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Abstract

In this study the problem of part-through cracks emanating
from a central notch in a composite laminate is considered. The
composite laminate is modeled as an orthotropic plate and along
the branches, it is assumed that the stressesare carried by the
fibers only. The stresses along the uncracked portions are
assumed to be proportional to the crack opening displacement at
that point. After formulating the branched crack problem, the
model is applied to a (±45°)2s composite laminate. The stress
concentration factors for the fibers are computed for various
values of the spring constant K. Sample results showing the
crack opening displacement are also displayed in the figures.

I. INTRODUCTION

The load carrying capacity of a composite laminate may be

reduced significantly due to notches or crack-like defects.

Thus, notched composites have been studied extensively. In cer-

tain composites, cracks making an angle with the pre-existing

notch may emanate from its tip. These cracks are part-through,

meaning that only some of the laminae are broken and they tend

to meander along the fracture path [I,2]. As the geometry sug-

gests, an exact stress analysis of the problem is extremely com-

plicated. In this study, the following approximate model is

used in the analysis• The laminate is assumed to be an ortho-

• tropic plate. The stresses in the unbroken laminae of the

°* This work was supported by NASA-Langley under the grant NAG-I-480
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part-through cracks (along the fracture path) are represented by

springs and at each point are assumed to be proportional to the

crack opening displacement, i.e., _ = K_v.

Starting with the formulation of the crack geometry shown in

figure 2, the through crack problem is formulated in terms of the

displacement derivatives of the crack surfaces. This formulation

yields a system of singular integral equations which can be

solved numerically. Next, the part-through crack problem is formu-

lated, by relating the crack surface tension to the crack opening

displacement. A new set of singular integra! equations is obtained.

At the crack tips the stress intensity factors are computed. Also

the stress concentration factors at the tip of the origina! slit

are computed for various values of K. These factors can be used

in studying fiber damage. Also some examples showing the crack

opening along the fracture path are displayed in the figures.

2. FORMULATION OF THE PROBLEM

To formulate the part-through crack problem, we start with the

geometry shown in figure 2. In this symmetric configuration, all

the cracks are assumed to be through cracks. Since the problem is

linear, the solution will be constructed by the superposition of

several cracked plates.

2.a. The Centrally Cracked Plate

Consider an infinite orthotropic plate with a central crack

extending from -a to +a. The governing equation of the problem

can easily be written in terms of the stress function F(X,y) as

follows [3,4]:

_4F _4F _4F
+ (2a12+a6) 2 + all ---4= 0 (I)

a22 _x4 6 _x2_y _y

or

_4F + B2 _4F + 81 _4F 0 (2)
_x2 _x2_y2 _y4

where
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all 2a12+a66
B! - ; B2 =

a22 a22
(3)

and

1 Vxv 1 I

all = E_x ' al_-- _-_x ' a22 = E_y ' a66 = G_y

Ex, Ey, Gxy and Vxy being the engineering elastic constants for
the orthotropic material.

Define:

F(x,y) = I_ g(e,y)e-iex do (4)

Substituting in (2) we obtain:

_i d_ _2e2 d2g + 4
dY4 - dY2 g = 0 (5)

The solution of (5) may be written as:

_I_Y
-eluy -_2ey + C(e)e

g(e,y) = A(e)e + B(e) e
(6)

_2eY
+ D(e)e

where _i and _2 are the roots of

4 B22BI_ - + I = 0 (7)

such that Re(mI) > 0 and Re(m2) > 0.
Taking the symmetry of the problem into account, one may con-

sider one half of the plane only and equation (6) may then be
rewritten as:

1 + B(e)e for y>0 (8)g(e,y) = A(e)e

Thus, the stress function F becomes:

l ly - 21Iy-i x
F(x,y) = I_ [Ae + Be ]e d_ y>0 (9)

mOO
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Taking derivatives of the stress function, we obtain the

following expressions for the stresses:

A[mI e - e ]= e°X
u_

- ll ly - 21ely2 -iex
= - /_ A[e e ]e e de (10a-c)

Y -_ _2

- ll ly- 21elye_iexde
Txy = -i I_ A_l[e - e ]el_I

To formulate the crack problem, the crack surface derivative is

taken as the unknown function.

