temporally and/or spatially varying loads, etc.) are considered. The
identification problem is formulated as a least squares fit to data subject to
the coupled system of partial and ordinary differential equations describing
the transverse displacement of the beam and the motion of the tip bodies
respectively. A cubic spline-based Galerkin method applied to the state
equations in weak form and the discretization of the admissible parameter
space yield a sequence of approximting finite dimensional identification
problems. We demonstrate that each of the approximating problems admits a
solution and that from the resulting sequence of optimal solutions a
convergent subsequence can be extracted, the limit of which is a solution to
the original identification problem. The approximating identification
problems can be solved using standard techniques and readily available
software. Numerical results for a variety of examples are provided.
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SECTION 1

INTRODUCTION

In this report we develop an approximation scheme for the identifi-
cation of systems describing the transverse vibration of flexible beams
with attached tip bodies. The equations of motion for this type of prob-
lem generally take the form of a hybrid system of coupled partial (gov-
erning the vibration of the beam) and ordinary (describing the motion of
the tip bodies) differential equations with appropriate geometric bound-
ary conditions and initial data. The resulting identification problems,
therefore, tend to have infinite dimensional constraints. Moreover, if
the parameters to be identified are functional (spatially and/or tempor-
arily varying), the admissible parameter space is a function space and as
such is infinite dimensional as well. The solution of the resulting
constrained optimization problem,therefore, necessitates the use of some
form of finite dimensional approximation.

The scheme we develop here is based upon the reformulation of the
equations of motion in weak form. A cubic spline based Rayleigh-Ritz-
Galerkin method is used to define a finite dimensional approximation to
the state equations. Using finite dimensional subspaces to discretize
the admissible parameter space, we obtain a doubly indexed sequence of
approximating identification problems. Using standard variational argu-
ments, we derive a convergence result for the state approximations. We
show next that each of the approximating identification problems admits a



solution and that from the resulting sequence of optimal parameter values
a convergent subsequence can be extracted whose 1limit is a solution to
the original infinite dimensional identification problem. In addition to
convergence results, we present numerical results which demonstrate the
feasibility of our method.

The approach described in this report represents a significant
improvement over the method developed in [22]. Indeed, we have developed
a scheme which is computationally simpler and, by relaxing the necessary
hypotheses on the admissible parameter space, is applicable to a wider
class of problems. Our results are similar in spirit to those presented
in [7] in the context of parabolic systems, in [8] for hyperbolic systems
and in a forthcoming paper by Banks and Crowley [5] for beam equations
with standard boundary conditions (e.g., clamped, simply supported,
cantilevered, etc.). Other work regarding approximation methods for
inverse problems in elasticity can be found in [2], [3], [4], [10] and
[14].

We simplify our presentation by only considering a cantilevered
beam with an attached tip (point) mass. As is discussed in Section 4,
however, our general approach is applicable to a broad class of beam-tip
body vibration problems. In Section 2 we derive the weak form of the
equations of motion, define weak and strong solutions, and formulate the
identification problem. In Section 3 we define the approximation scheme
and discuss convergence. Numerical results are presented in Section 4.

We employ standard notation throughout. The Sobolev spaces of real
valued functions on the interval [a,b] whose kth derivatives are Lo
are denoted by HK(a,b), k = 0,1,2.... The corresponding Sobolev inner
products and their induced norms are denoted by <oy and "lk
respectively. For Z a normed linear space with norm "‘Z and

f: [0,T1> Z, we say that fel2([0,T1,2) if J] K (t)|§ dt < w.



Similarly, f will be said to be an element in C%([0,T7],Z) if the map

t » f(t) from [0,T] into Z is 2 times continuously differentiable on
(0,T). Finally, for a function of one or more real variables the symbol
Def (D:f) will be used to denote the 1St (kth) derivative of f with
respect to the independent variable 6. If f is a function of a single
variable only, the subscript may be deleted. On occasion the short-hand
notation Dgf(eg) or Df(eg) will be used in place of Def‘eo or Df‘eo to
denote the derivative of f evaluated at 64



SECTION 2

THE IDENTIFICATION PROBLEM

We consider a long slender beam of length & with spatially varying
stiffness EI and linear mass density p which is clamped at one end and
free at the other with an attached tip mass of magnitude m (see
Figure 2.1).

i — X
4 ‘

Figure 2.1.

Using the Euler-Bernoulli theory and elementary Newtonian mechanics, we
obtain the partial differential equation

2 2 2 _

p(X)DtU(t,X) + DXEI(x)DXu(t,x) =

(2.1)
on(t,x)Dxu(t,x) + f(t,x) xe(0,2) te(0,t)

and boundary condition at the free end



mu(t,e) - D ENe)DZu(t,e) =

2
t X

(2.2)
- G(t,l)DxU(t,l) + g(t) te(OsT)

describing the transverse displacement of the beam and tip mass
respectively where ¢ is the internal tension (as a result of axial
loading) f is a distributed lateral load applied to the beam and g is a
force directed transversely which acts on the tip mass (see [9] and
[26]). Rotational equilibrium at the free end yields

DiU(t,Z) = 0 tGEOQT] ’ (2'3)

while at the clamped end we have the usual geometric boundary conditions

u(t,0) = 0 DXu(t,O) = 0 te[0,T]. (2.4)

The temporal boundary conditions, or initial conditions, are assumed to
be of the form

u(0,x) = ¢(x) Dtu(O,x) = p(x) xe[0,2] . (2.5)

We make the standing assumptions that m > O, EI,pst(O,l) with EI,p > 0,
0eLy([0,T1H (0,2)), gel,(0,T), fel,([0,T1,H0(0,T)), oeh?(0,2), and

weHO(O,z) with y(2) specified in R. Define the Hilbert space
H=Rx HO(O,z) with inner product

< (nsd)s (z,0) >H = ng t < ¢,9 >0.



