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Abstract

pseudospectral explicit scheme for solving linear, periodic, parabolic

problems is described. It has infinite accuracy both in time and in space.

The high accuracy is achieved while the time resolution parameter M

(M = 0(_t) for time marching algorithm) and the space resolution parameter
N

(N = 0(_x)) have to satisfy M = 0(N l+g) € > 0, compared to the common

stability condition M = 0(N 2) which has to be satisfied in any explicit

finite order time algorthm.
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i. IntroduCtion.

In recent years, it has been shown that spectralmethods_anprovide

a very useful tool for the solution of time dependent partial differential

equations [3]. A standard scheme uses spectral methods to approximate

the space derivatives and a finite difference approach to march the

solution in time. This tactic results in an unbalanced scheme; it has

inYiniteaccuracyin spaceandfiniteaccuracyin time. It is obvious

that the overall accuracy is influenced strongly by the relatively poor

approximation of the time derivative. Moreover, using finite order

explicit scheme results in a very stringent stability condition. The time

step, At, has to satisfy

At = 0(_2-) (1.1)

where N is the number of grid points in space. This severe condition

is commonly overcome by resorting to implicit schemes. Varga [6], Cody,

Meinardus and Varga [2] approached these problems by using Chebychev

rational approTimations of the evolution operator. Thus, they overcome

two drawbacks - low accuracy and stringent stability condition. In

fact, the implicit scheme presented in [2], [6] is unconditionally stable,

and the error in time decays exponentially.

Implicit algorithms involve inverting matrices. When the space

approximation is based on finite differences or finite elements (as in

[2], [6]), the related matrices are banded ones (e.g. tridiagonal) which
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makes them relatively easy to invert. On the other hand, using spectral

methods for the space discretization results in full matrices. Inverting

these matrices is a time consuming procedure.

In this paper we describe an explicit scheme for the solution of

parabolic problems when the space discretization is done by spectral

methods. This scheme is highly efficient (its efficiency is equivalent

to having a stability condition At = 0(_) ) and the error in time decays

exponentially. In Section 2 we present a model problem and its fully

discrete solution. The new approach for approximating the evolution

operator is described in Section 3. In Section 4 we carry out an error

and stability analysis. Numerical experiments confirming the theoretical

results are presented in Section 5.
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2. TheModelProblem.

Letus considertheheatequation

Ut - GU = 0 0 < x < E

U(x, O) = uOcx) (2.1)

u(o, t) = u(n, t) -- o

where G is the spatial operator

_2
G = a-- (2.2)

_x2 •

Discretizing (2.1) in space using pseudospectral Fourier method results

in a semidiscrete representation

(UN)t GNUN 0

0
UN(X, 0) = UN(X) (2.3)

UN(0, t) : UN(II , t) : 0

where

0 PNUO (2.4)UN = PNU ; GN = PNGPN ; UN =

and where for any function f(x), PNf(x) is its sine interpolant at the

collocation points

x. = j_/N j = 0, 1,..., N-1 (2.5)3
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or more precisely,

N-I

PNf(x) = _ aksin(kx) (2.61
k=0

where

N-I
2

ak = _ _ f(xjlsin(kxj) . (2.7)j=0

GN is an operator defined on N dimensional subspace ; thus it can

be represented as a N x N matrix. The formal solution of (2.3) is

°(xl (2.81UN(X,t) = exp(tGN)UN

where exp(tGN) is the exact evolution operator. A fully discrete solution

of f2.1) is achieved by approximating this evolution operator. In

[5], it has been shown that any explicit time scheme can be represented

as

0 (2.91_N = HM(tGN)UN

Z

where HM(Z) is a polynomial of degree M which converges to e in

the domain which includes all the eigenvalues of the operator tGN .

V_N is the fully discrete solution and HM(tGN) is the numerical

evolution operator.
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3. The Orthogonal Polynomials Scheme.

Let E be the error that results from approximating the evolution

operator. Then

E = [exp(tGN) - HM(tGN)]UO . (3.1)

The eigenvectors of the matrix tGN are WI,...,WN where

(Wk) = sin(kx_). Due to the orthogonality of this set of eigenvectors,J

tGN is a normal matrix and there is an orthogonal matrix SN such that

-I 0 (3.2)E = SNDNSN UN

where DN is the diagonal matrix

lkt
(DN) = e - HM(%kt ) (3.3)

kk

and %kt are the eigenvalues of tGN. Since SN is orthogonal matrix,

we have IISNI[ = IISNIII = 1. Therefore,

lIE[[L2 _<[[SNI[ []DN]I IISNlll = []DNII
L 2 L2 L2 L2

or

IIEI]L2 .<maXzEliez - HM(Z3[ (3.43

where I is the domain which includes all the eigenvalues of tGN-

For our case

I : [-aN2t,0] . (3.5)
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A standard finite order scheme can be characterized by a polynomial

z
HM(z) based on a Taylor expansion of e Thus, it has high accuracy

only for a small z The error increases rapidly when z is increased.

