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ABSTRACT

Latitude-height cross sections of the Eliassen-Palm (EP) flux, its
divergence, the residual mean meridional circulation, as well as convential
eddy and mean flow fields are computed using both observational and general

circulation model data.

Two month average cross sections for both stationary and transient eddy
statistics are displayed for the FGGE Special Observing Period 1 (SOP-1) and
for an analogous two month simulation from the GLAS general circulation model.
EP cross sections for FGGE SOP-l are in good agreement with cross sections
computed using Oort's il-year mean Northern Hemisphere winter climatology.
Exceptions are in the Northern Hemisphere tropical upper troposphere and high
latitude stratosphere where anomalously large poleward transient eddy heat

f luxes occur in the FGGE SOP-1 data.

EP cross sections from the GLAS Model differ markedly from those computed
with atmospheric data. Some of these differences are probably associated with
the anomalous high latitude location of the winter jetstream in the GLAS
model., The most unusual feature of the GLAS Model is that the maximum ampli-
tude of the mid-latitude heat flux is at 1000 mb. Thus, the vertical gradient

of the lower troposphere heat flux is opposite that in the atmosphere.

Time series of the daily EP flux divergence are compared to the mean
zonal wind accelerations. The EP flux divergence is generally strongly compen-
sated by the Coriolis torque of the residual mean meridional circulation. The
sum of these is poorly correlated with zonal flow acceleration in the FGGE
data, but somewhat better correlated in the GLAS model data. In general the

EP flux divergence is not a useful measure of mean flow acceleration.



l. Introduction

Edmon et al. (1980) showed that latitude height cross sections of the so
called Eliassen Palm (EP) flux and its divergence provide very useful
diagnostics for understanding the interaction between zonally asymmetric "eddy”

disturbances and the zonal mean circulation. To quote from their paper:

“Such EP cross sections exhibit the principal eddy heat, momentum and
potential vorticity fluxes in one diagram, making their relative magnitu-
des and spatial relationships easier to appreciate. They provide a suc-
cinct framework for comparing theory, observation, and numerical
experiment, and for assessing parameterizations of eddy effects.
Moreover, the particular combinations of eddy fluxes which are repre-
sented on an EP cross section are fundamental for the interaction betweén
eddies and the mean state, more so than the eddy heat and momentum fluxes
considered separately, and more so than the eddy energy fluxes originally

emphasized by Eliassen and Palm themselves."”

The theory of eddy forcing of the zonal mean circulation has been
discussed by Andrews and McIntyre (1976), Holton (1980), Dunkerton et al.
(1981) and others. In these papers it is shown that net eddy forcing can
be expressed in terms of the northward flux of quasi-geostrophic potential
vorticity (which turns out to equal the divergence of the EP flux).
Furthermore, for steady conservative linear waves the EP flux divergence
vanishes so that there is no net mean flow forcing by the eddies even though
eddy heat and momentum fluxes may individually be very large! This apparent

paradox can be explained by the compensating effect of the mean meridional



circulation driven by the eddies which serves, through the Coriolis force and
adiabatic cooling/heating, to cancel the momentum and thermal forcing by the
eddies. Thus, whereas patterns of eddy momentum and heat flux divergences in
themselves give very little information on eddy-mean flow interaction, pat-
terns of EP flux divergence should provide very useful diagnostics of the

interaction process.

In Edmon et al., the EP flux cross sections were computed for two sets of
Northern Hemisphere data: Oort and Rasmussen's (1971) station data from 10°S
to 70°N latitude 1958-1963, and NMC gridded data from 20°N to 90°N latitude
for the years 1965-1977., For the NMC data set EP flux statistics were com-
puted from 120 day winter mean and 120 daf summer mean data while the Qort and
Rasmissen data set used 90 day means. For each of the samples EP flux cross
sections were calculated separately for transient eddies and stationary (120

or 90 day time averaged) eddies.

The flux patterns are similar for the two data sets in winter, but less
so in summer. Whether the differences are a result of data inadequacies or
real climate dirfferences between the two periods is not known. By cowmparing
the observed cross sections with cross sections derived from model calcula-
tions Edmon et ali showed that the observed fluxes are consistent with the
f luxes due to nonlinear baroclinic waves averaged over the life cycles of the

waves, but are not consistent with linear baroclinic instability theory.

Due to the limitations of the data sets used in Edmon et al. (e.g.,
geographical bias, incomplete latitudinal coverage, deficient analysis scheme

at 1000 mb in the NMC data, etc.) it is clear that further studies with a more



complete global data set should be carried out. In addition, EP flux cross
sections should be computed for a state of the art general circulation model
to provide an additional diagnostic for model validation and for elucidating

various physical processes.

