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SUMMARY

A method for use in the design of a complex engineering system by
decomposing the problem into a set of smaller subproblems is presented.
Coupling of the subproblems is preserved by means of the sensitivity
derivatives of the subproblem solution to the inputs received from the
system. The method allows to divide work among many people and computers.

INHALTSANGABE

Es wird vorgestellt, ein komplettes Engineering System zu entwickeln, das
man in kleinere Untersysteme zerlegen kann. Das Zusammenlegen von
Unterproblemen kann erreicht werden mittels der Verfeinerungen der
Ableitungen von Unterproblemen, zu loesen empfangen durch Eingaben welche
vom System werden. Die Methode teilt die Arbeit unter vielen Leuten und
unter vielen Rechnern auf.

INTRODUCTION

Engineering systems are frequently composed of subsystems which are
mutually coupled so that a modification in one affects the others and
ultimately influences the pertformance of the whole. Designers of such
systems are confronted with a closed loop situation whereby the decision
making at the system level requires information about the subsystems that
have not yet been designed and vice ‘'ersa. The iterative approach
commonly used to break the deadlock relies on past experience, judgment,
and intuition as substitutes for the unavailable information and becomes
increasingly inadequate as the systems grow in complexity and advance

far away from the experience base.



The paper outlines a method for improving the iterative design of complex
systems by making it more systematic and based on a set of coherent
mathematical concepts. While rooted in mathematics, the approach
deliberately avoids handing over the entire design process toc the
computer. On the contrary, the emphasis is on a broad work front of
people and computers to combine the computer efficiency with the human

"~ intelligence indispensable in design.

DECOMPOSITION

The key to the proposesr approach is a formalized decomposition of the
large design problem intc a set of smaller manageable subproblems coupled
by means of the sensitivity data that measure the change of the
subsystem design due to a change in the system design. Let ES be an

engineering system composed of the subsystems SS1, SS SSi...SSn as

PR
shown in Fig.1 (the abbreviations are defined in Table 1, and Table 2
gives examples for the generic quantities 1in the context of aircraft
design). The design variables are grouped in a vector SV for ES and the

vectors DVi for SSi. The ES has a performance index PS that should be

maximized within the system constraints collected in a vector GS. The ES

imposes demands on each Ssi' These demands are quantified by entries of
a vector DSi which depends on 8V through analysis of ES. Suppose that
each SSi is designed by manipulating DViso that it meets its .DSi,
regarded as constants, while maximizing its safety margin SMi
representing a set of subsystem constraints GSSi. These tasks separate
for each SSi can be carried out concurrently by whatever means the SSi

designers choose, including the appropriate analysis, optimization, and,
also, judgment and experimentation.
A new element required under the proposed approach is evaluation of the

sensitivity of the maximum (optimum) SM, to changes in DSi in form of the

i
optimum sensitivity derivatives BSMi/BDSi. At the ES level, these
derivatives combined with the derivatives aDSi/BSV in chain
differentiativn yield the sensitivity of SMi to changes in SV in form of

derivatives 3SMi/aSV. The maximum SM, and its derivatives show the ES
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designer, with a linear extrapolation accuracy, how the change of SV that
he controls will affect the SMi for each SSi. Guided by this information

and by the ES analysis, the ES designer can decide which variables in SV
to change and by how much in order to move toward the goal of making all

the constraints GS and GSi satisfied while maximizing Ehe PS. The SV
change will alter the Dsi' Responding to that, the SSi designers modify

their designs and pass updated information to the ES designer who, then,

changes the SV again, and so on. In this manner the ES and the SSi

designers carry on a systematic iteration toward the improved sys3tem

design, trading the data precisely defined in form of the DSi, SMi’ and

their derivatives. Each designer works on a separate assignment with the

control of PS vested in the ES designer while the SS. designers focus on

i
their ssi feasibility. The whole problem is decomposed yet remains

coupled by the ES—SSi data exchange shown in Fig.1.

OVERALL PROCEDURE

Based on the above gualitative description, one may now formulate a
step~-by~step procedure to implement the decomposition approach.

STEP 1. Initialize the system.

STEP 2. Analyze the system. Calculate PS, GS, DSi, and SDSi/BSV.

‘STEP 3. Design subsystems Ssi' The DVi are manipulated within the upper
and lower bounds, Li and Ui’ so0 as to find maximum SMi for given DSi. The
latter requires vector of equality constraints GEi for those DSi that are
also functions of Dvi. These constraints enforce equality of the DSi
values prescribed at the system level and computed as a function of DVi
so that GEiibsi(SV)~DSi(DVi)=O. Formally, the task may be formulated as
an optimization

max SM, (DV,,DS.) subject to constraints (1)

DV S S |
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GEi(DVi,DSi) = 0. Li s DVi$ Ui



The output of the operation is: §ﬁ£=(SMi)max’ and the optimal subsystem

design variables, fﬁ%
STEP 4. Analyze each SSi design for sensitivity to the inputs received
from the system to obtain the aSMi/BDSi.