Defining,

lim _v
+ -- = f(x) (II)

y.0 _x

and using the following stress-strain relationship,

Ey = a12ox + a22_y (12)

with (i0), we obtain:

9v _ - A[( )e--= _ /_ 2 -_ll_[y
_Y Y _ al2ml - a22

(13)

_I 2 -iexde
- (al2ml%- a22 _2;e

Integrating (13) with respect to y, and then differentiating the

resulting expression of v(x,y) with respect to x, we have:

_v___x= i -=/_AIeIe[(al2ml _la22)e-mllelY
(14)

gl
_ (al2ml _ a22 ___je-m21ely]e-iexde

m2
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Noting that:

lim av
--= f(x) (15)

y.0 ax

equation (14) yields:

a22) _I -iuxde
f(x) = i I_ AI_I_ [(a12_l _I (a12_l-a22 --_)]e (16)-_ _2

The inverse transform of (16) gives:

2

_I_ la ei_tdtA(e) = 1 ! - "_ f(t) (17)
2_i __T 2 2 -aa22 (_i-_2)

Finally, substituting the expression of A(u) into expressions

(I0) and integrating over _ the stresses can be written in terms

of the unknown function f(t) as follows:

2 2

(I) 1 _I_2 la _i (t-x)
_x = _ 2 2 [ 2 2+ 2(_l-e2) a (t-x)a22 - _ly

_2(t-x) (18)

- 2]f(t)dt
2 2+(t_x)_2y

_I_2 _2 (t-x)
o(I) = _ 1 la [
y z 2 2 2 2 (t-x)2a22 (_i-_2) -a _ly +

(19)
_I (t-x)

- 2"]f(t)dt
2 2 (t-x)_2y +

2 2

T-(1)=_ 1 " _I_2 ia [ _Iy
xy z 2 2 2 2 2

a22 (_i-_2) -a _iy + (t-x)

_2y (20)u

2 2+ (t_x) 2_2 y
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The expressions given in (18-20) may be used to obtain the stresses

at any point in the plane in terms of the unknown function f(t).

2.b. Formulation of the inclined crack

Consider now a crack making an angle e with the x-axis. For

this case the problem will be formulated in the s-n coordinate

system. Again referring to [3,4] the governing equation for an

anisotropic materia! in terms of the stress function F2(s,n) can
be written as:

a4F2 a4F2 a4F2
+ (2b12 + b66) 2b22 as4 2b26 as3an as an2

a_ 2 a4F2
- 2b16 + bI = 0 (21)asan3 1 an4

where

bll = allCOS48 + (2a12 + a66)sin2ecos2e + a22sin4e

b22 = allsin4e + (2a12 + a66)sin2ecos28 + a22cos4e

b12 = a12 + (all + a22 - 2a12 - a66)sin28cos28 (22)

b66 = a66 + 4(all + a22 - 2a12 - a66)sin28cos28

icos2e 1b16 = [a22sin2e - aI + _(2a12 + a66)cos2e]- sin28

= allsin2e 1b26 [a22cos2e - _ _(2a12 + a66)cos28]sin2e

To simplify the formulation, we note that for (±45°) composites

the angle 8 defining the path of fracture is close to 45° and

E = E (see for example [i]). Thus, for 8 = 45° and E = E wex y x y
have:

b16 = b26 = 0 (23)
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and equation (21) reduces to:

_4F2 84F2 84F2

+ Y2 s2 + Y4 -- = 0 (24)_s4 _ _n2 _n4

with

2b12+b66 bll
- Y4 - (25)

T2 b22 b22

Again we use the Fourier transform to formulate the problem.

Defining

F2(s,n) = f= h(n,_) e-i_sd_ (26)
m_

substituting into (24) and after some algebra we obtain:

-r2[_In -i_s.

F2(s,n) = f_[Cl(_)e-rl]_[n + C2(_)e ]e do. for n>0
mOO

(27)

r2]_]n e_i_sd_rl]_]n + C4(_)e ] , for n<0F2(s,n) = f_[C3(_)emOO

In these expressions rI and r2 are the roots of:

4 2
_4r - ¥2r + 1 = 0 (28)

such that Re(rI) > 0, Re(r2) > 0.
Using the continuity conditions along the axis n = 0:

F2(s,+0) = F2(s,-0) (29)

and

" _F2 _F2 (s-0) (30)_--n--(s,+0) - _n

we obtain:

rl+r2 2r2

C3 = rl_r2 C1 rl_r2 C2 (31)



.