We then rewrite Equations (2.1) - (2.5) as

MPZI(t) + Agi(t) = By(t)i(t) + Folt)  te(0,T)  (2.6)

vou(t) =0 yy0(t) =0 y,i(t) =0 tel0,T] (2.7)
x=0 x=0 X=4,

u(0) = % D.U(0) = ¢ (2.8)

where U(t) = (u(t,2),ult,+))eH, Fy(t) = (g(t),f(t,)), & = (6(2),4),
¥ = (y(2),¥) and the operators Mys Ags Bp(t) and v,, i=0,1,2 on H are
defined formally by

Mo(n,¢) (mn,0¢),

2

(- DEI(2)0%(2), DPEID%),

Ao(ns¢)

Bo(t)(n,¢) = (' O(t,Z)D¢(£), DUD¢)’

Yi(n,¢) = D1¢ ’ i = 0’132

respectively.

There exist several ways in which the notion of a solution to the
system (2.6) - (2.8) can be made precise. Of particular interest to us
here are the ideas of a weak or variational solution and a strong
solution.



Define the Hilbert space {V, < «,« >} by

Vo= [(n,e)ed : 9eH?(0,2), 4(0) = Do(0) = 0, n = ¢(2)} ,

< (6(2)50)s (w(2)s9) >y = < 0%, D% >y

It is not difficult to show that V can be densely embedded in H.
Choosing H as our pivot space, we have therefore that VCHCV' where V'
denotes the space of continuous linear functionals on V. Consider the

second order initial value problem

<MDZG(t), B >, + a(b(t), B) =
(2.9)
b(t)(U(t),8) + < Fy(t), 8 >, te(0,T), BeV
u(0) = 3 D,u(0) = (2.10)

where 8 = (6(2),6) and the bilinear forms a: VxV » R and b(t): VxV » R

are given by
a(3,9) = < EID%, D%y >,
and

b(t)(ésﬁ;) = < - °D¢9 Dl,[) >0



respectively. A solution U to (2.9) and (2.10) with G(t)eV is known as
weak or variational solution to (2.6) - (2.8). Indeed, if the deriva-
tives in (2.6) and (2.7) are taken in the distributional sense, Ay

and Bo(t) become bounded linear operators from V into V' with

~ A

<Agdsb >y = als,.d)

and

<Bo(t)d,d >y = b(t)(4.9)
where the H inner product is interpreted as its natural extension to the
duality pairing between V and V' (see [11, [19], [24]). Since
Fo(t)eHC:V' we have therefore that the systems (2.6) - (2.8) and (2.9)
and (2.10) are two representations for the same initial value problem in
V'.

Under the assumptions which we have made above, standard arguments

(see [16], [17]) can be used to demonstrate the existence of a unique
solution U to (2.9) and (2.10) with GeC([0,T1,V), DtGeC([O,T],H) and

ﬁaeLz([o,T],v').

D
In order to characterize strong solutions we rewrite (2.6) - (2.8)

as an equivalent abstract first order system and then rely upon the

theory of semigroups and evolution operators. lLet Z =V x H with inner

product

~

< vpshp)s (vpshy) > = alvy,vy) + < Mghyshy >,



We assume that EIeHz(O,z) and oeCl([O,T], H1(0,2)) and define the opera-
A: Dom(A)CZ » Z by

Dom(A) = Dom(AO) x V
0 I
A =
-1
-M0 A0 0

where I is the identity on V, Mg and Ag are as they were defined
above, and

Dom(Ag) = {& = (s(2), ¢) eV: s (0,2), D%(2) = 0}.
Similarly, define the operators B(t): Z+1by

0 0
B(t) =

MalBO(t) 0

and let A(t): Dom(A)CZ + Z be given by A(t) = A + B(t). Let F(t)eZ be
defined by F(t) = (0, MalFO(t)), zgel by zj= (3,9) and consider the
initial value problem

D,z(t) = A(t)z(t) + F(t) te (0,T) (2.11)

z(0) = z,. (2.12)



It is not difficult to argue that the operator A is densely defined and
conservative. That is

< Az,z > = 0 zeDom(A). (2.13)

Moreover, we have

Theorem 2.1: The operator A:Dom(A)CZ » Z is skew self adjoint.
Proof
We first argue that -ACA*., That is Dom(A)cC Dom(A*) and for

zeDom(A), A*z = -Az. Let 2,2, eDom(A) with z; = ($1,$i). Then

<Azy,z, 05 = albady) <= AgdyLd, oy

< E1D%y;,0%, > - < EID%; 0%, >

- < @13'A0$2 >H = a(&tls{i)z)

= - <z,,Az

1°722 >z

where we have used integration by parts, the definition of Dom(Ag) and
the definition of V in performing the above computation. This, of
course, implies that zzeDom(A*) and A*z2 = -Azz.

We next argue that Dom(A*)C Dom(A). Let weDom(A*) and y = A*w.
Then for zeDom(A)

CZ,y >, = < zZ,AW >, = <Az >7¢

10



Recalling that z,w,yeZ, let z = (21,22), W= (Ql,ﬁz) and y = (91’92)'
Then

0 = <z,y>, - <Az,w>

z 7
azyay)) + MZyaYp%y = alZysig) + <Ag2y iy,

2. .2 ~1 2
<EID"zy,D% > + mzy(2)§, + <pz,.35% -

]

2 ~l 20.n2

2 2
25D Wy>g - DEI(2)D zl(z)w2 + <D°EID"z

€107 ,w2>0 (2.14)

1

where ., = (9%,§§)GH and i, = (QS,Qg)eH. Let 6cH2(0,2) be defined by

Dze = pyg, o(2) = 0 and Do(g) = - my; .

