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Abstract

We study complex-valued symmetric matrices. A simple expression for the

spectral norm of such matrices is obtained, by utilizing a unitarily congruent

invariant form. Consequently, we provide a sharp criterion for identifying

those symmetric matrices whose spectral norm is not exceeding one: such

strongly stable matrices are usually sought in connection with convergent

difference approximations to partial differential equations. As an example,

we apply the derived criterion to conclude the strong stability of a Lax-

Wendroff scheme.
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I° Introduction

We study complex symmetric matrices, i.e., matrices C whose entries,

Cjk, are complex-valued, and which coincide with their real transpose, Cjk =

Ckj"

Such matrices arise, for example, as the amplification matrices

associated with convergent difference approximations to (symmetric) partial

differential equations: indeed, the stability question of the latter is

governed by the power-boundedness of such complex symmetric amplification

matrices C. In 1964 Lax and Wendroff [Ii] were first to utilize numerical

radius techniques, in order to prove stability of their schemes by verifying

Max Ix*Cx I J i. (1.1)

X x=l

Halmos" inequality can be used to conclude that the powers of C are then

uniformly bounded by 2, e.g. [4, 5, 9]. A stronger sufficient criterion for

power-boundednessis providedby the inequality

Max Ix*C*Cxl J I. (1.2)

X x=l

Indeed, by the submultiplieativityof the spectralnorm, the matrix C has

i strongly stable iterates in this case; all are uniformly bounded by I. Such

strongly stable schemes are usually sought in connection with problems

admitting variable and nonlinear coefficients, splitting techniques, etc.,

e.g. [I, 14, 17] and in particular [I0].

Unfortunately, calculating the spectral norm of a matrix may prove itself

as a complicated task, due to the quadratic appearance of C on the right of
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(1.2). In the next section we recall the canonical Schur's representation of

such complex symmetric matrices, C = Ct, which yields a more favorable

expression for their spectral norm

Max IxtCxl .

X x=l

The latter expression shares the same advantage of the numerical radius in

(i.i); namely, both involve linear form dependence on the matrix C.

Consequently, we are able in Section 3 below to conclude with a sharp,

relatively simple criterion for checking the strong stability of complex

,
symmetric matrices, C C < I; specifically, in Section 4 it is recast into the

requirement

* * * y*Jx * *(x Kx).(y Ky) < 2"x Kx - ( )2, x x = y y = 1

where -K and J are respectively the real and imaginary parts of C-I. As

an example, this criterion is then applied to prove the strong stability of

the (modified) Lax-Wendroff scheme studied in [II].

Acknowledgement
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2. Symmetry Invarianee Under Unitary Congruence

Let _n be the space of n-column complex vectors. Given a vector x

in _n -- t _ --t, we set x, x and x _ x to denote, respectively, the (complex)

conjugate, the transpose, and the (complex) conjugate transpose of that

vector x. Similar notations are used for matrices.

Let (x,y) = y x stand for the usual Euclidean inner product and let

C be a given matrix in Mn(_) - the algebra of n x n complex-valued

matrices. Among other quantities used to measure the size of a matrix C, we

have its spectral norm - which will be temporarily denoted N(C),

N(C) - Max l(Cx,Y) l (2.1)

Ixl=lyl=1

and its numerical and spectral radii given respectively by

r(C) - Max l(Cx,x) l, (2.2)

Ixl=1

p(C) -- Max I%1. (2.3)

cx= x,lxl=1

Those three quantities admit the following hierarchy of inequalities, valid

for all C in Mn(_)

p(C) < r(C) < N(C). (2.4)

When does equality take place? In connection with this question one observes

that, e.g. [4, 5, 9]

(i) equality holds for all diagonal matrices A
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p(A) = r(A) = N(A),

and

(ii) each of the three quantities is invariant under unitary similarities;

that is, for every unitary U, U*U = In and all C in Mn(_)

N(C) = N(U CU) (2.5a)

r(C) = r(U CU) (2.5b)

p(C) = p(U*CU). (2.5c)

As a consequence of the last two observations, equality in (2.4) follows

for all matrices C which are unitarily similar to diagonal ones, namely,

normal matrices

o(C) = r(C) = N(C), C C = CC . (2.6)

In general, matrices satisfying the equality on the left of (2.6) - that

is, equality between their spectral and numerical radii - are called spectral

matrices after Halmos [9, p. I15]; such matrices were completely characterized

in [6, 7]. Special cases are the radial matrices [9] - those having equal

spectral radius and norm [2, 8, 13]. According to this terminology, we have

seen that the class of normal and, in particular, real symmetric matrices, is

contained in the radial class; indeed, it is a proper subclass of the latter

[4, 8].
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Yet, the class of complex symmetric matrices which we are interested in

here is included in none of the above. This is essentially due to the fact

that this class is not invariant under unitary similarities. Rather, the

symmetry of (complex-valued) matrices is invariant under (transposed-type)

congruence: if C coincides with its transpose, so does utcu. This

motivates our discussion below, regarding the slightly different analogue

quantities of what we had before and which are more adequate for our purposes

of studying complex symmetric matrices.