2rI rl+r2

C4 = rl_r2 C1 + rl_r2 C2 (32)

Then, the expressions given in (27) become:

-rlI_In -r2 _In -i_s
F2(s,n) = !_[Cl e + C2 e ]e do, n>0

(33)

rll_In r21_In e-i_sd_F2(s,n ) = I_[(-X2CI+X3C2)e + (X1C!+X2C2)e ] ,

n<0
with

2r I rl+r 2 2r 2

l I = rl_r2 ; 12 = rl_r2 ; 13 = rl_r 2 (34)

Since the inclined crack under consideration is denoted by A in

figure 2, from here on, for the quantities related to this crack,

a superscript A'wil! be used.

Differentiating (33), the stress expressions are found to be
for n>0,

A I_ 2 -rl[_In -r21_In _2e-i_s
_s = [ClrI e + C2r22 e ]- de (35)

-rIleln -r2[e[n e2e-iesde_nA = - I_ [Cle + C2e ]- (36)--O0

A i_ -rlleln lalnTns = -i [Clrle + c2r2e-r2 ].elele-leSde (37)mCO

for n<0,

sA _ rllelno = I [rI2(-X2C1 + X3C2)e
(38)

2 r21eln
2 -iesde+ r2 (llC 1 + 12C2)e ]e e
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A _ rl[eln
on = - I [(-12C1 + 13C2)e

. -_ (39)

r2le In 2 -i_sd_
+ (IICI + 12C2)e ]_ e

A _ rIl_In
T = +i I [(-12C 1 + 13C2)rlens

-_ (40)

r21 In
+ (IICI + 12C2)r2e ]elele-i Sde

Again, the problem will be formulated in terms of the crack sur-

face derivatives. Thus, defining:

gl(s) = _ [u(s,0+) - u(s,0-)] (41)

0+
g2(s) = _[v(s, ) - v(s,0-)] (42)

and after some lengthy algebra one may show that:

62
1 1 ql(e) q2(_)] (43)cI=_ 2_(62_61) [_ i63_J_i

61
1 1 ql(e) q2(e)] (44)c2 = 2_(62_61) [_ i63_I_I

where

ql (_) = Icgl(t)ei_tdt (45)b

q2(e) = Ic g2(t)eietdt (46)b

and

61 = 2bllrl(rl+r2)

62 = 2bllr2(rl+r2) (47)

(rl+r2)

63 = -2b22 .rlr2
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Substituting (43) and (44) into expressions (35-40)Land performing

the infinite integrals over e, we obtain:

3

A 1 ic [ r2n=
2 2 2+ 2s 2_bll(r2-rI) b (r2n) (t-s)

3
rln

- 2] gl(t)at
(rln)2+(t-s)

(48)

1 ic rI(t-s)- 2 2 [ 2
2Zbll(r2-rI) b (rln)2+(t-s)

r2(t-s)

- (r2n)2+(t_s)2 ]g2(t)dt

A 1 ic rln= 2 2 [ 2
an 2_bll(r2-rl) b (rln)2+(t-s)

r2n

- (r2n)2+(t_s)2]gl(t)dt
(49)

1 (t-s)/rl+ ic[
2 2 2+ 22_bll(r2-rI) b (rln) (t-s)

(t-s)/r2
- 2] g2 (t)dt

(r2n)2+ (t-s)



Ii.

A 1 Ic [ rI(t-s)T ------- 2 2
ns 2_bll(r2-rl) b (rln)2+(t-s)2

r2(t-s)

- (r2n)2+(t_s)2 ]gl(t)dt (5O)

+ 1 ic[ rln
2 2 2+ 2

2Zbll(r2-rI) b (rln) (t-s)

r2n
- 2]g2(t)dt

(r2n)2+ (t-s)

For cracks B, C, D shown in figure 2,similar expressions may be

obtained. Taking into account the symmetry conditions, for each

crack the stresses may be written as:

3

B 1 ic[ r2s
=- 2 2 2+ 2

Cn 2Zbll(r2-rl) b (r2s) (t+n)

3
rls

- (rls)2+(t+n)2']gl (t)dt
(51)

1 Ic [ rI(t+n)
- 2 2 2+ 2

2_bll(r2-rI) b (rls) (t+n)

r2(t+n)

- (r2s)2+(t+n)2]g2(t)dt
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i rs

-it= _ f--[
2 2 2+ 2s 2_bll(r2-rI) b (rls) (t+n)

r2s
- 2]gl(t)dt

(r2s)2+(t+n)