Then substituting into (2.14) and integrating by parts, we obtain

2 a1
0 = - DEI(e)D7z; (2)(y,(2) + W) +
2..:2 ~2 2 2
< DTEID Zy5Yq + W, >0 + <D Zys 6 - EID Wy >0
which implies
. 2 A1 2.2 "2
(i) -DEI(g)D 21(2)(y1(2) + w2) + DEIDZy,y, + Wo>q = 0

and

g 2 2 _

11



Let (n,4) be an arbitrary element in H. Choose zleH4(0,z) which
satisfies

0°EID%z, = 4, DEI(z)Dzzl(z) = -, Dzzl(z) = 0, Dz,(0) = O

and

Then 23 = (z1(2),z1)eDom(Ag) and (i) therefore implies that

< (yy(2) + gy, +#2), (ny6) >y = O (nso)eH

from which it follows that yl(z) = -W% and y, = -Wg in HO(O,Q). We

have, therefore, that WZ = -§1sV.

Next, let ¢ be an arbitrary element in HO(0,2). Choosing
z, = [ [ ¢, (ii) implies that
2 00

<8 - EID2w1,¢ >0 ~ 0 ¢8H0(0,2)

and hence that 8 = EIDzwl. This in turn implies that wlsH4(0,2) and

Dzwl(z) = ET%E7'9(“) = 0. Since weZ, WleV and therefore WleDom(AO),we

conclude that w = (Wl,Wz)eDom(AO) x V = Dom(A) and the theorem is proven.

12



Since A is densely defined [12, Theorem 3, page 142] implies that A*
is closed and, by Theorem 2.1 above, that A is closed as well. This fact
together with (2.13) and Theorem 2.1 yield that A is maximal dissipative,
and hence by [13, Theorem 4.2, page 84] that it is the infinitesimal
generator of a Co semigroup of contractions {S(t): t > 0} on Z. It is
in fact the case that (see [13], [28]) S(t) is defined for t < 0 and that
{S(t): - = <t <=} forms a Cy group of unitary operators on Z. Since
the operators B(t), 0 <t < T are bounded [20, Theorem 2.3, page 132]
implies that {A(t)}tc[0,7] is a stable family of infinitesimal
generators. Since Dom(A) is independent of t, [20, Theorem 4.8, page
145] yields that the family {A(t)}tc[0,T] 9enerates an evolution system
{U(t,s): 0<s <t <T} on Z.

Define
z(t) = (U(t),v(t)) (2.15)
in Z by
z(t) = U(t,0)zy + jZU(t,s)F(s)ds. (2.16)

The continuous function z given by (2.16) above is the unique mild
solution to the initial valve problem (2.11), (2.12). If, in addition,
zpeDom(A) (that is ¢eDom(Ag) and yEV) then z is a strong solution to
(2.11), (2.12). Indeed z is differentiable almost everywhere on [0,T]
with D,zel ,([0,T],Z), satisfies (2.12) and satisfies (2.11) for almost
every te[0,T] and is such that z(t)eDom(A) a.e. on [0,T].

13



We shall call u given by (2.15) and (2.16) a strong solution to the
initial value problem (2.6) - (2.8). The following result is easily
obtained.

Theorem 2.2: Suppose EIsHZ(O,l), oeCl([O,T], Hl(O,z)), &eDom(AO),and
PeV. Then U given by (2.15) and (2.16) is the unique strong solution to
the initial value problem (2.6) - (2.8). MWe have that U satisfies (2.8)
and (2.6) and (2.7) a.e. on [0,T]. Moreover, G is twice differentiable
in H and differentiable in V almost everywhere on [0,T] with

DZfieL,([0,T,H) and D, ieL,([0,T1,V).

It is also not difficult to show that if a strong solution G to
(2.6) - (2.8) exists it coincides with the weak solution, and in which
case, it is given either by (2.15) and (2.16) or as the solution to the
initial value problem (2.9), (2.10).

In formulating the identification problem, for ease of exposition,
we consider a (reasonably broad) class of inverse problems which are of
particular interest in the structural modeling of large flexible
spacecraft and shuttle attached payloads (see [25], [27]). We assume
that we are only interested in estimating the parameters meR, EI,
pelo(0,2), and ceLz([O,T],Hl(O,z)) where ¢ = o(ag,m,p) with
agel2(0,T). It is not difficult to further generalize the results
which follow to allow for the identification of initial data, the
external Tloads f and g, and more general forms of the internal tension o
(see [7]). The motivation for choosing o to be a function of a time
varying function ag, the magnitude of the tip mass m,and the linear
mass density of the beam p will be made clear below.

14



Let 2= R x L,(0,2) x Lo(0,2) x L2(0,T) with the usual product
topology. Let Q be a subset of £ which satisfies

(H1) Q is compact.

(H2) There exist constants mj, Mj, i=1,2,3 such that

0 <m <m<M

0 < m, < EI < M2
0 < ma
for all q = (m, EI,p,ag)eq.

<p <M3

(H3) For all qeQ, o(q)elp([0,T1),HL(0,2)) with the mapping
q + o(q) continuous from Q into Lp([0,T],H1(0,2)).

