反射光の干渉による凹面形状測定

熊沢鉄雄** 根本達三*** 志田茂***

Profile Measurement of a Concave Surface Using the Interference Fringe of Reflected Light

Tetsuo KUMAZAWA, Tatsuji SAKAMOTO and Shigeru SHIDA

This paper describes a simple method whereby a concave surface is irradiated with coherent light and the resulting interference fringes yield information on the concave surface. This method can be applied to a surface which satisfies the following conditions: (1) the concave face has a mirror surface; (2) the profile of the face is expressed by a mathematical function with a point of inflection.

1. 緒 旨

半導体製品、OA機器などの性能安定化、信頼性向上にとってシリコン、ガラス、金属などを素材とする部品の加工後に表面形状の測定、検査を行うことが不可欠である。形状測定は測定精度がよいこと、被測定物に接触しないで測定できることが要求される場合が多い。この要求を満たす方法としてサブミクロンの測定が可能な光学的手法が考えられており、ニュートン環を形成する方法、二光束干渉法、波長法などが用いられている。しかしながら、これらの方法は干渉計を形成させるために被測定物の取扱いが容易でないことも、測定、位置合わせに時間がかかることなどが必要であるとは言えない。

著者らは被測定物表面が凹面形状をなし、この表面がある要素を満たす場合に凹面にレーザー光またはレーベンの光学的方法に比べて簡単な方法で凹面形状に関する情報が得られることが見いだした。その原理は傾斜の異なる二つの平面から反射された光が互いに干涉して干渉計を形成するフレネルの二重波の原理に似ており、凹面の曲率が異なる2か所から反射された光を互いに干涉して干渉計を測定するものである。本報ではこのような方法における干涉計形成の原理、数値計算例と実験結果等について述べる。

2. 干渉計の形成

2.1 凹面から反射された光の軌跡

凹面の一例として図1に示すように、外周方向から等分布荷重をうけて変形した曲面を観察する。凹面が鏡面であると、円板の変形量W(x)は一般に式(1)で表される。

\[W(x) = \frac{P}{64D}(a^4 - (a^2 - x^2)^2) \]

ここに、\(P \)：荷重，\(a \)：半径，\(W \)：変位，\(D \)：板の弾性係数，\(k \)：板厚，\(\nu \)：ポアソン比。

上記凹面に光線を当て、反射された光の軌跡を以下に示す。図2に示すx-x座標系においてx軸に平行な入射光が凹面と交わる点を(\(z_0, x_0 \))とする。交点(\(z_0, x_0 \))で凹面に法線を立てる。法線に入射光とのなす角度を\(\theta \)とする。角度\(\theta \)が非常に小さいところでは

\[\frac{\partial W(x_0)}{\partial x} = \tan \theta = \theta \]

Fig. 1 Uniformly loaded circular plate clamped at the edge

https://ntrs.nasa.gov/search.jsp?R=19850012557 2020-01-13T02:53:12+00:00Z
反射光の干渉による凹面形状測定

図2 二つの光を反射する場合の反射光の軌跡

図3 凹面鏡を用いた反射光の軌跡

図の説明

反射面の形状を測定するための反射光の軌跡を示す。反射光の軌跡は、反射面の角度に依存し、反射面の曲率によって異なる。反射光の軌跡は、反射面の曲率によって異なる。

(1) 407

(2) 407

(3) 407

(4) 407

(5) 407

(6) 407

(7) 407

(8) 407

(9) 407

(10) 407

(11) 407
3. しま分布の計算と観察結果

3.1 しま分布の計算例

干渉しま分布の計算に用いた諸量は図面を形成するダイヤフラムの直径8.4 mm、板厚0.185 mm、相関係数45×10^{-6}、入射光の波長が0.6328 μmである。図面を照射する光線はx軸に平行であり、その数は200とした。入射光は平面波と考えると光線相互間の初期位相差は0である。観察位置は4.0 mでx軸に平行な面上である。この観察面上の任意箇所に集まる光線（5点）は干渉するとして平均光路差を求めた。平均光路差は最短0.185 mmであるが、平均光路差を5点とすることによりばらつきを低減させた。また、干渉しま分布は表面に変化することから最小二乗法で処理した。得られた光路差及びその光路差から式（8）を用いて明るさの変化を求めた計算結果が図4である。光路差は反射光が当たる領域の縦にやや小さいので、縦から中心に向かうに従い増大する。この光路差の変化に伴ってしま光路差が変化する。すなわち干渉しまの間隔は中心に向かうほど狭くなることがわかる。なお、しま数は光路差が0の最外環のしまから中心に向かって1次、2次、…であり、最大しま数は14.9次である。