As a contribution to these objectives we here report EP diagnostics for
two data sets: The FGGE SOP-1 data and a two month (Northern winter) simula-
tion with the Goddard Laboratory for Atmospheric Sciences (GLAS) general cir-

culation model.
2. Theoretical Background

Most of the relevant theory is given in Edmon et al. (1980) and Palmer

(1981). 1In log-pressure coordinates, the zonal mean equations are

(1 2w _ fv - 1 EL—(cosz¢ a'v')
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where
(3) z = -H 1n (P/1000 mb)

and other notation follows Palmer (198l), if we define a "residual” mean meri-
dional circulation (v*, w*) by letting

(4) vr=zv -t/ (/M yE,
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the zonal mean equations may then be written in the transformed Eulerian mean

form as:
(6) W - fyk - G = V.R/(r _cos 8 ez/H)
ot 0
— R
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and G denotes the drag force due to unresolved eddies. Thus, divergence of
the EP flux (scaled by (ro cos ¢)-1 exp(~-z/H) is the sole forcing of the mean
flow by the meteorological eddies. If V-F,'6 and G all vanish, thus a steady
state is possible (Charney and Drazin, 1961).

Divergence of the EP flux also gives the northward transport of quasi-
geostrophic potential vorticity. Palmer (1982) has shown that in spherical

coordinates this relationship has the form:

-z /H

9 v'q'(m) = (.F (rocos e )

where q'(m) is a modified eddy quasi~geostrophic potential vorticity given by:
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(10)

The EP flux is also important in wave theory. A conservation relation of

the form



(11) %‘}«» VeF (r cos 8 e 2/Hy = p

was derived by Andrews and McIntyre (1976, 1978). See Strauss (1983) for a
review of this subject. D is zero for conservative motion and A can be called

the EP wave activity

(12) a=~7@H%/7,

For planetary scale waves for which WKBJ theory holds,
(13) F = cg A

where Cg is the group velocity of the waves. Thus, within these approxima-

tions, wave energy will propagate parallel to F.

The streamfunction for the residual mean meridional circulation is given

by

(14) V% = - -8 ay*
2nr 2 cos 3z
o Po ¢
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A single convention for plotting EP cross sections has not yet emerged.
The EP diagrams shown here differ somewhat from those is Edmon et al. (1980).
The diagrams here use log p as a vertical coordinate. Edmon et al. plotted a
modified EP flux divergence (see their equations 3.10 to 3.13). The quantity

plotted here is



(16) VF / [r  cos ¢ e'Z/H]

which clearly shows the net driving force by the eddies on the mean flow with

contours in ms—1 day—l.

Edmon 25_3}: have plotted F (y,p) scaled so that the arrows appear
divergent when V+F>0. This scaling inevitably emphasises the lower tro-
posphere. This is due to the factor exp (-z/H) contained in F. A sensible
compromise is to leave out the factor of exp (-z/H) when plotting F. This
results in arrows of similar lengths everywhere in the diagram, for similar
heat and momentum fluxes. The only information altered is the magnitude of
the group velocity of the waves, which isn't easily obtained from the
diagrams. This plotting coanvention retains the magnitudes of the heat and

momentum fluxes, which is a significant advantage.

In deriving the approximate thermodynamic energy equation, the assumption
that the static stability is independent of latitude is generally made. The
latitudinally varying part of the static stability must be neglected in order

that the thermodynamic energy equation contain no eddy flux terms.

This assumption is not needed in deriving the zonal mean quasi-
geostrophic thermodynamic energy equation if the equations are to be used to

diagnose the wave driving of the mean wind.

In deriving (6) and (7), the residual mean meridional velocity (4) is

substituted into (1) and (2). The assumption is made that

(17 —a—-(cos dv'e') =8 3 cos ¢;'-6-L ,
3 9



which assumes that_éz does not vary with latitude. This assumption is

necessary in order to derive the Eliassen-Palm theorem for arbitrary eddy

amplitudes (Stone and Salustri, 1984).

However, if the transformed Eulerian mean equations are to be used to
diagnose eddy forcing of the zonal mean wind, it is incorrect to restrict
the latitudinal variation of 6,. Both the results shown here and those of

Edmon et al. were calculated with the variable stability.

The restriction to a stability dependent on height only would cause large
changes in the EP flux and its divergence. For example, the static stability

at 200 mb is about five times as great at 60°N as it is at 20°N.

