SWASA-CR-| AL, 526

NASA Contractor Report 172526

\1 23

C
»0aad
ﬁ\g:@mq‘%

ALTERNATIVE APPROXIMATION CONCEPTS
FOR SPACE FRAME SYNTHESIS

Robert V. Lust and Lucien A. Schmit

UNIVERSITY OF CALIFORNIA FOT 10 2& 14zen Fne:;

THII ROQ:Y
Los Angeles, California oo

Grant NSG-1490
March 1985

NASA

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665







Alternative Approximation Concepts for

Space Frame Synthesis

Robert V. Lust and Lucien A, Schmit
University of California, Los Angeles

Los Angeles, California

NASA Grant NSG - 1490

February 1985

NGE-Q 50






LIST OF

LIST OF

CONTENTS

Page

FIGURES.......‘.........l..l.......l‘.l...I.Il.l‘..........l..vi

TABIAES-ooc..-o.oo.olo..co..c.co.cl...too.lo..c-...n-.oooo.l.oxiv

NOMENalAmREQQ..0.c..0.o.l.to.l.oll.“..l..l..ill...c.ut..o.....;nooxvii

AmmeGMENTQG'.-n.0l'.l..loltl.!OO...o..cu.0.00oooucicolooctlolnoxxvi

ABsmcrul..ncouolnon-0oo.ol.-coo.c.-..-ooocooo....ooocococonoolnnnxxvii

CHAPTER
1.1
1.2

CHAPTER
2.1
2.2

CHAPTER
3.1
3.2
3.3

CHAPTER
4.1
4.2
4.3
4.4
4.5

4.6

4.

I. Introduction.ecessecscosscosnsossssaccscscssnsccscsoscccsesl
Introduction.ssseccscsscsscecsosessocsnssssssscossccccasssccsssel
Background..oseesssccnscsscsssssscssscscscsscscscscassnscsoncaesd
II. The Structural Synthesis Problem....ccsceccscosccccanscscee?
Introduction.cecececessccececcacettsnscensssccencascsacnosasasal
Problem FOrmulation..seeeeeseseeseeseesesesessosssssessossasessd
ITII. Structursl AnalySiS.csececccsscsceccscescesasscsscsasssscanl?
Introduction.ceceeesocccconscscscasnsoscsenscosscssccccasanasesssal
Static Anilysis........................................{......13
Multiple Boundary Conditions.........................;........16
IV. Approximate Problem Generation....cccceevecesceccccnssasel8
Introduction..................................................18
Design Variable Selection.ccccvieeececcrccoccoceoscnsesscncesesl?
Design Variable Linking...ceeeeececoosascccscsocssscessssscoscacesl3
Behavior Constraint Evaluation...cececeessccecccccscccsccscaceld
Constraint DeletioNeeeccsseccssasscccnssccaccnsssssccncsnaccesedd
Objective Function and Constraint Approximations....ececeeccece26

6.1 Objective Function Approximations..ececcesssccccecsscseeel8

iii



4.
4.

4.

4.7
CHAPTER
5.1
5.2
5.3
CHAPTER
6.1
6.2
CHAPTER
7.1
7.2
7.3
7.4
7.5
7.6
7.7
CHAPTER
8.1
8.2

8.3

8.

8.

8.4

6.2 Behavior Constraint Approximations..cececescsccccccannessldl
6.3 Side Constraint Approximations..ccecscesccsveccsccossseccasdd
6.4 Selective Constraint Dopeﬁdence..........................37
Updating the Approximate Problem...cccscesceccccncsasacccscsssld
Vo Optimization..eeeeeeceessescsossoscccacsscssccsocnsasssncceesd
Introduction.ecscssecovceccovsvoossssscnsssescassssssaccnnccnseed
A Primal Solution Method..ceecesocscocccccccascssocsssasccaesedd
A Dual SOLution Methode...ueseeeseesennnneeessesasssnnnaseescdd
VI. Detail Design RecoOvery.cceeesseccassccsccsssccsssccnsseesd3
Introduction.cecsssescacscsccassecscnncsossasscensncsssoocnssnsedd
The Recovery ProCoSS..cevecscccsssscsssasscesssscccscssccsasesdd
VII., Program DescriptionissceeccvecesscesscscccoascncacsanessS8
Introduction,.secsececesseccosscsccssnescssscoosssasnsssccnssssdB
Scope of Program...........;..................................58
Organization.cessescassscccssscescansscosnsssssssessssssessssceesb0
Storage Management..ocecsecesceenccscccncsacscsnsonssascssasssssb2
Implementation.ceeecsscececscoccascssncsaceascssasessoscscasesscnsel3
Input Data CommendS..ccesessssssoncacocoasesscscanssossssoanceasbd
Restrictions and Limitations.cececceccocssscacssssscscssesacssb6
VIII. Numerical Examples..cccoeccecssccocssoccansssscososssenseb?
Introduction.ceeessccscecacscossessscsoscsasssnsssscscscscsaasb?
Tied Cantilevered Beam (Problem 1)..cececccocsacssescescsacsseb8
Two Member Frame (Problem 2)..cicesscaseccsscessceasscssscssscssll
3.1 Case A: Stress and Side Constraints..ccsceeesscccccsseees?0

3.2 Case B: Stress, Buckling and Side
constraints.......‘ll....l....l...l'....l...l.,........l.'74

Three Member Frame (Problem 3)...ceccesscscccoscscccccacsasssesll

iv



8.5 chen Member Frame (PIOblem 4)-co.-coo-uooonaooocoooaccnooo3.080
8.6 Portal Frme (ProblOm 5)......................................83
8.7 me Bay/T'o story the (Problem 6) ® 0 00 00 000009 GRS OOIBSOICERELOEDS .85

8.7.1 Case A: Stress, Buckling and Side
constr.ints.‘.ll....l.......'.‘.l'....l...I...........ll.86

8.7.2 Case B: Displacement, Stress, Buckling
and Side ConstraintsS.ceccsccescesesecscecsncessscsssnssoces88

8.8 2!5 Grilllge (Problem 7)oo'.o.uconl‘oinl.O'lolol......o.i...o.go

8.8.1 Case A: Displacement and Side
constraints.l..l...'...........l.."....Q...I.....Cl....l90

8.8.2 Case B: Displacement, Stress, Buckling
and side ccnstr'int‘...ll...l.I...'......‘..l.‘.l......l.gz

8.9 TVO-BIY/Six Story Frame (Problem 8)OICOCUO...IOQ..0..0..!.0'.!94

8.9.1 Case A: Stfcss. Buckling and Side
con‘traint:....l'll...I......'.......C......l..‘.l...l...gs

8.9.2 Case B: Displacement, Stress, Buckling
and Side Constraints..ceeveessvccssscscnscsssscscassccneed?

8.10 Helicopter Tail Boom (Problem 9).uceeecsscssscesscsasasacsseedd
CHAPTER IX, Conclusions and Recommendations.ssscecoecsscscssosscseaesl02

9.1 Conclusions.icecescsscsssscsssacssesscescsssscssssssscssscacssssl02

9.2 Recommendations for Future Work.................;...;........108
BEFERENCES . cccocssscccosscavoscsvesssssesasscscssessvssssssasscnsssnesell0
APPENDIX A..vcevscscsncsssocsascsscssassossssssssssasscsssansncscssceesell8
APPENDIX B..eossaesesnnsesonnsnsssasssesssssnssssssssssssassnsnasssssl26
APPENDIX Civvesencccscescsvsaccnasencsssssescssssscscacncssncvcsseseseeel30
APPENDIX D.vcecosscsanssscosccsssasscssscsssessssssosssassosascssccsnselSl
APPENDIX E..cuiccesossasccccocssssssassascosasscsssssacasoscsssssacscsecslS?
FIGURES. cecaeosssosscasccscesscssssssssassssssnsscssscssssasscsscssccesl0S

TABI‘ES..O....IIl..I..l..QQ.Q.‘.'...l...l.....QO..l.ll...............l324



Fig.

Fig.

Fig.

Fig.

Fig.
Fig.
Fig,
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

10

11

12

13

14
15
16
17
18
19

20

LIST OF FIGURES

Page

Structural Element Orientation...cccceecececscscsccossnsecesl205

Conceptual Matrix Partitioning for Multiple
Boundary Conditions..ccccececescsoscescaccsaccasasccsccnsscsasnd206

Approximate Problem Options in RSP Design

Sp&ce....-..............--.--....o--..-..-..--.-....-.-o..o.207

Approximate Problem Options in CSD Design

SPBCe . tccscecarsasessacsecsscscsnssscancscscsscssnsesssssssnsoscsea208
Available Optimization OptionS.e.cceccrssccccscascccasncssseesa209
Program Organization..seeeeccecsssssacsacscccesacssssccccsssaee2ll
Storage Management Scheme....cccovocnccoccccscssccsscscsasae2ll
Storage Management CommandS....ceecsscconcscsssscsannccnsaase2l2
Main Routine Flow Diagram...ccsececeecssscssccscesecssssceed2ld
Pre-processor Flow Diagram..cseesccccenorsssssnscnncccncessss2ld
Design Control Flow Difgram..cecececscaccscocosssssscnscssss2l’
Analysis Control Flow Diagram.......cccveccececncencscsancaass2lb

Approximate Problem Generation Control
Flo' Diagrm.l.....l..'.l.ll...‘....l.ll...‘Il.........'....zls

Optimization Control Flow Diagram....ocecesecscscccesnossesa2ll
Design Recovery Control Flow Diagram,..ceceeceecsceavsaseaee222
Printing Control Flow Diagram...cccececececsescacassnscscessl223
Post-processor Flow DiggramM..cccesesececoscssccscscssccscsnesee22d
Data Command FOImS..cooscecacsosoccsccsccsannccsssasacnnasse2l]
Sample Program Input DatB..ccececccsescsoscccccsssascccsseseeall6

Tied Cantilevered Beam (Problem 1)...cecsceocscsnseccccssese230

vi




Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

21

22

23

24

25

26

27

28

Iteration History for Problem 1, Run 1
(option 1(P)).l.ll........C.I!l.l...l.ll.........l.‘.0000000231
Tied Cantilevered Beam

Iteration History for Problem 1, Run 2
(Option Z(P))cool..ll..l.ll-.Ql....t..ci.t.u..n.l.l.l.ll....232
Tied Cantilevered Beam

Iteration History for Problem 1, Run 3
(option B(P)).........l..Il..l.'.l.......l..l..'QC.....'..I.233
Tied Cantilevered Beam

Iteration History for Problem 1, Run 4
(option 6(P))...I..........I.....Q..'.........l.......'.....234
Tied Cantilevered Beam

“0 MGMber Fl‘ll!c (PrOblem 2)000..-.l.o...olotc.noloooo!.cclozss

Iteration History for Problem 2, Case A, Run 1
(option 1(P))Q...!l...'............l...lll.l....‘llll.....l5236
Two Member Freme

Iteration History for Problem 2, Case A, Run 2

(option 2(P)).l'.........l...ll.ll...l...‘...l".‘...l.ll'..237
Two Member Frame

Iteration History for Problem 2, Case A, Run 3

(Option 3(P)).l..l....'.l.l.l.l.".l....‘.l'..Clllll..l...‘.238
Two Member Frame

Iteration History for Problem 2, Case A, Run 4
(option 4(P))..'.'ll.l.‘..........l...l.lO.I..l.........l...239
Two Member Frame

Iteration History for Problem 2, Case A, Run §

(option 7(P))l....‘.....l...l.....l'l.'....ll.l......l.l....24o
Two Member Frame

Iteration History for Problem 2, Case A, Run 6

(option'IO(P))....'..l...........‘...l......l.............l.241
Two Member Frame

Iteration History for Problem 2, Case A, Run 7
(option IO(D))....Il.l‘.l....l....l..l.l..ll‘lll....l.l.l..'242
Two Member Frame

Iteration History for Problem 2, Case A, Run 8

(option 1(PU))...G‘CI'.l...II..............l.....l'....l..l.243
Two Member Frame

vii



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

34

35

36

37

38

39

40

41

42

43

44

45

46

Iteration History for Problem 2, Case B, Run 1
(option l(P))..'.........I...........'.........'...l........244
Two Member Frame

Iteration History for Problem 2, Case B, Run 2
(option2(P)).'......II.II.......'I.....ll'.....l.l..l.l..l.245
Two Member Frame

Iteration History for Problem 2, Case B, Run 3
(Option 3(P)).l..I..'l.l.l......l.l'l......l..l'..l..lI.C.'l246
Two Member Frame

Iteration History for Problem 2, Case B, Run 4
(option 4(P)).......I..l...l...‘..l......l'.I.l...‘.l.‘.I.l.247
Two Member Frame

Iteration History for Problem 2, Case B, Run §
(option S(P)).l....l.....l.'l‘.....'.....l'l....l...........248
Two Member Frame

"Iteration History for Problem 2, Case B, Run 6

(option 10(D)).0.0llll.Il.l'.l..........l.l....l.......l.l.l249
Two Member Frame

Iteration History for Problem 2, Case B, Run 7
(option 1(PU)).."I'...lll.I..lI....l...Il.l...‘.‘..l.l....I250
Two Member Frame

Three Member Frame (Problem 3)...cccveessccccasasconssasseed25l

Iteration History for Problem 3, Run 1
(option 1(P))............I‘l.....'l..l.l...l....".....l....252
Three Member Frame

Iteration History for Problem 3, Run 2

(option 2(P)).l...........l......l.ll.l.............l...0000253
Three Member Frame

Iteration History for Problem 3, Run 3
(option 3(P)).I.I..I...‘....llC..l..l....l..l...............254
Three Member Frame

Iteration History for Problem 3, Run 4
(option 4(P)).....l....'l.ll.l...l‘l.l......ll‘l..ll.l....ll|255
Three Member Frame

Iteration History for Problem 3, Run 5

(option 10(?)).......'.....l..l....’........'l.l'...llﬂ.....l256
Three Member Frame

viii



Fig. 47

Fig. 48

Fig. 49

Fig. 50

Fig. 51

Fig. §2

Fig. 53

Fig. 54

Fig. 55

Fig. 56

Fig. 57

Fig. 58

Fig. 59

Fig. 60

Iteration History for Problem 3, Run 6
(option 10(D))...'l...l...ll.!.l...il.l.l......l.l.‘.l..l‘llzs7
Three Member Frame

Iteration History for Problem 3, Run 7
(option 1(PU))..l....l....I...Il.ll.I'..IC.....l....l..l.ll.sz
Three Member Frame

seven uember Frme (Problem 4).‘..Q...Q'....‘Q.l..........llzsg

Iteration History for Problem 4, Run 2
(option Z(P))l.‘.II..l.OI..l.......'l.ll...l.ll............l260
Seven Member Frame ’

Iteration for Problem 4, Run 3
(option 3(P))l.l.....O.....l.OI.l...l..ll......'l‘-ll..‘I.l0261
Seven Member Frame

Iteration for Problem 4, Run 4
(option 6(P))..ll.l....l...I..l...l......l.........l..l.....zsz
Seven Member Frame

Iteration for Problem 4, Run §
(option 12(P)).l'....l.....'.“..‘.....'ll.ll..'...'I...I...263
Seven Member Frame

Iteration for Problem 4, Run 6
(option 12(D))O‘...l.l‘.l..l......ll.l‘.‘l....l..lll........264
Seven Member Frame

Iteration for Problem 4, Run 7
(option 3(PU)).ll..'.l..l.l..Il.l.lI........l...’llllll'....265
Seven Member Frame

Portll Frme (PrOblem 5)noc.00..l0.lc.0n.-c.--o.o-.oul.-col|266

Iteration History for Problem 5, Run 1
(option 1(P)).‘......“Cll.l..l.I..'......‘..Ill...........l267
Portal Frame

Iteration History for Problem 5, Run 2
(option 2(P))...........'.l.C..lI..ll.!........l.l.l...l...I268
Portal Frame

Iteration History for Problem 5, Run 3
(option 3(P)).l'.........'..l‘l.'...ll...‘l’."......"l...l269
Portal Frame