To begin with, we introduce for an arbitrary matrix C in Mn(_) , the

associated congruent-type quantities, namely, the congruent-type norm, Nc(C),

Nc(C) --- Max l(Cx,_)l (2.7)
Ixl=lyll

and the congruent-type numerical and spectral radii, given respectively by

rc(C) -= Max [(Cx,x)[ (2.8)

Ixl=l

pc(C) - Max 11[. (2.9)

Cx=Xx,Ix]=1

As before, we have the analogue hierarchy of inequalities, valued for all

matrices C in Mn(_) ,

 c(C)< rc(C)< Nc(C). (2.10)

Seeking equality in (2.10), then rather standard arguments which we omit, lead

us to



-6-

(i) equality holds for all diagonal matrices A

pc(A) = re(A) = Nc(A),

and, in the heart of the matter,

(ii) each of the three (congruent-type) quantities is invariant under

unitary congruence; that is, for every unitary U, U*U = In and all

C in Mn(_)

Nc(C) = Nc(UtCU) (2.11a)

rc(C) = rc(UtCU) (2.11b)

pc(C) = pc(UtCU). (2.11c)

Hence, equality in (2.10) follows for all matrices C which are unitarily

congruent to diagonal ones: a classical result of Schur [15, 16] asserts that

these are exactly the (possibly complex-valued) symmetric matrix. We state

our conclusion as

Lemma 2.1 (e.g. [12, Lemma 3.7]): Let C be a complex-valued symmetric

matrix, C = Ct. Then we have

pc(C) = rc(C) = Nc(C). (2.12)

Several remarks are in order.
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(i) Since the conjugate of a unit vector is another unit vector, the

spectral norm N(.) and its congruent-type analogue Nc(.) coincide -

both will be denoted below as customary by fl-fl,

N(C) = Nc(C) = ItCH- Max ICxl. (2.13)

Ixl=l

Thus, the right-hand side equality stated in Lemma 2.1 reads

rc(C) = ;IC]I,or, written explicitly,

Max l(Cx,_)l = Max ICxl , C = Ct. (2.14)

Ixi=l ixi=1

(ii) Let x be a particular vector at which the maximum on the left of

(2.14) is attained. Then the equality asserted in (2.14) is a special

case of the Cauchy-Schwartz inequality

l(Cx,x)i_<;cxl.lx;,Ixl:I

This, in turn, implies that the vectors Cx and _ are parallel: the

vector x is, therefore, necessarily a congruent-type eigenvector

corresponding to a congruent-type eigenvalue %,

Cx = _x,

such that I%1 = 0c(C) = rc(C). Hence, we obtain an independent

derivation of the left-hand side equality stated in Lemma 2.1, which

follows directly from the corresponding right one. We shall refer to
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such % lying on the circle Izl = pc(C) as a congruent-type spectral

eigenvalue.

(iii) Once the existence of a congruent-type spectral eigenvalue was

established, a different derivation of Lemma 2.1 can be argued. For,

if _ is a congruent-type spectral eigenvalue satisfying Cx = _,

then by the symmetry of C, % is a congruent one for C*, C x = _x;

* 2
hence C Cx = I%1 x and, therefore, I%12 equals p(C*C) _ I,CII2.

Thus, we have shown that pc(C) = IICIIand (2.12) follows. Indeed, the

congruent-type eigenvalues of C are exactly the principle values of

that matrix - they are uniquely determined up to a multiplication by a

unit scalar.

(iv) In [17], Turkel has shown that in order to calculate the numerical

radius of a complex symmetric matrix C, it is enough to maximize the

form ](Cx,x) I over the real unit ball; we may therefore write the

numerical radius of such matrix

r(C) = Max ](Cx,_)[, (2.15)

n,Ixl=I

while according to Lemma 2.1, the spectral norm is obtained by an

extension to the (complex-valued) unit ball

ItCXl= Max l(Cx,x) l. (2.16)

x € _n, ixl=I
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3. The Spectral Norm of Symmetric Matrices

The calculation of a matrix" spectral norm,

liCit= Max [(Cx,Cx)[ 1/2,
Ixl=i

may prove itself as a complicated task due to the quadratic appearance of the

matrix C on the right. In the symmetric case, Lemma 2.1 allows us, instead,

to calculate the simpler congruent-type numerical radius

rc(C)= Max
Ixl--1

The relative advantage of the latter lies in its simple - linear form

dependence on C, similar to that of the numerical radius

r(C) = Max [(Cx,x)].