3.2 干渉しまの観察結果

図面を形成するため試作したシリコン製ダイヤフラムを有する中空円断面を図5（a）に示す。このダイヤフラムの寸法は直径8.4 mm、板厚0.185 mmである。ダイヤフラムの表面は研磨した鏡面とした。この中空円断面の内面を真空ポンプで真空にし、外部から圧力0.098 MPaをかかるようにしてダイヤフラムを凹凸形させた。圧力測定には水銀マノメーターを用いた。光学系は1 mW He-Ne レーザーを光源とし、コリメータで平行にしたビームをダイヤフラムに照し、という簡単な方法である（図5（b））。なお、ハーフミラーを用いてダイヤフラムに垂直に照し、の方法もあるが、簡単な方法としてハーフミラーを用いない方法を採用し測定した。干渉しまは低スクリーンに投影して観察した。

ダイヤフラム断面から1.48 m離れた観察面で記録した干渉しま写真を図6に示す。最外環のしまは明確である。最外環のしまから中心に向かってしま数は1次、2次、…となっており、しま数が増えるに従ってコントラストが小さめられるよう、干渉しまパターンの性質としてしま数の増えるにつれてしま間隔が減少することがわかる。
4. 干渉じまの性質

4.1 最大光路差

最大しぼしぼ数と四面の変形状との関係を図7を用いて検討する。最大しぼしぼ数から決定される最大光路差は四面中択から反射された光線Iと四面面で交差する光線IIとから生じる、光線Iと光線IIの交点をP(L, 0)、光線IIと四面の交点をQ(x₀, z₀)、四面の最大変形状をδ₀とする。光線IIはP(L, 0)を通ることから式(4)を用いて

\[x₀ = a² - \frac{8D}{F(L - z₀)} \]

また式(1)より

\[\delta_m = \frac{P \cdot a²}{64D}, \quad z₀ = \delta_m - \frac{P}{64D}(a² - x₀²)² \]

図7においてz=δ₀を基準にして光路差δを求める。

光線Iの光路長：δ₁=δ₀+L

光線IIの光路長：δ₂=δ₀-z₀+½(L-z₀)²+z₀²

光路差：δ=δ₁-δ₂

\[= L + z₀ + \frac{1}{2}(L-z₀)² + z₀² \]

z₀はm, Lはmの大きさであるからL-z₀=Lと近似し、式(9)を用いると

\[\delta = 2z₀ - \frac{1}{2L}(a² - 8D)² + \frac{1}{8L³}(a² - 8D)² \]

となる。

干渉じまの計算(3.1節)と同じ条件の下に最大光路差を式(10)から求めた。図8に観察位距離Lを変えたときの最大変形状の2倍に対する最大光路差の比(δ/δ₀)を示す。干渉じまを求めた実験値と計算結果とはよく合っている。また観察位距離が遠くなるほど最大光路差は四面の最大変形状δ₀の2倍に近づく。例えば観察位距離4mのとき最大変形状の2倍に対する最大光路差の比(δ/δ₀)は80.6%であるが、8mの場合には90.1%となる。この比を用いると最大しぼしぼ数から変形状を知ることができる。この場合観察位距離が4mから離れたところ、δ/δ₀値で言えば100%に近いところで最大しぼしぼ数を読みとるとばらつきが増加せず変形状測定の精度が上がる。

4.2 压力と干渉じまの変化

圧力を変化させるとダイヤフラムの変形状態が変わると観察位距離から反射された光の干渉で生じるしぼしぼの大きさや、しぼしぼ数が変化する。干渉じまが圧力によって変化する様子を調べるため図9に示したダイヤフラムを用いて干渉じまを形成した。干渉じまの観察位距離から4m離れた位置で行った。干渉じまパターンの中で1次明線の径をとりあげ圧力依存性を調べた結果を図9に示す。圧力が0近傍では光が集中し、光の強度が著しく上がるため除外し、干渉じまが大きいところで測定した。実測値は一直線上にのっており圧力としぼしぼの径は直線
関係にあることを示している。計算結果も同様に直線関係にある。しかし実測値と計算値を表す直線の間に差異がある。この差異は材質パラメータ材料定数の算定誤差によるものと考えられ、定数の算定を改善する必要がある。