We assume that we have been provided with displacement measurements

{ﬁ]ti,xj)} for the beam at positions xje[0,2], j=1,2,...v, at

.i=1,ocou
J=l,eeev
times t;¢[0,T], i = 1,2,...u, which result from a known input distur-
bance applied to the system in a known initial state and formulate the

jdentification problem as a least squares fit to data:
(1D)

Find q = (m,El,p,ag)eQ which minimizes

4 I 2
Jqsil(q)) = 121 jzl Jultyox;) - ulty,x;,a)) (2.17)

where U(t;q) = (u(t,2;q),u(t,+;q)) is the solution to (2.9), (2.10)
corresponding to qeQ.

The infinite dimensionality of both the state, which is governed by
the system (2.9), (2.10), and the admissible parameter space Q (being a

15



function space) necessitates the use of some form of approximation in
solving Problem (ID). We develop and analyze one particular scheme in
the next section. We note that the approximation theory to be developed
below will also permit the formulation of the identification problem
based upon criteria other than displacement; for example, velocity (see

(2z2]).

16



SECTION 3

AN APPROXIMATION SCHEME

Our scheme is based upon the construction of a sequence of
approximating identification problems, in each of which both the state
constraint and the admissible parameter space are finite dimensional. We
argue that each of the approximating problems admits a solution. The
resulting sequence is shown to have a sub-sequential limit which is a
solution to the original identification problem. The state approximation
is constructed using a spline based Galerkin method. The admissible
parameter space is discretized using splines as well. We begin by
discussing the state approximation.

Working abstractly at first, let VNCIV be a finite dimensional
subspace of H and let PN denote the orthogonal projection of H onto VN
with respect to the H inner product. The Galerkin equations
corresponding to (2.9), (2.10) are given by

i), 8% s, + a(@ie),8Y ) -
(3.1)
b(t) (6" (£),8") + < Fy(1),8" >, te(0,T), gNeV
") = oY 0i'(0) = P (3.2)

where GN(t) = (uN(t,z),uN(t,-))eVN. We define the following sequence of
approximating identification problems.

17



(IDN)
Find q = (m,EI,p,aO)eQ which minimizes J(q;dN(q)) where J is given

by (2.17) and GN(t;q) = (uN(t,z;q),uN(t, « 3 q)) is the solution to
(3.1), (3.2) corresponding to qeQ.
Let {§?}?:}1 denote the standard cubic B-splines on the interval

[0,2] corresponding to the uniform partition AN = {0, %—, %ﬁ,...z} (see

[21]). Let {B?}?Z% denote the modified cubic B-splines which satisfy
B?(O) = DB?(O) =0, j=1,2,..M1. That is

NN N N

Bl - BO - 281 - 28-1

Y = B j o= 23,041,

J J

AN N N N
Let Bj = (Bj(z),Bj) and let V CV be defined by

W sean 13
- { J}j=1 *

The Galerkin equations (3.1), (3.1) take the form

Mo (t) + Agw”(t) . Bg(t)wN(t) + Fg(t) (3.3)
W) = TN aNoy = ety (3.4)

18



where

£

Molsy = o8R0 + f o]
N A 02N 2N
[Ag) = 1051 BiD B,
N L N, o N
[Bo(t)]ij - foo(t,o)DB DB
N N L
[Fo(t)]; 9(t)Bj(e) + f Flt
3", = sl + I 8
3, = p(0le) + f ¢B
n = Bl )B g) + Ll
[ ]1j B . IO i

N+1
~N N N
i,j = 1,2..N+1 and u (t) = z Wy (t)B 5

Our convergence arguments are based upon the approximation

properties of spline functions. Let §S(AN) SPAN{EN}ﬁill and let
33(AN) = SPAN{B?}?Z%. For ¢ a function defined on the interval [0,2] Tet
=N . =3

["¢ denote that element in S (AN) which satisfies the interpolatory

constraints (TN¢)(%&) = ¢(JZ), j =0,1,2,..N, D( )(J—J = D¢(§—Q j=0

19



and N and Tet INy denote that element in‘S3(AN) which satisfies the
interpolatory constraints (IN¢)(ﬁ&J = ¢(ﬁ&J j = 1,2...N, D(IN¢)(£) =

D¢(2). The interpolatory spline TN¢ will be well defined whenever ¢ is
well defined at the node points and D¢ at the end points. A similar
statement can be made for IN¢.

We require the following two standard results concerning the
approximation properties of interpolatory splines (see [23]).

Proposition 3.1: For ¢eH2(0,2)

[Dk(TN¢ - oo f_CiN'2+k|Dz¢

where C& is independent of ¢ and N.

Proposition 3.2: For ¢eH4(0,2)

]Dk(TN¢ - )l §_CiN'4+k‘D4¢lO k =0,1,2

where Ci is independent of ¢ and N.
Lemma 3.1

N AN N N N
(1) Let ¢ = (¢(2),¢)eV and let ¢ = P ¢ = (4 (2),¢ ). Then

o > 4 in HE(0,2) and consequently ¢ » ¢ in V.

(2) PN + I strongly in H.

20



Proof

(1)
o - ol < 3N - 8]y < Jae) - )y
= ™M - el = 1™ -4l
< CéN'z!D2¢l0 >0 as N» o

[DwN-'ﬁ¢HO+1DﬁN¢-¢)b

1
-
g

o
A

| A

klNl¢N i TN¢‘O . C{N'1‘02¢lo

| A

k1N|¢N - 8o * k1N|TN¢ - 8] * C%N'1|D2¢‘o

kICéN-l‘D2¢‘O " kICéN-l‘DZ¢‘O ¥ clN‘1|02¢l0

A

1 1yy-1{+2
(2k,Cq + C)IN |D ¢‘0 >0 as N+ o

where we have made use of the Schmidt inequality (see [23]) in making the
estimates above.