This property explains the poor accuracy and stringent stability condition

mentioned in the introduction.

Let us take, for example, the Modified Euier scheme. The numerical

evolution operator is

1 (AtGN) 2) nHM(tG N) = I + AtGN + _ (3.6)

where

At = t/n . (3.7)

ThUS

} (bl 2n) (3.8)

1 1

HM(Z) = 1 + n z + -- z2/n

\

2n 2

and

1/n 1 1 2
[HM(Z) ] = 1 + --z + -- z (3.9)n 2n 2

(3.9) is the first three terms of Taylor expansion of e z/n. We have

1

I

[HM(z)]l/n]" _
} 0.5
I I
I e z/n

I
I I

-2n -n z

Figure 1
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z

From Figure i, we find that HM(Z) converges to e when

-2n .<z .<0. (3.10)

(For accuracy, a more stringent condition is necessary). Using (3.5),

(3.7), and (3.10) results in the following stability condition

At .<a ( (3.11)

Expression (3.4) suggests that a uniform approximation of ez is

preferable. Such an approximation is achieved when one uses Chebychev

polynomials expansion of the exponential function (see discussion in [5]

for hyperbolic problems). Let

1
w = _(z + R) -1 .<w .<1 (3.12)

where

1
R = _ aN2t . (3.13)

It then follows

z -R Rw
e = e e = _ bkTk(W) (3.14)

k=0

where Tk(W) is the Chebychev polynomial of order k and [I]

-1/2 -Rbk = e-Rck eRWTk(W)(I - w2) dw = e CkIk(R) (3.15)-1
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and also

1 k= 0

ck = ( . (3.16)2 k>_ 1

Ik(R) is the modified Bessel function of order k. Thus, the M degree
Z

polynomial approximation of e is

M

HM(Z) = _ bkTk(W(Z)) (3.17)k=O

Since (3.12) we substitute the operator FN defined as

1
FN = _ [tGN + RI] (3.18)

for w. HM(FN) is the numerical evolution operator. Thus, the fully

discrete numerical solution of (2.1) is

M

\rM=N HbI(FN)UN0= [ bRTR(FN) UN0 (3.193k=0

0 is computed by using the recurrence relationTk(FN)UN

Tk(X ) = 2XTk_i(x) - Tk_2(x) k _ 2
(3.203

T0(x) = 1 ; TI(X) = x .

Hence

0 (FN) UN0 k >_ 2Tk(FN) UO = 2FNTk_l (FN) UN - Tk-2
(3.213

0 (FN)UO 0T0(F N) UN0 = UN : T1 = FNUN
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The algorithm defined by (3.1_, (3.21) can be regarded as a three

level scheme since it uses the recurrence relation. Therefore, it has

the disadvantage of requiring extra memory. There are two possible

ways to overcome this drawback. The first one is to convert (3.1_ to

a power series in FN and using Homer scheme to compute _N" The

disadvantage of this approach is its sensitivity to round-off errors.

The second one is based on calculating the roots of HM(W) . Let us

assume that the roots are

O1,..., 0M. (3.22)

Since the b k are real, every complex root appears with its conjugate.

Rearranging (3. 2_ is such a way that the first 2p roots are p conju-

gate pairs, we get

u

Vl' Vl""' Up, Vp, U2p+l'"'' VM-p (3.23)

Thus

p M-p

HM(W) = a0 _ (1 - aiw + Biw2) _ (1 - yi w) (3.24)
i=l i=2p+l

while

M/2
a 0 = _. bk

k=O

Bi = 2_eU i / [Vi 12 ; Bi = 1/[vi[2 1 .< i .< p (3.25)

Yi = i/vi 2p+lg i .<M - p •
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Hence we get

p _ M-p 0
HM(FN) = e0 H [I - eiFN + BiF_] H [I - YiFN] UN (3.26)

i=l i=2p+l

Each one of the algorithms described above can be used as a one

step method by calculating the solution at the final time t directly

from the initial data. It can also be used as a marching scheme if one

is interested in intermediate results. The size of the time step At

depends only on the information one wants to get out of the numerical

procedure. At enters instead of t in the expressions above, and the

parameter R is determined accordingly. In any case, the refinement of

the algorithm is done by increasing the degree of the polynomial and not

by decreasing the size of the time step.
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4. Accuracy and Stability.

Using (3.41, (3.15), and (3.17) we get

1oo

IIEIIL2"_2e-RIk--M+_ 1 IkCRl'rkCWll-1.<w._1. (4.11

Rw
Since e is an entire function it satisfies the following theorem

([41, pp. 94-96).