Iteration History for Problem 5, Run 4
(option 12(P))0000..IC...C.ll.ll..!...l......0'00‘1100000000270
Portal Frame

ix



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

61

62

63

64

65

66

67

68

69

70

71

72

13

74

Iteration History for Problem 5, Run 5
(option 12(D))...“.......I.ll..........‘C..IC....II.'..I...271
Portal Frame

One Bay/Two Story Frame (Problem 6)..cececececcecccenccccaed2T2

Iteration History for Problem 6, Case A, Run 1
(option 1(P))...lI......I.....I.I.Cl.....QQ............'....Z’S
One Bay/Two Story Frame

Iteration History for Problem 6, Case A, Run 2
(option 3(P))....l..l........I.......‘.......l.‘.l.......'..214
One Bay/Two Story Frame

Iteration History for Problem 6, Case A, Run 3
(option 6(P))0'.........0.............ll.‘..........'.'0-000275
One Bay/Two Story Frame

Iteration History for Problem 6, Case A, Run 4,
(option 12(P))'....l...0...!....I.......C.........l‘....l...276
One Bay/Two Story Frame

Iteration History for Problem 6, Case A, Run §
(option 12(D))'............‘..I......l..........I..I..I.....277
One Bay/Two Story Frame

Iteration History for Problem 6, Case B, Run 1
(option l(P))..'..l..l...ll.lll.'..l.l...‘.C.C.........l'l..278
One Bay/Two Story Frame

Iteration History for Problem 6, Case B, Run 2
(Option 3(P))...C.l..lIl..........'...l...c.........l.l..l.lz.’g
One Bay/Two Story Frame

Iteration History for Problem 6, Case B, Run 3
(option 4(P))..l.l.........l..I..I.‘.C..ll..ll.....'........280
One Bay/Two Story Frame

Iteration History for Problem 6, Case B, Rum 4
(option IO(P))...........I.0..'..l‘.II..C.I.....l...ll......zsl
One Bay/Two Story Frame

Iteration History for Problem 6, Case B, Run §
(option 10(D))........I....'......C...Ql.l....‘............‘282
One Bay/Two Story Frame

2156:111‘30 (Problem 7)....I..'I.ll..'...l...l.l.....0000283
Iteration History for Problem 7, Case A, Run 1

(option l(P))....l...l....l.l.....'.‘.......l.........l....‘284
2 x 5 Grillage




Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

15

76

77

78

79

80

81

82

83

84

85

86

87

Iteration History for Problem 7, Case A, Run 2

(option 4(P))...C.l.i.....'l.l.l'l.ll....‘.......l..'.l.II.'285
2 x 5 Grillage

Iteration History for Problem 7, Case A, Run 3
(option 10(P))0..|........I......l...‘.'......l.l...l..l..'l286
2 x 5 Grillage

Iteration History for Problem 7, Case A, Run 4
(option IO(D)).ICIQCOOl..l..'...l..l.l.'.l..l.l..........I.‘287
2 x 5 Grillage

Iteration History for Problem 7, Case A, Run 5§
(option 1(PU))..C‘..'...l...l..l...l...'..l....'.....ll.l...288
2 x 5 Grillage

Iteration History for Problem 7, Case B, Run 1
(option 3(P))‘....Il...‘..ll...'.l..‘...l.....ll'.'l.....I..289
2 x 5 Grillage

Iteration History for Problem 7, Case B, Run 2
(option 6(P))..I..l'........'.."ll............l.....l....l.290
2 x § Grillage ’

Iteration History for Problem 7, Case B, Run 3
(option 12(P))....l....‘l....ll.....ll'..'lll.l..‘....l“...291
2 x 5 Grillage

Iteration History for Problem 7, Case B; Run 4

(option 3(Pu)).llﬂ..l......I....l‘....'l‘....l..lI...l..-...292
2 x 5 Grillage

Two/Bay Six Story Frame (Problem 8)..ceeeecescccecccacceeses293

Iteration History for Problem 8, Case A, Run 1

(option l(P))I..l.l..l...'.‘ll...'.........l........C......l294
Two Bay/Six Story Frame

Iteration History for Problem 8, Case A, Run 2
(option 3(P))..l...‘.ll...‘.l......I.‘.‘..‘....I...........l295
Two Bay/Six Story Frame

Iteration History for Problem 8, Case A, Run 3
(option 6(P))...I.C...I‘l...l.l.ll'l..l‘......‘C...'.lllll-.296
Two Bay/Six Story Frame

Iteration History for Problem 8, Case A, Run 4

(option 12(P))...l....‘.....‘......‘....‘O........'.I...'..-297
Two Bay/Six Story Frame

xi



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

88

89

90

91

92

93

94

95

96

97

98

99

C1

Iteration History for Problem 8, Case A, Run 5§
(option 3(PU)).......'.'..Il........l.....'....I....Q...lllizgs
Two Bay/Six Story Frame

Iteration History for Problem 8, Case B, Run 1
(option 1(P))...l....ll.l...l....ll..l....l.l.l............bzgg
Two Bay/Six Story Frame

lteration History for Problem 8, Case B, Run 2
(option S(P))I...ll‘.'.l‘..‘.‘..ll....l.......ll.lll‘ll....lsoo
Two Bay/Six Story Frame

Iteration History for Problem 8, Case B, Run 3
(option 4(P))IO..I.Q...C.I......l.l....l................‘...301
Two Bay/Six Story Frame

Iteration History for Problem 8, Case B, Run 4§
(option lo(P))............l.l........l.'....l.....I.lll....lsoz
Two Bay/Six Story Frame

Iteration History for Problem 8, Case B, Run 5§
(option 1(PU))'....'I..lll‘l...'..l.......l..l..l...l.......303
Two Bay/Six Story Frame

Helicopter Tail Boom (Problem 9)..cccecsscesscsscascoccseees304
Iteration History for Problem 9, Run 1

(option I(P))OII.....C.I...l'.l.......CC..O..C..l.l.l.......306
Helicopter Teil Boom

Iteration History for Problem 9, Run 2

(option 4(P))....l.'.......‘.lll........ll....l‘l...l...lll.307
Helicopter Tail Boom

Iteration History for Problem 9, Run 3
(option lo(P))...‘.l....‘.‘.......l...l..Q....Il.lll.....l..308
Helicopter Tail Boom

Iteration History for Problem 9, Run 4
(option lo(D))...I.ll...l..‘.’....ll....l.l.l‘...'........llsog
Helicopter Tail Boom

Iteration History for Problem 9, Run §

(option 1(PU))....'....I....I....CI‘..I.'....I.l.........l-.slo
Helicopter Tail Boom

Space Frame Element....coveveceecncccscseasscasscsccsncnsssssed3dll

Space Truss Element.cceeceesnaccescasssacsaconsncssassassseseldl2

Forces at Element End NodesS....ccoecessscscssccssssassvocseaes3dl3

xii




Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

Fig,

Cross Section for Design Element Type l.ccvcececcsccsncnoaass31d
Cross Section for Design Element Type 1l.ccccceccosscccasesa3ls
Buckling Stresses on a Fong Simply Supported Place..........316
Cross Section for Design Element Type 12,..c000000000c000eqe:317
Cross Section for Design Element Type 13...ceecescecccessass3l8
Cross Section for Design Element Type 14...cccececcecccasses3dl9
Cross Section for Design Element Type 15...ccvecccccccceceee320

Node or Vector Representation of Beam Element
orientation.....l.......I..‘l"l...........l.......l.ll.....szl

Angle Representation of Beam Element Orientation....ececee.4322

Angle Representation of Beam Element Orientation
(speci.l ca.e)'...'...l......'....C'l..Il......ll.l'll.l..l.323

xidi



Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

10

11

12

13

14

15

LIST OF TABLES

Page

Description of Design Problem Solution Options....ccceess..324

Definition of Problem 1...'....l....l..l...l..l..l’.....-..325
Tied Cantilevered Beam

Iteration History Data for Problem 1..0.0-occco--au0000-0c0326
Tied Cantilevered Beam

Final Designs for Problem 1....c0c000sc0c0ccccscsaccccascsecase32?
Tied Cantilevered Beam

Critical Constraints for Problem l.....ccevestsccsceasceacss329
Tied Cantilevered Beam

Dﬁfinition of Problem 2..........'.'.l'...........l.l.lll..330
Two Member Frame

Iteration History Data for Problem 2, Case A...coco0cecees.331
Two Member Frame

Final Designs for Problem 2, Case A...cceosecacscsescceaseses3l3d3
Two Member Frame

Critical Constraints for Problem 2, Case A...covevcscccesces33s
Two Member Frame

Iteration History Data for Problem 2, Case Biceeveeeoveaess336
Two Member Frame

Final Designs for Problem 2, Case B...vceeoovoccocosconeaes338
Two Member Frame

Critical Constraints for Problem 2, Case B.vecececssasceese3d0
Two Nember Frame

Definition of Problen 3...'.l‘.l....l.l..ll'.l.l...l..l.‘|.341
Three Member Frame

Iteration History Data for Problem 3.....c00c0c0c0caccceceee342
Three Member Frame

Final Designs for Problem 3...cccccecetcscccacscasscscccssd3dd
Three Member Frame

xiv



Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Critical Constraints for Problem 3...cccevesrvcecsscceascsss3db
Three lember Frame

Definition of Problen 4..‘..‘..'.....0...‘ll.“.l....‘l‘...347
Seven lMember Frame

Iteration History Data for Problem 4...cccvevescccocsaaeese348
Seven Member Frame

Final Designs for Problem 4..cccscceccccscssssrssssansonasasds0
Seven Member Frame

Critical Constraints for Problem 4....0c0cceesacscecscnceses3l’52
Seven Member Frame

Definition of Problem §...ccecececacscscnconcassasccassssse3ld3
Portal Franme

Iteration History Data for Problem S..cccoeccceacoscscssacesd3s5s
Portal Frame

Final Designs for Problem S...ccececeesccccncsoscacccasensaae3’?
Portal Frame

Critical Constraints for Problem 5...ccccevcvcccscscscnceesl’9
Portal Frame

Definition of Problem 6.............I.I.'...'Il".l........36o
One Bay/Two Story Frame

Iteration History Data for Problem 6, Case A...eeeeaaeaessa362
One Bay/Two Story Frame

Final Designs for Problem 6, Case Aiceeicecaccntocsscesensses3bd
One Bay/Two Story Frame

Critical Constraints for Prdblem 6, Case A..veeeeroecscecaslb5
One Bay/Two Story Frame

Iteration History Data for Problem 6, Case B....cceveeeeaeaaa366
One Bay/Two Story Frame

Final Designs for Problem 6, Case B...ceesvescesssscsanecese368
One Bay/Two Story Franme

Critical Constraints for Problem 6, C25€¢ Bivieeasosacoonees3b69
One Bay/Twvo Story Frame

Definition of Problem 7.‘..ll...l..'-ll.l.ll..l...l."lll.l370
2 x 5 Grillage

xv



Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

33

34

35

36

317

38

39

40

41

42

43

44

45

46

47

48

49

Iteration History Data for Problem 7, Case A...coeeecceceea3dT2
2 x 5 Grillage

Final Designs for Problem 7, Case A...cccccevecsectsancsees3dTd
2 x 5 Grillage

Critical Constraints for Problem 7, Case A..ccccecovccscscs3T6
2 x 5 Grillage

Iteration History Data for Problem 7, Case Biveeeeocsoooaeae3??7
2 x 5 Grillage

Final Designs for Problem 7, Case B...ciseececncnscacscassees378
2 x 5 Grillage

Critical Constraints for Problem 7, Case B...cecesosoassesec380
2 x 5 Grillage

Definition of Problem 8..I...ll....lll........'...l.....I..381
Two Bay/Six Story Frame

Iteration History Data for Problem 8, Case A...ciceceeeecss384
Two Bay/Six Story Frame

Final Designs for Problem 8. Case A...-n-loonoooooo---.oo-¢386
Two Bay/Six Story Frame

Critical Constraints for Problem 8, Case A...cecccocacceaeese389
Two Bay/Six Story Frame

Iteration History Data for Problem 8, Case B.oveceersesaeee390
Two Bay/Six Story Frame

Final Designs for Problem 8, Case B..cceecocecsoccacnccseceas3f2
Two Bay/Six Story Frame

Critical Constraints for Problem 8, Case Bicevsceosocesoese395
Two Bay/Six Story Frame

Definition of Problem 9....l.l..ll.......I'....‘..l...l....396
Helicopter Tail Boom

Iteration History Data for Problem 9.....cccccececsnncssass397
Helicopter Tail Boom

Fin.l Designs for Problem 9.'......l..‘.ll........ll......l399
Helicopter Tail Boom

Critical Constraints for Problem 9.,.ccccecccccssscscncacassd0l
Helicopter Tail Boom

xvi



NOMENCLATURE

Number of generalized design variables.

Numerical constant,

Partial derivative of the gq—~th retained
constraint with respect to the b-th generalized
design variable,

Move limit on the design element cross
sectional dimensions.

Move limit on the design element reciprocal
section properties.

Vector of design variables, upper
and lower bounds,

Transformation matrix relating changes in
the reciprocal section properties and cross
sectional dimensions to changes in the
generalized design variables for a single
design element.

Euclidean n—space.
A general function of Z.

Explicit first order approximetion of
f(Z) in terms of the reciprocal variables 1/Zb.

Explicit linear approximation of
f(Z) in terms of Zb.

Explicit mixed variable (hybrid)
approximation of f(Z).

Vector of element end forces.

Vector of end forces corresponding
to the i-th element for the k-th load set in
the local coordinate system.

Vector of fixed end forces due

to distributed applied loads corresponding to
the i—th element for the k-th load set in

the local coordinate system.

xvii



8 Constant term in the explicit constraint
1 approximation for the q—th retained constraint.

g(i),g(i.?) Implicit behavior constraint
function.
EA(E) Explicit approximation of the q—th retained

behavior constraint,

Eh(i).ii(i,f) Explicit linear approximation of
a retained behavior constraint.

2, (X) .5, (XY) Explicit mized variable (hybrid)
approximation of a retained behavior constant,.

G(D),G(X,Y),G(Z) Vector implicit behavior constraint

functions.
1 (Z) Explicit approximation of the q~th retained
q behavior or side constraint in dual formulation,
H(X,Y) Vector of equality constraint functions.
[H] Matrix of partial derivatives of the

cross sectional dimensions with
respect to the reciprocal section
properties for a single design element,

I Number of reciprocal section properties.
[11 Identity matrix.

J Number of cross sectional dimensions.
[J] Matrix of partial derivatives of the

reciprocal section properties with respect to
the cross sectional dimensions for a single
design element,

K Number of independent loading conditionms,
[K] System level (global) stiffness matrix.
[Ki]° i-th element stiffness matrix

in the local coordinate system.

[Ki]8 i-th element stiffness matrix
in the global coordinate system,

L0 Dual function.

xviii



L(Z,%) .Lb(zb.i)

(L]

mb

M(D) ,M(X) ,M(Z)

{P}
[

8
ilx

KR PP P

Lagrangian function, portion of the
Lagrangian corresponding to the b-th
generalized design variable.

Lower triangular matrix.

Partial derivative of the objective
function (structural mass) with
respect to the b-th generalized
design variable.

Objective function (structural
mass).

Explicit approximation of the
objective functionm,

Explicit linear approximation
of the objective functionm.

Explicit mixed variable (hybrid)
approximation of the objective function.

Constant term in the explicit objective
function approximation.

Numerical constant,

Vector of applied nodal loads
corresponding to the k-th loading
condition, in the global coordinate
systenm,

Vector of applied nodal loads
corresponding to the i-th element

for the k-th loading condition, in

the local coordinate system.

Vector of applied nodal loads
corresponding to the i-th element for

the k~th loading condition, in the

global coordinate system,

Set of retained behavior constaints.
Number of nodal displacement constraints.

Number of element strength constraints.

Set of retained behavior and side comstraints.

Behavior constraint cutoff value.

xix



R
q

[R,1,[R,]1,[Rg)

T(Z)

Response ratio for the g—th comstraint.