Using the Schmidt inequality together with the first integral
relation (see [23]), we obtain

21



%% < 2o - T0)|f + 2J0fThs|

Y

i

| A

2k2N4l¢N _ N )!2

¢‘g " 2]02¢‘8 - 2‘DZ(¢ - |3

1A

2k2N4l¢N - ¢lg ¥ 2k2N4!TN¢ - ¢lg + 2‘D2¢‘§

| A

a2‘02¢lg

where o« is independent of ¢ and N. Let ye{e: 6eH?(0,2),0(0) = Do(0) =
0}. Using arguments similar to those used above together with
Proposition 3.2, it can be shown that

P2e" - |y < WY,

where k is independent of y and N. Then

2, N 2

o2 - )] "

|

020" - W]g + PPN - g + PP - 9)]g

| A

(a + 1)‘02(¢ - ¢)‘0 + EN_21D4w‘O.

Standard density arguments guarantee that ¢ can be chosen so as to make
the first term arbitrarily small and therefore that

2, N _

iD (¢ ¢)‘0 >0 as No» o

which proves statement (1) of the theorem.
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Statement (2) follows from Statement (1) and the fact that V is
dense in H and the PN being orthogonal projections are uniformly
bounded.

Theorem 3.1: Let {qN}C:Q with qN > qas N » =, Let U denote the

solution to (2.9), (2.10) corresponding to q and let GN denote the
solution to (3.1), (3.2) corresponding to qN. Suppose further that
a strong solution (see Theorem 2.2). Then 6N > G in Vand DGV > D

t t
H as N+ » for each te[0,T].

i

u is
d in

Proof

Our argument is similar in spirit to the one used in [11] to
demonstrate the convergence of a Galerkin method for the integration of a
class of hyperbolic systems. We adopt the convention that the
superscript N on a form or operator indicatesthat it be computed with
respect to qN = (mN,EIN,pN,ag) while no superscript indicatesthat it be

computed with respect to q = (m,EI,p,aO).

Applying the triangle inequality, we have

|GN - u]y < \GN'- PNG!V ¥ ‘PNG - )y (3.5)

and

AN A AN NA N A A
lDtu - DtulH f_lDtu - D;P u]H + ‘P Dyu = Deufy - (3.6)
Lemma 3.1 and ‘the fact that u has been assumed to be a strong solution

imply that |PNG - G|V > 0 and ]PNDta - Dta!H > 0 as N » » for each
te[0, T1.
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Since GN
eN

then for eVN vie have

N.2,~N N+
<M0Dt(

satisfies (3.1) and (3.2) and since u

u - Pwu), 8 >H + a

”~

AN NN Ny N

N\n22 4N

_ N~2 ~ N~ ~N
= < Mth(“ - P'u), o >t <(M0 - MO)Dt”’ 0 >y

+ aN(A

+ Ny M

A

+ bV (t)(u, o)

o - PN, N 0, 8"

) +a(, o) - a(, oY)

- PG, 8Y bM< a, oY

oYy - b(e)(, oYy,

R CA TS AR IR

Let uy = (uN(z), uN) = PNG, let v = - uy and choose
5N = Dt;NeV . Then
<MgD§;N, Dt;/N>H + aN(QN, DtQN)
= <MBD§(G - PNG), DtQN>H + <(M0 - MS)DEG, Dt;/N>H
+a (- oM, 0 WY +a@@, o) - NG, oW
NGO ICARI R IO AR AR

+ 0 (t)(a, D) - b(t)(d, DV

N
t )
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or

1 Ny ~N ~N N,~N =~
?'Dt(<MODtV . Dtv yta (v, v)
_ N Ny 27 ~N Nyn 2" N
= <M0(I -P )Dtu, Dtv ot <(M0 - MO)Dtu, Dtv N
+ 0,2 (1 - PN, W - At - PN, VY

A

+ 0 (a(, ¥ - M@, V) - (a,a, W - a"0,a, V)
+ b)Y, oo + oMy e - 4, oY)

+ bM(e) (@, DY) - b(e)(a, D).

Integrating both sides of the above expression from O to t, invoking
hypotheses (H1) - (H3) on Q and using standard estimates we obtain

. “N2 N2

min (my, m,, m3)(‘Dtv W ‘v ‘V)

2 2% 12 *Ny 2
f_fg {max (M7, Mg)l(l - PN)DSulH + ‘st "

¢ max(|m - mN|2’ o - lef)lDEGlﬁ + \DSQN ﬁ

e | (1 - P ul§ + |G+ Jer - er|2pou)

+ [WE + colota) [ WF + colata™]y|o )]

+ c§|0<qN>|§|(1 - p“)a|3 ¥ IDSQN :

+ Cllc(q) - o(qN)!E!als + ‘DSQN g} ds
. %E-i(l - PN)GIS + CZICN 24 | - PN)$\$

+ %g-‘EI - N 20]5 ¢ WG+ JEr - EN2)6)
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where Cp and C1 are constants which are independent of N and C2 and
C3 may be chosen arbitrarily. Choosing C2 and C3 sufficiently
small (C2 + C3 < min (my, mp, m3)),we obtain

o5+ [V <8t + g5 kG o+ W) as
where
ANty = k(] (1 - My lv (X - PN)$‘§
v |EI - EIle‘G(t)|$ + |e1 - €1 24)
FIol] (1 - g+ max (m -l o - M2
;Dgﬂ(s)lﬁ + |- PN)DSG(S)IS +|EL - EINISlDSG(s)ls
+ |ols, - l |(1 - P (s) lv |o(ss = 5 q)
B
and

Ko(s) = K2{K3 + |c(s, * qN)ll}

where Kj, i =1, 2, 3 are constants independent of N. Using the fact
that qgN > q in Q as N » « and u(a) is a strong solution together with
Lemma 3.1, the compactness of Q and Hypothesis (H3) we have that aN » 0
and Kg is uniformly bounded in L2(0, T) as N > =, An application of
the Gronwall inequality therefore yields

lDt;le + ‘VN 250 as N » o
AN NA AN NA
for each te[0, T]. Consequently |Dtu - D.P ulH + 0 and lu - P U‘V » 0

as N » » which together with (3.5) and (3.6) proves the theorem,
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The continuous dependence results given in Theorems 3.2 and 3.3
below can be verified using arguments similar to those used in the proof
of Theorem 3.1.

