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THREE-DIMENSIONAL UNSTEADY LIFTING SURFACE THEORY
IN THE SUBSONIC RANGE

H. G. K_ssner,_

i. Introduction
41L L2.2,

The aeroelastic problems of the modern airplane and aircraft

are so numerous and so complex that a purely experimental

treatment is hound to fail due to the multiplicity of the

necessary parameter variations. The closer one comes to the

boundaries of technology, the more necessary it becomes to apply

mathematical and theoretical methods to solving a problem, even

when making simplified assumptions. For this reason unsteady

lifting surface theories (in spite of their recognized

deficiencies) are used to a large extent in aeroelastic

investigations of new airplane designs. In the leading airplane

works they avoid purely theoretical or experimental directional

oscillation flutter proofs, because every known process still has

great deficiencies and because the only sufficient protection

against directional oscillation flutter to date has been
comparative investigations.

Since this pressing need exists, much work has been put into

the development of unsteady lifting surface theory in the last 30

years. The two-dimensional problem has been solved completely

for all Mach numbers. Many numerical tables have been calculated

for the use of these solutions. In the case of the three-

dimensional problem, that is, in the case of lifting surfaces of

finite wingspan, only minimum progress has been made to date,

because the Kutta-condition in the subsonic range is a difficult

boundary condition. First, I should like to present you with a

*Numbers in the margin indicate pagination in the original.

**Max-Planck-Institute of Flow Research, G6ttingen (West Germany)
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survey of the general three-dimensional problem and solution

assessment of same. Then I should like to report on my recent

investigations in the subsonic range.

2. Basic Assumptions of the Lifting Surface Theory

The question how much stress is placed upon a winged aircraft

with a sharp trailing edge when in flight could not be answered

in the 19th century. Classical hydrodynamics supplied the

paradoxical answer that, under ideal fluidity and stationary

flow, stress is zero. Only at accelerated motion do stresses

varying from zero -- the so-called Kelvin impulse -- occur.

On the basis of Prandtl's boundary layer theory, Kutta first

conceived the idea of considering the viscosity of actual

fluidity phenomenologically. He did this by assuming the smooth

flow of the trailing edge, while otherwise figuring with ideal

fluidity. Kutta's two-dimensional profile theory offered the

first solutions which were also physically acceptable.

For three-dimensional flow, that is, for wings of finite

wingspan, the Kutta method of conformal representation fails.

For this reason also, simplified assumptions had to be made. It

was necessary to limit oneself to infinitely small /41.4

disturbances, by which the problem is linearized. Accordingly,

the thickness of the wing must be infinitely small, so that one
can even talk of lifting surfaces.

At the trailing edge of this lifting surface the flow should

stream away smoothly. The sharp front edge of the lifting

surface, however, causes the flow to go around it, which leads to

infinitely large disturbance speeds and pressures. As long as

this specific pressure is integrable, we can nonetheless

calculate total reactions upon the lifting surface, that is, upon
lift, linear and higher torques.

4



For this reason, a lifting surface theory can be a theory

only approaching the calculation of aerodynamic coefficients. It

is desired, nonetheless, that under the given circumstances the

mathematical boundary value problem of the lifting surface theory

be solved exactly and that no further approximate assumptions be

made. For the danger exists that accumulating approximate

assumptions will result in loss of touch with physical reality.

First, we consider the boundary conditions of lifting surface

theory. We shall assume frictionless compressible fluidity. The

positive x-axis points in the direction of airspeed v, the y-axis

in the direction of the wingspan (See Figure i).

Further, t represents time, s = vt of the pattern of the

middle of the wing, l is the largest half of the chord depth, c

the sonic speed, B = v/c the Mach number, _ the air density, p

the disturbance pressure and # the velocity potential resulting

from movement of the lifting surface. We shall make all valves

dimensionless by setting

% = v = = I (i)

Yo _41.5

s=vt --

i Figure i. Moved lifting surface in the plane z = O.



Further we assume that the lifting surface remains even up to

infinitely small deviations and lies in the plane z = 0 (See

Illustration I.)

Because we have linearized our problem, the Euler equations

become

We take the vertical component of velocity at the lifting

surface, the so-called down current, as given. With the

exception of the leading edge, it is equal to the gradient of the

velocity potential perpendicular to the lifting surface

W(s,x,y)= _z(S,x,y,O) (4)

Down current is determined either by the small /41.6

deformations of the lifting surface or given by an atmospheric

squall area. According to the Kutta condition, disturbance

pressure of the lifting surface at the trailing edge should

always be p = 0. With that, our boundary value example is

completely determined.

3. Transformation of the Euler Equations.

We want to simplify the solution of this task by first

carrying out two transformations. First we shall perform a

Galilei-Lorentz transformation of coordinates and time:

6



x' = x ; y, = y _V/-_-_2 ; s' = s(1-p 2) -_S 2x , (5)

z' = zV_l-p 2 ; t' = t(1-p 2) -_2z

Using B = 0.7 as an example, the given lifting surface countour

reverts to the dotted line in Figure I, which we shall continue

to consider.