The usual formulation of the EP flux neglects the effects of moisture and
friction. Stone and Salustri (1984) have argued that the EP flux should
include all the effects of the eddies, both explicit and implicit which force

the mean wind. They have shown that a term

(o /0> VP (e (T

should be added to the heat flux , JTETT to account for the eddy moisture

f lux. However, their formulation requires a static stability that is indepen-
dent of latitude, which would cause large changes in the EP flux, as discussed
above. Since the'eddy moisture flux is confined to the lower troposphere,
"moist"” EP flux results were calculated using the variable static stability.

This will give a better representation of the eddy forcing of the mean wind.

Stone and Salustri have also suggested using a modified static stability
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The conditionally unstable tropical atmosphere is unstable by this defi-
nition. The use of this stability would result in very large vertical EP flux
components in region where o 0. The result would be a very erratic pattern

in the tropical lower troposphere.

Since, on the average, the tropical atmosphere is not saturated, it is
more appropriate to use the usual -dry static stability, but include the effect
of moisture by using virtual potential temperature instead of potential tem-
perature. The use of

36
\4
19 g =—
()map

would only make a small difference in the vertical EP flux component, since

the difference between 6, and 6 is small.
3. Description of the data and analysis

The Oort (1983) atmospheric statistics serve as a standard climatology to
compare with both two-month data sets. Edmon et al. used the Oort and
Rasmusson (1971) statistics for some of their calculations. That data set
covered the latitudes from 40°S to 80°N and used eight years of station data
(1958-1963). The Oort statistics used 1l years of station data (1963-1973)

and covered both hemispheres, from 80°S to 80°N.

Before discussion of the EP diagrams, the FGGE data and the GLAS model
data will be compared to the Oort climatology using conventional climate

statistics.
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Comparisons will be made for both transient and stationary eddy sta-
tistics. It is important to note that the Oort transient wave statistics are
defined as deviations from December - February (90 day) averages, while
the averaging period for both the FGGE analysis and the GLAS model data is 58
days. Thus, part of what appears in the stationary waves in the FGGE or GLAS
model data would appear in the transient eddies in the Oort analysis.

However, this difference is probably small in most cases.

The Oort statistics are probably the best representation of the zonal
mean climatology available. A comparison between the FGGE data and the Oort
statistics should reveal how the FGGE SOP-1 differed from the climatological
average. It is also possible that the high quality of the FGGE SOP-] data
will allow some features to be discerned that were not captured in the Oort

analysis.

Similarly, a comparison between the GLAS model data and the Oort sta-
tistics should reveal how the model differs from climatology. Of course,
some features in the model will be due to averaging over only one model
winter. The main objective of this study is to compare EP flux diagrams for
t he GLAS model, ;he FGGE SOP-1 data and the Oort climatology. These com—
parisons include; for the FGGE and GLAS model data, not only two-month means

but five-day means and even one-day means.
a) The FGGE SOP-1 data

The data set consists of the FGGE analysis for SOP-1, January 4

- March 2, 1979 from Goddard Space Flight Center analyses



b)

11

(Experiments number 2254, 2274 and 2282). The data were available
at 0000 CMT and 1200 CMT daily on a 4° latitude by 5° latitude grid
(46x72) that covered the entire globe. The data were available at
the twelve standard pressure levels from 1000 to 50 mb (1000, 850,
700, 500, 400, 300, 250, 200, 150, 100, 70, 50 mb). The following
quantities were available, u anq v wind components, w vertical
velocity, temperature, geopotential height, relative humidity and
diabatic heating. It is expected that the FGGE SOP-1 data set,
because of the large number of observations available, is an
excellent representation of the atmosphere during that period.
However, it is important to determine how close the FGGE winter was
to the climatological norm. Any differences could be either actual
differences between the FGGE winter and the average, or could be

features missed in the normal meteorological analysis.
The GLAS model data

The GLAS model is a grid point primitive equation model with a
horizontal resolution of 4° latitude by 5° longitude. The pressure
levels are the same as for the FGGE data set, except that the
highest level in the model is 70 mb instead of 50 mb. The levels
for the data set are 1000, 850, 700, 500, 400, 300, 250, 200, 150

and 100 mb. The 70 mb level was not available.

The only fields available were u and v wind components, w ver-

tical velocity, temperature and geopotential height.
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The model was initialized with real atmospheric data from
January 1, 1975. As with the FGGE data, 58 days were used in the

analysis.
SOP-1 results
Zonal mean fields - Comparison with Oort data set.