Theorem 3.2: Let {qk} C 2 with g > g* as k » ». If for each N fixed,

~

uN(q) denotes the solution to (3.1), (3.2) correspondingly to q then

GN(qk) > GN(q*) in V and DtaN(qk) > DtaN(q*) in H for each te[0, T] as

A

k + ». That is, the mapping q » (uN(q), DtuN(q)) from Q into V x H is
continuous for each N = 1, 2, ...

Theorem 3.3: Let {qk} C 2 with q > g* as k » = and Tet a(q) denote the

solution to (2.9), (2.10) corresponding to q. If G(q*) is a strong solu-

A

tion then G(qk) > G(q*) in V and Dtu(qk) > Dtu(q*) in H for each te[0, T]

as k » «. The mapping q + (a(q), Dta(q)) is continuous from Q into V x H
in neighborhoods of those qeQ for which u(q) is a strong solution.

We are now prepared to prove our first major convergence result.

Theorem 3.4: For each N =1, 2, ... fixed, problem (IDN) has a solution
N N L
q . The sequence {q} admits a convergent subsequence {q "} with

N

qQ +qeQas k+»w, If a(a) is a strong solution to (2.9), (2.10)
then q is a solution to Problem (ID).

Proof

Theorem 3.2 implies that the mapping q » J(q; GN(q)) from Q into R
is continuous. This together with the fact that Q is compact yields the

existence of a solution EN'to problem (IDN). The existence of a conver-

gent subsequence {q k}c:{aN} also follows from the compactness of Q. If
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N

q > qas k » » and u(q) is a strong solution to (2.9), (2.10) then
Theorem 3.1 implies

. N, LN, N
(G, u(@) = 1in (@ 5 0 5@ 1)

ko0

<Tima(a; 8 K@) = e )
k>0
for all q € Q and the theorem is proven.

Turning our attention next to the other infinite dimensional aspect
of Problem (ID),we introduce a second level of finite dimensional approx-
imation to effect a discretization of the admissible parameter space.

For each M = 1,2, ... let the sets QMc 2be given by gM(Q) where
the mappings gM satisfy

(P1) JM:Q > 2 1is continuous.

(P2) JTM(q) +q as M+ « uniformly in q for all q € Q.

We assume further that the sets QM have the property

(P3)  For each geQM, u(a) is a strong solution.

We define a doubly indexed sequence of approximating identification prob-
lems by
(IDNM)

-

Find q = (m,EI,p,aO)eQM which minimizes J(q; uN) subject to

J(q; GN) subject to GN being the solution to (3.1), (3.2)
corresponding to q.

Note that if the sets QM are of dimension Ky < « then the optimiza-
tion in Problem (IDNM) is simply over a compact subset of the space
RkM and is subject to finite dimensional constraints; a computa-
tionally tractable problem.
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The convergence arguments now go as follows. Property (P1) and Q
compact imply that the sets QM are compact as well. For each N =1, 2,
«.. and each M = 1, 2, ... Problem (IDNM) therefore has a solution

ﬁﬁ. For each M =1, 2, ... fixed, the sequence {Eﬁ}:=1 admits a con-
N k N kK —
vergent subsequence {qM } with dy * gy as k » =. Recalling property

(P3) and arguing as we have in the proof of Theorem 3.4,we conclude that
EM is a solution to the problem of minimizing J(q; L) over QM. Since

M M(

Q = JZM(Q) there exists gy € Q such that EM = g qM). Now {qM}C:Q

and Q compact imply the existence of a convergent subsequence {qM }
J

- M. «
with ay. q as j » . Property (P2) then implies that & J(qM ) » q as
J J
j + = and hence that EM +qas j»«as well. Then

]

—_ ~ ~ M.

I(ay 5 u) < I(q; u) qeQ

j
M, M,
and Q9 =7 J(Q) yield
. Moo . M

Iay 5 u@y ) < IF a); ulFI(a) qe. (3.7)

J J

Taking the 1imit as j + « on both sides of (3.7) and recalling Theorem
3.3 and Property (P3),we obtain

(@ u@) < d(q; ulq))  qeQ
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from which we conclude that q is a solution to Problem (ID). In summary,
we have

Theorem 3.5: Each of the approximating identification problems
(IDNM) has a solution au. From the tableau {au} a sequence {q(k)} can

be extracted with q(k) + g, a solution to Problem (ID), as k + =,

Typically an appropriate choice for the sets QM are the spaces of
linear or cubic interpolatory spline functions with the mappings oM
being constructed from the usual interpolation operators. If the ele-
ments in Q are sufficiently regular, it is not difficult to verify that
Properties (Pl) - (P3) are satisfied for this approximation. A detailed
discussion and several examples of this particular choice for the QM in
the context of inverse problems for parabolic systems can be found in
[6]. Similar results for identification problems involving the estima-
tion of functional parameters in beam equations with simple boundary con-
ditions (clamped, simply supported, cantilevered, etc.) are presented in
[5] and [14].
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SECTION 4

NUMERICAL RESULTS

In this section we discuss numerical results for a variety of ex-
amples. Although the analysis presented in the previous sections was
based primarily on a simple example involving a cantilevered beam with
tip mass, only minor modifications would be required so as to make our
general approach applicable to a broad class of inverse problems for beam
vibration. Some of these will be considered and outlined below.