4.3 干渉じまに関する検討

本法で提案した反射光干渉法で干渉じまを形成する場合の条件の設定、干渉じまの性質、応用等について若干検討を行う。

1) 凹面形状、サイズ等

前述のように本干渉法で干渉じまを形成する必須条件は面を表す関数が変曲点を有する凹面に限定されるものである。一般に物体表面が平坦であり、1か所が加圧されてくぼんだ場合、くぼみ中央が平らである場合には干渉じまは形成される。例えば、周面が固定された板がたわむ場合をとりあげると、板が円板でなくとも三角形、四角形、などに任意の形状をもつ面を満足し干渉じまは形成される。しかし、凹形状態を表わす表示することに問題に困難があり、干渉じまの形成を計算できる形状は特殊な場合に限られる。

照射光が反射屈折の法則に従い、規則正しい反射光を生じた面をなしていない場合には規則性のない干渉が起こるか、全く干渉が生じなくななる。このため本干渉法を適用する場合にはコーティング、研磨等により被測定物表面をかなり良い凹面状態にする必要がある。

2) 照 射 光

本提案の光学干渉法は反射光が干渉できる状態にあってはじめて成立立つものである。したがって、光源としてはコヒーレントな光を発するレーザを使用することになる。干渉じまを形成させる位置が図面から離れるほど干渉じまの形状が形成される領域は拡大され観察が容易となる。また凹面から離れるほど変化する測定精度が上がる。

光線の照射方法として平行光照明を本解析では採用したが、平行光照射のほかにレンズを通じた収束光など規則性のある光を用いてもよい。面に対して直接照明方法としては収束光を用いるか、たとえば干渉じまパターンが形成される領域が縮小、データ処理しやすい場合もある。

3) 本干渉法の適用

負圧力を変化させて凹面形状を変えることと形成される干渉じまの変化は压力に比例して変わるのを示した。この結果から干渉じまの形状を調えることにより非接触で圧力の大きさを知ることができる。また、圧力の変化に対する干渉じまの変化する弾性係数、板厚があり、これらの検出が可能である。

以上、被測定物体の形状に凹面をとりあげて解析した事で、凹面を対象とした場合、中央に凹面物体を設置し第1象限で入射光を照射すると、反射された光は第4象限で干渉する（図3参照）。一方、凸面の場合に凸面を表す関数が変曲点をもつならば凸面の場合と同様に干渉じまが形成される。ただし、凸面の場合、第1象限で照明したとき干渉は第1象限で生じる。凸面の場合についでも本干渉法が適用できる。

被測定物表面が前記推論したような形状をしている場合には表面から反射されて光が相互に干渉してしまが形成される。このような場合として二つの平が任意の角度で互いに影響を及ぼし合うオノルの反射鏡のほかに変曲点をもつ凹面があることを明らかにした。変曲点をもつ凹面は測定対象が頭をなっているが、干渉じまは反射光の通る任意の場で干渉じまが形成され、しかも干渉じまのビーグビーグが大で多い。このため本法は凹面形状情報を得るために一つの有力な光学手法であると思われる。

5. 結 論

凹面の形状に関する情報を知る新しい光学干渉法を提案し、干渉じまの生成、形状の特徴を検討した。その結果の概要は次の通りである。

(1) 凹面が鏡面であり、凹面を表す関数が変曲点を有するならば面に平行光を照らすののみで反射光が相互に干渉し干渉じまが形成される。

(2) 干渉じまは反射光の伝播する任意の場で形成されるが、干渉じまの形状は凹面寸法を母体であり、中心に向かって干渉じまの数が増す。しかし干渉じまの増大に伴い干渉じま間隔が減少する傾向がある。

(3) 最大最小干渉じまから凹面の変位を推定できるが、その精度は凹面の観察領域が凹面から離れるほど低くなる。

(4) 干渉じまに影響を及ぼす因子の一つである圧力変化に影響するか、干渉じまの形状は圧力変化に影響される。例えば第1の凹面の凹面の形状が変化する。

終わりに、本研究の測定に関してご協力いただいた日立製作所、松重洋雄、御法川三氏に深謝します。

参考文献

3) 例えば、久保田 広: 鍋島光学, 岩波新書 (1971).