Each of the zonal mean fields, covering from 90°S to 90°N is
displayed with the equivalent Oort (1983) figures. Note that the
Oort analysis stops at 80°S and 80°N. Following these, we also pre-
sent the same fields, but for the equétof to 80°N, in order to faci-
litate comparison with the EP diagrams which also extend from the

equator to 80°N.

The zonal component of the wind (Fig. lA) is very similar to the
Oort climatology (Fig. 2A). The location and strength of the
northern hemisphere jet are nearly the same, while the southern
hemisphere jet is slightly stronger and about 5° farther south than

normal.

The most striking difference is the lack of easterlies between
200 and 500 mb in the tropics. This indicates that the FGGE year

differed from climatology in the tropics.

The meridional wind component (Fig. 1B) is fairly representative
of climatology. The main difference is that the northern hemisphere

Ferrel cell circulation is not as clear as in the Oort data. The
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northern hemisphere Hadley cell is nearly identical to that of the
Oort data, and both circulation cells in the southern hemisphere are

quite similar.

The data beyond 80° north or south do not appear to be reliable,

and Oort does not include those regions for comparison.

Temperatures in the FGGE analysis (Fig. 3A) are quite repre-
sentative of the climatological average. The only significant dif-

ference is that the equatorial stratosphere is slightly warmer.

Figure 3B shows the FGGE zonal mean specific humidity. The
moisture field does not differ significantly from the climatological

average.

The northward transport of momentum by the transient eddies
(Fig. 5A) is very similar to that in Oort's climatology. Both the
northern hemisphere maximum at about 30°N, 250 mb and the southern
hemisphere minimum at about 40°S, 250 mb are quite similar to the
corresponding figuré for the Oort data (Fig. 6A). As with the wind

fields, the data beyond 80° appears to be questionable.

The corresponding transport of momentum by stationary waves
(Fig. 5B) is less representative of the climatological values. In
the northern hemisphere, the maximum northward transport is similar
to the climatological values, being located at about 30°N, 200 mb,
but the amplitude is somewhat weak. Farther to the north, the

(equatorward) transport is much stronger than the climatological
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values and has its maximum at about 250 mb, whereas Oort's data
shows the maximum equatorward transport to occur at 50 mb (the top

level analyzed) north of 70°N.

The momentum transport by stationary waves is weak in the
southern hemisphere, in both data sets, and the broad positive and

negative regions match fairly well.

Overall, the meridional gradient of the momentum transport
appears to be enhanced in the FGGE data. This will contribute to
the wave driving of the mean wind through the divergence of the EP

flux.

Figure 8A shows the northward heat transport by transient
eddies. There are two unusual features in the FGGE data. The most
obvious of these features is a maximum at about 10°N, 200 mb. This
feature, which is absent in the Oort statistics, contributes a
substantial vertical component of EP flux, (especially. considering

the low static stability in this region).

The maximum above 100 mb and north of 50°N is unusually large
reflecting the very active stratosphere during Jan.-Feb. 1979. The

rest of the regions are in good agreement with the Oort climatology-

Figure 8B shows the corresponding heat transport by stationary
waves. The agreement with the Oort data is better. The entire
field is weak except for a maximpum between 40°N and 70°N. This
feature is somewhat stronger above 100 mb in the FGGE data while it

is weaker below 400 mb. Overall, the agreement is good.
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The transport of water vapor by transient eddies (Fig. 9A) does
not differ significantly from the Oort data in the northern
hemi sphere. In the southern hemisphere, the transport is slightly
stronger, with a maximum at 1000 mb. The maximum transport in the

Oort data occurs at about 900 mb.

The corresponding figure for the standing waves (Fig. 9B) shows
little transport in the northern hemisphere, while there is substan-
tially enhanced transport in the southern hemisphere for the FGGE
data. The maximum transport is almost twice that of the QOort data.
However, Oort's maximum has broader latitudinal extent. Thus, the
average transport in the 0° to 45°S belt is nearly the same in the

two cases.

Figures 1!1A and 11B show the quasi-geostrophic potential vor-
ticity and its northward gradient. The potential vorticity is given

by (Hoskins, 1983):

- - 3
= <+ ——
(20) T =f+u +f o

(8'/de/dp)
where 0 represents the potential temperature for the standard

atmosphere.

Figure 12A shows the streamfunction for the mean meridional cir-
culation. This was calculated by integrating downward from 50 mb

using the equation:

18y
27r 2 cos¢ Ip
0
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which is analogous to equation 14 which defines the mean residual
circulation. The pressure coordinate form was chosen for ease of
computation. The Hadley cell is quite reasonable, but the Ferrel
cell circulation is not as clean. This is probably due to the short
observing period and inaccuracies in the original data. However

this deviation is small.