Coordinate system rotation
matrices,

Design element sizing variable
recovery transformation,

Explicit approximation of the design
element sizing variable recovery transformation,

Local to global coordinate transformation
matrix for the i-th element.

Vector of nodal displacements.

Vector of nodal displacements at the
beginning of a design stage.

Vector of nodal displacements for the
k~th loading condition, in the global
coordinate system,

Vector of nodal displacements
corresponding to the i-th element for
the k-th loading condition, in the
global coordinate system.

Vector of nodal displacements
corresponding to the i-th element
for the k—th loading condition,
in the local coordinate system.

i-th reciprocal section property,
vector of reciprocal section properties,
vectors of upper and lower bounds.

i-th reciprocal section property

at the beginning of a design stage,
vector of reciprocal section properties
at the beginning of a design stage.

Approximate value of the i-th

reciprocal section property at the

end of a design stage, vector of

approximate values of the reciprocal

section properties at the end of a design stage.

Ix



{Y}

Exact value of the i-th reciprocsal

section property at the end of a

design stage, vector of exact values

of the reciprocal section properties at
the end of a design stage.

Vectors of upper and lower bounds
on the reciprocal section properties
during a design stage,

Vector of implicit functions of the
reciprocal section properties in terms

. of the generalized design variables.

Vector of explicit approximations of
the reciprocal section properties in
terms of the generalized design variables.

Vector of reciprocal section properties
for a single design element.

Vector of dependent (basic) reciprocal
section properties for a single design
eélement.

Vector of independent (free) reciprocal

section properties for a2 single design element.

Vector of reciprocal section properties
at the beginning of & design stage,
for a single design element,

j-th cross sectional dimension, vector
of cross sectional dimensions, vectors of
upper and lower bounds.

J—th cross sectional dimension. .

at the beginning of a design stage, vector
of cross sectional dimensions at
the beginning of a design stage.

Vectors of upper and lower bounds
on the cross sectional dimensions
during a design stage.

Vector of implicit functions of the
cross sectional dimensions in terms
of the generalized design variables.

Vector of cross sectional dimensions
for a single design element,

xxi



{Z}

B

{AX}

(AXp}

(A%}

Vector of dependent (basic) cross
sectional dimensions for a single
design element,

Vector of independent (free) cross
sectional dimensions for a single
design element,

Vector of cross sectional dimensions
at the beginning of a design stage,
for a single design element,

b-th generalized design variable,
upper and lower bounds.

Vector of generalized design variables
vectors of upper and lower bounds.

Vector of generalized design variables
after linking.

b-th generalized design variable at the

beginning of a design stage, vector of
generalized design variables at the
beginning of a design stage,

Vector of optimal generalized design
variables.

Vector of generalized design variables
for a single design element.

Vector of changes in the element
reciprocal section properties,

Vector of changes in the element
reciprocal section properties for a
single design element,

Vector of changes in the dependent (basic)
reciprocal section properties for a
single design element,

Vector of changes in the independent
(free) reciprocal section properties
for a single design element,

Vector of changes in the element
cross sectional dimensions.

xxii



{AY}

{AYB}

(AY L}

{AZ}

”l

Subscripts

[
b4

Vector of changes in the cross sectiomnal
dimensions for a single design

element,

Vector of changes in the dependent

(basic) cross sectional dimensions
for a single design element,

Vector of changes in the independent
(free) cross sectional dimensions for
a single design element,

Vector of changes in the generalized

design variables for a single design
element.

Dual variasble associated with the
q-th retained constraint, vector of
dual variables.

Vector of optimal dual variables.

Denotes an approximate vealue of the
associated quantity at the end of

a design stage.

Index for generalized design variable.
Denotes a dependent (basic) quantity.
Denotes a cutoff value,

Denotes an exact value of the
associated quantity at the end of a
design stage.

Denotes an independent (free) quantity.

Index for reciprocal section properties.

Index for analysis elements.

xxiii



e

Superscripts

]
[xi]

Special S

Denotes an explicit approximation in
terms of inverse variables,

Index for cross sectional dimensions,

Index for independent loading
conditions,

Denotes an explicit approximation in
terms of direct variables.

Denotes a linked quantity.

Denotes an explicit approximation
in terms of a combination of inverse
and direct variables.

Index for retained constraints.
Denotes the value of the associated

quantity at the beginning of a
design stage.

Denotes a quantity described in the
element (local) coordinate system.

Denotes a quantity described in the
global (system) coordinate system,

Denotes a lower bound quantity.

Matrix transpose.

Denotes an upper bound quantity,

Inverse.

Denotes an optimal quantity.

Vector quantity.

Explicit approximation of the
associated quantity.

xxiv



=

K

T Ak

K]
{X}

Distinguishing mark.

Denotes a change in the associated
quantity.

Differential operator.

Matrix quantity.

Vector quantity.

XXV



ACENOWLEDGMENT

This report presents some results of a continuing research program
entitled ‘'TFundamental Studies of Methods for Structural Synthesis,"
sponsored by NASA Research Grant No, NSG-1490. The work reported herein
was carried out in the School of Engineering and Applied Science at UCLA

during the period from June 1982 to February 1985,

The authors want to take this opportunity to express their appre-
ciation to Deborah Haines for her advice, patience and careful attention

to detail during the preparation of this report.

xxvi



ABSTRACT

A structural synthesis methodology for the minimum mass design of
three dimensional frame-truss structures under multiple static loading
conditions and subject to limits on displacements, rotations, stresses,
local buckling and element cross sectional dimensions is presented. A
variety of approximation concept options are eoemployed to yield near
optimum designs after no more than 10 structural analyses., Available
options include: (A) formulation of the nonlinear mathematical program-
ming problem in either reciprocal section property (RSP) or cross sec-—
tional dimension (CSD) space; (B) two alternative approximate problem
structures in each design space; and (C) three distinct assumptions
about element end—force variations. Fixed element, design element link-
ing and temporary constraint deletion features are elso included., The
solution of each approximate problem, in either its primal or dual form,
is obtained using CONMIN, a feasible directions program (n.b., dval for-

mulation not available for all options).

The frame—truss synthesis methodology is implemented in the COM-
PASS computer program and is used to solve a variety of problems. These
problems were chosen so that, in addition to exercising the various
approximation concepts options, the results could be compared with pre-—
viously published work. The types of problems solved include both
planar and three dimensional frame—truss structures and contain frame
members having various cross sectional shapes including: (1) a thin
walled tube; (2) thin walled box sections; (3) an I section; and (4) a

solid square section. Finally, the collection of numerical examples are

xxvii



used to form guidelines for the solution of future problems.
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CHAPTER I

Introduction

1.1 Introduction

During the past decade optimization via general nonlinear
mathematical programming techniques has become widely accepted as a
viable methodology for emgineering design. This has been particularly
true in the structural engineering field (Refs. 1-2). Here, mathemati-
cal programming methods have been coupled with finite element based
structural analysis methods to yield a potentially powerful design tool;
leading to the emergence of a number of rather general structural syn-
thesis capabilities (Refs. 3-10). The success of many of the methods is
due, in large part, to computational efficiencies gained through the
application of various approximation concepts pioneered by Schmit, et

al. (Refs., 11-12),

While the basic methodology for structural synthesis is in place
for a 1large class of problems, the majority of the reported computa-
tional experience has focused on truss and membrane type structures.
The fact that many practical structures are of this type, or can be ade-
quately approximated as such, has certainly contributed to this situa—
tion. There 1is, however, a significant class of problems for which a
combined bending-membrane element representation must be used to ade-
quately capture the essential structural behavior (e.g. frame—truss
structures). The extension of synthesis methodology to the design of

these types of structures has been slow and has met with only limited



success., The principal difficulty encountered in this case has been
that of choosing an appropriate set of design variables for which accu-
rate behavior constraint approximations can be constructed while simul-

taneously maintaining adequate design freedom,

The objective of the work reported here is twofold. First, modif-
ications to the current structural synthesis methodology are suggested
which will enhance its generality and allow for the more efficienmt solu-
tion of bending-membrane structural design problems. Secondly, numerous
example problems, selected to be representative of larger problems of
more practical interest, are solved to illustrate the effectiveness of
the structural synthesis technique described and to provide a body of
computational experience upon which the solution of future problems may

be based.

1.2 Background

Much of the early work in the area of optimum design of frame
structures was motivated by civil engineering applications. Since many
of the structural systems typical of such applications are built wusing
standard section members (e.g. wide flange I-beams) it became popular to
use assumed size—inertia relationships of the form

I= czP
(1-1)
where I is the cross sectional moment Jf inertia, ¢ and p are constants
and Z is some element sizing variable (e.g. cross sectional area,

characteristic cross sectional dimension). These relationships



represented assumptions governing the geometry of the element cross sec—
tion during the re—design process and were frequently based on interpo—
lation and/or extrapolation of tabulated values for standard sections.
This approach has the advantage of representing a structural element by
a single variable and consequently leads to optimum design problems hav—
ing relatively few design variables. The popularity of this technique
is illustrated by its extensive coverage in the literature (e.g. Refs.

While the use of assumed size—inertia relationships has the advan-
tage of reducing the design problem size, it also greatly restricts the
amount of design freedom. Although this lack of design freedom is not a
serious disadvantage in the design of many c¢ivil structures, it can be 2
severe limitation for more weight critical design application;; such as
in the aerospace and automotive industries where the structural elements
are usually custom fabrications. As a result, a second approacﬁ emerged
in which some or all of the element cross sectional dimensions (CSD’s)
were selected as the structural design variables (Refs. 20-24), The
increase in design freedom and the generality of structural elements
afforded by this technique lead to its application to increasingly com—
plex problems, However, as in the case of earlier work om truss syn—
thesis, it again beceme apparent that the implementation of approxima-
tion concepts would be required in order that the method be computation—

ally viable for large structural systems,

The integration of approximation concepts into the frame design

methodology does mnot, in itself, present any conceptual difficulties.



However, as in the case of the truss design problem, the implementation
requires careful attention to the selection of the intermediate design
variables so that accurate approximate expressions for the structural
behavior can be generated. It has been demonstrated that high quality
first order approximations for nodal displacements and element stresses
can be constructed using compliance variables (i.e. reciprocal truss
areas and membrane thicknesses) for moderately redundant truss and mem-
brane structures (Ref. 25). Indeed, for the statically determinate case
these behavior approximations are exact when formed using the compliance
variables. For the frame design problem, the element stresses are, in
general, complex nonlinear functions of both the element reciprocal sec-
tion properties (RSP’'s) and the element CSD’'s. As a result there is no
particular choice of intermediate design variable which will yield gen-
erally high quality approximetions for element stresses. However, the
nodal displacements are well approximated in terms of the element RSP's.
Therefore it might be expected that the compliance variables (RSP’s)
will yield the best overall behavior constraint approximations for many
synthesis problems, Several innovative approaches to the frame design

problem have emerged which are based on this concept.

One of the most successful of these approaches 1is based on the
observation that in the case of thin walled beam sections having fixed
external dimensions and uniform wall thickness the element RSP's are
nearly linear in the reciprocal of the wall thickness (Ref. 5). As a
result, high quality approximations of the structural behavior are
obtained by selecting the design variables to be the reciprocal wall

thicknesses of the design elements. This approach suffers somewhat in




that the design freedom is obviously limited. The adverse effects of
this limitation are minimized for cases where design element external
dimensions are fixed by other considerations such as packaging or
attachment requirements, This technique has been applied quite success—
fully to the preliminary design of automotive frame structures (Refs.
26-27)., Extension of the method to cases where the external dimensions
are also inclu&ed as design variables has been explored for several
alternative choices of intermediate CSD variables with moderate success
(Ref. 28). However, for a general multi-variable design element,
behavior approximations based on first order expansions generated
directly in terms of the element CSD’'s or their reciprocals may lead to

slow convergence and require an excessive number of structural analyses.

An alternative approach to the frame synthesis problem, which has
received somewhat 1less attention for design elements of general cross
sectional geometry, is to perform the structural design directly in
terms of the element RSP's, The advantage of such a formulation lies in
its ability to capitalize on the high quality behavior approximation for
nodal displacements in terms of the element RSP’'s. However, since the
RSP's are treated as independent design variables, a fundamental con-
sideration must be how the actual physical dimensions of the design ele-
ment cross section are to be recovered from the RSP's, In general,
explicit relations for the recovery of the element CSD's are not avail-
able. In Ref. 29 a technique which coupled the use of RSP's as design
variables and an approximate CSD recovery method was suggested. In this
case an approximate linear relationship between the element RSP’'s and

CSD's was constructed and used in the CSD recovery process. As



originally presented this technique was applicable only when the number
of CSD's equaled the number of RSP's. This restriction was subsequently
removed thereby making the method more generally applicable (Ref. 30).
Unfortunately, even with the available high quality behavior approxima-
tions, the initial numerical experience with the method of Ref. 29 indi-
cated the need for larger than expected numbers of structural analyses
and some convergence difficulties. This may have been duc to the
adverse effect that the linear approximation between element CSD's and

RSP’s has on the net behavior approximation.




CHAPTER II

The Structural Synthesis Problem

2.1 Introduction

Structural synthesis is, by its very nature, a complex, iterative
process. Fundementally, this process consists of the generation and
evaluation of a sequence of trial designs. Each successive design
represents an attempt to improve some measure of structural performance.
Historically, design modifications were based on the experience and
insight of the design engineer. Acceptable designs were frequently
obtained only after a considerable number of trial designs had been
evaluated. This was particularly true for complex design problems such
as those encountered in the design of aerospace structures. This situa—
tion, together with increased interest in generating designs which weré,
in some sense, optimal, subsequently lead to the development of several
formal design methodologies based on assumptions as to the aumber and »
types of critical failure modes (e.g. structural index, .fu11y stressed
design and optimality criterion methods). A more general method based
on nonlinear inequality constrained mathematical programming was pro—

posed by Schmit in 1960 (Ref. 31) and forms the basis for this work.



2.2 Problem Formulation

A significant class of structural synthesis problems may be stated
as follows: seek a minimum mass design such that all structural behavior
quantities and design variables remain within specified 1limits.
Mathematically, this can be written in the form of a nonlinear inequal-

ity constrained mathematical programming problem as

min  M(D)

D

s.t. G(D) <O (2-1)
L ¢D ¢’

whore the objective function M is the structural mass, D is a vector of
design variables, G is a vector of constraints on the structural

U and BL are

behavior (e.g. nodal displacements, element stresses) and D
the vectors of upper and lower bounds on D. If it is assumed that the
structural topology, configuration, materials and loading conditions are
prescribed, then the design variables D ropresent element sizing vari-
ables. For frame-truss structures the element sizing variables are typi-
cally the eoelement cross sectional dimensions (CSD’s) and/or element
reciprocal section properties (RSP’s) . The mathematical program

represented by Eq. (2-1), then, can be rewritten for the frame—truss

synthesis problem as




s.t. G(X,Y) <0

-
~~
M
e
A d
]
ol

(XX (2-2)

(Y ¢1®
where i is the vector of RSP's, ? is the vector of CSD’'s and EU, iL. ?U

and EL are their corresponding vectors of upper and lower bounds. The
equality constraints ﬁ(i,?) have been introduced to account for any
inter~dependence in the set of sizing variables IE.TI. Since these con-
straints are, in general, nonlinear, the solution of the mathematical
program represented by Eq. (2-2) may be computationally burdensome. It
is therefore useful to rewrite Eq. (2-2) in terms of a vector of
independent generalized design variables Z as follows:

min M(Z)

s.t.  G(Z) <O (2-3)
T (X ¢ 37

T U (Y
The generalized design variables are, in general, some subset of the
element CSD's and RSP's, This design problem can be solved for E, with

the element CSD’'s and RSP’'s being subsequently determined via a recovery



transformation of the form

(X,Y) = T(2)

(2-4)

The structural synthesis problem represented by Eqs. (2-3) and

(2-4) is, in general, a complex, implicit nonlinear problem in terms of
the generalized design variables., As a result, the direct solution of
Eqs. (2-3) and (2-4) is computationally impractical even for relatively
small structures. A more tractable approach to the solution is to
replace this implicit, nonlinear problem with an explicit approximate

problem of reduced dimensionality having the following form:

min ;i(iL)

zL

s.t. gq(ZL) £0; q€e, (2-5)
T (XzZ) (X°

(X,Y) = T(Z) (2-6)
where,. for the general case, M is an explicit approximation of the
objective function; the E; are explicit approximations of subset QR of

the original constraints E; EL is a vector of linked generalized design

S

variables; X, X7, Y and ?L are upper and lower bounds on the RSP's and
CSD’'s chosen to insure the validity of the approximations; and T
represents some approximate recovery transformation. The solution to

the original problem (Egs. (2-3) and (2-4)) is obtained via the itera-

10




tive construction and solution of approximate problems having the form
of Eqs. (2-5) and (2-6). Hence, the solution to the implicit, nonlinear
design problem is obtained through the solution of a sequence of expli-
cit approximate problems. The generation and solution of each approxi-
mate problem consists of the following four phases: 1) structural
analysis, 2) approximate problem generation, 3) optimization and 4)

detail design récovery. Each of these four phases is described in detail

in Chapters III-VI.
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CHAPTER III

Structural Analysis

3.1 Introduction

Structural analysis is an integral part of the structural syn—
thesis problem., The solution of the analysis problem yields the struc-
tural response quantities (e.g. nodal displacements and element forces)
required for the evaluation of the design constraints. Various tech-
niques are available for the linear analysis of frame—truss structures.
One of the most widely used techniques, and the one chosen here, is the
well known finite element displacement method. This method is particu-
larly attractive in the structural synthesis context because 1) a
variety of different structures and loading can be treated in a unified
manner, 2) the method is relatively efficient and easy to implement and
3) the method is well suited for subsequent response quantity sensi-

tivity calculations (as will be shown in Chapter IV).