Ixi=1

In Section 4 we shall make use of this advantage, while verifying the

strong stability of certain Lax-Wendroff difference approximations. To this

end we first prepare the following proposition, putting Lemma 2.1 in a more

convenient form.

Lemma 3.1: Let C = R + iJ be a symmetric matrix with R and J

denoting respectively its real and imaginary parts. We then have

ItCIl= Max [(Ru,u) + 2[(Ju,v)[ - (Rv,v)]. (3.1)

lu[m+[v[2=l
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Proof: Since C is a symmetric matrix, then by Lemma 2.1 its spectral

norm equals its congruent-type spectral radius

IICII= pc(C). (3.2)

Turning to calculate the latter, we first observe that congruent-type

eigenvalues are determined up to a multiplication by a unit scalar: indeed,

the following equality is e-independent

%e2i@x( i0Cx(e) = e), x(6) E xe , 0 < 9 < 2_.

Let _ be a congruent-type spectral eigenvalue which is assumed - without

loss of generality - to be real

= pc(C). (3.3)

If x = u + iv is the corresponding congruent-type eigenvector

(R + iJ)(u + iv) = %(u - iv), (3.4a)

then equating real and imaginary parts yields

L::II:]= _ . (3.4b)



-Ii-

Hence, _ is a spectral eigenvalue of the real symmetric matrix on the

left, C ,

Furthermore, since C is a real symmetric matrix, then according to (2.6) it

is, in particular, a spectral one, i.e.,

p(C) = r(C). (3.6)

The equalities (3.2), (3.3), (3.5), and (3.6) imply

IICII= r(C) - Max l(Ru,u) - 2(Ju,v) - (Rv,v) l;

lulm+IvI2=l

choosing the sign of Iv with -(Ju,v) = l(Ju,v) l and exchanging between

u and iv if necessary, so that (Ru,u) > (Rv,v), the lemma follows.

We remark that Lemma 3.1 can be generalized, formulating its conclusion

in a more symmetric fashion. To this end, let us replace _ in (3.4a) with

i the congruent-type spectral eigenvalue _ei8, 0 _ 8 _ 2_. The same

agruments, detailed above, lead to the equality

_R(8) -J(8) 1

IICII= r(C) C = C(@) = (3.7a)

J(8) -R(8)
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where R(e) and J(e) are given by

R(e) = coseR + sineJ, J(fl) = cosfJ - sineR. (3.7b)

Consequently, the matrices R and J appearing on the right-hand side of

(3.1), should be replaced with R(O) and J(e) respectively, yielding for

arbitrary e, 0 < e < 2_,

llCll= Max [cos0[(Ru,u) + 2(Ju,v) - (Rv,v)] +

lulm+Iv12=l (3.8)

+ sine[(Ju,u) - 2(Ru,v) - (Jv,v)]l.

Lemma 3.1 refers to the special case e = 0.

Using Lemma 3.1 we conclude with

Corollary 3.2: Let C = R + iJ be a symmetric matrix with R and J

denoting respectively its real and imaginary parts. We then have

llCll<__i/2 Max [(Rx,x) - (Ry,y) + /[(Rx,x) + (Ry,y)] 2 + 4(Jx,y)2]. (3.9)
Ixl=lyl=1

Proof: According to Lemma 3.1, the spectral norm of C = R + iJ is

given by a maximal combination of the form

(Ru,u) + 2](Ju,v) I - (Rv,v), ]u]2 + ]vl2 = i. (3.10)

We rewrite (3.10) in the following way:
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(Rx,x) si_2_ + 21(Jx,y) l sinl cosl - (Ry,y) cos2_; (3.11)

here x and y are the normalized unit vectors x= u/luland Y= v/Ivl
with sin!= lul, cosl = Ivl whose squares are summed up to one.

The result follows by computing the extremum of the expression (3.11)

w.r.t, the argument _.

4. Strongly Stable Symmetric Matrices

In this section we examine symmetric matrices whose spectral norm does

not exceed one: such strongly stable matrices are usually sought in

connection with convergent difference approximations to partial differential

equations. As an example, we shall utilize our results to conclude the strong

stability of a certain Lax-Wendroff scheme.

To begin with, we state the following sufficiency criterion.