The residual circulation, which arises as a response to the
eddy-induced torque on the zonal mean flow, is shown in figure 12B.
This was also calculated using equation (21) by integrating downward
from 50 mb, but using v* instead of v. A comparison with Figure 6A
of Edmon et al. shows that circulation for the FGGE SOP-1 period
differed substantially from that of Edmon et al. north of 30°N. The
pattern is dominated by smaller-scale circulations, rather than the

one large circulation as calculated by Edmon et al.

Figures 13~17 are the equivalent of figuresl, 3, 5, 8, and 9 but
for the northern hemisphere only. They are shown in this form to

facilitate comparison with the EP flux diagrams.

The EP diagrams, Figures 183 and b, show the transient eddy EP
f luxes for the FGGE aﬁd Oort data, respectively. The EP flux pat-
terns are very similar, except for the region near 200 mb south of
15°N. As can be seen in Figure l6a, there is a large heat flux.
This region has a fairly low static stability, so the resulting ver-

tical flux component is quite large.
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The overall regions of divergence and convergence match fairly
well., The maximum near 70°N at 50 mb is the result of the unusually
large heat flux in that region. Near 10°N and 250 mb there is
substantial divergence, while there is convergence in the Oort sta-
tistics. This is the result of the anomalous heat flux maximum in

this region.

The EP flux patterns for stationary waves (Figs. 18c and 18d)
are very similar. There is an unusually large equatorward momentum
flux near 200 mb and 10°N and the southward momentum fluxes north of

50°N are quite large.

The most unusual feature is the convergent region near 70°N and
400 mb. This feature is the result of the unusually large momentum
flux and flux gradient in this region (Fig. 13b). The equatorward
transport of momentum north of 50°N is probably the result mainly of
wave number 2, which has an amplitude maximum near 60°N and westward

phase tilt with increasing latitude.

Figures 19a and 19b show EP fluxes for the total waves. These
figures have greater similarity than either the transient or sta-
tionary wave diagrams. This suggests that the partitioning between
stationary and transient waves for the relatively short SOP-1 may
have resulted in too little of the divergence/convergence being

assigned to the stationary waves north of 50°N,

Strong heat fluxes in the tropics are still evident, and the
associated EP flux divergence indicates that an unusual eddy source

occurred there.
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The EP diagrams 20a, 20b and 21 include eddy moisture flux

R/cp .
] 1
(p,/P) (L/cp) v'q
as discussed in Sectioh 2. These "moist™ EP flux diagrams

correspond to Figures 18a, 18c and 19a.

In all the "moist" diagrams, the pattern of EP flux is nearly
the same as those without the moisture term, only being increased in
the mid-latitude lower troposphere. The EP flux divergence tends to
be amplified below 400 mb in the mid-latitudes and the lower tro-

pospheric divergence tends to be slightly farther north.

The main effect is that the eddy moisture flux tends to amplify

the existing pattern below 400 mb in mid-latitudes.

Overall, the EP cross sections using the FGGE data are
remarkably similar to those calculated using the Oort data. The
main differences are easily traced back to isolated unusual features
in either the heat or momentum fluxes during the FGGE winter. Some
unusual features in the transient or stationary wave diagrams may be
due td-using a 58-day average with the FGGE data and a 90—day
average with the Oort data. The close similarity between the EP
fluxes in these two data sets indicates that the FGGE SOP-1 period

was close to the climatological average in most respects.

Figures 22, 23a and 23b show FGGE EP fluxes for the southern

hemisphere summer. There is a substantial area of divergence near
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50°S and 300 mb in the transient wave diagram, with strong poleward

momentum transports to the north.

The pattern for the stationary waves is extremely weak, and con-
sequently, the pattern for the total waves looks almost exactly like

that for the transient waves.

Figures 24, 25, and 26 show 5-day mean EP fluxes for the tran-
sient waves. The patterns of divergence arebquite.noisy, but the
arrows seem to be consistent. There were two unusual events which
occurred at at high latitudes. During days 1-10, there are no major
features north of 60° above 500 mb. But during the next 15 days a
large region of divergence seemed to propagate down from above 50 mb
while simultaneously developing at about 400 mb by days 20-30, this
region seems to have retreated back into the stratoéphere above 100

mb. This event corresponds to a stratospheric sudden warming.