Further we perform a Laplace transformation; this changes the

object function F(s') which disappears with s'< 0 into the

diagram function

(6)
0

In this equation o_* is a complex number.

By means of these two transformations (5) and (6), the Euler

equations (2) and (3) become

(7)

(_"-_x)¢'Cx,y,_):p-(x,y,z)=0 ,
()2 _V2) _*(x,y,z) = 0

(8)

The transformation lines have been left out here. The reduced

frequencies are /41.7

.(1-/1 _¢___ _ (9)

i

I In the case of harmonic vibrations, is the purely imaginarycircuit frequency of the object function. 7

!
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4. Integral representations of the solutions

By means of the Laplace transformation and the Lorentz

transformation we have reduced the time and the compressibility

of the fluidity down to the two constants _* and . • The

solution of our boundary value exercise can be represented

generally by the following integrals over the lifting surface:

¢*(x,y,z)= JSw*Cx'_')KCx-x',y-y,,z)dx'dy', (I0)

p*Cx,_,,z)= _;,_*(x,,_,,3_qCx-x,,y-y,,z)d_'dy,
(ll)

Because we have linearized our problem, the nuclei K and K1 are
the differential nuclei of these integrals. For this reason we
can transform equation (11) into:

From these equations one can easily derive the theory of the

opposite flow formulated by A. H. Flax, as I have shown in

another of my works. This theory runs in our case at the lifting
surface

z = 0

_ [_-(_,y)p*(x,y,+0)-w-(_,y)p'(_,y,.0)]d_ay_-0. (13)

8



llere the horizontal line means opposite flow. Now we can make

the following general statements for the down current
and the pressure in direct and opposite flow:

w-(x,y)= g(x,y)+ Z(x,y); p*(x,y)= pg(x,_)- rz(x,y),
(14)

w-(x,_,)_ g(x,y)- _Cx,_)_ p_(x,y)= pg(x,y).;_(x,y)

Here g means even and f uneven down current dispersion, pg and pf
the corresponding pressure dispersion. If we substitute equation
(14) for (13), then we attain the tolerance condition

if[.qx,y)pg(x,y)+ g(x,y);z(x,y)]dxdy- 0 (15)

If, for example, f(x,y) = x, g(x,y) = 1 is set, then we obtain

the tolerance condition of the lift and torque coefficients from
equation (15)

m + kb = 0a ' (16)

to which I shall return later. All exact lifting surface

theories must satisfy these tolerance conditions.

The nuclei K and K1 of the integral equations (i0) and (ii)
are, in spite of their different characteristic, quite

complicated, as we shall see. Easily calculable, on the other

hand, is the nucleus M 1 of the inverse integral equation for the
down current

9



(18)

I _Lerived the first approximation theory for oscillating lifting

sur'faces of finite wingspan from this integral equation in 1940

[1] According to this theory, one calculates the pressure

distribution first on the assumption of even flow in all cross

sec'tions in accordance with the two-dimensional

the:ory and then substitutes a new constant T (w*,k,y) for the

integral constant T (w,). This new constant is calculated by

solving a linear integral equation and contains the influence of

the configuration of the lifting surface. The larger the span,

the smaller the difference of both functions. Later, E. Reissner

derived this same theory by other means and it appears to be the

sole three-dimensional unsteady lifting surface theory to date

which has been employed to a wide extent in calculating
directional oscillation flutter.

In the steady boundary case w* = 0 this theory extends into

Prandtl's theory of the supporting line. None of these theories,

however, satisfy the tolerance conditions (15) and (16), not even

in the case of infinite span. The basic assumption of even flow

is, therefore, inapplicable. Lift will be approximately 18_ too

high, and there also exist experimental indications for a mistake

of this magnitude. The essential difference between a two_

dimensional and a three-dimensional solution consists of the way

a disturbance fades in infinity. From this vantage point it is

surprising that the assumption of even flow in the case of three-

dimensional problems does not create even greater mistakes.
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The simple integral equation (17), unfortunately, does not

help us very much. because it isn't the pressure at the lifting

surface which is given, but rather at the down current. If we

wish to calculate the pressure from this integral equation, we

must invert it. This, however, is a difficult mathematical

procedure. Generally such exercises can be solved only

numerically and approximately. One could put up the polynomials

x and y with indefinite coefficients for the desired /41.10

pressure at the lifting surface, introduce this into equation

(17), integrate and determine the coefficients such that the

given down current is represented accurately.
1

5

]_ In the subsonic range, the desired counter
pressure

dispersion p$ is uniform at the leading edge of the lifting

surface, as I have mentioned already. Because only regular

functions can be integrated numerically, we would have to know

the manner of the singularity beforehand, separate from the start

and integrate analytically. To date the same manner of

singularity as in the case of even flow has been assumed without

proof.