While the finite element method is quite general, the class of
problems considered here is frame—truss structures subject fo mul tiple
static loading conditioqs (including discrete nodal loads and loads uni-
formly distributed along the element) and homogeneous displacement boun—
dary conditions, The underlying analysis equations are described in

detail in the next section.
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3.2 Static Analysis

The equations governing the response of & linear structural system
subject to multiple static loading conditions are of the form
[K]{u}k {P}k ; k=1,2,,,..K (3-1)

where |K] is the system stiffness matrix, {u}k and {P}k are the vectors
of unknown displacements and known applied nodal loads (corresponding to
the x-th loading condition), and K is the total number of loading condi-
tions. Eqs. (3-1) represent a set of linear simultaneous equations
which can be generated from the element level stiffness matrices [Ki]°
and load vectors {Pi}; using an assembly technique known as the direct
stiffness method (Ref. 32). The stiffness matrices and work equivalent
load vectors (for uniformly distributed loading) for the space frame and

truss elements are given in Appendix A.

Prior to the actusl assembly of the system stiffness matrix and
load vectors the element 1level quantities [Ki]° and [Pi]: must be
expressed in terms of a common system level or global coordinate system,

This is accomplished by using the following transformation equations

8 . T L]
(K18 = [T,17[K 1°[T,]

T e
P,)}% = [T, 1 (P.}
i'x 17 Yi'x (3-2)

where [Ki]8 and {Pi]i are the element level stiffness matrix and 1load
vector, in global coordinates, for the i—-th structural element., The

orthogonal transformation matrix [Ti] has the general form
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[t,]
[t,]
[T.] =
i

[t.]
B o (3-3)

where (dropping the subscript for convenience)

[t] = [R 1[R,]IR,]
L (3-4)
and

1 (] 0o ]

[Ra] = {0 cosa sina
|0 -sina cosa
[ coso sin6 17

[RO] = |-sin®@ cos® O
Lo o 0 (3-5)
[ cosp 0 sinﬁ-

[Rﬁ] = 0 1 0
| —sinf 0 cosP_

The angles a, 6 and B, between the local and global coordinate systems,
are shown in Fig. 1. It should be noted that the matrix [t] for the

space truss element reduces to the form

[tl = [RQ][R ]

P (3-6)

by virtue of the fact that a may be arbitrarily set to zero making [Ra]

an identity matrix.
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Once Eqs. (3-1) have been assembled the homogeneous displacement
boundary conditions may be applied. Conceptually this is done by elim
inating those equations associated with the boundary degrees of freedom
(in actuality these equations are never assembled). With the appropri-
ate boundary conditions imposed Eqs. (3-1) represent a positive definite
system of equations which can be solved for the unknown displacement
vectors [u}k. The solution method used here is based on a modified
Cholesky decomposition technique which replaces [K] by a factorization
of the form

(K] = [L1[D](LI”

(3-7)
where [L] is a lower triangular matrix and [D] is a nonsingular diagonal
matrix. Once [K] has been factorized the solution vectors {u}k are
obtained through the usual series of forward and backward substitutions.
It is important to recognize that significant computational and computer
storage savings can be realized by taking advantage of the banded struc-
ture of Egs. (3-1). Therefore, in this study, the solution method
described above is implemented for a compact ’''skyline’’ storage arrange-

ment of [K] as described in Ref. 33.

Having calculated the nodal displacement vector {u]k;

k=1,2,...K, the end forces for the i—-th structural element are given
by

e

e _ e
(F;3, = [K.] (o3,

-]
ilk + (FEF },

(3-8)
where {Fi]:, {ni}: and {FEFi]: are the forces, displacements and fixed

end forces (corresponding to the uniformly distributed 1loading)
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associated with the i-th element for the k~th loading condition, written
in the local coordinate system. The local displacements {uilz are cal-
culated from the global displacement vector {ui]k via the transformation
e
{uilk = [Til{ni}k (3-9)
where it is understood that [ni]k is the subset of the global displace-
ment vector lu}k associated with the i-th element. The fixed end forces
{FEFi}: for the uniformly distributed loading are given by
{FEF,}® = - (p,)°
1k 'k (3-10)
where {Pi]; is the work equivalent loading vector as defined in Egs.

(A-11) and (A-19) for the frame and truss elements, respectively.

3.3 Multiple Boundary Conditions

The consideration of multiple sets of boundary conditions during
the analysis of a structural system is quite common in engineering
design. These boundary conditions may represent actual physical res-—
traints corresponding to varying service eanvironments or they may
represent ‘‘artificial’’ boundary conditions created as part of the model-
ling process (e.g. using a half model for a symmetric structure), The
application of multiple sets of boundary conditions can significantly
increase the analysis solution time if the complete system stiffness
matrix is decomposed for each boundary condition set, This computa-
tional burden can be greatly reduced by recognizing that, for many
structures, a significant portion of the system stiffness matrix is

unaffected by the changes in the boundary conditions (Ref. 5).
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Conceptually, the system stiffness matrix may be partitioned into por-
tions which are independent of (KFF) and dependent on (xBB‘ KFB) the
boundary condition changes as shown in Fig. 2. The free portion, fo'
need be decomposed only once for all boundary condition sets, The
decomposition of the entire matrix is then completed separately for each
boundary condition set, This represents a considerable computational
savings for structures in which the number of degrees of freedom associ-
ated with the changing boundary oconditions is small compared to the
total number of system degrees of freedom. It should be noted that the
degrees of freedom associated with the changing boundary conditions do
not actunliy have to be positioned together in the lower portion of the
matrix as depicted in Fig., 2., This is important since it eliminates
the need to perform row and column interchanges on the matrix and

preserves the original matrix bandwidth,
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CHAPTER IV

Approximate Problem Generation

4.1 Introduction

The key to a tractable structural synthesis formulation 1lies in
the replacement of the original implicit nonlinear design problem with a
sequence of explicit approximate problems of reduced dimensionality.
The generation of these approximate problems is accomplished through the
application of a variety of techniques commonly referred to as approxi-
mation concepts (Refs. 11-12). Primarily, these techniques serve to 1)
reduce the numbers of design variables and constraints in the design
problem and 2) reduce the required number of detailed (exact) coastraint
and objective function evaluations. There are various methods available
for this purpose. Those implemented here include design variable link-
ing, temporary constraint deletion and explicit first order constraint
approximations. These techniques form the foundation of the approximate
problem generation procedure which consists of the following steps: 1)
design variable selection, 2) design variable linking, 3) constraint
evaluation, 4) constraint deletion and 5) objective function and con-
straint approximation. This procedure is described in detail in the

following sections.
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4.2 Design Variable Selection

In Chapter II it was shown that the frame—truss structural syn-
thesis problem could be stated, in a general manner, in terms of an
independent set of generalized design variables z (Eq. (2-3)). Concep-
tually, any independent combination of element cross sectional dimen-
sions (CSD's) and element reciprocal section properties (RSP's) may be
selected as the design variables as long as the changes in the dependent
variables can be determined from the changes in the independent vari-
ables. Two such design variable selection schemes are implemented in

this study.

Probably the most natural approach to design variable selection is
to simply choose the element CSD's as the design variables (CSD design
space). This has been popular in much of the reported literature (e.g.
Refs. 20-24 and 26-28) primarily due to the fact that changes in the
element RSP's (Ai) are easily related to given changes in the element
CSD's (AY) for any cross section shaﬁe. Although it is possible to com—
pute these changes exactly it is useful (in the construction of the
explicit objective function and constraint approximations) to use the
following approximate linear relationship to reflect AX in terms of AY

for each element:

)
{x} - (X} = {[Y] - {x }}
0 [aY ] 0 (4-1)

where ['g%] can be determined either through differentiation of eanalytic
expressions for the RSP’'s in terms of the CSD’'s or from finite differ-

ence calculations.
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The primary disadvantage in choosing the element CSD’s as the
design variables is that high gquality behavior constraint approximations
(in terms of the element CSD’s) can not be constructed for a variety of
cross sections, This difficulty subsequently lead to a second approach
in which the element RSP's are choosen as the design variables (Ref.
29). ¥hile this technique offers the potential for the construction of
high quality behavior constraint approximations (particularily for dis-
placement constraints), the following inherent difficulties must be
addressed: 1) changes in the element CSD’s are generally not easily
determined from changes in the element RSP’'s, 2) the element RSP's may
not represent an independent set of variables (e.g. the number of RSP's
is greater than the number of CSD's for a particular cross section) and
3) the element RSP’s may not adequately represent the design freedom
associated with the CSD's (e.g. the number of RSP’s is less than the
number of CSD's for a particular cross sectzon).

The difficulty associated with determining AY in terms of AX is
due to the nonlinearity of the relationship between the CSD’s and RSP’s
which: 1) limits the range of AX changes where linearized approximations
are useful and 2) admits the possibility that multiple sets of CSD's can
be found which will yield the same values for the RSP's. As a result,
an exact representation of AY in terms of Ai, for the general case,

would be difficult if not impossible to determine.

To overcome the foregoing problem approximate linear relationships
are constructed between AX and AY for each design element. These rela-—

tionships are obtained by first rewriting Eq. (4-1) as
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ux) = [ ) = nan

o (4-2)
where
{AX} = {X} - [XO]
{AY} = {Y} - {YO}
(4-3)

The desired approximate relationship may now be obtained if Eq. (4-2)
can be solved for {AY}. For the special case where [J] is square (i.e,
the numbers of CSD's and RSP's are equal) and non—-singular (i.e. the
RSP's are 1linearly independent) Eq. (4-3) can be solved directly to
yield

@y} = (317 ax)

(4-4)
and the element RSP’s are, indeed, selected to be the generalized design
variables ({Z}. However, this is clearly not the general case and,
therefore, some alternative method must be employed. Such a method has
been suggested in Ref, 30 and is described in detail in Appendix B.
This technique automatically selects a set of 1linearly independent
(free) variables

(z} = (xg) (1’

(4-5)
and constructs a linear transformation between these variables and the
remaining dependent (basic) variables [{XB} {YB]]T of the form

[{AX;) (av}1T = [H](AZ)
(4-6)

where
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m = |92

(4-7)
is calculated from [J] as shown in Appendix B. An important feature of
this technique is not only that it allows for the changes in the depen—
dent variables to be written in terms of the changes in the independent
variables, but that the number of independent design variables selected
is always equal to the number of element CSD's. Therefore all three of
the difficulties associated with the RSP design space, as described pre-
viously, are overcome simunltaneously. It should also be noted that the
design variables are selected such that the independent element RSP's
are chosen first and any additional variables that may be required (to
make the total number of design variables equal to the number of element
CSD’s) are chosen from the element CSD's. Hence, this design variable

selection scheme is referred to as the RSP design space.

Expressions relating the changes in both the element CSD’s and
RSP’s to changes in the generalized design variables can now be con—
structed using Eqs. (4-2) and (4-6). In the CSD design space the fol-
lowing relationship can be written

{AX} - [g_x_iél ¥ wzi = 1r ) 07 az) = 1z

Z:9 (4-8)

Similarily, in the RSP design space we may write
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AYp [axB aYg 9Xp oYp

T
9z 9z ' oz az] (az} = (8 | 11T (az} = (D] (az)

(4-9)
These relationships will prove to be useful in the subsequent construc—
tion of the objective function and constraint approximations. It should
be noted that frequent gpduting of these relationships can be obtained
at low computational cost because they do not involve finite element
analysis or behavior sensitivity analysis. This will prove to be an

important observation as will be shown in Section 4.7.

4.3 Desgign Variasble Linking

Once the generalized design variables Z have been selected, as
described in the previous section, design variable linking concepts may
be employed, thereby reducing the dimensionality of‘the synthesis prob-
lem., Typically, design variable 1linking is used to reflect actual
design requirements and/or to reduce the problem size enough to make its
solution tractable. In this 1latter case the designer is forced to
approximate the actual design problem in terms of a reduced number of
design variables in much the same manner that the structural analyst
must approximate an analysis problem with a limited number of degrees of
freedom in order that the analysis problem can be solved. Various forms
of linking are conceivable including the fixing of the relative sizes of
& given set of design elements of the same type (total linking) and the
linking of a single design variable of one element to that of another

element (partial linking). In this work, only total linking between
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elements of the same type, such that they are identical, has been imple—

mented.

4.4 Behavior Constraint Evaluation

The definitions of acceptable structural behavior are central to
the structural synthesis problem statement. These definitions are
included in the mathematical problem statement in the form of behavior
constraints. Two basic types of behavior constraints are included here:
1) constraints on overall structural stiffness (in the form of mnodal
displacement/rotation constraints) and 2) constraints on local element
strength (e.g. stress and local buckling constraints). These con—
straints may be written in terms of the structural response quantities
(nodal displacements (u) and element forces (F)) and the element RSP's
(X) and CSD's (Y) as follows:

8g = Rq(u(x)) -1£0 ; g-= 1.2....Q1 (4-10)
for the displacement constraints, and

gy = Rq(F(n(X)).X.Y) -1£0 ; q=1,2,...Q (e11)
for the strength constraints, where Ql and Q2 are the numbers of dis-
placement and strength constraints, respectively, and where the response
ratio Rq represents the ratio of the behavior value to the associated
allowable and approaches unity as the behavior constraint becomes criti-
cel. Evaluation of Eqs. (4-10) is clearly straightforward, given the
values of a particular nodal displacement and its allowable. However,

the evaluation of the strength constraints (Eqs. (4-11)), in general,
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requires the evaluation of & different expression for each type of
design element., The strength constreaint formulations for the various

design element types are given in Appendix C.

4.5 Constraint Deletion

Proper design of & structural system nusually requires the con-
sideration of a substantial number of possible failure modes since, in
goneral, the critical failure modes are not known at the outset of the
design process. As a result, the structural synthesis problem statement
may contain a large number of inequality oconstraints, In order to
reduce the number of constraints, and the associated computational bur-
den, it is possible to temporarily ignore certain constraints which are
not expected to currently participate in the design. In effect, this
process reduces the number of constraints by approximating the poten—

tially critical constraint set.