+ 1 Ic (t+n)/r12 2 [ (52)
2Zbll(r2-rI) b (rls)2+(t+n)2

(t+n)/r2
- 2] gl(t)at

(r2s)2+(t+n)

= - rl(t+n)TB 1 ic [
ns 2ZblI 2 2 2+ 2• (r2-rI) b (rls) (t+n)

r2(t+n)

- (r2(s)2+(t+n)2] g(t)dt

(53)
1 rls_ /c[
2 2 2+ 22_bll(r2-rI) b (rls) (t+n)

_ r2s
2] g2(t)dt

(r2s)2+ (t+n)
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3

c = 1 _ic [-z2(s+_)2 2
n 2_bll(r2-rI) b (r2(s+a_))2+(t_n+a._)2

r_(s+a_)

(rl(s+a_))2+(t-n+a_ )2 ]gl(t)dt

(54)
1 rI(t-n+a_ )

- 2 2 Ic[-
2'_bll(r2-rI) b (rl(s+a_))2+(t_n+a_)2

r2(t-n+a_)

(r2(s+a_)) 2+(t_n+a_ )2]g2(t)dt

= rI(s+a_)c 1 _ic[. ,2 2
s 2_bll(r2-rI) b (rl(s+a_))2+(t_n+a_)2

_ z2(s+aV_)
(r2(s+a_))2+(t-n+a_ )2] gl(t)dt

(SS)
+ 1 ic (t-n+a_)/r 12 2 [-
2_bll(r2-rI) b (rl(s+a_))2+(t-n+a_)2

_ (t-n+a_)/r 2

(r2(s+a_))2+(t-n+a._) 2] g2(t)dt
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1 rI(t-n+a_-)_c = _ .!c[
2 2 (s+a'_))2+ns 2_bll(r2-rI) b {rl. (t-n+a_f_)2

b

r2 (t-n+a_ )

- (r2(s+a_))2+(t_n+a_) 2] gl(t)dt

1 rI(s+a{_) (56)+ !el2 2
2_ll(r2-rI) b (rl(s+a_/_))2+(t-n+alr_)2

r2(s+a_/_)

- (r2(s+a_/_))2+(t_n+a%/_)2]g2(t)dt

D 1 ic[ 3(-n+a_)o = r2

s 2ZblI 2 2(r2-rI) b (r2(-n+a_f2))2+(t+s+a%/_)2

r3 (-n+a_/_)

- (rl(-n+a_))2+(t+s+a_) 2] gl(t)dt

(57)
1 rI (t+s+a_)_ fc [2 2

2_bll(r2-rI) b (rl(-n+a_'2))2+(t+s+a%/'_)2

r2(t+s+a_/_)

- (r2(_n+a_{_))2+(t+s+a_/_)2]g2 (t)dt
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- rl€-n+a_D 1 Ic [

_n 2Zbll(r2_r_) b (rl(-n+a_)) 2+(t+s+a_) 2

r2(-n+a_)

- (r2(-n+a_))2+(t+s+a_) 2] gl(t)dt
(58)

(t+s+a_)/r 1+ i ic[

2Zbll(r2-r_) b (rl(-n+a_))2+(t+s+a_)2

(t+s+a_)/r 2

- (r2(_n+a_))2+(t+s+a_)2] g2 (t)dt

= _ rI(t+s+a_)y D 1 ic[
ns 2ZblI 2 2(r2-rl) b (rl(-n+a_)) 2+(t+s+a_) 2

r2(t+s+a_)

- (r2(-n+a_))2+(t+s+a_) 2] gl(t)dt
(59)

1 rI(-n+a_)+ Ic[2 2
2Zbll(r2-rI) b (rl(-n+a_))2+(t+s+a_)2

r2(-n+a_)

- (r2(_n+a_))2+(t+s+a_)2] g2 (t)dt

3. THE INTEGRAL EQUATIONS AND THE RESULTS

3.a. The case of through cracks

For the through crack configuration shown in figure 2, the

integral equations can be obtained by superimposing the solutions

for the central crack and the inclined cracks A, B, C, D. The

infinite plate is under a uniform tension _ parallel to the y-direc-

tion. For the uncracked plate, the stresses along the crack lines
are:
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along y = 0 , Oy = o0 , T = 0xy
(6O)

along n = 0 , on = _0cos2e = _0/2

Tns = o0sinScose = o0/2 (61)