In order to test the validity and the convergence of such

numerical collocation methods, it is desirable to possess at

least an exact solution of the three-dimensional unsteady lifting

surface theory. Such a possibility exists, first off, only for

the elliptic lifting surface, because this is the sole type of

even lifting surface, for which separable solutions of the wave

equation or of the Laplace equation exist in orthogonal curved

coordinates. For this reason I want to present to you a theory

of the oscillating elliptic lifting surface in the following.

t

i ll
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5. Theory of the oscillating elliptic lifting surface.

5.1. Orthogonal coordinates and the Lam_ functions

We shall consider an elliptic lifting surface with the

designations used in Figure i. The Cartesian coordinates x,y,z

can be expressed by the ellipsoidal coordinates /41.11

u,v,w as follows:

X = cosh u cos v cos w ; 0 _ u _ _ ,

"i Y = k-1_1+k2sinh2u_-k2sin2v sin w ; - _ _ v _ (19)
] _ 2sin2w x

z = sinh u sin v -k' ; - _ _ w _ _ .

Where k' = /Vl-k 2 . The square roots are always real and

positive. In the boundary cases k = 0 and k' = 0 these

coordinates extend into those of the elliptic cylinder and of the

spheroid. The surface u = 0 represents the elliptic lifting

surface, upper side and under side. Its leading edge is given by

u = v = O, its trailing edge by u = O, v = _ The Lam_ auxiliary

quantities of these coordinates are

U2 = 1+k2sinh2u
(sinh2u+sin2v)(l+k2sinh2u_k,2sin2w)

V2 = i-k2sin2v (20)
(sinh2u+sin2v)(1_k2sin2v_k,2sin2w)

W2 k211-k'2sin2w)
= 2 2 ,2 2 2 2 ,2 2

(1+k sinh u-k sin w)(1-k sin v-k sin w)

12



The surface element of the upper surface u = con_it, is

dv dwdo" v _ (21)

Further we need the derivations according to z in the plane z = 0

o)_-£= U(0,v,w)_ on the lifting surface = ,

5 : V(u,O,w) 8 (22)_-£ b_ before the lifting surface (v = 0)

We shall limit ourselves in the following to incompressible

fluids ( h = 0). For this reason we are seeking solutions of the

Laplace equation A2_ =0, which are regular and periodic upon

surfaces u = const, and disappear in infinity. These solutions

consist of praducts of the Lamg functions of the first and second

order. The Lam_ functions of the first order are polynominal in

v, cos v and jl_k2sin2v.1 For that reason they can /41.12
sin

be represented by associated Legendre spherical functions of the

first order. For example, the Lam_ polynomial is
!

.

Ec_(w) = ¢1-k'2sin2w [I - e_(k') sin2w]

The subscripts correspond to the nomenclature of Ince and

Erdelyi; Ec_ are the functions which are even in cos v, Es m then
uneven. The coefficients cm

n are algebraic functions of k. The

Lamd functions of the second order are obtained from those of the

first by insertion of the associated Legendre spherical functions

of the second order (compare [2])1

i 13



whenever u > 0 and k > 0

There is still a second, more complicated representation of the

Lam4 functions of the second order using elliptic functions and

integrals, which are also valid for u = 0 and k = 0. By using

this representation one generally obtains the coefficients

C (k)=L +b (k)K'(k)]-I, (25)

m m K'whereby an , bn are algebraic functions and E', are complete

elliptic normal integrations.

I have normalized all Lam_ functions, such that at the

position zero either the function itself or its first derivation

equals one. I designate the product from normalized Lam4

polynomials of the first order as ellipsoidal harmonics:

A table of the first 24 Lam4 polynomials is to be found /41.13

in the appendix of my printed report.

In order to calculate with these functions, we must be able

to diffentiate and integrate. On the lifting surface u = 0 the

derivations of the ellipsoidal harmonics are

5 2m " n

_--OxSC2n(V'W)= U(O,v,w) ,=0_amrss2r2n; _amr = I ,
,., (27)

_ ,,,,,,) u(o,v;w) Z b_ s_, -1 ;ZbF.= 1"6-] Sc2n( = r
,-1 14



Corr.sponding formulas are valid for the remaining ellipsoidal

harmonics. For their integration the orthogonality relation is

valid

(28)
F_ t m

4_¢1+k2sinh2u

_0 , if m%r or n4 s ,
L

I , if m = r and n = s

The integrals are spread across the entire surface of the

c mellipsoid u = const. The coefficients _ n are algebraic

functions of k.