The criteria by which particular constraints are judged to be par-
ticipating (active) or non-participating (passive) forms thé basis of
the constraint deletion technique. Various criteria are conceivable,
however a relatively simple but effective strategy consists of deleting
all constraints with response ratios (Rq) less than a specified con
straint truncation parameter CIP., The value of CIP may, in general, be
chosen separately for each constraint type and may change during the
design process, In this work, a single value for CITP is used for =all
behavior comstraints. Simply stated, the value of CIP is selected_ SO

that: 1) constraints with Rq 2 .7 are always retained, 2) constraints
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with Rq ¢ .3 are always deleted and 3) constraints with .3 ¢ Rq ¢ .7 are

retained or deleted depending on the value of the response ratio cutoff

value Rc. This criteria can be written as
CTP = min { max[Rc,.S}, .7}

(4-12)

where Rc is the maximum response ratio rounded down to the nearest tenth

(e.g. if max R = .65 then Rc = .6). The value of CIP is updated for
q€qQ

each approximate problem.

4.6 Objective Function and Constraint Approximations

A kxey element to the efficient solution of the structural syn-
thesis problem 1lies in the construction of accurate explicit function
approximations. This is particularily true in the case of the behavior
constraint functions because, in general, exact evaluation of these con-
straints requires that the structural analysis problem be solved. Vari-
ous methods are available for the construction of these approximations,
with the most commonly used techniques requiring only first order
derivatives of the functions to be approximated (Refs. 12 and 34-35).

Two types of first order approximations are used here.

The first type of approximation consists of expanding the function

in a linear first order Taylor series of the form

— o~ — _ B 3£(Z))
£(2) SE(D) = 1(Z) + %

( -Z. )
=1 % % 0%

(4-13)

where the expansion variables Z are chosen so that the resulting approx-—
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imation is of the highest possible guality. In many cases, however, no
single set of expansion variables may be chosen such that all function
approximations are of sufficient quality. In this case it has been sug-
gested (Ref., 36) that a hybrid or mixed variable approximation might be
a useful alternative. This approximation can be constructed by the com
parison of Eq. (4-13) with a first order Taylor series expansion of the

form

B 9f(Z)
=T (7 = 0 1 1
£(z) ST(2) = £(2) + 1 _ 1
I o) T % sz (zb z°b)
(4-14)
or, equivalently,
B 9£(Z,)
- o~ = _ o 1 .
£0(Z) 2T(2) = £(Z) + % - 2 (____>
I 0" pa % B \% %
(4-15)
Subtracting Eq. (4-13) from Eq. (4;15) gives
_ (z -2z )2
- e B af(z) [ %~ %,
£f(z) - £(z2) =- %
I L ~ 9
b1 % % (4-16)

For the case where f(Z) represents an objective function to be minimized
or a constraint function of the form f£(Z) £ 0 Eq. (4-16) indicates that

f& is more conservative than ?L when

1 af(Zo)

Zb azb

<0
(4-17)

or, if Zb represents some physical variable known to be positive in

sign, when
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(4-18)

Consequently, comparison of ?} and ?L on a term by term basis leads to

the following first order mixed variable approximation:

- a = _ B 3£(Z,)
£(Z) = £.(2) = £(Z)) + X B
M o’ T % ez, b

(4-19)

where

b 0z,

: 3£(Z,)
. . 0
- zf,b ((1/zb> - (1/z, )) if <o

This mixed variable approximation (Eﬁ(i)) is more conservative than
either the pure linear approximation (?L(E). see Eq., (4-13)) or the pure
inverse approximation (E&(E), see Eq. (4-14) or (4-15)). In this work
two types of approximations (Eq. (4-13) and Eq. (4-19)) form the basis
for the objective function and constraint approximations described in

the following subsections.

4.6.1 Objective Function Approximations

The objective function (structural mass) can be written explicitly

in terms of the element RSP’s as
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(4-20)

where Pi. Li and Xl are the mass density, length, and reciprocal cross
i

sectional area, respectively, for the i~th design element., Clearly the
objective ftunction is easy to evaluate (exactly) when the design is car—
ried out in the RSP design space and, therefore, no approximation is
required., However, in the CSD design space Eq. (4-20) cannot be
evaluated directly to yield the exact value for M., It would first be
necessary to calculate the design element areas from the element CSD’s.
While this computation 1is certainly not as burdensome as the detailed
eveluation of the behavior constraints, it is, never the less, useful to
replace Eq. (4-20) with an explicit approximation in this case. The
linear and mixed variable (hybrid) approximations for the objective

function can be written in terms of the I RSP’'s as

I 9M(X

M(X) = iiL(i') = M(fo) + X axo (X, - X, )
= ! (4-21)
and
- _ I aM(Xy)
M(X) = MH(X) = u(xo) + X 3% Bi
=1 t (4-22)
where
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aM(X,)

0
- X, 1 if
0i axi

[x >0

i

) au(x_o)
- xoi (1/x) - (1/101) if 7%, <0

Using Eq. (4-8), the approximations given by Eqs. (4-21) and (4-22) can

be rewritten in terms ot the B generalized design variables (Zb) as

wd =% (2 = & > ou(5y) (
X) £ M (Z) = M(X,) + -Z,)
n HARCEE N (4-23)
and
) = T3 : B OM(X,)
D 2WH(D =UuE) + £ ———
g O Ty R (4-24)
where
M(E,) I MX,) 0X,(Z)
= Z
% = %
/ aM(X )
[z -2z, 1 if > 0
| Z, 0, 97,
B, = <’
72 (( /7.y - (1/ oW,
- 1 - (1/zZ, ) if <0
\ " %o, Z, 0, 2z,
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4.6.2 Behavior Constraint Approximations

The linear and mixed variable approximations for the structural
displacement constraints represented by Eq. (4-10) may be written in

terms ot the I RSP’'s as ftollows:

_ _ _ I ag(Eo) T
g(X) = E‘L(X) = g(no) + —_— 'aT' (xi - xo )
i=1 du i i
(4-25)
and
— — - I aglan,) .=
8(X) = Zy(X) = g(uy) + - égl B,
i=1 du i
(4-26)
where
/ 38(ng) 47
[X; - X1 if —— 3% >0
du i
B, = {
ag(; ) .~
- x2 - 8% ou
\ - X, ((1/xi) (1/x0.)) if s
i i du i

Similarily, approximations for the element stremgth constraints (e.g.
stress and local buckling) represented by Eq. (4-11) may be written in

terms of the element RSP’'s and CSD's as
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- - — - — I =
g(XY) = 3 (X,T) = g(F.X.Y) + X ) g%l + 2K (X, - X )

i=1 oF 9%; 9%, i
J o8
+ -
jzi 73 (¥, Yoj)
(4-27)
and
sED 25T = gFTT) + 5 |2 a_i,,_aa_],,
M 0’70’0 i1 F axi axi i
J
+ z_aLc
g=1 9354
(4-28)
where
ag oF , 2%
(X, -X 1 if =& + >0
17 %o, o5 0X; = 90X,
31=<’
\ - x2 ( (1/%,) - (1/X )) i 2% 3, 8
0y i 0, oF 0%; & 0%,
- g
¥, - Y, 1 if 3F >0
J J
C. =

oY

- v - 98
Yoj ((lle) (I/YOJ)) if j<o

and where it is understood that the summation over J includes only those
CSD’s corresponding to the design element in which the strength con-

straint is 1located. Both the displacement and element strength
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constraint approximations can be written in terms of the gemeralized
design variables (using either Eq. (4-8) or (4-9) depending on the

selection of the design space) as follows:

_ _ o B
82) 23,2 =g(X,,Yy) + ¥ & (Z -2 )
L o-Yo) + 2 3z (% = %
(4-29)
= =~ (5 I v 5 os
8D = (D) = 5(X.Ty + bz& oz B,
(4-30)

where

- o5
( 12, zob] if >0

2,
B
-72 ((1/ ) - (1/Z ) if 2E<0
\ "0, Z, ob’ CEA
and where
/ I 3 _a-; axi
s == ; q€
1=1(aE axi) o2, “
T - <
%,

1 = ax 7 oY
: Qfﬂ.+_§x.]_ll.+z_ax._i . qe
i=1 [(ap 0%y 0| 0%, - 4o 9T 9%,

Construction of the approximations given by Eqs. (4-29) and (4-30)
clearly requires the computation of the partial derivatives of the
structural response quantities with respect to the eolement RSP’'s (i.e
3u oF

== ). Various methods are available for the computation of these

-

X ax
quantities (Refs. 37-38). The technique used in this work is based on
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the direct implicit differentiation of the equations governing the
structural response and it is commonly referred to as the pseudo—load
method. This method is particularily easy to implement and it rela-
tively efficient (particularily when implemented using a partial inverse
technique as described in Ref. 12) when only first order sensitivities
are required. A detailed formulation of the method is contained in

Appendix D.

4.6.3 Side Constraint Approximations

Side constraints on the element RSP's and CSD’s of the form

(XX’
§L U
LYY (4-31)
U L U <L
where X', X', Y and Y are the upper and lower bounds on the element

RSP's and CSD’'s, respectively, play two important roles in the solution
of the structural synthesis problem., Primarily, the side constraints
represent bounds on the design element sizing variables corresponding to
physical design requirements (e.g. packaging limitations, manufactura-
bility). Secondly, the side constraints can be used to limit design
changes dufing the solution of each approximate problem so as to protect
the accuracy of the objective function and behavior constraints approxi-
mations, In this 1latter case the global upper and lower bounds

(iU. iL, iu. ?L) are replaced by the stepwise bounds (§U' iL. YU. ?L)

and Eqs. (4-31) become
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(T ¢X0
T LY ¢ v (4-32)
The stepwise bounds are calculated from move limits (dl' dz) supplied by

the designer as tollows:

L -
i max[Xi, X, dlxi]

U _ U
Xi = minlxi, Xi + dlxi]
L - max[YL. Y, - d,Y.]
J i’ 73 27 (4-33)
U U
Y, = ‘s +
j minlYJ Yj szj]

where Xi and Yj are the values of the i-th RSP and j—th' CSD at the

beginning of each approximate problem stage.

Evaluation of these constraints (Eqs. (4-32)) during the approxi-
mate problem solution requires that they be rewritten in terms of the
generalized design variables. For the case in which this solution is

performed in CSD design space we may write

N|

Y =

4|
n
b4
4
A
n
b4
”~
B

(4-34)

and Eq. (4-32) becomes
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(4-35)
Under the additional assumption that the primary element sizing vari-
ables are the element CSD’s, the side constraints on the RSP’'s may be
ignored yielding (without approximation) the following form for the side

constraints in CSD design space:

(4-36)

In the RSP design space the side constraints given by Eq. (4-32)
must be rewritten in terms of the dependent (basic) and independent

(free) variables as follows:

~

I EELT) (X

1

4
-
I~

1
=

~~
!
!

I~

|

adl

=L = =g
£ £
s A (4-37)
% =
F S ¥ &g

Using Eq. (4-9) the following first order approximation of the side con-

straints can be written:
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( =L ( _ (lzﬂ
X xB\ Xp
= = =y

Y _ Y
< By < {BY + [D](AZ]_(_{B>
=, >y
g _ Xp
~ Y -

\v,)  \F) ° T )

(4-38)
where {ih ih iF §F}g contains the values of the element RSP’'s and CSD's

at the beginning of the design stage.

4.6.4 Selective Constraint Dependence

A significant amount of the computational effort associated with
the generation of the approximate design problem is expended during the

calculation of the partial derivatives of the structural response quan—

tities with respect to the element RSP's (i.e. af, QE ), which are
X X

required for the construction of the behavior comstraint approximations
(Eqs. (4-29) and (4-30)). For some structural synthesis problems signi-
ficant reductions in the computational effort can be realized by using a
selective constraint dependence technique (Ref. 5). This technique is
based on the observation that in many practical design problems a single
behavior constraint mey be strongly dependent on only a relatively few
design elements. If these design elements can be identified, then the
partial derivatives of the constraint with respect to the other design
variables (for elements upon which the constraint is weakly dependent)
mey be ignored. This technique often leads to dramatic reductions in

the required number of derivative calculations. Conceptuelly, selective

constraint dependence may be applied to both the system displacement and
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the element strength constraints., However, selection of the design ele-
ments which strongly influence the displacement constraints may be dif-
ficult, in general, and it is certainly problem dependent. On the other
hand, the element strength constraints are well suited to the applica-
tion of three special cases of the selective constraint dependence con—

cept.

Examination of the element strength constraint approximations
given by Eqs. (4-27) and (4-28) clearly shows that the strength con—
straints for a given design element are coupled to the design variables

associated with all other design elements only through the element force

derivatives (QE). It is therefore possible to apply the selective con—
ax

straint dependence technique via assumptions made as to the expected
nature of any element force redistribution which may occur during the
design process. The following three assumptions are considered here:
1) the element forces are invariant during the current stage in the
design process, 2) changes in the forces on a given design element are
primarily dependent on the design variables associated with that element
and 3) the element forces are strongly dependent on all of the struc-
tural design variables. These assumptions lead to the following hierar—
chy of element force sensitivity calculations: 1) no element force
derivatives are calculated, 2) element force derivatives are calculated
only with respect to the RSP’'s associated with that element and 3) ele-
ment force derivatives are calculated with respect to the RSP's of all

elements.
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4.7 Updating the Approximate Problem

The extent to which it is possible to minimize the number of
structural analyses and response quantity sensitivity calculations
du 9F . . :

—, —-) required during the design process clearly depends on the qual-
X 9X

(

ity of the approximate design problems. Approximate problem statements
for which the underlying constraint approximations are of high quality
are valid over larger changes in the design variables and, as a result,
fewer such problems are required to obtain the solution to the actual
synthesis problem. As discussed previously, the generation of the
response quantity sensitivities in terms of the element RSP's yields

du dgﬁ

values of —— and = which are relatively accurate over large changes in
oX 90X

X. This, in turn, tends to improve the quality of the behavior con—
straint approximations, particularily for displacement constraints in
the RSP design space. However, the overall or net quality of the con-
straint approximations depend not only on the response quantity sensi-
tivities but also on the approximated relationships between the element
CSD’'s/RSP's and the generalized design variables (e.g. see Eqs. (4-29)
and (4-30)). Frequently these latter quantities are accurate only for
small changes in X and § because of the highly nonlinear relationships
between the element CSD’s and RSP’s. Hencc, the net approximations may
be accurate over smaller than desired changes in the design variables,
To a degree, this problem is less severe when the mixed variable con-
straint approximations are employed. However, additional computational
savings may be realized via a procedure which periodically updates the

approximate problem without recourse to structural re-analysis or
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response quantity semnsitivity calculations,

The motivation for the approximate problem update procedure
described in this section lies in the desire to utilize, to the fullest
extent possible, the quality of the response quantity sensitivities;
since it is these derivatives which are computationally burdensome to
generate, To this end the partial derivatives of the constraints with

respect to the element RSP’'s and CSD's, (gf. Qf) are assumed to be of
9X 09Y

high quality and are saved during the approximate problem generation for
use in the subsequent approximate problem update procedure. This pro—

cedure consists of the following steps:

1. calculate new objective function derivatives with respect to
element RSP's Q%
X

2. update the approximate behavior constraint values (to com—

pensate for the approximate relationship between the element

CSD’'s and RSP's) using the equation

 {

= dg
g =g(X,) + X ( - X, )
A = OX in A

(4-39)
where iE and iA are the exact and approximate values of the

RSP’'s corresponding to the current values of the CSD's.

3. calculate new values for QE and QE (see Eq. (4-8) or Eq.
9z 0Z

(4-9)).
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4. form new side constraint approximations (Eq. (4-36) or (4-

38))

5. calculate new objective function and behavior constraint

derivatives using

a4 _ aM 9xX

9Z  oX 9Z

3z _ 9z 8X | 3g 3Y

6Z 09X 9Z 9Y 9Z (4-40)
6. form new objective function and behavior constraint approxi-

mations (Eqs. (4-23, 4-24) and (4-29, 4-30)).