Lemma 4.1: Let C = R + iJ be a symmetric matrix with R and J

denoting respectively its real and imaginary parts. Then, C is strongly

stable, IICU< I, provided

(Rx,X) 2 + (Jx,y) 2 J 1 - [(Rx,x) - (Ry,y)]-[l - (Rx,x)] (4.1)

for all unit vectors Ixl = IYl = I.
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Proof: According to Corollary 3.2, strong stability follows if the

inequality

i/2/[(Rx,x) + (Ry'y)] 2 + 4(Jx,y)2 ! 1 -1/2 [(Rx,x) - (Ry,y)] (4.2)

holds for all unit vectors Ixl= lyl= i;see (3.9). By choosing x =y our

assumption in (4.1) implies, in particular, that p(R) < i. Hence, the right-

hand side of (4.2) is nonnegative, and the result follows by squaring both of

its sides.

Remark 4.2: It is instructive at this point to compare the last strong

stability criterion, with the requirement

r(C) < i, (4.3a)

which was originally used as a stability criterion by Lax and Wendroff in

[ii]. Setting K = I - R, the requirement (4.3a) for a symmetric matrix, C =

Ct, reads [ii]

(Kx,x)2 d 2(Kx,x) - (Jx,x) 2, Ixl = i, (4.3b)

while for strong stability

llCll< i, (4.4a)

we need - according to Lemma 4.1 - the slightly stronger
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(Kx,x)(Ky,y) < 2(Kx,x) - (Jx,y) 2, Ixl = IYl = I. (4.4b)

For a later purpose, we shall quote here an immediate corollary of the

strong stability criterion (4.4b), stating

Corollary 4.3: Let C = I - K + iJ be a symmetric matrix. Then C is

strongly stable, liCil< i, provided

(Kx,x)(Ky,y) < (2K - j2x,x) Ixl = IYi = i. (4.5)

The corollary follows upon employing Cauchy-Schwartz inequality to the last

term on the right of (4.4b) yielding

(2K - j2x,x) < 2(Kx,x) - (Jx,y) 2.

In the rest of this section we utilize Corollary 4.3 to verify the strong

stability of a certain (modified) Lax-Wendroff scheme [II]. The problem is

governed by the strong stability of a so-called amplification matrix given by

C = C(_,_) = I - K + iJ; (4.6a)

here K and J are polynomials in the real symmetric matrices A and B,

which take the form

J = J(_,n) = sln$-_A + sin_._B (4.6b)
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K = K($,n) =1/2[(= + 8)(aX2A 2 + Bp2B2) + j2], =_l-cos _, BEI-cos _. (4.6c)

Our purpose is to show that for sufficiently small scalars X and p, the

amplification matrix C($,_) in (4.6) is strongly stable for all $, n,

0 < _,n < 27.

Using the abbreviations

a - a(x) = XIAx], b - b(x) = _[Bx], Ix] = i,

we find

(j2x,x) < sin2_'a 2 + sin2rl.b 2 + 2sin_.sinrl.ab

with the last term on the right not exceeding a value of

2sin$.sinn-ab -< (I - cos$)(l + cosn)a 2 + (I - cosn)(l + cos_)b 2.

Inserted into (4.6c) we arrive at the essential estimate

(Kx,x) <1/2 [(_ + B)(aa 2 + Bb2) + a(2 - _)a2 + B(2 - B)b2

(4.7)

+ _(2 - B)a2 + B(2 - _)a 2] = 2(aa2 + Bb2).

In their original treatment, Lax and Wendroff have employed a somewhat

different estimate of the same term [11, p. 392],

(Ky,y) <__(_ + _B).I_a2(y) + /_b2(y)),

which yields
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(Ky,y) _< /2"(a + B)'[a4(y) + b4(y)] 1/2. (4.8)

The last two estimates provide us with the necessary upper bounds on the two

terms appearing on the left of (4.5); regarding the right-hand side of (4.5),

we have in view of (4.6c)

(2K - j2x,x) = (e + _).(aa 2 + 6b2). (4.9)

Hence, Corollary 4.3 yields strong stability provided the inequality

[%41Ay14 + _41By14]I/2< (e + B).(0m 2 + Bb2)
--/2.2.(_ + B)(om 2 + _b2)

hold for all unit vectors IYl = i.

We summarize what we have shown in

Theorem 4.4: The Lax-Wendroff scheme (4.6) is strongly stable provided

the so-called CFL condition is fulfilled

8(%4A 4 + _4B4) < I. (4.10)

The strong stability condition derived in (4.10) turns out to yield a slight

improvement over the strong stability condition obtained for this case by

Abarbanel and Gottlieb in [I], requiring

4 Max(%2A2,_2B 2) < I.
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The two conditions coincide whenever %A = BB in which they agree with the

somewhat more permissive Lax-Wendroff condition [ii, Theorem 4.4] requiring

2(%2A 2 + B2B2) < I. The point we make here is that our general algebraic

criteria for strong stability - consisting of Lemma 4.1 and its stricter

version in Corollary 4.3 - are both sharp enough for the purpose of studying

the stability question in a rather systematic way, replacing the brute force

proof employed in [I].
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