The second event was even stronger, and was related to the wave
number 2 sudden stratospheric warming discussed in Palmer (1982).
Note that during days 30-40 there was a large area of convergence
between 300 and 500 mb north of 50°N. By days 41-45 a region of
divergence had replaced this convergent region, and it extended up
to 50 mb. During the next 5 days a very strong region of divergence
had developed over the entire region above 500 mb north of 60°.

This divergence, averaged over five days, indicates a forcing of the
zonal wind of more than 25 ms-! day—l at both 300 mb and 50 mb.

During days 40-45, the usual poleward momentum flux was reversed.
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It is only during this one five-day period that this happened. This
equatorward momentum flux is probably associated with the divergence
near 70°N at 300 mb. It is not clear from these 5-day means whether
the divergenée propagated up from the upper troposphere or developed

simultaneously in the stratosphere and troposphere. -

To try to determine the source of the divergence, a series of
l—day means to days 44-51 (Figs. 27, 28) was made. These l-day
means are very noisy. Duriﬁg days 44, 45, and 46, the divergence at
about 300 mb, 65°N developed rapidly. This was a source of wave acti-
vity which propagated vertically into the stratosphere. The momen-

tum fluxes near 300 mb were not well organized during this period.

On days 47 and 48, the equatorward momentum fluxes developed
near 40°N and 300 mb. The region of divergence above 200 mb
deepened considerably. By day 49 the entire area north of 60° above
500 mb was a source of wave aétivity which propagated upward and
equatorward. Throughout the mid-latitudes, strong equatorward

momentum fluxes were convergent near 55°N.

This strong momentum flux pattern disappeared by day 50, and the
only strong divergence was above 150 mb. By day 51, there was

nothing unusual in the pattern.

During this event, a strong source of wave activity developed
near 300 mb and near 50 mb. Wave activity tended to propagate upward

from the 300 mb region and through the source near 50 mb. The rever-
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sal of the momentum fluxes in the mid-latitudes seems to be asso-

ciated with the event.
c. Cross spectral analysis

Time series, similar to those of Hartmann et al. (1984), of
daily values of 3u/3t and the wave driving by the eddies were
calculated for two regions in the meridional plane. The compen-
sating residual circulation fv* was also calculated. In order to
determine the effects of oscillations of different frequencies,

cross spectral analysis was performed.

Figures 29 and 30 are for the region 36°N to 60° and 200 to 500
mb. Figure 29 is for the wave driving and the mean wind changes

alone, while Figure 30 includes the fv* term.

The day-to-day relationship between 3u/3t and the wave driving
was not strong, with a correlation coefficient of .339. The magni-
tude of the wave driving was typically much greater than ju/3at.

When the fv* term is inclﬁded, the correlation coefficient was only
.056. One would expect the relationship to be better with fv*
included.

Figure 29c indicates that most of the cross covariance comes
from oscillations with periods of more than a week. The graph of
the coherence, Fig. 28d, is erratic. Since the correlation coef-
ficient is only .056 for Figure 30 and the coherence squared is very

low, clearly the relationship is weak.
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A close examination reveals the Fig. 30 lacks many well corre-
lated regions. The region picked was one of large divergence, so in
effect it is a "worst case” (i.e., most of the wave driving was
known a priori not to force mean flow changes). Changes in the mean
flow are small, and differences between the two larger terms puts

the mean flow change in the "noise” range.

The same analysis was performed for the region 500-50 mb and
60-83°N. This is the region that experienced the two wave activity
events near days 20 and 50. These events are very clear in Figure
30a. It is also clear that during these events the mean flow tended
to increase: During these two periods, mean flow changes of about
2 ms'1 day"1 occurred. The correlation coefficient for 3u/3t vs-
wave driving was calculated to be only .077. The cospectrum indicates
that all of the positive contribution to this relationship comes
from oscillations with periods of about a week. Again, the

coherence squared is erratic, and is not consistent with Figure 29d.

Including the fvx term, the correlation coefficient was .382.
From Figure 32a, it is apparent that the residual circulation com-

pensates a great deal for the wave driving. Another was of viewing

2
ap
flux divergence. It is automatically compensated for in

this is that the term (v'sffgp) is the largest part of the EP

-— — a _——— =
20) fv* =fv - £ — (v'9'/9 )
(20) fv ap ( p
It is possible that the reason for low correlation coefficients

is the noisy pattern of ¥:F. The small scale intense regions of
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divergence and convergence that can be seen in the daily EP diagrams
(Figs. 17 and 18) is mainly the result of taking special derivatives

of noisy heat and momentum flux fields.-
Model Results
Zonal mean fields

As in the case of the FGGE data, we hére compare the GLAS data
with Oort's general circulation climatology. (The figures from Oort
(1983) corresponding to those for the GLAS model data are located
with the corresponding FGGE data figures). The zonal mean zonal
wind component (Fig. 33a) differs from the climatological field

1

(Fig. 2a). The jet in the northern hemisphere is about 10 ms™" too

strong and it is located about 10° too far north, at about 40°N.