5.2. Oscillating elliptic plates without approachingflow

Now we shall consider the problem of the oscillating elliptic

plate without approaching flow. By means of the Lam4 functions

defined above we can make the following general statement for the

regular velocity potential _ :

_(u,v.,.,) = x _ %, (0,v, ,_,) uC0,v,,w,) _ ..
(29)

[ G(U,V,W;V',W') + H(U,V,W;V',W')]

Where _= k/4u. For down current dispersionsof the plate, which
are even in y' or sin w', we have the characteristic Green

function /41.14

i

! 15
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n c2Z+1 _ 2m+1, • _ 2m+l(v,w ) * 2m*_(v_w)G(u,v,w;v',w') - _ _ Y 2n+1 rC2n+l[U} _C2n+1 bc2n+

.=o _=o (30)

n 2m+2 Fs2m+2(u) _ 2m+2- 2m+2 ,+_ _ TS2n+2 2n+2 _S2n+2Iv'w) SS2n+2(v'w_'
n=O mmO

and for down current dispersionswhich are uneven in y' or sin w'

c2m.I _c2m+Itu_ _^2m+I, _ 2m+I. , .H(u.v.w;v'.w') _ Z Z Y 2n+2 2n+2' _ _U2n+2tv'w) bC2n+2[v'w_

._o _:o (31)

2m+2 Fs2m+2(u) _ 2m+2, w) '" 2m+2, ,,,+_ _ _S2n+3 2n+3 _S2n+3kv' aS2n+3_v'_"
h=O _=0

At the plate u = 0 the given down current w* must be reproduced:

= ] = eu(0,v,w)u(0,v,w)_:*(v,w)_zz=o (32)

Now the down current w* or the function _u upon the lifting

surface is any one regular function from v and w and is, as such,

representable in ellipsoidal harmonics using a progression.

Because I normalized the functions Fc, Fs such that their

derivations are

Fc'(O) = Fs'(O) = I (33)

and because the orthogonality relation equation (28) is valid,

our statement (29) will be identically satisfied by the Green

functions G and H in accord with equations (30) and (31). The

first components of this statement for k' = 0 are to be found in

other representations already in the textbook by Lamb [3]. Thus

it is possible to call the statement (29) a classical statement.

The derivations of the characteristic functions G and H

according to z at the plate u = 0 are the so-called Dirac _-

functions:
i

16
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' v' ' ! O, if v = v' or w = w',Gu(O,v,w; v' ,w ) U(O, ,w ) = (34)

{oo, if v = v' and w = w',

I O, if V : V' or w = w',

Hu(O,v,w;v',w') U(O,v',w') = (35)

00, if V : V' or W : W'.

5.3. Determination of the singular potential

In order to attain a theory of the inflight lifting surfaces

with Kutta conditions out of the classical statement (29), we

must add a singular potential _ . Its derivationa_/aZ has to

disappear upon the lifting surface u = O, because we have already

reproduced the down current w using the regular potential .

This requirement cannot, however, be completely satisfied, since

periodic functions, in particular Fourier-series, do not permit

representation of zero in the entire range of a period, in which

all of the series coefficients do not disappear. If the singular

potential is not to disappear identically, then its derivation

must become infinite at least in one point of the lifting
surface.

We already know functions with this feature, which besides

that satisfy the Laplace differential equation; their derivations
i

are the k-functions seen in equations (34) and (35). If we wish
i

to satisfy the Kutta condition of smooth air flow at the trailing

edge, then we may lay the singular point at any one point v' = O,

w' = w0 of the leading edge. Then we obtain the singular
velocity potential

/41.16
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= %,(o,v,,.,)u(O,v,,.,)
(36)

_Z(v',*') li= G(u,v,W;Vo,.o) U(O,Vo,.o )v@.o

+ h(v',w')ll=:'(u,v,W;Vo,Wo)U(O,Vo,Wo)va=o

Here g and h are functions which are still to be determined. In

order to obtain flow at all points of the leading edge, that is,

singular positions of the pressure, we can multiply equation (36)

by any weight function

om _o

f(w O) = Z an COS n wO + Z bn sin n w O (37)o I

= -c/2 to +c/2 Now we haveand integrate from w°

Sc11(v,w)u(o,v,w)= 1 (38)

Then the integrals of the individual series components become

°C2r'+_(v'*) f(w) dw = A2=+1 _ 2=+1 O,wol) (39)lira( Wz " 2=+
1(v,w ) 2n+I = _C2n+I v( 'v=o J-_/zScI

_C2n+2 t ,w) f(w) dw =[_r/z - ?m+1,v.llm -2m+I sc2m+ 1 (n w i

v:OJ,W/z Sc_(v,tv) = _2n+2 2n+2,v, ''v' o) " (40)

Because the functions g and h are still undetermined, we can fix

the first coefficient of the series (37) arbitrarily:

ao = I/c ; bI = 21c (41)

Then the coefficients become A_ = B_ = I. The expression to the

right in the equations (39) and (40) is only a symbolic notation

for the coefficients Am Bm, • Then in accordance withN N

18



equations (29), (36), (39) and (40) the entire velocity potential

of the lifting surface becomes

/41.17

#'¢u,v,,v;v:-.,,)--_ + v = xII.,:.Cv:.,,)zCu,v,w;v:,,)do' ,
t (42)z (u,v,w;v,#,)= G(u,v,,_v:w,). s(v:w')Gv,(U,V,'.v;0,o)

i
+ |I(U,V,_;V_'#')+ h(v_w')HV,w,(U,V,w;O,Wo)

!
The constants wo contained in this statement can only be

calculated later. First we must determine the functions g(v',w')

and h(v',w'). To this end we differentiate the nucleus K

according to z on the plane z = 0 in front of the lifting

surface, that is, for v = O, and obtain

b_ _K I z£_ K(u,v,w;vl_')U(0 v,_) (43)= V(u,O,w)Z-q= sir_hu - '
V=O

In order to reach the necessary symmetry of the nucleus in both

the coordinates which are factored out and those which are not,

i we multiply equation (43) and integrate from w = -_/2 to +_/2.