Thus, the crack surface tractions may be written as:

Oy(X,0) = -G0 (62)

On(S,0) = -o0/2 (63)

Tns(S,0)= -o0/2 (64)

With the use of equations (18-20) and (48-59), the boundary

conditions given in (62-64) yield the following system of singular
integral equations:

el_2 fa f(t) dt
a22(_I+_2) -a t-x

1 A B B oC oC °D+ _(On +OA + _ n+Os + + + +oD IS n s n s
y=0 (65)

+ (T_s + TB + TC + TD I =-00
ns nS ns y=0

for y = 0 , s = 1 (-x+a); n = __i (-x+a)

(66)

1 fc g2 (t) dt
2_bll(r2+rl)rlr2 b t-s

+ (oB + C + oD + i (1)+o(1)I _ I =_O0/2n n 3(°x Y n=0 xy n=0
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for n = 0 , x = a + --_s

(67)

1 ic gl (t) dt
2Zbll(r2+rl) b t-s

1 (I) (I) = - a012
C + TD J + _(q -O J

+ (T_S + Tns ns n=O y x n=O

for n = 0 , x = a +_ s

y =_--22s

To complete the formulation of the problem, one has also to

write the following single-valuedness conditions for the dis-

placements:

Ia f(t)dt = 0 (68)
-a

fc

b gl(t)dt = 0 (69)

Ic g2(t)dt = 0 (70)b

The singular integral equations (65-67) may be solved by one of

the collocation methods given in [5-7]. However, to apply the

methods, first the system must be normalized. Thus, we make use

of the following transformations:

for equation (65),

x = az -a<x, t<a

t = ap -l<z, p<l (71)

f(t) = f*(p)
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for equations (66,67),

c-b c+b
s = 2 Sl + -7- b<s t t<c

c-b c+b
t = -_- tI + _ -l<Sl, tl<l

(72)

gl(t) = g*(tl)1

g2(t) = g_(tI)

By substituting (71) and (72) into (65-70), the system will be

normalized. In this case, since only through cracks are con-

sidered, the important fracture parameters, i.e., the stress

intensity factors are computed. The stress intensity factors are
defined as:

kl(a) = lim _2(x-a) _ (x,0) (73)x.a y

lim /2 (s-c)'s.c a (s 0) (74)kl(C) - n

lim /2(b-s)'o (s 0) (75)kI(b) = s.b n '

k 2 (c) lim _(s_c) _= s.c Tns (s'0) (76)

lim i_(b_s) T (s,0) (77)k 2 (b) s.b ns

Noting that the normalized unknown functions will have the

usual square-root singularity at both ends, one may write:

f*(0) = F(_) (78)

Gl(tI)
g*
l(tl ) =1- 2 ' (79)

¢i-t I
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g* G2(tI)
2(tl) = (80)

where the functions F(p), Gl(tI) and G2(tI) are bounded in the
interval [-i,I]. Thus, with the definitions given in (73-77), we

obtain:

kI(a) - _ _I_2= F(1) (81)
a22(ml+_2)

1 G2(I) (82)
kl(C) = - _ 2bll(r2+rl)rlr2

1 G2(_i) (83)
kl(b) = _ 2bll(r2+rl)rlr2

1

k2(c) =- _2bll(r2+rl) GI(I) (84)

1 G1(-I) (85)k2(b) = _ 2bll(r2+rl)

with £ = (c-b)/2

Results have been obtained for a (±45)2s composite. The
material properties used in the computations and given below were

taken from [8].

Ex = 19.6 GPa
E = 19.6 GPa
Y

G = 33.7 GPa
xy

= 0.735
yx

Some sample results are presented in tables (1,2) and figure 3.

First, the results were checked for the case when the inclined

cracks were located far away from the central crack. For the nor-

malized stress intensity factor at the tip of the central crack,
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the expected value of 1 was recovered. Also the normalized stress

intensity factors at the tips of the inclined cracks reached the

expected limiting value of 0.5. Table 1 shows the results for an

inclined crack whose center is kept fixed, but the length of which

varies. As expected the stress intensity factors at the tips

x = +a and s = b, assume higher values as the two cracks approach

each other. Table 2 and figure 3 show the results for a cracked

plate, where the length of the inclined cracks is kept constant.