Another unusual feature of this jet is that it has a maximum at

100 mb at the top of the model (this is a common deficiency in GCM's

with top boundaries in the lower stratosphere), while the jet in the

real atmosphere has a maximum at about 200 mb. A series of five-day
mean are shown. These diagrams show how the abnormal jet developed

over time.

Figures 34-36 show the development of the northern hemisphere
GLAS model jet. 1Initially, the wind field was quite reasonable
because the model was initialized with real atmospheric data. But
as the model lost its memory of the initialization, the jet moved

northward, increased its speed and its core moved to the top of the
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model. This behavior may be at least partially explained by ver-
tically propagating planetary waves interacting with the "1id" of
the model, rather than propagating higher into the stratosphere.

This is a significant fault of the model.

In a similar model, Hansen et al. (1983) foﬁnd that they could
eliminate this problem by either moving the 1lid to a much higher

level or by including damping at the top of the model.

Figure 33b shows the zonal mean meridional wind component. The
Hadley cell circulation is evident, but the maximum wind speed in the
lower stratosphere is only about one third of that in the real
atmosphere. The Ferrel cell circulation is also present and its

circulation appears to be too strong below 850 mb.

The main features of the meridional wind are simulated, but
strengths of the circulation cells does not agree well with the Oort

climatology.

The zonal mean temperature (Figure 33¢) is a reasonable simula-
tion of the real atmosphere. The lower stratosphere is 10°-15°C too

warm but the overall structure is good.

One unusual feature is the strong north-south.temperature gra-
dients poleward of 30° in both hemispheres. The transition from the
tropics to the high latitudes is smoother in the real atmosphere

(Figure 4a).
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The northward momentum transport by transient eddies (Figure
37a) is similar in overall appearance to the Oort data (Figure 6a)
but has several significant differences. In the southern hemisphere

there is an unusual maximum south of 70°S and about 150 mb.

In the northern hemisphere, the maximum at 30°-35° is well simu-
lated, but farther to the north there is a large equatorward
transport with strong north-south gradients that does not appear in

the Oort data set.

The simulation of the northward transport of momentum by the
stationary waves (Figure 37b) is not nearly as successful. As with
the transient eddies, in the southern hemisphere there is an anoma-

lous maximum south of 70°S.

In the northern hemisphere, there is a large amplitude negative
region in the mid-latitudes below 700 mb that is not seen in the Oort
data set. The maximum at 300 mb, 30°N that is clearly seen in the
Oort data set is much too weak in the model, as is the negative region

north of 50°N.

The northward transport of ﬁeat by transient eddies is shown in
Figure 38a. In the southern hemisphere, the large negative region
in the lower troposphere has its maximum at 1000 mb, unlike the
atmospheric data (Figure 7a). The negative region at about 200 mb
and 50°S is similar to the Oort data, but the large, weak positive

region between 400-500 mb does not appear in the model data.
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The northern hemisphere lower tropospheric maximum is much too
strong and extends too low. The maximum at about 200 mb is also too

strong.

Although the same gross features are found in the Oort data, the
model differs significantly from the atmosphere in its heat

transport by transient eddies, especially in the lower troposphere.

The northward transport of heat by stationary waves (Figure 38b)
differs even more from the Oort climatology than does the transient
flux. There are several small minima at 1000 mb in the southern

hemisphere in the model, but overall, the field is weak.

The expected large maximum region north of 30°N is reproduced
only in the lowest part of the troposphere. This is very different

from the Oort data.

In the atmosphere, there is a large northward heat transport
throughout the 50-1000 mb region. Even near 1000 mb, where the
maxima are similar, the vertical gradients are opposite due the

model producing the largest value near the ground.

Figure 39 shows streamfunctions for the mean meridional cir-
culation and the residual circulation. The Hadley circulation is
weak. The Ferrel cell is also weak. The apparent strong meridional
flow below 850 mb in mid—latiﬁudes may be partly an artifice of the

finite differencing procedure in integrating downward from 100 mb,
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The residual circulation has some of the gross features of
Figure 6a in Edmon et al. (1980). However, the unusual heat flux
pattern below 850 mb results in unusual residual circulation there

in mid-latitudes.
Eliassen-Palm diagrams

The EP flux and EP flux divergence for the transient waves are
shown in Figure 40a. There are two main differences between the

model and the Oort data (Figure 18b).