Although one of the major features of our scheme is its ability to
identify or estimate functional (spatially and/or temporally varying)
parameters, our numerical findings for this important class of problems
are, at present, incomplete. For this reason, this report includes exam-
ples involving the identification of constant parameters only. Our
results for functional parameters will appear in a forthcoming paper.

In all of the examples below, the fits were based upon artificially
generated observations. By this we mean that so-called "true" values for
the parameters were selected and a modal based Galerkin method was used
to generate the solution to the resulting system of equations from which
the sampled displacement measurements {u(t,, Xj)}i=1,...,u were obtained.

j=1,oo-,\’
Results for examples involving fits based upon actual experimental data

will be discussed elsewhere.
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The finite dimensional optimization problems were solved using an
iterative steepest descent routine, ZXSSQ, from the IMSL Library. The
algorithm used is the one suggested in the papers by Levenberg [15] and
Marquardt [18]. The finite dimensional second order initial value prob-
lTem given by (3.3), (3.4) which has to be solved at each iteration to
compute the value of the least squares payoff functional J and approxima-
tions to its gradient and the corresponding Jacobian matrix is integrated
using a variable order Adams predictor corrector method (IMSL routine
DGEAR). The system (3.3), (3.4) did not in general demonstrate stiff
behavior.

The integral inner products in the generalized mass and stiffness
matrices and the generalized Fourier coefficient vectors for the external
Toads and initial data were computed using a composite two point Gauss-
Legendre quadrature rule. The four subinterval support of the cubic
B-splines and their derivatives leads to 7-banded matrices and conse-
quently contributes to the overall computational efficiency of the
method.

A1l examples were run on the IBM 3081 processor at Draper Labora-
tory.

Example 4.1

In this example we consider a cantilevered beam of length 1.0 with
an attached tip mass. We seek to identify the spatially invariant stiff-
ness EI and linear mass density p of the beam and the magnitude m of the
tip mass. We assume that the system is initially at rest (¢ = 0, y = 0)
and then excited by the distirbuted lateral load along the beam given by

f(t, x) = e* sin 2t

and the point force applied to the tip mass

g(t) = 2072t

We assume that there is no axial loading, or, o = 0.
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Displacement observations were generated by taking EI = 1.0, p = 3.0
and m = 1.5 to be the true values of the parameters. Measurements were
taken at positions xj = 0.25j, j = 2, 3, 4, at times tj = 0.5i, i =
1, 2, ... 10, from a solution to the system (2.1) - (2.5) generated using
a Galerkin method and the first two natural modes of the unforced system
(see [25]). The "start up" values for the steepest descent routine were
EIg = 0.7, pg = 2.7 and mg = 0.7. The final converged values for
FTN, EN, and Eﬁ together with the residual sum of squares UN and re-

quired CPU times for various values of N are given in Table 4.1 below.

Table 4.1.
o omo || A | e
2 | 1.00057 | 3.04455 | 1.48957 | 0.12 x 10'3 0:9.19
3] 1.00067 | 3.01256 { 1.,49707 | 0.11 x 10'3 0:22.10
4 | 1,00027 | 3.00922 | 1.49721 | 0.11 x 10'3 0:57.60
51 1.00016 | 2.98936 | 1.50262 { 0.11 x 10-3 1:22.52
6 } 0.99912 | 2.99720 | 1.49952 | 0.11 x 10-3 2:52.76

Example 4.2
We consider the system described in the previous example. We assume

that it is initially at rest and then excited by the distributed load
f(t, x) = eX sin 2nt
along the beam and the point force

g(t) = 27
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acting on the tip mass. We also assume that the entire system is sub-
Jected to a base acceleration which is given by

a,(t) =

1 0<t<1.5
(4.1)

0 otherwise.

The internal tension resulting from the axial load (see [26], [27]) is
given by

o(t, x) = =ap(t)e(z - x) * m).

We are interested once again in estimating the stiffness EI, linear mass
density p,and the magnitude of the tip mass m. The true values of the
parameters were taken to be EI = 1.0, p = 3.0, and m = 1.5 with the
reference solution being generated using the first two natural modes of
vibration for the unforced, unaccelerated system. Displacement measure-
ments were taken at positions Xj = 0.75, 0,875, 1.0, j =1, 2, 3, at
times t; = 0.59, i = 1, 2, ..., 10. The start up values for the itera-
tive search routine were taken as Elg = 0.7, pg, and mg = 1.7. Our
results are summarized in Table 4.2.

Table 4.2.
U o 7 (e9)
2 | 1.00057 3.09966 1.47928 | 0.17 x 10-4 0:18.01
3 1,00121 3.06360 1.48727 { 0.18 x 10'4 0:35.93
4 1.00092 3.04144 1.49207 0.19 x 10-4 1:26.19
5 1.000567 3.03063 1.49413 0.19 x 10_4 4:15,87
6 1,00117 3.03186 1.49436 0.35 x 10_4 5:21.34
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developed in Section 3 requires that aoecl, the scheme performed
satisfactorily with ag given by (4.1) above.

We note that although strictly speaking the convergence theory

Example 4.3
In this example we consider a free-free beam of length 1.0 with an

attached tip body at each end (see Figure 4.1).