Using this procedure it is now possible to update and solve the
approximate problem repeatedly wihtout recourse to structural re-
analysis or response quantity sensitivity generation, It should be
noted that, in practice, the number of times which this update procedure
may be performed depends on the quality of the reponse gquantity sensi-
tivities, .Therefore, it is of paramount importance that the structural
response quantity gensitivities“ﬁe generated directly in terms of those
variables which yibld response gradients of the highest possible qual-

ity, irrespective of the final choice of design variables.
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CHAPTER V

Optimization

5.1 Introduction

The approximate problem generation techniques discussed in Chapter
IV make it possible to replace the implicit nonlinear frame-truss syn—
thesis problem (Eq. (2-2)) with a sequence of explicit approximate

design problems, each having the form

min ‘ﬁ(i)

s.t g(Z) 0 ; q€Q

Y (YD ¢ ¥’

A
]

(5-1)
where ﬁ, E;, § and ? are, in general, explicit approximations of the
structural mass, retained behavior constraints, design element recipro—
cal section properties (RSP’s) and design element cross sectional dimen—
sions (CSD’s) in terms of the generalized design variables (Z). VWhen
these approximate problems are constructed using the objective function
and constraint approximations described in Chapter IV, Eq. (5-1)

represents an explicit, separable, convex inequality constrained

mathematical programming problem. As such, Eq. (5-1) can be solved via
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any number of well known, nonlinear constrained minimization techniques
(Ref, 39). Each of these techniques can be classified as either a pri-
mal or a dual method, depending on whether the solution is carried out
in terms of the primal variables (Z) or the dual variables (X). Two
methods, one of each type, have been implemented here and they are

described in the following sectioms.

5.2 A Primal Solution Method

Numerous primal methods are available for the solution of the
mathematical programming problem represented by Eq. (5-1), including
both direct and transformation (e.g. penalty, barrier) methods. The
method chosen here is based on the feasible directions method of Zouten-
dijk (Ref. 40-41) with modifications to improve numerical stability and
officiently solve 1initially infeasible problems (Ref. 42); as imple-
mented in the CONMIN (Ref. 43) optimization program. This technique was
selected for the following reasons: 1) the method is applicable to the
rather general class of problems represented by Eq. (5~-1) and 2) the
implementation of the method, in the form of the CONMIN program, is
reliable and relatively efficient for the class of problems considered

here.

The feasible directions method serves as the primary solufion
technique and can be used to solve any of the approximate problem formu-
lations shown in Figs. 3 and 4, During the CONMIN solution proc;ss some
computational efficiencies are realized by identifying all side con-

straint approximations as being linear. Similarily, additional computa-
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tional savings may be gained by identifying the behavior constraint
approximation &8s being linear for problem formulations 1-3 and 7-9,
This is, however, optional and the default case is to treat the behavior
constraint approximations as being nonlinear, thereby causing the solu-

tion to be ’pushed off’’ somewhat from the constraint surfaces.

5.3 A Dual Solution Method

An alternative procedure for solving the mathematical programming
problem represented by Eq. (5-1) consists of replacing this primal prob-
lem by its dual mathematical programming statement and solving the
resulting problem in terms of the dual variables (A). This may be dome
by first rewriting Eq. (5-1) in the following slightly more general
form:

min i(i)
z

s.t ZA(E) £0 : qea

V(727
(5-2)

where 3& H qéa represent the approximated behavior and side constraints

and where iv and EL are the upper and lower bounds on the generalized

design variables. The doal of Eq. (5-2) may now be written as

max min L(Z.,}\)

220l =L,z =U
Z <2 (7 (5-3)
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where

L(ZN =¥Z) + ¥ »_ &

qQ q
a€Q (5-4)
Alternatively, Eq. (5-3) may be written as
max L(3)
»20 (5-5)
where
Ly = min L(Z,A)
=L, = ,=U
278242 (5-6)

is defined as the dual function. This procedure is viable if it can ©be
demonstrated that the dual maximization problem represented by Eq. (5-5)
has a unique solution (saddle point). It is well known that if the pri-
mal problem (Eq. (5-2)) 4is a convex program (i,e, M(Z) and
iq(i) H qéa are convex functions and Z is contained in a convex subset
of E®) and has at least one strictly feasible solution (i.e. there

exists some Z s.t. iq(i) <0 ; qéa) then the dual problem has a

- —8 . . _—
unique saddle point (Z A ). If this saddle point can be found, Z is

the solution to the primal problem (Ref., 44). The existence of a saddle
point can be demonstrated when Eq. (5-2) represents one of the approxi-
mate design problems described previously, under the assumption that =a
strictly feasible solution exists, Therefore, in principle, the dual
solution method may be applied to any of the approximate problems shown

in Figs. 3 and 4,
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While the question of saddle point existence is certainly orucial
in determining the applicability of the dual solution method, another
important consideration concerns the computational efficiency of solving
the dual problem (Eq. (5-5)). Clearly, for the general case, maximiza-
tion of the dual function is considerably complicated by the imbedded
Lagrangian minimization represented by Eq. (5-6). However, if L(Z, 1)
is additively seﬁarahle then the solvability of Eq. (5-5) is enhanced by
the fact that the Lagrangian minimization can be performed as a sequence
of smaller minimization problems (Ref. 44). The attractiveness of the
dual solution method is further enhanced by the recognition that for the
types of approximate problems constructed here the minimization of the
Lagrangian simply consists of solving a sequence of explicit single
variable minimization problems. This important observation was first
made in Ref. 45 in the context of a generalized optimality criteria
method and subsequently coupled with approximation concepts in Refs., 46

and 47.

A final consideration in the application of the dual solution
technique concerns the method by which the dual function maximization is
to be performed., Gradient methods are particularily attractive since it
is well known that the first derivatives of the dual function with
respect to the dual variables are immediately available from the primal
constraint values, i.e.:

alay _ 3
a lq q

; qea
(5-7)

However, if l(i) does not possess continuous first derivatives such gra-
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dient techniques may exhibit slow or nonconvergent behavior unless spe-
cial precautions are taken., The dual function can be shown to be con-
tinuously differentiable under the following conditiomns; 1) Z is con-
tained in a closed and bounded subset of E® (S), 2) X and 3&; qea are
continuwous on S and 3) L(Z, A) is minimized over S at a unique point
Z().) for all A > 0. It can be shown that these conditions are satisfied
for the <case in which the design element CSD’s are selected to be the
generalized design variables and the objective function is approximated
via & mixed variable (hybrid) approximation. Therefore, an explicit
mixed veriable dual problem can be formulated and solved, via an exist-
ing first order technique, for approximate problem options 10-12 shown

in Fig. 4. The mixed variable dual formulation given in the following

was originally presented in Ref. 48.

The dual problem can be constructed by first writing the approxi-

mate primal problems (10-12) as

min M(Z)

q (5-8)

where it is recognized that E&(E) H quR are the approximations of the
retained behavior constraints and ZU and ZL are the stepwise upper and

lower bounds on the design variables (element CSD's). Introducing the

mixed variable approximations for M and gq : qGQR (see Eqs. (4-26) and
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(4-30)) Bq. (5-8) can be rewritten as

_ b
7 nb)O nb<0 zb b
s.t 2 ¢, Z - X fhg 2 +3 £0 = 1,2
.t, . bq “b . Zb ob Sq H q » o-ooQR
bg>0 bq<0
L U
S- S ; b=1‘2‘l.‘B
zb zb zb (5-9)
where
.2
" A
0
o = —u
bq azb
u=u(z°)-z an°+ZmeO
mb)O b <0 b
2 =38 (Z)- £ ¢ Z. + Y ¢ Z
q 0" ¢ 50 P10 o P10y
bgq bq
The dual problem (Eq. (5-3)) may now be written as
max min L(E.I)
ry>ofsL , =, U
Z°L2<12 (5-10)

where
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ha 1 72
Qp g0 bq<0

(5-11)
Interchanging the order of the double summation in the fourth and fifth

terms, Eq. (5-11) can be rewritten as

qGQR zb quR 174
(5-12)
Letting

i T T T

CC = X A ¢ ; c, >0

b b ’ b

quR q q q

D =~ XY A ¢ Z2 ; c, <0

b qGQR qQ bq 0b bq
(5-13)

and substituting into Eq. (5-12) yields
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—_— nb
LZ% = ¥ + ¥ 24+ ¥ +
m, >0 "v% m, <0 Z, cbq>ocbzb

D
s 2+ o ag +H
e, 0% qeq, 19
1 (5-14)
Recognizing that the last two terms of Eq. (5-14) are constant and that
the remaining terms are additively separable, the minimization of L(E,I)

can be performed via B single variable minimizations, i.e.:

- _ B —
min L(Z,A) = X min Lb(Zb.).)
b=1 L U
= = , =0
7' Z<Z Zy £ %4, L 2 (5-15)
where
Zy, * Gy Z ' ™
L (Z,,}) = <
n, D,
oz, " G%B Tz, ¢ O (5-16)

The solution to the b-th single variable minimization, (temporarily

ignoring the side constraints on Zb)' is given by
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b
mb+cb » m.b)O
Z = <
D, +
e Wi
c, 3 my<0 (5-17)

Taking the side constraints into consideration, the solution to the b—th

single variable minimization becomes

o if (Zp? g o < (z}b2

i 2 2 _
z, = z% if of < (zt) i for m 0
ZE if a% > (Zg)2
b, if (z{j)2 < si < (zg)2
Zb = Zt if ﬁ% < (Zlg)2 ; for mb(O
zg if pi > (zg)2 (5-18)
where
D
02 b
b T m +C
62 - Dp v oy
b %

Note also the following special cases:
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Zb = Z% if mb>0 and Db =0

U

Zb = Zb if nb<0 and C_ =0

b (5-19)

Finally, using Eqs. (5-18) and (5-19), the dual problem may be written

as an explicit problem in terms of A as

max £(Z(X).X)

»20 (5-20)

Equation (5-20) represents a relatively unconstrained maximization
problem of a differentiable concave function and, as such, may be solved
using a gradient based maximization algorithm, The method used here is
the feasible directions method described previously, where the only con-
straints are the non—negativity constraints on A. Since the solution is
carried out in temrms of the full set of dual variables (A) the dimen-—
sionality, of the optimization problem is n x n where n is the number of
retained behavior constraints. Therefore, the dusl solution method is
gonerally more efficient than the primal method if the number of
retained constraints is less than the number of primal design variables
(Z). However, it should be noted that specialized solution schemes for
the dual problem (e.g. Ref. 46 where the dimensionality of the dual
space 1is gradually increased but does not exceed the number of truly
critical behavior constraints) can make the dual solution method more
efficient than the primal method even when the number of retained con-

straints exceeds the number of primal design variables.
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CHAPTER VI

Detail Design Recovery

6.1 Introduction

A fundamental consideration in structurel synthesis is that of how
the actual detail design quantities (sizing variables) are to be deter—
mined from the structural design variables, When the relationships
between the design variables and sizing variables are simple and expli-
cit (as in the case of a truss design element when selecting A or 1/A as
the design variables, or a frame design element when selecting the cross
sectional dimensions (CSD’s) or their reciprocals as the design vari-
ables) then the detailed design recovery process is, of course, trivial
and is rarely mentioned as a distinct part of the structural design
problem, However, when the relationship between the design variables
and sizing variables is not explicit, as in the case where the design
variables are the element reciprocal section properties (RSP’s) and the
sizing variables are the element CSD’s, then the detail design recovery
process can be quite complex and must be treated as a separate phase of
the structural synthesis methodology. Two basic types of detail design
recovery techniques are discussed in the following section for use in

conjunction with the RSP design space option described in Chapter IV.
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6.2 The Recovery Process

The detail design recovery process for the frame—truss synthesis
problem (in which the element sizing variables are the design element

CSD’s) can be viewed as a procedure for calculating the element CSD's

(?) from the vector of optimal generalized design variables f‘
corresponding to the solution of each approximate problem. In general,

such a procedure seeks the solution to the set of nonlinear equations

= = -
Z(Y) = Z
(6-1)
subject to the following restrictions on the element CSD'’s
vy
(6-2)

For the case where the element CSD’s are selected as the gemneralized
design variables (CSD design space option) the solution to Eq. (6-1) is

immediately given by

(6-3)
where it is recognized that the restrictions on the element CSD’s
represented by Eq. (6-2) have already been accounted for in the form of
bounds on Z (see Eq. (4-35)). Clearly, in this case, the recovery pro-
cess is computationally trivial and may be carried out without recourse
to iterative or approximate techniques. This is not, however, the case
when the synthesis procedure is carried out using the RSP design space
option. In this case the recovery process must attempt to solve Eqgs.

(6-1) (subject to the constraints represented by Eq. (6-2)) directly.
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It should be recognized that Eqs. (6-1) may mnot possess a solution
within the acceptable domain defined by Eq. (6-2) and, therefore, any
potential solution procedure must be capable of dealing with this possi-
bility, As a result, the design recovery procedure for the RSP design
space option will, in general, be approximate, Two such recovery pro-

cedures are discussed below.

Possibly the most natural method for recovering the element sizing
variables from the generalized design variables is to formulate the

recovery process as an element level optimization problem of the form

5. t. —n_gz;—zi('ngn ;o i=1,2,...M

L U
Y S- Y' -<.. Y' ; j = 1!2).00N
R (6-4)

where M and N are, respectively, the numbers of generalized design vari-
ables and cross sectional dimensions associated with a2 given design ele—
ment. This procedure seeks the solution to Eqs. (6-1), one design ele-
ment at a time, so as to minimize the maximum error in any one equation
while forcing the solution (Y) to lie within the allowable upper and
lower bounds (a similar method is suggested in Ref. 23). This procedure
will tend to yield the ’best’’ appro;imate solution to Eqs. (6~1) and, as
a result, has the advantage 6f;preserving. to the extent possible, the
quality of the behavior constrainf approximations, Unfortunately, the
recovery scheme summarized by Eqs. (6—-4) would reqiire the solution of

many (equal to the number of design elements for each approximate
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problem stage) nonlinear mathematical programming subproblems. This
would be computationally burdensome and therefore the recovery scheme

represented by Eqs. (6-4) has not been implemented in this work.

An alternative recovery procedure, which has been implemented
here, was first used in Ref, 29. This procedure makes direct use of the
previously constructed approximate 1linear relationships between the
changes in the element CSD's {AY} and the changes in the generalized
design yariables {AZ} (see Eq. (4-9)). This relationship can be written

R

) = [21] 1z

where Eﬁﬂ is constructed as described in Chapter IV. Using Eq. (6-5)

(6-5)

the actual recovered values for the element CSD’'s are given by
(Y} = {Y,)} + (AY)

(6-6)
where [Yo} contains the values of the element CSD’s at the beginning of
the design stage. Clearly, this procedure requires few additional com-
putations and, therefore can be applied efficiently to 1large problems,
The main disadvantage of the method lies in the fact that the linear
approximation (Eq. (6-5)) may be valid for only relatively small changes
in the generalized design variables, This can require the use of tight
move limits which, in turn, can make it necessary to construct and solve
an excessively large number of approximate design problems, Fortunately,
this difficulty can be effectively overcome by using the approximate
problem update technique (described in Chapter IV) in which the rela-

tionships given by Eq. (6-5) are periodically updated during the
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solution of an approximate design problem while holding the results of
the structural analysis and behavior constraint sensitivity analysis

invariant (until the beginning of the next stage).
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CHAPTER VIIX

Program Description

7.1 Introduction

The frame—truss synthesis methodology described in Chapters II-VI
has been implemented in the COMPASS (Computer Program for Analysis and
Synthesis of Space—frames) computer program. This program is intended
to serve as a research code for the study and development of practical
and efficient synthesis techniques for structural systems whose essen—
tial structural behavior requires a bending—membrane element representa—
tion. While primarily a research tool, the program is capable of solv-
ing problems 1large enough to be of some practical interest. Although
its primary function is structural design, the program can be used for
basic structural analysis, with or without design modelling data. A
command oriented input data structure makes the program relatively easy
to use. Also, the programs modular organization and in-core storage
management system serve to facilitate future expansion and development

efforts.

1.2 Scope of Program

The COMPASS program is currently capable of determining the
minimum mass design of three dimensional frame—truss structures subject
to multiple static loading conditions. The structurel topology, confi-

guration, material and loading information is supplied in the form of a
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finite element—analysis ﬁodel and is assumed to be invariant during the
design process. The structural behavior (nodal displacements and member
end forces) is determined via a linear displacement method finite ele-
ment technique, wusing a combination of space frame and truss elements

(see Appendix A).