Theorem. (S. N. Bernstein): Let f(w) be an entire transcendental

function which is real for real w Then there exists a sequence of

integers nI, n2,.., with n . = such that the relation

n

lim _ = 1 (4.2)

_"_ lan + II
p

holds, where ak are the coefficients in the expansion

(_0

f(w) =-2- + _ ekTk (w) (4.3)
k=l

and

I _0 n
En(f) = f(w) 2 _ akTk(W) . (4.4)

k=l

There is a sequence of integers nB , _ = I, 2,... of the above

type provided

I. an +1 _ 0 V = 1, 2,... (4.51

and
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2. _ I%1= 0([=n +11) as )J+ = (4.6)
k:n +2 p

U

In our case we can take n = _, _ = I, 2,... and it follows that

I IE!IL2 -< 2e-RIM+I(R) (1 + O(1)). (4.7)

The asymptotic expansion of Ik(R) is [i]

R

ik(R ) _ _e {1 _ IJ-18___R+ (_-1)2,(8R)(lJ-9)2_ (la-1) 31(P-9)(8R)(_-25)3+ "" ' } (4.8)

where

p = 4k 2. (4.9)

(4.8) can be written as

2

2e R Ik(R ) 1 _ + _ (_R) - ... + O( (4.10)

or

3

2 + O(R- _. (4.11)2e-R Ik(R) /_R exp (-IJ/8R)

From (4.7), (4.9) and (4.11) we conclude that an _ time accuracy, c.e.

<

I IEIIL2 - € , (4.12)

is achieved when

M = O(R1/2) • (4.13)
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It is clear that satisfying (4.13) guarantees stability. In fact, using

(3.1), (4.12) we get

l[exp(tGN) - HM(tGN) I[ -<c ; (4.14)

hence

[IHM(tGN) ll _ I lexp(tGN)[[ + €. (4.15)

Since exp(tGN) is a stable operator [3], HM(tGN) is stable as wet1.

R is equal to aN2t/2 ; thus from (4.13) we can conclude the main

result of this analysis: In order to achieve E time accurate, stable

solution of (2.3), M has to satisfy

M = O(N). (4.16)

A similar analysis for any finite order scheme based on Taylor expansion
Z ]

of e will
imply that M [M = O(_) , see (3.7) - (3.8)] has to be

proportional to N2",thus the advantage of the orthogonal polynomials

approach is obvious.

Al$orithm Refinement.

From (3.13), (4.7), (4.9),and (4.11) we get

2 1 1/2 ( 2/at)E _ (a--_t) exp -(M/N) • (4.17)

Expression (4.17) suggests that refinement of the algorithm while
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M = Na (a > 1) (4.18)

will yield an exponential decay of the error. The accuracy thus

achieved is the desired spectral accuracy.

5. Numerical Results.

Table 1 presents the stability properties of the O. P. S.

(Orthogonal Polynomial Scheme) compared to modified Euler scheme

which is second order in time. We have used the model problem (2.1)

with a = 1 , and initial data

U0(x) = sin(3x). (5.1)

The solution is computed at t = i.

Table i

Modified Euler O.P.S.

N M M

16 48 24

32 192 48

64 768 96

N - Number of grid points.
M - The degree of the evolution operator.
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M indicates the minimal number of applications of the operator tGN

one has to use in order to achieve stable (meaningful) results.

The second table clarifies the spectral convergence of the O.P.S. scheme.

(We included in this table the results for the Modified Euler scheme as

well, for the sake of comparison.) The problem solved is

Ut - Uxx = 0

0 _<x <.2_ . (5.2)

U0(x)= x(x - 2_)

Note that the periodic continuation of uO(x) belongs to cO; thus

the Fourier coefficients of U0(x) are decaying slowly. The solution

is computed at t = I.

Table 2

'I
Modified Euler O.P.S.

N

M L2 Error Ratio M L_ Error Ratio

16 62 .3791-04 26 .1026-04

17,4 92

32 250 .2126-05 61 .1107-06

16.2 134

64 I000 .1339-06 140 .8263-09
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The refinement of the Modified Euler scheme is done while M satisfies

2
M = 0.97 x (N/2)

For the O. P. S. algorithm, M satisfies

1.2
M = 2.5 x (N/2)

The increasing ratio between the L2-errors of two successive refinements

verifies the spectral convergence of the O. P. S. algorithm.

In Table 3 we compare the O. P. S. to the modified Euler scheme from

the point of view of the amount of work needed to achieve a certain degree of

accuracy. The problem solved is Ut - Uxx = 0 with U0(x) = sinC3x).

The L2-Error is computed at the time level t = I, and the space resolu-

tion is N = 32.

Table 3

L2 Error M (Modified Euler) M (0. P. S.)

1.3 10-2 200 S0

1.3 10-4 2000 60

1.3 10-6 20000 70
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6. Conclusion.

The algorithm presented in this paper achieves the goal of spectral

accuracy in time and space for the simple model problem <2.!). We believe

that this approach can be useful for more complicated problems. In fact

the scheme described in Section 3 is applicable whenever one can represent

the solution as exp_tGN)UN and the eigenvalues of tGN are grouped

close to the real axis.
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