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"One of the important, and yet frequently violated ground rules of this

game is that all facts, all interpretations, and especial'y all premises

be critically reviewed from time to time." Anders, 1964, (2).

It has p robably always been evident (1) that it is much easier to produce

material resembling matrix in unequilibrated chondrites by parent body alter-
ation processes than it is in any space environment.

The basic difficulty in producing matrix in the solar nebula comes from
the long time it would take to form highly oxidized and hydrated silicates at
the temperatures where they would become thermod ,vnamically stable. lhis would

require a long cool quiescent interval between the condensation of most of the

material and the accreation of planetary bodies. It has also been known for
more than 20 years (2,3) that this difficulty can easily be avoided by forming
the matrix in parent bodies, where isolation from hydrogen permits oxidation
at higher temperatures.

Despite all this it has seemed convenient until recently to regard the

bulk of the matrix it mequilibrateu meteorites as a primary constituent,
since this appeared to provide a natural explanation for the systematic deple-
tions in moderately volalite elements such as Zn which are observed when the
other meteorite classes are com pared to Cl chondrites (2,4).

Serious difficulties with this hypothesis become evident thou gh when one

carefully considers the analyses of carbonaceous chondrite matrices reported
by McSween and Richardson (5). They found substantial differences in matrix

compositions from 100 p.m spot to 100 pm spot within the same meteorite as well
as in the average matrix compositions between different meteorites of the same
class. Similar results for the ordinary chondrites were later reported by
Huss et. al. (6). Analogous strikin g differences in matrix grain size and

texture are also readily apparent.
These observations seem incompatible with the hypothesis of a single

primative volatile rich matrix material. Each meteorite even within a given
class would appear to require its own special matrix which would then have to
be mixed in proper proportions with the other constituents to achieve the over-

all composition appropriate to the class. Such complications are completely

circumvented if matrix resulted form parent body alteration.
We have previously reported (7) extensive scanning electron microscope

evidence showing that much matrix olivine in Allende was produced by a reaction

equivalent to MgSiO 3 + Fe + ^ 02 —MgFeSi204,

Following up a clue mentioned by Peck (8) we now present in Fig. 1 new
evidence showing that much additional matrix olivine, as well as, Fe-rich

clinopyroxene was produced by in situ alteration of a pre-existing Ca-rich
mineral. The Lackscattered electron images of typical matrix regions compared
to the Ca elemental maps of the corresponding re g ions seem to allow no other

simple interpretation. The most probable Ca-rich precursor appears to be
diopside. We have recently reported a strong tendency for diopside in the

less altered meteorite ALHA 77003 to show alteration to Fe-rich olivine (9).
Besides providing additional evidence for matrix formation by alteration

in Allende the current results provide strong evidence against post alteration
regolith processes or impact mixing. They seem incompatible with any scenario

which requires the formation of matrix as small grains in space (10).
((1 Urey (1961) JGR 66, 1988;(2) Anders (19-64) Space Science Reviews 3, 583;
(3; Wood (1963) Icarus 2, 152; (4) Wasson and Chou (1974) Meteoritics D, 69;
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(5) McSween and Richardson (1977) GCA 41, 1145; (6) Huss et. Al. (1981) GCA 45,
33; (7) Housley and Cirlin (1983) Chonc-rules and their Origins. 145; (8) PeJ-
(1983) Meteoritics 18, 373; (9) Housley (1984) Meteoritics 19, in press; (10)
Kornacki and Wood (3984) GCA 48, 1963.
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