The structural synthesis problem is solved using the sequence of
aﬁproximate problems approach pioneered by Schmit et al., (Refs. 11-12),
Both a first order Taylor's series approximation and"g mixed wvariable
approximation (Ref., 36) are available for construction of the explicit
behavior constraint functions., Each approximate problem is constructed
and solved in a generalized design variable space, consisting of either
cross sectional dimensions (CSD’s) or a combination of reciprocal sec—
tion properties (RSP's) and CSD’s, with the ultimate goal being that of
determining optimnm values for the element sizing variables, These siz-
ing variables are associated with the varioﬁs design element cross sec—
tion shapes described in Appendix C. User specified bounds on the ‘ele-
ment sizing variables prevent the design from assuming unrealistic
dimensions. Move limits can also be applied to the design variables to
ensure that the behavior of all candidate degigns is well represented by
the approximate problem. A degign element 1linking capability which
links all sizing variables between: #elected design elements is also

available.

The COMPASS program allows the user to design against a variety of
failure modes. Limits on nodal displacements and rotations and on

design element strength (e.g. stresses and local buckling) can be
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treated. Differences in the design element cross section shapes require
that, in general, the strength failure criteria be tailored to the
specific design element. The failure criteria for the various design

elements are described in Appendix C.

The approximate design problem may be solved using either a primal
or dual mathematical programming algorithm depending on the users choice
of design space and constraint approximation technique. The CONMIN
(Ref. 43) computer program, based on a feasible directions method (Ref.
43), is used to solve the primal form of the approximate design problem.
The solution to the dual form of the design problem is based on the
development described in Ref. 48; with the CONMIN program being used to
perform the actual dual function maximization, The available combina-—
tions of optimization method, design space and constraint approximation

techniques are illustrated in Fig. 5.

7.3 Organization

The basic program organization is shown in Fig. 6, Pre and post
processing routines are provided to perform one time input and output
data processing functions. The design control routine directs the exe-
cution of the following four primary design functions; (1) structural
analysis, (2) approximate problem generation, (3) optimization and (4)

detail design recovery.

The design process begins with the structural analysis phase from
which exact values for the structural behavior quantities (nodal dis-

placements and element end forces) are obtained based on the initial
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design input. The approximate problem generation routine then performs
the following operations; (1) design variable selection and linking (2)
constraint evaluation, (3) constraint deletion, and (4) objective func-
tion and retained constraint approximation, The eapproximate design
problem is then passed on to the optimization routine where the re—
design function is performed. Finally, the design element sizing vari-
ables are calculated from the design variables in the detail design
recovery phase. The new design is then passed back to the design con-
trol block where the entire process is repeated until design convergence

is achieved.

Under certain circumstances the user may wish to periodically
bypass the structural analysis phase, proceeding directly to the approx-
imate problem generator as depicted by the dashed line in Fig. 6. Ih
this case the approximate problem is updated without recourse to struc-
tural analysis or response quantity sensitivity calculations as outlined
in Chapter IV, The approximate problem updating procedure allows the
high quality displacement derivatives to be utilized over larger changes
in the design variables than would otherwise be possible, It is impor-
tant to note that considerable gains in solution efficiency can be real-
ized by bypassing the strﬁctural analysis and displacement derivative

calculations in this way.
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1.4 Storage Management

Program data storage menagement is one of the most important con-
siderations in program development. Unfortunately, in research program—
ming it is often times ignored. It is generally agreed that some type
of centralized data base management system (Ref. 49-50) is essential to
the development of modern large scale engineering analysis/synthesis
programs, However, it is 1less clear that the implementation of such
data base management schemes in a research code is time and/or cost
effective. The COMPASS program utilizes an in—core storage management
facility which attempts to provide some of the benefits of gemeral data

base management within the constraints of the research enviromment.

'The basic concept-behind the storage management system implemented'
here 1is shown in Fig. 7. The storage manager consists of three parts;
(1) a data vector, (2) a dictionary and (3) a void area table. All pro-
gram data is stored within the data vector while the associated descrip—
tions, locations and lengths are stored in the dictionary. The void
area table contains the locationé and lengths of unused portions of the
date vector that may appear as the program data storage is altered dur-
ing execution. While the storing of program data in a single data vec-
tor is quite common in engineering programming, the associated descrip—
tive information 1is wusuvelly maintained outside of the program. Here,
the programmer is allowed complete control over the access, creation,
deletion and alteration of data storage from within the program through
the use of a variety of storage management commands (Fig. 8). Such a

capability 1leads to increased programming flexibility and facilitates
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program maintenance and development. Finally, although the use of such
a storage management system does increase solution time, computational
experience indicates that these increases are small when the system is

efficiently applied.

7.5 Implementation

The COMPASS program is operational as a stand alone program on the
IBM 3033 computer using the MVS/SP operating system. The program con—
sists of approximately 14,000 Fortran, 1000 PLI and 50 Assembler state—
ments. The current version of the program requires approximately 650 K
bytes of memory, excluding data storage. Program storage requirements
may be considerably reduced, however, by taking advantage of the
program's structure through the use of overlay or segmentation tech-
niques. The detailed flow diagrams shown in Figs., 9-17 are provided as
a guide for the overlay process. It should be mnoted, however, that
memory savings realized through the overlay process may not be signifi-
cant for problems in which the data storage is large compared to the

program storage.

The standard I/0 device unit designations (FTOS and FT06 for For-
tran, SYSIN and SYSPRINT for PLI) are used for program input and output.
Auxiliary external files are also required for certain program options.
File numbers 10 and 11 are required for all problems for which multiple
boundary condition sets are specified. File number 12 is required if
the approximate problem generation update procedure is enabled. For

problems requesting program data checkpoint or restart options the wuser
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must define the files associated with the checkpoint or restart file

numbers.

The implementation of the COMPASS program on other computer sys—
tems would require some program modifications, For computer systems on
which the PLI programming language is available the required modifica-
tions are relatively minor and confined to the storage management sub-
routines, On systems where the PLI programming language is mnot avail-
able the input data subroutines would have to be rewritten in Fortran or
some other sunitable language. The small amount of Assembler code is
used only for CPU timing and is easily replaced by any equivalent system

CPU timing routine.

7.6 Input Data Commands

The COMPASS program input data format is designed to be easily
used and highly flexible. A problem oriented free format command
language is coupled with a data scanning feature to provide a data entry
method which is essentially free of orgamizational and formatting res-
trictions., For convenience, the data input stream is divided into three
sections; (1) analysis data, (2) design data and (3) control data. Each
section is headed by a data block command. Commands which describe the
structure and its loading are supplied in the analysis data block. This
data is similar to that provided to most finite element structural
analysis programs., The design data block is used to supply the informa-
tion associated with the structural design problem (e.g. initial design

data, side constraints, and behavior allowables). Finally, all of the
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program control information is supplied via the control data block.

Three input data command forms are shown in Fig. 18. All of the
program data commands appear in one of these three basic forms (or
slight variations thereof). In form 1 the command is followed on the
same line by its associated data, A command followed by several
separate lines of data is shown in form 2. Finally, form 3 shows a com—
mand followed by several lines of sub—commands and data, In all cases,
only the underlined portion of the commands or sub—commands need to be
given, However, inclusion of the full command phrase is allowed. Some
commands contain optional data (demoted by & quantity enclosed in brack-
ets, e.g. [data]l) which may or may not be specified at the user’s dis-
cretion as outlined in the command description. In this case a default
value is assigned for the missing data item. Comment cards are allowed
in the data stream and are designated by placing a dollar sign (§) in
column 1 of the data card. Data may also be continmed from one card to
the next by placing a continuation character (-) in column 72 of the
card which is to be continued. Data entity (element, node, load set,
etc.) numbering is also unrestricted. For example, node point numbering
does not have to begin with the number 1 or be in ascending order. The
available data commands are described in Appendix E. A set of sample

data input is shown in Fig. 19.
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7.7 Restrictions and Limitations

The COMPASS program has relatively few operational restrictionms,
The major restriction is that of problem size. Like most programs which
make extensive use of an in—core data structure, the maximum solvable
problem size is dependent on the amount of computer memory aveilable.
The use of the storage management system described in Section 7.4 helps

to alleviate this problem but does not eliminate it.

The dynamic nature of the synthesis problem makes data storage
requirements difficult to estimate., In general, however, tﬂe problem
data requirements are most effected by the number of degrees of freedom
and bandwidthk in the analysis model and the number of design variables
and constraints in the design model. Careful attention to node number-
ing will help reduce the analysis model bandwidth. To the extent that
it is possible, design variable linking can help to reduce the dimen—

sionality of the design space.
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CHAPTER VIII

Numerical Examples

8.1 Introduction

In this chapter, the detailed results for numerous structural syn-
thesis probiems are presented. Each problem has been solved using the
previously described frame-truss synthesis methodology as implemented in
the COMPASS computer program on the IBM 3033 at UCLA. The example prob-
lems were selected so that, in addition to exercising the various solu-
tion options outlined in Table 1, the results could be compared with
previously published work., The types of problems solved include both
planar and three dimensional frame—truss structures subject to multiple
static loading conditions with constraints on nodal
displacements/rotations and on element strength (e.g. stress and local
buckling). These problems contain frame members having various cross
sectional shapes including: 1) a thin walled box beam with 4 cross sec-
tions dimensions (CSD's) (B, H, tb' th). 2) an I beam symmetric about
the x-y plane with 6 CSD's (Bl’ BZ' H, tys ty, t3). 3) a solid square
beam with 1 CSD (B), 4) a thin walled tubular beam with 2 CSD's (R,t)

and 5) a thin walled box beam with 3 CSD’'s (B, H, t) (see Appendix C,

Figs. C3, C5-C8).
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8.2 Tied Cantilevered Beam (Problem 1)

Figure 20 depicts a tied cantilevered beam subject to two indepen—
dent loading conditions. The structure is modelled using one frame ele—
ment (member 1) and one truss element (member 2). The members are made
of materials having the same modulus of elasticity and weight density
but having different yield stress allowables, The truss member (design
element type 1) is described by its cross sectional area while the frame
member (design element type 13) has a square cross section with one siz—
ing variable (B). This structure is designed for minimum weight subject
to element stress constraints at the ends of each member and side con-
straints on the element sizing variables. A swmmary of the material
properties, loading conditions, constraint allowables, initial design
and bounds on the element sizing variables is given in Table 2., The

design element descriptions are given in Appendix C,

This problem was solved using four different solution options.
The iteration history data for these runs is given in Table 3. The
corresponding iteration history plots are shown in Figs. 21-24., In the
first three runs (options 1(P), 2(P) and 3(P)) the design is carried out
in the RSP design space using linear constraint approximations and 40%
move limits on the RSP's (dl = 0., d, = .4). Each approximate problem
is solved via a primal solution method (CONMIN). The differences
between runs 1, 2 and 3 lie in the assumptions made regarding the ele-
ment end force variations during the solution of each approximate prob-
lem. Comparison of the results for runs 1, 2 and 3 indicates little

difference in the number of analyses required for convergence as the
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amount of element end force sensitivity informatiom included in the
stress constraint approximations 1is increased. However, the final
design weight for run 3 is approximately 9% less than that of runs 1 and
2. This result is not unexpected since this problem is known to possess
several 1local minimum solutions (Ref. 51). It is, however, interesting
to note that this solution was obtained as a result of an improvement in

the quality of the constraint approximations.

The fourth run (option 6(P)) for this problem is the same as run 3
except that the element stress constraints are approximated ;ia a mixed
variable (hybrid) approximation. There is no improvement in the conver—
gence rate in this case; indeed the results are identical to those in
run 3, This is due to the simple form of the stress constraints which

are well approximated in terms of the design element RSP'’s,

The final designs and critical. constraints for runs 1-4 are
shown, along with those of the reference solution (Ref. 51), in Tables 4
and 5. The three reference solutions, designated as Method I, Method
II-B and Method IV-B, were obtained using the same assumptions regarding
the element end force variations as runs 1, 2 and 3, respectively. The
comparisons between the final designs for runs 1-3 and the corresponding
reference solutions is quite good in terms of both final weight and
material distribution, The 1largest differences occur for run 2 where
the reference solution is approximately 3.3 1b. 1lighter. However, in

this case the stress constraints for the reference solution are slightly

® A critical constraint is defined here as any constraint having
an associated response ratio (ratio of the response value
to its allowable) greater than or equal to .95.
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violated (see Ref. 51). Also, it is interesting to observe that the
solution obtained in runs 3 and 4 is distinctly different than that of
runs 1 and 2 both in terms of material distribution and critical con-
straints. Again, this is not unexpected since the structure clearly has

two competing primary load paths,

8.3 Two Member Frame (Problem 2)

A two member plane frame subject to a single out of plane load is
shown in Fig. 25. This structure is modelled using two thin walled box
section frame elements (type 11) having four sizing variables (B, H,
tb’ th). Both members are made of the same material. The two member
frame is designed for minimum mass subject to two independent sets of
constraints, The first set (Case A) includes stress constraints on both
members and side constraints on the element sizing variables. The
second set (Case B) consists of the constraints included in Case A with
the addition of constraints against local wall buckling of the members.
A summary of the material properties, loading conditions, constraint
allowables, initial design and bounds on the element sizing variables is

given in Table 6. The design element is described in Appendix C.

8.3.1 Case A: Stress and Side Constraints

This case was solved using eight different solution optionms. The
iteration history data for these runs is given in Table 7. The itera-
tion history plots are shown in Figs, 26-33. The first three runs

(options 1(P), 2(P) and 3(P)) are made using the RSP design space option
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and linear constraint approximations. Each approximate problem is
solved via a primal solution method (CONMIN) with 40% move limits on the
RSP’s (d1 = 0., d) = .4), The differences between runs 1, 2 and 3 lie
in the assumptions made regarding the element end force variations dur-
ing the solution of each approximate problem. Comparison of the results
for runs 1-3 shows 1little change in terms of the number of analyses
required for convergence. However, the results do imﬁrove in terms of
the maximum constraint violation for intermediate designs as the amount
of element end force semnsitivity information contained in the approxi-
mate problem is increased. Indeed, in the case where the element end
forces are assumed to be dependent on all of the design variables (run
3) most of the intermediate designs are feasible. Again, this is not

surprising since the structure clearly has two competing load paths,

Due to the lack of significant convergence improvement for either
the 1local or global element end force variation options, the remaining
runs were made assuming that the element end forces are invariant during
the solution of an approximate problem. Run 4 (option 4(P)) is the same
as run 1 except a mixed variable (hybrid) approximation is ﬁsed for the
stress constraints and the move 1limits are increased to 50%
(d1 =0., d2 = ,5) on the RSP's. Comparison of the iteration histories
for runs 1 and 4 shows a slight improvement in convergence rate and a
significant improvement in terms of maximum constraint violation for
intermediate designs, ?specially considering the more liberal move lim—
its. This improvement can be attributed to the conservativeness of the
mixed variable approximation as compared to the pure linear approxima-

tion used in run 1, It is also interesting to note that the iteration
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history for run 4 compares guite favorably with that of run 3 indicating
that, at least for some problems, the mixed variable approximation may
be used successfully in place of higher levels of element end force sen-

sitivity information (without the associated computational expense).

In runs 5 and 6 (options 7(P) and 10(P)) the design is carried out

in CSD space with 25% move limits on the CSD'’s (d1 = ,25, 4 1.0).

5 =
Each approximate problem is solved using a primal solution method. In
run 5 the stress constraints are approximated using a linear approxima-
tion while in run 6 the mixed variable approximation is used. Com—
parison of the iteration histories for these runs shows superior results
in terms of both convergence rate and maximum constraint violation for
run 6. However, run 6 does have a slightly higher final mass resulting
from a different and slightly 1less efficient material distribution,

Also, run 6 compares well with run 4 except, again, for the slightly

higher final mass.