.I By solving linear differential equation (7) on the positive x-
|

I_ axis in front of the lifting surface, we obtain the additional

condition

a) exp(-w" x)dx = 0 (44)Kz
X o

From the equations (42) to (44) there finally follows the nucleus

of the velocity potential

t

19



CD
K(u,v,w;v:r:') = exp(-w* cosh u') du'

o

%'¢u'_'_°":o)'%_'(_:°'_io,°,Jo)

{H¢u,v,.,_:_,),H (u"°,:_:"') 1._. 'o; (45)"'_ "v,,,.,(o,_,-,o,-_o),"_..,-..,,(u_0,o;°,":o)"-_

If K is to be a differential nucleus, then the following

tolerance conditions with any one constant C1 and C2 must be
valid:

io..(c,,o,,.o,v.,,),i+ ox-i_-)O(u,v,,1;v;w') = Ov(O'n wi;v_w ') Ov'(U'V'w;O'_'Io )' o , (46)

l.._€o,o,-:o,_>'),..,w,(U,_,w,.,_o_)1in_(o i , , (u,.,,,_o,,i,_,Wo;V,w), Hv,w, o)

Every differential nucleus satisfies the differential /41.18

equation

C_x . _) KCx-x',y-y',z-z')= 0 (47)

From equations (7) and (47).we obtain the nucleus of the integral

representation of the pressure

20



_x 5 ,_'1 = (-""" * )K = -(,.,o .o.x-6-£-_)K (48)

We insert equation (45) into (48), integrate partially according

to x and employ the tolerance condition (46). Then we finally

obtain the integral representation of the pressure

_-- )", (u.,..w;v..,,.)".-. .
Kl(u,v,w;v,wo) = (_* +'E_-r) G(u,v,w;v:_') + av,(u,v,w;O,'.io) (49)

• Cl--._-LGvCO,=)Wio)V:w,)T1- Gv(O;O,wioiV}w') ]
I (_

+ (w*+_-r)H(u,v,.;v'w')+H_,w,(U,V,w;O,Wlo) • (50)

C-_-[Hwv(O,u wi wi v'w'• , o;V:w')T2-H_(O,O, o_ )]

The constants T1 and T2 are given by

t

i .....

";IC°Gvv,(u,O,wi,=,wi_)exp(-_* cosh u) du0 , v u
TI = 03 "'

I ,O,Wo;O,wo) exp(-u* cosh u)duo Gvv'(u i i
(51)

l_O exp(-w* cosh u) du
i

0 Hvwv' w u 'Wo)
T2 = _

J{OH_'vV";z'(u'O'w iO;u_,wi) exp(-u* cosh u) du

Now we must still determine the missing constants. We begin

21
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2m+I 2m. 1
According to this, the constants A 2n+I and B 2n.2 are independent

of C 1 and C2, while the constants A am+22n+2are proportional to C 1
and the constants B 2=+2

2n+3 are proportional to C 2 . If we insert

these values into equation (46), then the constants C and C
1 2

cancel out on both sides; for this reason they are not

determinable by means of our statement.

A further difficulty exists in the fact, that the set of

equations (54) for n > 1 yields more conditions than are

necessary for the calculation of the constants A 2:.I For2n*1 ' .....

this reason all of the tolerance conditions cannot be satisfied.

These difficulties probably can be avoided, if the extended

statement for the nucleus of the velocity potential is made:

/41.20

..- G(u,v,_;v',,_,) + H(u,v,w;v',w')

,_ 2s+ 1 _ 2s+1 *'/z' ZC2r+l _C2r+1(v',w') lim O(u,v,w;v',w) U(O v',w) f2s+1(_,) dw'_.o _--o _'o -rl_ ' 2r. I

_- Z .................... : • • • (54a)

By insertion of the derivative 6YJ6z for z = 0 in equation (44)

and integration on skew lines y = const, one obtains for every

2s+2 (w') an integralWichtung function f 28+1 (w') f 2r,22r. 1 ' , .....

equation in y

23



2'C2r+I 2r+I ,v

' -2s+1'w') dw'} - 0+ liml _/_ Gv(U,O,w;v,w_ U(O,v;w_ Z2r+l_v_o -_/2.