Figure 4.1,

g,

The tip bodies are assumed to have known mass properties which are given

by:

Tip Body

mg =

Tip Body

m1

0

1

(at x

= 0):
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where for tip body i, i = 0, 1, Mmos Css 61, and Ji are respectively its
mass, the distance from its center of mass to the tip of the beam, its
mass center offset as measured from the extension of the longitudinal
axis of the beam,and its moment of inertia about its center of mass.

The equations describing the transverse displacement of the beam and
the translational and rotational equilibrium of the tip bodies are given

by (see [25], [27])

o02u + DDA = ¥, xe (0, 1), te (0,T) (4.2)

mODiu = MyCq C€OS GODtD u+bD EID JoF 0, x =0, te (0, t)

2 2\n2 2
-myCqy €S GOD u + (J0 + moco)DtD u - EID U

0, x =0, te (0, T)

2 2 2
mlDtu + mycq cos alDtD u DXEIDxu = 0, x=1, te (0, T)

2 2\n2 2
tmycq cos 610 u + (J1 + mlcl)Dthu + EIDXu

0, x =1, te (0, T).

The initial conditions are of the form

u = ¢ Du = vy xe (0, 1), t =0. (4.3)

Letting H = R4 x HO(O, 1) with inner product

<ty o)y (62 9% = iz * <4, ¥

and

Vo= [seHze = (n, ¢), 4eH2(0, 1), n = (6(0), Ds(0), 6(1), Ds(1))'}
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with inner product

<¢, ‘1’>V = <¢, ‘1))2

The weak form of the system given by (4.2), (4.3) above becomes

(4.4)

(4.5)

24\ .y ~ -~ A -~
<M0Dtu(t)’ 6>H + a(u(t), o) = <F0(t), 9>H te (0, T), o6eV
u(0) = ¢ D.u(0) = y
where
u(t) = ((ult, 0), Du(t, 0), u(t, 1), Du(t, 1)), u(t, +))ev,
Mo(ns ¢) = (Worh p¢)
with
Mg My C€OS &
0
2
-MyCq COS 60 JO + mCo
M0 =
my  mycy Cos 61
0
2
mc cos § J +tmc
11 1 1 11
a: Vx V>R given by
a(s, 9) = <€I%, DZy>y,
Folt) = (0, f(t, +))

¢
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and

v = (($(0), Dy(0), w(1), Dp(1))T, ¥).

The appproximation scheme for the system (4.4), (4.5) is then constructed
in essentially the same manner as it was in Section 3.

In this example we seek to identify EI and p. The system was as-
sumed to be initially at rest and then excited via the input disturbance

f(t, x) = 10e* sin 2rt.

Observations at positions xj = 0.25j, j =0, 1, ..., 4, at times tj =
0.2i, i =1, 2, ..., 10, were generated using the first six natural modes
of the system; four flexible modes plus rigid body rotation and transla-
tion. The true values of the parameters were assumed to be EI = 1.0 and
p = 3.0 with start up values taken as EIy = 0.7 and pg = 2.7. Our
results are given in Table 4.3.

Table 4.3.

N ET o A

2 1 0.99567 | 3.00092 | 0.20 x 10-4

31 0.99374 | 2.99900 | 0.16 x 10-4

41 0.99849 | 2.99798 | 0.78 x 107>

5 | 0.99888 | 2.99910 | 0.28 x 107°
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Example 4.4
In this example we estimate the flexural stiffness EI and linear

mass density p for a cantilevered beam of length 1.0 with an attached tip
body (see Figure 4.2).

Figure 4.2.

We assume that the system is initially at rest and then acted upon by the
distributed load

f(t, x) = 200”2t e-20(1-x)

and base acceleration
1.0 0<t<1.5
0 1.6 <t < 3.0
ay(t) =
1.0 3.0 <t < 4.0

0 4.0 <t.
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The equations of motion are given by (see [26], [27])

2 4
thu + EIDXU = —aODX(p(l - Xx) + m)Dxu + f xe(0,1), te(0,T)
szu + mc cos GDZD u - EID3u = mayD u, x =1, te(0,T) (4.6)
t t'x X 0" x™? ’ ’ *
mc cos aDzu + (J + mcz)DZD u + EIDZu = mc cos San D.u + mc sin sa
t t'x X 0 "x 0

x =1, te(O,T)
with boundary and initial conditions

u = 0 Dxu = 0 x = 0, te[0, T] (4.7)

and

u = ¢ D,u xe[0, 1], t = 0O (4.8)

t

1]
<

respectively where the quantities m, ¢, §, and J are as they were defined
in Example 4.3. Once again only minor modifications (similar to those
outlined in the previous Example) are necessary so as to make the theory
presented in Sections 2 and 3 applicable to the system given by (4.6) -
(4.8) above. Taking the true values of EI and p to be 1.0 and 2.0 re-
0.4, displace-

spectively and setting m = 4,0, ¢ = 0.2, § = /3, and J
ment observations at positions xj = 0.75, 0.875, 1.0, j =1, 2, 3, at
times tj = 4.0, 4.5, 5.0, i =1, 2, 3, were generated using the first
three natural modes of the unforced, unaccelerated system. The start up
values were taken as Elg = 0.7 and pg = 2.5. The final converged

values for EIV and_bN together with the residual sum of squares_UN for
several values of N are given in Table 4.4 below.
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Table 4.4,

N|ooETY o IV

2 | 1.00046 | 2.07731 | 0.4 x 1073
3 | 1.00135 | 2.06652 | 0.22 x 107°
4 | 1.00117 | 2.05180 | 0.23 x 1073
5 | 1.00086 | 2.04776 | 0.26 x 107>
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