Again, as expected, the stress intensity factors at tips x = +a,

and s = b decrease as the cracks are further apart from each
other.

3.b. The branched crack case

In this case we still have through cracks, but we assume that

all cracks are joined. Thus, we obtain a centrally cracked plate

with branches running at ±45° from the tips of the central crack.

The formulation of the problem is the same except that one has to

put b = 0 for the limits of the integrals in equations (65-67) and

the single valuedness conditions (68-70) are not necessary anymore.

However, by putting b = 0, the nature of the singularity at x = a

and s = 0 will change since the integral equations will now have

generalized Cauchy kernels. A brief inspection of the crack

geometry shows that, the crack displacement derivatives must be

bounded at x = a, and s = 0, since all wedge angles are less than

7. (For stress singularities in isotropic wedges see [9] and for

stress singularities in orthotropic wedges see [i0,II].) The solu-

tion of singular integral equations with generalized Cauchy kernels

may be obtained by the methods suggested in [12-13]. In this study

the system is solved by assuming that the crack surface displacements

for the centra! crack are symmetric and that the crack surface deriva-

tives are bounded at x=a and s=0. Thus, the conditions (68-70) are

replaced by:

I 1 f*(p)dp = 0 (86)
-i

SI(-I) = 0 (87)

and

G2(-I) = 0 (88)
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The numerical computations show that, the convergence of the

system is excellent and as expected F(1) H 0 since the crack sur-

face displacement derivative is known to be bounded at x = a (or

z = i)._ For this case the only relevant fracture parameters are

the stress intensity factors at the tip of the branched crack at

s = +c. The normalized stress intensity factors kl(C) and k2(c)
are given in table 3 and figure 4. The results indicate that the

normalized stress intensity factors decrease with increasing crack

length.

In literature, only for the isotropic case one may find some

results for the branched crack. Therefore, it is very difficult

to compare the results directly. As a check, the anisotropic

results found in this study were compared with the isotropic

results found in [14]. Although the material and geometry were

close but not exactly the same, the results were found to be of

the same order.

3.c. A central crack with Dart-through branches

The foregoing formulation was performed mainly to study this

case which appears in (±45) and other composites. In a centrally

cracked plate under uniaxial tension, some inclined cracks which

make up an angle with the initial central crack may develop. How-

ever, some of the laminae are not broken, i.e., the cracks are not

through cracks. In this work, the following model is adopted:

It is assumed that the unbroken laminae are weakened and they

carry only tension or compression. Furthermore, it is assumed that

the unknown normal stress in the unbroken laminae is proportional

to the crack opening displacement at that point, i.e.:

a = K_v {89)

where K is called the spring coefficient and _v is the opening

of the crack. Thus at each point of the fracture path one may

compute a bounded stress and thus a stress concentration factor.

It is expected that generally the stress concentration factor will

be larger near the original crack tip, namely, near s = 0. The

spring coefficient in relation (89) may be a constant giving a
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linear stress-crack opening relationship or may vary from point

to point making relation (89) non-linear. This relationship

which must be determined experimentally, in general is believed to

be non-linear [15]. However, in this study, for simplicity it is

assumed to be linear, thus K is taken as a constant.

To incorporate this relationship in the formulation, we may

replace boundary condition (63) by:

On(S,0) =-o0/2 + KAy (90)

or

On(S,0) = - o0/2 - K Ic g2(t)dt (91)
s

The problem may then be solved as in case (b) with the difference

that, in the singular equations system (65-67), equation (66) must

be replaced with equation (91). After solving the system, one may

compute the stress intensity factors kl(C) and k2(c) at the tip of
the branched crack, the normal stress distribution o along the

fracture path, the stress concentration factor for the fibers at

s = 0 (and x = a). As stated earlier, the spring coefficient K is

determined experimentally. In [15] the value of K is given for a

certain composite. In this study, results are obtained for four

different values of K, but chosen of the same order of K given in

[15]. The stress intensity factors are given in table 4, and the

stress concentration factors are presented in table 5 and figure 5.