_I k2v2 (54b)
w = arc sin ( ky ); x = cosh u - -

_1+k2sinh2u 1_k2sinh2u

-I _<ky .< I ; x = Xo : u = 0 ; x = oo: u = m

Solutions of these integral equations do not yet exist. It would

be necessary to test if these solutions were unique and if the

nucleus thusly calculated were a difference nucleus.

The solution equation (50) obtained from the statement

equation (42) is only approximately valid; it requires only the

solution of finite linear equation sets, whose coefficients are

easily calculable. The approximate solution equation (50) is

applicable, although it is not unique.

I am not of the opinion that the three-dimensional lifting

i surface theory in frictionless fluidity ought to be given up,

t because it isn't unique. One could choose the constants C1 and

i C2 in such a way that measured and calculated aerodynamicI

i coefficients agree as well as they can. Further, in boundary

cases of infinite tension (k = 0), one could adapt them to the

two-dimensional theory. The following constants correspond to

this assumption:

C1 = - 7c_ Pc11(O) = _
(55)

Po_€o= "€,-2k .C2
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With these constants I have calculated the aerodynamic

coefficients, to which I shall return again. I cannot yet name

any corresponding numerical values for the constants TI and T2.
On the basis of certain symmetric observations one can guess that

the following boundary values are valid for stationary flow

(c_* = O):
if

i , k = 0 (56)f
TI T2

[0 , if k = I

The solution obtained in equations (49) to (51) has the same

form as those of the two-dimensional theory. It is valid for

= 0, can, however, be carried over in sections to K> O, if the

Lamd wave function is inserted in place of the Lamd potential

function. I carried out a corresponding transformation for the

two-dimensional theory [4]. In the case of stationary flow (_*

= O) the solution obtained above is also valid for compressible

fluids, because _ =_* B = O, if one of the two factors

disappears.

/41.22

6. Aerodynamic coefficients of the oscillating elliptic liftin_
surface.

We now want to calculate an example showing the aerodynamic

coefficients for an oscillating elliptic lifting surface with the

bilinear down current dispersion

w*(x,y) = a + bx + ck-ly + ek-lxy ,

+ eSs_(v,w)] U(O,v,w)
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The dimensionless aerodynamic coefficients, based on the elliptic

surface _t2/k and its half axis _ and _/k as lever arm, are

for

, kJJpa.lift: _a,b a b(v,w) I"- Sc1(v,w)U(O,v,w)d_, .

m kpitching torque: a,b =_JJPa,b(V,w) ss (v,w)u(0,v,w)d_,

(58)
_kJJp,ec.',w) u(0,v,.)rolling torque: nc, e " _

deviation torque: qc,e = _

From equations (49), (50), (55), (57) and (58) we obtain the

surprisingly simple pattern of the aerodynamic coefficients

ka = A[_* +I+T1 ] ; nc - BLw* +1+T21 ,

-k b = ms - A [½(1.T1) ] ; -ne = qc = B [_(1+T2)] , (59)
1

mb = A [==** T(1-T1)]; qe = B [13=*+-}(1-T2)] •

1

This pattern is valid with other constants even for the two-
I
i dimensional theory and perhaps also for other non-elliptic

' lifting surface-contours. The constants in the two-dimensional

theory are:

i /41.23

A = _ ; o:A= ; B = S = 0 (60)

and in the case of elliptic lifting surfaces
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_=_ _cc0)._
YC1

1-k 2 It

]'s2 (61)

B - "_r Fc_(o) .._ 1-k2== II I I

Tc2 (I-2k2)_' + k2X,

BB= 4 F..,_(o)= 4 2(,4k2)2
- _ "_ 2(1-k +k )E' - (k2+k4)K ' "

I would particularly like to point to the fact that the constants

in equations (60) and (61) already arise from the classic theory

of plates without oncoming flow oscillating in ideal fluidity.

What is essentially new about the lifting surface theory is only

the integration constants T 1 and T2, which can still be functions
of the configuration of the lifting surface and of the reduced

frequency w*, in the case of compressible fluidity as the

Machnumber B.

I

i 7. Numerical example for the boundary case k = 0 and k = 1

t
i In the boundary case of the elliptic lifting surface of

infinite span (k = O) and in the circular lifting surface (k = 1)

there occur the constants contained in Table I

Table I. Constants for k = 0 and k = I.

II<II°IIII• i,2 22 ,i,821,o2,o_i_i,oI2 I
0 1 oo _ -f_ -f_ TO3, 11 1 1 1 3

= u 8 16 6 64 1 1 1,15 115 11o5-

27



In order to compare available theories at least in the /41.24

case of stationary flow, I have calculated the coefficients for k

= 0 in accord with Prandtl's hypothesis of even flow:

4

ka = _ ; kb = _ _ ; ma = ._ ; mb = 0 , (62)
,_ 'n 4

n c = "/ ; ne = -'_ ; qc = 1-5 ; qe = 0

For the circular lifting surface (k = i) the numerical values

from Krienes and Schade [5] are available. Further I have

calculated the aerodynamic coefficients in accordance with

equation (59) and Table I, whereby I inserted the values (56) for

the T functions. The results are contained in Table If.