One is that the amplitude of the divergence is too great. This
is due to the gradients of both the heat and momentum fluxes being

too large.

The other more serious problem is that the model totally misses
the divergence below 700 mb and puts a maximum in convergence down
to 1000 mb. This is because, in the model, the maximum heat flux

occurs at 1000 mb, which reverses the vertical gradient.

Aside from the lower troposphere, the model does reproduce the
main features found in the Oort data set. The pattern of EP flux is
qualitatively correct and the positive and negative regions match

fairly well.

The EP flux diagram for stationary waves is similar in that it
does not show the divergence in the lower troposphere (Figure 40b)
for the same reason as the transient waves. The simulation above

500 mb is fairly good.
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The total wave EP flux, of course, suffers from the lack of
divergence in the lower troposphere. In general, the magnitude of
the divergence is about twice that of the Oort data. Above 500 mb,
the simulation is reasonable, but below 700 mb, the pattern is

nearly opposite to that of Oort data.

As with the FGGE data, a series of consecutive five-day means
for transient waves were calculated. These are shown as Figures
41-43. This series does not have any events as spectacular as those
of the FGGE series. However, there are some interesting changes and

developments.

The period up to day 24 was rather uneventful, but from day
25-29 a large southward momentum flux occurred above 500 mb, north of
50°N but disappeared before the next period. A similar event

occurred from day 40-49.

Throughout the entire period, the main areas of convergence and
divergence remained in the same general locations but varied
somewhat in amplitude. There were also numerous convergent events

below 200 mb.
Cross Spectral Analysis

The same time series analysis that was done for the FGGE data
was done for the model data. The region used was 36°N to 60°N, from

200 mb to 500 mb.
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The time series for 3u/at vs. wave driving, Figure 44a, had a
correlation coefficient of .308, considerably higher than that for
the FGGE data. Most of the cross covariance came from oscillations
with periods of a week or more. The values of coherence are fairly
low but indicate that the best relationship between the variables is

for periods from 3 days to a week.

Figure 44 shows results of the same analysis, but including the
residual circulation term fv*. The correlation coefficient was
.487, indicating that fv* does compensate for the wave driving.
Most of the cross covariance is due to oscillations with periods of
about 5-7 days. This is not similar to the equivalent figure for
the FGGE data. .

6. Concluding Remarks

The FGGE data is for a period of time that was fairly typical of climato-

logy. Most of the zonal mean fields are very similar to the Oort climatology-

The model data differs from the ‘atmospheric data too much to make exten-
sive useful comparisons. The northern hemisphere jet is too strong, too high
and too far north. The northward heat fluxes are a maximum at the ground,

which is a feature found in neither the FGGE nor the Oort data.

Hansen et al. presented EP fluxes for a similar model for January. This
is‘shown as Figure 46. This figure can be compared with Figure 18a, for the
FGGE data and Figure 39c for the GLAS model data. Although the plotting con-
vention of Hansen et al. is different, the location of areas of convergence

and divergence can be compared.
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Eliassen-Palm diagram for the Hansen

et al model in January. (From

Hansen et al, 1983)
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The Hansen.sg_gk. model does reproduce the divergence in the lower tro-
posphere. The pattern of arrows is similar to both the FGGE and the GLAS
model data. The Hansen et al. model has a strongly convergent region just
south of 30°N, with a maximum near 200 mb. Although this feature is found in
the GLAS model and the Oort data, it is much weaker. The feature is caused by

strongly divergent momentum fluxes.

The Hansen et al. model simulates the real atmosphere and the FGGE data

set more closely than the GLAS model.

The GLAS model data is less noisy than the FGGE data for day-to-day
calculations. This data set may be more useful for spectral analysis since

the wave forcing is more closely related to changes in the mean flow.

For most investigations, the FGGE data set would be better, if only

because the GLAS model does not adequately simulate the lower troposphere.

Use of a short period simulation from the GLAS model, which has been ini-
tialized with real data, as in the model run used here, cannot be recommended.
The “"climate drift” of the model (i.e. the temporal change of the mean zonal
wind from the initial state to the model "climate™ mean) is simply too large.
Partitioning the eddy statistics between transient and stationary eddies may
be misleading during the "drift"” phase of the model. Further EP studies with
the GLAS model or other GCM's should be done using long time histories in

which the effect of initial conditions can be minimized.
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