The results indicate that the stress concentration factors which

may be used to study the breaking of fibers near the tip of the

original crack, vary significantly with the spring coefficient K

and the ratio c/a. As K increases, i.e., for stiffer materials,

the stress concentration wil! be higher, meaning that for such

materials it is more likely that the fibers ahead of the slit will

break. Here it must be noted that, the stress concentration factor

(SCF) is not always maximum at s = 0. In some instances, the maxi-

mum stress concentration factor was found to be maximum at a small

distance from the tip of the original slit. Two examples showing
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the crack opening along the fracture path are displayed in figures

6 and 7. Figure 6 shows the crack opening for a short crack

(c/a = I) and figure 7 shows the crack opening for a larger crack

(c/a = 5). It is observed that the crack profiles may be signi-

ficantly different and for the long crack the maximum stress con-

centration occurs not at s = 0 but at s/c _ 0.2.
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Table I. Stress Intensity factors for the cracked plate

(through cracks)

c+b
= 2)

kI(a) kI(c) kI(b) k2(c) k2(b)

b/a o0_ _0_ a0_ _0_ a0_

1.9 1.003 0.535 0.537 0.577 0.580

1.5 1.075 0.532 0.544 0.570 0.592

1.25 1.175 0.531 0.548 0.565 0.602

1.0 1.332 0.531 0.550 0.560 0.617

0.75 1.571 0.532 0.549 0.554 0.641

0.50 1.955 0.536 0.545 0.548 0.691

0.25 2.717 0.545 0.563 0.548 0.823

0.10 4.003 0.560 0.677 0.559 1.098

Table 2. Stress Intensity factors for the cracked plate

(through cracks)

c-b= - 1)
_ -

kI(a) kI(c) kI(b) k2(c) k2(b)

b/a C;0V'a" c_0V'£" (_0_" o"0_£" o0_'-

0.1 2.745 0.593 0.728 0.597 i.019

0.5 I.607 0.548 0.582 0.574 0.689

i.0 I.332 0.531 0.550 0.560 0.617

i.5 I.221 0.523 0.534 0.548 0.584

2.0 i.161 O.518 0.526 0.540 0.564

2.5 i.125 0.514 0.520 0.533 0.550

3.0 i.i00 0.512 0.516 0.527 0.541

5.0 I.050 0.507 0.509 0.515 0.520

I0.0 I.017 0.503 0.503 0.505 0.506
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Table 3. The stress intensity factors for a completely cracked
laminate

(Branched crack case)

kI (c) k2(c)c/a

oOV'_" o0_-

0.i 2.098 0.829

0.25 1.305 0.705

0.5 0.943 0.638

1.0 0.722 0.584

2.0 0.547 0.538

5.0 0.513 0.492

i0.0 0.483 0.473

100.0 0.455 0.454

1000.0 0.452 0.452



Table 4. The stress intensity factors at the tip of the branched crack. (Part-through cracks case)

K = 0.5 x 1071/m K = 107 i/m K = 5 x 107 i/m K = 108 i/m

c/a kl(C)/_0_ k2(c)/o0_ kl(C)/O0_ k2(c)/o0_ kllC)/O0_ k2(c)/o0_ kl(C)/O0_ k2(c)/o0_

0.25 1.211 0.725 1.132 0.741 o.765 0.82o 0.567 0.863
0.50 0.82o 0.662 0.729 0.679 0.417 0.739 0.295 o.762
1.0 0.563 0.610 0.469 0.624 0.236 0.660 0.165 0.669

2.0 0.394 0.561 0.308 0.571 0.144 0.587 0.i00 0.590

5.0 I 0.248 0.509 0.182 0.512 0.081 0.516 0.055 0.516

50



28.

Table 5. The stress concentration factors for the stressed

fibers at the tip of the notch

K=0.5xl07 i/m K=I07 i/m K=5xl07 i/m K=I08 i/m

c/a SCF SCF SCF SCF

0.25 0.19 0.35 1.19 1.75

0.50 0.24 0.42 1.12 1.50

1.0 1.28 0.45 0.93 1.12

2.0 0.32 0.45 0.68 0.75

5.0 0.36 0.43 0.48 0.49



t t t I
I

- J

Figure I. Part-through cracks emanating from the tip of an
existing notch.



Figure 2. The crack geometry used in the formulation.



. Figure 3. Variation of the normalized stress intensity factors

with b/a for a cracked plate (£ = I).
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Figure 4. Variation of the normalized stress intensity factors

with c/a for a completely cracked laminate (branched crack case).
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Figure 5. The stress concentration factors for various values

of the spring constant K.
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Figure 6. The crack opening displacement Av for c/a = I,K = 107 I/m.
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Figure 7. The crack opening displacement Av for c/a = 5,

K = 108 i/m.
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