Table II. Stationary aerodynamic coefficients

for k = 0 and k = i.

k qe Procedure

0 3,1416 1,5708 1,3333 0 0,78_4 0,3927 0,2667 0 Prandtl

I
2,6667 1,3333 1,3333 0 0,5333 0,2667 0,2667 0 Kiissner

" I,I

+17,8 +17,8 0 0 +47,3 +47,3 O 6 YoDifference.m

! - I

I 0,8992 0,4718 0,46590,21910,12760,058210,05540,0299 Krienes [5]

I
D,84880,4244 0,42440,21220,11320,05660,'0_66,10_ ,0283 Kiissner
!+

l.+ ,el+11,2 +9,8 +3,3 +12,71+2,8"-2,i +6,01 _ Difference
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For the elliptic lifting surface of very large spans (k = O)

there are substantial differences between both theories at the

lift and at rolling torque, while pitching torque and deviation

torque agree. According to Prandtl the coefficients do not

satisfy tolerance conditions

= 0 ; n + qc = 0 (63)kb + ma e

In the case of the circular lifting surface the differences are

smaller; but the coefficients from Krienes do not satisfy the

equation (63) either. The deviations represent 1.3_ /41.25

and 5.1_ and are larger than the probable calculation errors.

J

8. Experimental testing and dispersion of the singularities.

8.1. Displacement of the singularities at the edge of the

lifting surface.

It is not easy to test the lifting surface theory

experimentally. Discrepancies occur as a result of the boundary

layer and the finite airfoil thickness. If one uses very thin

plates, discrepancies result from turbulence behind the leading

edge. These deviations can be calculated only roughly or guessed

at. The measurement values thusly corrected agree quite well

with the new theory, less well with the old.

I should like to mention a suggestion which was made by D.T.

George, N. Rott and by me. In the case of oscillating wings in

awater channel I have observed also that the trailing edge is

weakly flowed around. The solution (50) with singularities on

the leading edge could therefore be superimposed by a

corresponding solution with singularities on the trailing edge.

The components of both solutions are to be determined in such a

manner that the measurement results are represented as well as

29



possible. If both portions are alike, then a solution with the

stationary lift zero is obtained.

A similar procedure is to be employed in the case of a

• thrusting lifting surface, whose flight direction is inclined at

the angles' against the symmetric plane y = O. The Ruler

equation then becomes

/41.26

_ (64)
(_'- cos _ _-_- sin _ _-_)#'(x,y,z)+ p'(x,y,z)= 0 .

The leading edge of the lifting surface is shifted around the

wing tips at the valve

w I = arctg (k tg_') (65)

The singularities which are to be ordered along the new leading

edge are once again to be determined such that the nuclei K and

K1 become difference nuclei. I cannot discuss this any further
here.

i 8.2. Infinite pressure increase on the leading edge

i Much has been said about the infinite pressure increase near

! the leading edge of the lifting surface. Although the purpose of

the lifting surface theory can only exist in the approximate

calculation of the aerodynamic coefficients, this question has a

certain interest. As long as no closed expression for the

characteristic Green function is known, as in the two-dimensional

case, the integral representation of the pressure equations (49)

and (50) offer no answer to this question, because the series

development of G for u = 0 becomes divergent.
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One could try to calculate the pressure in a different manner

out of the velocity potential. Corresponding to equation (48)

one could, for example, differentiate the regular components of K

according to (-x'), the singular ones according to x. One then

obtains from equations (42) and (45) the pressure on the lifting

surface u = 0

po(O,v,,,,_ = -_*cp + t(v,w) , A U(O,v,,,) [go(V,_)+gl(v;w)cos" v] (66)

Here f and _ are finite amounts of ellipsoidal harmonics and A

is a constaht, all of which are dependent upon the given down
I'

current go and gl are even functions in cos v, which are
independent of the down current. /41.27

All of the statements of the three-dimensional lifting

surface theory known to date are of the type given in equation

(66) and this is the sole reason why I have presented this

statement to you, because it is unacceptable. If we

i ) using x, then wedifferentiate the function Gv, (O,v,w;O,w o
lose the characteristics, which are required. The Kutta

condition is no longer satisfied and the singularity at the edges

is no longer integratable. One can already be convinced of this

fact in the two-dimensional lifting surface theory for which the

Green function is

I exp (-nu) sin nv sln nv' ,GC,,,v,v')=- I
1 (67)

, oo hu- co0Iv= _ In cosn u cos_v+v
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Kinner and Krienes consider the functions go and gl' which are
deduced from the Green function, to be freely selected with the

side conditions, that p* of the Laplace equation suffices and

that the Kutta condition and the down current condition be

satisfied as best as possible. This is, however, only practical

for a few points of the lifting surface. If the functions go

(O,w) = gl (O,w) were final, then we would obtain the same kind
of singularity of the pressure from equation (66) as in the case

of even flow, that is, l/sin v. Since, however, the statement

(66) is unacceptable, this type of consideration has no

convincing power. The oscillating plate without oncoming flow

has a singularity like l/sin v at the edge.