STEP 5. Modify the SV to improve the system design. In this operation,
one uses the BDSi/BSV, SMi' and BSMi/aDSi obtained in STEP 2, 3, and 4,

to extrapolate each SMi as a function of the increment AV

. QSMi BDSi
i BDSi asv

Improvement of the system design may be formalized as an optimization:

SMi(ASV) = SM ASV (2)

a) max PS(SV) subject to constraints ' (3)
SV

b) GS(SV) £ 0, ¢) SMi(SV) £ 0 (for all i)

d) LssVsU

in which the system level analysis provides the PS and GS, and the SMi in

eq.3c is approximated by eq.2. The bounds in eq.3d include "move limits"
protecting the accuracy of the extrapolation in eq.3¢c. The above
optimization problem may have no feasible solution within the move limits
in eq.3d, if it begins with significant constraint violations in eq.3b
and ¢. If a feasible solution can not be found, an acceptable outcome of
eq.3 is a new design point moved as close to the constraint boundary as
possible., The result of this step is a new SV defining a modified design
of the system.

STEP 6. Repeat from STEP 2 until all the constraints GS are satisfied,

all safety margins SMi are non-negative, and the performance index PS has

converged.

In the above procedure, also shown in Fig.2, the analyses in STEP 1 and 2
are problem~dependent. The behavior sensitivity analysis required to
obtain the aDsi/asv can bg obtained by either a finite difference

technique or, preferably, by a quasi~analytical method, e.g.,[1]. The
optimizations defined by eq.1 and 3 can be carried out by any suitable

algorithm capable to search an n—-dimensional constrained design space,



e.g.,l2], although the use of a formal optimization method is a
recommendation rather than a requirement. The optimum sensitivity
derivatives in STEP 4 can be calculated by means of the algorithms
described in [31,[43,(57,[6]. Extension of the above two~level algorithm
to multilevel systems is given in (7], and its application to aerospace
systems is discussed in [8].

Initial tests including two~level [9] and three~level [10] structural
optimizations showed satisfactory comparisons with the results obtained
without decomposition. A status report on a multidisciplinary test case
is documented in [11]. It involves redesign of a wide~body transport
aircraft wing for improved fuel consumption for a prescribed mission
under constraints imposed by strength, aerodynamics, and aircraft
performance requirements. Fig.3 shows the aircraft and a three-level
decomposition scheme devised for the problem. Research and development
continue to learn more about the algorithm's convergence properties,
sensitivity to the extrapolation errors and lack of synchrcnization among

the subtasks, ability to handle direct couplings among the Ssi's, ability

to adjust to discrete or judgmentsa.: decisions, and computer hardware

dependence.

SUMMARY AND CONCLUDING REMARKS

The paper has presented a method for decomposing a large engineering
design problem into a set of smaller subproblems. Each subproblem is
self~contained so that all the subproblems can be worked on concurrently
and a broad work front of neople and computers can be developed. The
‘metﬁod's testing to date has been satisfactory according to the
references cited. Furcher development of the method is focused on the
algorithmic details and continuing test applications.in aeroépace design.
The development entails also the issues of the data management and
utilization of parallel computation capabilit -.» being offered by modern
computer technology. ’
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Table 1 Summary of Generic Terms.

vector of demand quantities imposed by the system on

subsystem 1.
vector of design variabies for subsystem 1i.

(engineering) system.
vector of equality constraints for subsystem 1.

vector of system inequality constraints; an inequality
constraint is defined as g=(DEMAND/CAPACITY)-1, satisfied

when g £ 0.

vecter of inequality constraints for subsystem i.

vector of lower limits on SV, and DVi, respectively (move

limits included).
performance index for ES (a scalar).
safety margin for SSi (a scalar), defined as

SMi=max(CAPACITY/DEMAND)-1, or in terms of a set of g's
(see GS): SMi=max(—g/(g+1)) .
subsystem 1.

vecetor of system design variables.
vector of upper limits on SV, and DV , respectively (move
limits inecluded)

Table 2 Examples of the Equivalents of the Generic Terms Typical

DS

DV

E VS
GE

GS
GSSi

PS
SSi

SV :
aDsi/asv

9SM, /9Ds
i i

for an Aircraft Application.

at the middle level: lift required of the wing; at the

bottom level: edge loads Nx’ N on a wing cover panel.

y* Nxy
at the middle level: wing bending stiffness distribution; at
the bottom level: detailed wing panel dimensions.

aircraft, top (system) level;

at the middle level: wing structure weight prescribed at the

top level; at the bottom level: panel spanwise membrane
stiffness prescribed at the middie level.

runway length.

at the middle level: wing tip deflection;

at the bottom level: panel local buckling.
fuel economy for a given mission,
the wing box, middle level; the wing cover stiffened panels,

third (bottom) level.
wing structural weight and airfoil thickness to chord ratio.
derivative of wing lift with respect to structural weight.

derivative of wing panel safety margin with respect to edge

loads.
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Figure 1 Typical two~level system.
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Figure 2 Two-level system optimization procedure.
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Figure 3 Decomposition for wing optimization.
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