9. Solutions at any one temporal change of the down current.

In closing I should like to discuss briefly the unsteady

lifting surface theory at any one temporal change of the down

current. At the outset we undertook a Laplace transformation of

this general problem, in order to facilitate our task. After

having solved the simplified task, we can cancel this

transformation again by means of an inverse Laplace

transformation. This occurs when we multiply the harmonic

solution by the integral operator

i_. icoffi"_ € _="exp[_" (s-._2{s.x))] d_* (68)-
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If we employ this operator on the integral equations (17) and

(18) for the down current, then we obtain the result

( $% $

_'J(s,x,y) _Jdx'dy'_ e;(s,x,y,,O) v,2(s-s,,x_x,,y_y,,O), (69)= 2"----_ .'s-o

s+x+¢(s+x)2+Y2/(1-82) ,z'enn s < 13V/6s.x)2+y2;(1-82),

M2(s'x'y'O) =I Y2¢(S.X) 2+Y2/(1-lB2)

(70)
,werm s • S¢( s+x)2+y2/(1-82).

y2 x_+y2

! It is surprising, that the nucleus M2 of this most common
I integral equation is such a simple algebraic function of the

Cartesian coordinate. In order to eliminate the quadratic

singularity of the nucleus M2, one must integrate equation (69)
partially according to y' and find the Cauchy principal value.

A special, but equally interesting result is /41.29

gained if we employ the integral operator (68) on the pressure of

the harmonically oscillating elliptic lifting surface equations

(49) and (50). Then we obtain the pressure in time point t = s

""• _v.gJ_,=u,(s-.9e_(_:,:.)

i -G,(°'O'%i_vi'}_(_,v:'}](71)
i "_2 f$'=$

-H..(o,o,._;...__(_,_;_]}.

The integrationsconstants T1 and T2 are the picture functionsof!

the object functions
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. T1 _') expw* e dw-----__
.' _ -,- ,2( wo ' if s > 0 (72)

The function Ul(S) is to date only known in the two-dimesnional

theory and was first calculated in 1924 by H. Wagner.

We now consider the special wind dispersion

w(B,x,y)=W(s+x,y). (73)

This down current occurs when an airplane flies into a stationary

squall area. If we introduce this down current into equation

(71), then only the singular components with the factors i/CI and

I/C2 yield an amount different from zero to the pressure. For

this reason there are in this case only two possible types of

pressure dispersions at the lifting surface, a symmetrical
i

proportional Gv,(0,v,w;0,Wo) and an antisymmetrical proportional
i

Hv,w,(0,v,w;0,Wo). I determined the corresponding statement of

the two-dimensional theory already in 1940.

34



I0. References. /41.30

[I] M. Vingel, H. G. KUssner: The Oscillating Lifting Surface

of Larger Spans, Forsch. Ber. Deutsch. Luftfahrtforsch. No.
1774, 1943.

[2] A. Erddlyi: Expansions of Lamd Functions into Series of

Legendre Functions. Proc. Roy. Soc. Edinburgh (A) 62 (1946 -
1948), pp. 247 - 267.

[3] H. Lamb: Lehrbuch der Hydrodynamik (Textbookof Hydrodynamics),
2nd edition.Leipzig.1931. pp IS7-1S8.

[4] H.G. K_ssner: A Review of the Two-Dimensional Problem of

Unsteady Lifting Surface Theory During the Last Thirty Years, The

Institute for Fluid Dynamics and Applied Mathematics, University

of Maryland, Lecture Series No. 23, April 1953.

[5] K. Krienes, Th. Schade: Theory of the Oscillating Circular

Lifting Surface on Potential Theoretical Basis. II. Numerical

Part. Luftfahrtforsch. 19 (1942), pp. 282 - 291.

Entered on August 3, 1956

35



Appendix /41.31

The first twenty-four Lam_ polynomials

Eco° 1 1
,, 0

_c 1 d e

o,2(k ) s2 - 2
_:c_ '2 1 - c2 • 1 -c2,°(k ,) s

• 0,2 d [ 1 - c;'2(k) s2 ] S[ 1"- c_'l(k ') s2 ]
• I
_s 1 c c

1
-s2 c d c s

I
Zc 1 s d

Ec_ s d d s

"Ec_'3 e d [ ' - c_'3(k) 2 ] d S _ I - c43'1(k' ) e2,]

_s s c dc

-, 2=_ - S43,1 s2-_s4 s c L 1 - s2'4(k) s 2 ] d c _.1 (k)) ]

Abbreviations:

S = sin V or sin w

C = COS V or COS W

d = l-k2sin 2 v or l-k'2sin2w

i

1
i
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