Run 7 (option 10(D)) is the same as run 6 except that each approx-
imate problem is solved using a dual solution method. Comparing the
iteration histories for runs 6 and 7 reveals little significant differ—
ence. For this problem the dual solution method appears to be more
of ficient even though the numbers of retained constraints and design

variables are the same.

The final run (option 1(PU)) is the same as run 1 except that the
approximate problem update procedure is used. In this case the approxi-
mate problem is reconstructed, without recourse to structural analysis

or response quantity sensitivity calculations, once between each
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complete approximate problem generation., Comparison of the iteration
histories for runs 1 and 8 shows an improvement in the comvergence rate
by a factor of two while maintaining comparable maximum constraint vio—
lations for the intermediate designs. The number of structural analyses
required for convergence in this case is 7, resulting in the best con-

vergence rate of all solution options used for this problem,

The final designs and critical. constraints for runs 1-8 are
given, along with those of the reference solution (Ref. 29) in Tables 8
and 9. All of the final designs represent the same (intuitively
correct) design concept. The sizing variables of the longer member (1)
are at their lower bounds, with most of the load being carried through
the shorter member (2) and the critical stresses occurring at the fixed
end of this member., While these designs are conceptually the same it is
interesting to note that there are two competing means of carrying the
load through member 2. In the final designs for runs 1-5 and 8 member 2
achieves nearly the maximum allowable outer dimensions (B,H) and minimum
thickness (tb. th). However, the final designs for the reference solu-
tion and runs 6 and 7 have a significantly smaller base dimension (B)
and a larger wall thickness (tb). While the first design concept is
more efficient (and intuitively more satisfying), the final design
masses corresponding to the second design concept are only slightly
higher (1-3%). This is mnot too surprising since it has become well
recognized that many structural design problems do exhibit practical
local minima having relatively close values of the objective function.
As in this case, these local minima are often associated with distinct

design concepts.
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8.3.2 Case B: Stress, Buckling and Side Constraints

This case was solved using seven different solution options. The
iteration history data for these runs is given in Table 10, The itera-
tion history plots are shown in Figs. 34-40. As in Case A, the first
three runs (options 1(P), 2(P) and 3(P)) are made using the RSP design
space option and linear constraint approximations. Each approximate
problem is solved using a primal solution method with 40% move limits omn
the RSP's (d1 =0., d2 = ,4). Comparison of the iteration histories for
runs 1-3 indicates no change in the convergence rate and only slight
improvement in the amount of constraint violation for intermediﬂte
designs as the amount of element end force sensitivity information con-

tained in the approximate problem is increased.

Due to the lack of significant convergence improvement for either
the local or global element end force variation options, the remaining
runs were made assuming that tﬁe element end forces are invariant during
the solution of an approximate problem. Run 4 (option 4(P)) is the same
as run 1 except that a mixed variable (hybrid) approximation is used for
the stress and 1local buckling constraints and the move limits on the
RSP’'s are increased to 50% (d1 =0,, d2 = ,5). Comparison of rums 1 and
4 shows a slight improvement in convergence rate and a significant

improvement in the maximum constraint violation history, especially con-

sidering the larger move limits,

In runs 5 and 6 (options 10(P) and 10(D)) the design is carried

out using the CSD design space option with mixed variable stress and
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local buckling constraint approximations and 25% move 1limits on the
CSDh'’s (d1 = ,25, d2 = 0,). The approximate problems are solved using a
primal and a dual solution method, respectively. In this case, com—
parison of the iteration histories with those of the designs obtained
using the RSP space design option (runs 1-4) indicates only slightly
better convergence rate but a significantly improved maximum constraint
violation history, Indeed, in botk runs 5 and 6 most of the intermedi-
ate designs are feasible. However, it should be noted that both of
these runs have final mass values slightly greater than runs 1-4,

resulting from a somewhat 1less efficient material distribution (see

Table 11).

The final run (option 1(PU)) is the same as run 1 except that the
approximate problem update procedure;is used. As in run 8, Case A, the
approximate problem is reconstructed once between each complete approxi-
mate problem generation, Again, the use of this procedure results in a
significant improvement in the convergence rate, although the maximum
constraint violation for the intermediate designs are quite large. The
number of structural analysis required for convergence in this case is

7, the best of all solutions options used for this problem.

The final designs and critical. constraints for rumns 1-7 are
given, along with those of the reference solution (Ref. 29), in Tables
11 and 12, Again, as in Case A, all of the final designs represent the
same overall design concept with the load being carried through the
shorter member (2)., Also, as in Case A, the same two competing me#ns of

carrying the load through member 2 are present. They are represented by
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the designs from runs 1-4, 7 and the reference solution and runs 5-6,
respectively. It is interesting to note, however, that in this case
these competing design concepts not only have different final masses but
they also are associated with different sets of critical constraints
(see Table 12). In runs 1-3 and 7, the large base dimension (B) and
small base thickness (tb) lead to both critical stress and local wall
buckling constraints. On the other hand, the narrower and thicker base
wall dimensions (B.tb) for the final designs of the reference solution

and runs 4-6 preclude criticality of the wall buckling constraint.

8.4 Three Member Frame (Problem 3)

Figure 41 depicts a three member planar frame subject to two
simul taneous out of plane loads. This structure is constructed of three
thin walled box section frame elements (type 15) each having three siz-
ing variables (B, H, t). All members are made of the same material,
The three member frame is designed for minimum material volume subject
to constraints on the maximum allowable member stresses. A summary of
the material properties, loading conditions, constraint allowables, ini-
tial design and bounds on the element sizing variables is given in Table

13, The design element is described in Appendix C,

This problem was solved using seven different solution optionms.
The iteration history data for these runs is given in Table 14. The
iteration history plots are shown in Figs. 42-48. The first three runs
(options 1(P), 2(P) and 3(P)) are made using the RSP design space option

and linear constraint approximations. Each approximate problem is
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solved via a primal solution method with 50% move limits on the RSP’s
(d1 =0,, d2 = ,5), The differences between runs 1, 2 and 3 lie in the
assumptions made regarding the element end force variations during the
solution of each approximate problem. Comparison of the iteration his-
tories for these runs reveals no difference in the convergence rate for
the three solution options. However, there is a substantial difference
between runs 1 and 3, and run 2 in terms of the maximum constraint vio-
lation for several of the intermediate designs. Two interesting obser—
vatiéns can be made here. First, the performance of the solution
options 1(P) and 3(P) are nearly identical even though it would appear
that, for a statically indeterminate structure such as this, the global
element end force variation option (3(P)) would yield superior results.
Secondly, the local element end force variation option (2(P)) yields
substantially poorer results in terms of maximum constraint violation
than the invariant option (1(P)), particularly during the early stages
of the design. This behavior can be attributed té the fact that,
although the structure is statically indeterminate, the symmetry of the
structure and loading leads to a synthesis problem in which the coupling
member (2) tends to vanish, thereby reducing the problem to the design
of two determinate cantilevered beams (members 1 and 3). It should now
be recognized that the local element end force variation option may, in
some cases, lead to constraint approximations which are of poorer qual-
ity than those resulting from the assumption that the element end forces

are invariant during the solution of the approximate problem.
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Based on the results of runs 1-3, the remaining runs for the prob-
lem were made using the invariance assumption for the element end
forces. Run 4 (option 4(P)) is identical to run 1 except that a mixed
variable (hybrid) approximation is employed for the stress constraints
and the move limits are increased to 60% on the RSP's

(d, = 0., d, = .6). Comparing the iteration history for run 4 with

1
those of runs 1-3 shows a moderate improvement in the convergence rate
and, considering the more liberal move limits, a significant improvement

in maximum constraint violation history.

In runs 5 and 6 (options 10(P) and 10(D)) the design is carried
out in the CSD design space with 30% move 1limits on the CSD’s
(d1 = .3, d2 =0.). Mixed variable constraint approximations are
employed for the stress constraints., For run 5 a primal method is used
to solve each approximate problem, while &8 dusl method is used in run 6.
Both zruns yield essentially the same iteration histories, comparing
favorably with those generated via the RSP design space option (runs 1-
4). Note that the maximum constraint violations for the intermediate
designs are quite small with nearly all of these designs being feasible.
Also, it is interesting to note that the dual solution method proves to
be more efficient than the primal even though the number of retained
constraints is greater than the number of design variables (16 as com—

pared to 9),

The final run (optiom 1(PU)) is the same as run 1 except that the
approximate problem update procedure is employed. As in the previous

problem (Two Member Frame) the approximate problem is reconstructed,
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without recourse to structural analysis or response quantity sensitivity
calculations, once between each complete approximate problem gemeration.
Comparison of the iteration histories for runs 1 and 7 indicates an
improvement in the convergence rate by a factor of two while maintaining
comparable maximum constraint violations for the intermediate designs
(except in stage 1 where the violated constraint was not retained).

Again, convergence was achieved after only 7 structural analyses.

The final designs and critical‘ constraints for runs 1-7 are
shown, along with those of the reference solution (Ref. 52), in Tables
15 and 16. All of these designs represent the same (intuitively
correct) design concept in which member 2 achieves its minimum allowable
dimensions and the loads are carried through to the supports by members
1 end 3. All of the designs have essentially the same final material
volume and material distribution, The somewhat smaller material volume
(less than 1%) of the reference solﬁtion can be attributed to a slightly
different stress constraint formulation (compare Ref. 52 and Appendix

C).
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8.5 Seven Member Frame (Problem 4)

A seven member planar frame structure subject to two independent
in-plane loading conditions is shown in Fig. 49. This structure is
modelled with seven thin walled box section frame elements (type 15)
having three sizing variables (B, H, t). All members are made of the
same material. The framework is designed for minimum mass subject to
limits on the vertical displacements at mnode 3 and the allowable
stresses at the ends of the members. It should be noted that the refer—
ence solution (Ref. 28) also included constraints on the lowest funda-
mental frequency, however this constraint did not participate in the
dosign process. A summary of the material properties, loading condi-
tions, constraint allowables, initial design and bounds on the element
sizing wvariables is given in Table 17. The design element is described

in Appendix C.

The seven member frame problem was run using seven different solu-
tion options, The iteration history data for these runs is given in
Table 18. The iteration history plots for runs 2-7 are shown in Figs,
50-55. In the first three runs (options 1(P)), 2(P) and 3(P)) the RSP
design space option and linear constraint approximations are employed.
Each approximate problem 1is solved via a primal solution method using
move 1limits of 40% on the CSD's and 100% on the RSP’'s
(dl = .4, d, =1.0.). The differences between runs 1, 2 and 3 lie in
the assumptions made regarding the element end force variations during
the solution of each approximate problem. In run 1 the element end

forces were assumed to be invariant during the solution of the approxi-
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mate problem, In this case, convergence was not attained within 20
design stages. The strong coupling among the members in the structure
was not adequately represented by the constraint approximations. For
runs 2 and 3, where the local and global element end force variation
options are used, convergence is achieved after 16 structural amalyses.
Comparison of the iteration histories for runs 2 and 3 shows signifi-
cantly improved maximum constraint violations for rum 3, especially dur-
ing the early stages of the design, as well as a slightly improved final

design mass.

Based on the results of the first three runs, the remaining runs
were made using the assumption that the element end forces are dependent
on all design variables in the structure. Run 4 (option 6(P)) is the
same as run 3 except that mixed variable (hybrid) constraint approxima-
tions are employed. In this case there is no convergence rate improve-
ment over zrun 3 and only a small improvement in the maximum constraint

violation for intermediate designs.

The CSD design space option and mixed variable constraint approxi-
mations are used in runs 5 and 6 (options 12(P) and 12(D)). For run 5,

40% move limits are placed on the element CSD’'s (d, = .4, d2 = 0.) and

1

each approximate problem is solved via a primal solution method. In run

6 the move limits are 30% on the CSD's (d, = .3, d, = 0.) and a dual

1 2
solution method is employed. Comparison of the iteration histories for
runs 4 and 5 shows little difference in performance, between the RSP and

CSD design space options, There is, however, an improvement in the con-

vergence rate in rum 6. It should be noted, however, that while the
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convergence <rate is improved the solution time is significantly greater
due to the fact that there are over twice as many retained constraints
as design variables (and therefore the dimensionality of the dual space

is much larger than the primal space).

The final run (option 3(PU)) is identical to run 3 except that the
approximate problem update procedure is employed. As in the previous
two problems, the approximate problem is updated once between each com—
plete approximate problem generation. Comparing the iteration histories
for runs 3 and 7 one can see that run 7 requires 50% fewer structural
analyses for convergence while maintaining comparable performance in

terms of the maximum constraint violation for intermediate designs.

The final desigps and critical‘ constraints for all runs are
shown.' along with those of the reference solution (Ref. 28), in Tables
19 and 20, VWhile all of the designs have nearly the same final mass
values there is considerable difference in the material distributions
and a slight variation in the critical constraint sets. This type of
behavior is not uncommon and was also observed in Ref, 28, Aside from
this, two other observations can be made here. First, even though the
material distributions are quite different, members 5 and 6 are con-
sistently small for all cases. Secondly, the final design which most

closely matches the reference solution (run 2) utilizes the same element

end force variation assumption used to gemerate the reference solution,
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8.6 Portal Frame (Problem §)

Figure 56 depicts a three member planar frame subject to two
independent loading conditions. All of the members are made of the same
material and have the same cross section (symmetric I section with six
sizing variables (Bl' B,, H, t5, t,, t3)). The structure is designed
for minimum material volume subject to constraints on the 1lateral dis-
placement and in-plane rotation at node number 3, stress constraints at
the ends of each member and local buckling constraints for the web and
flanges of the members. A summary of the material properties, loading
conditions, constraint allowables, initial design and bounds on the siz-
ing wvariables is given in Table 21. The design element is described in

Appendix C.

This problem was solved using five solution optionms. The itera-
tion history data for these runs is given in Table 22. The correspond-
ing iteration history plots are shown in PFigs. 57-61, In the first
three runs (options 1(P), 2(P) and 3(P)) the design is carried out in
the RSP design space (note that since the cross section has six CSD’s
the actual design variables include 4 RSP’'s and 2 CSD’s) using linear
approximations of the constraints. Each approximate problem 1is solved
via a primal solution method with move limits of 40% on the CSD’'s and
60% on the RSP's (d1 = .4, d, = .6). Comparing the iteration histories
for runs 1-3 one can clearly see that the superior results (in terms of
the number of analyses required for convergence) are obtazined in run 3
where the element end forces are assumed to be dependent on all of the

structural design variables, This is not unexpected since the structure
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clearly has two competing 1load paths, While run 3 exhibits the best
convergence, it does result in a final design which has a material
volume 4% greater than that obtained in run 1. Again, this is not too
surprising as this problem is known to possess several local minimum

solutions (Ref. 13).

Based on the results of runs 1-3, runs 4 and 5 (options 12(P) and
12(D)) were made using the global element end force variation option.
The CSD design space option and mixed variable (hybrid)‘ behavior con—
straint approximations are employed. In both cases 40% move limits are

placed on the element CSD's (d1 = ,4, d, = 0.). Each approximate prob-

2
lem is solved via a2 primal solution method in run 4 and a dual solution
method in run 5. Comparison of the iteration histories for these runs
reveals relatively 1little difference in convergence rate and overall
maximum constraint violation for the intermediate designs. The final
design material volume for run 5§ is slightly less than that of run 4 but
the design is also slightly infeasible. Comparing results of zrun 4-5
with runs 1-3 reveals a significant difference in the final design
material volumes between those obtained from the CSD design space option
and those obtained from RSP space (10.2% — 13.6%). VWhile, again, this

is not unexpected for this problem it is interesting to note that alter—

native design was obtained as a result of a change in the design space.

The final designs and critical' constraints for runs 1-5 are
given, along with those of the reference solution (Ref. 13), in Tables
23 and 24. Comparison of these final designs, both in terms of final

material volume and material distribution, clearly reveals the existence
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of at least two local minimum solutions associated with distinct design
concepts. In the case of the reference solution and runs 1-3 both pri-
mary load paths (members 1-2, member 3) contribute significantly to the
load carrying capacity of the structure. On the other hand, in runs 4
and 5 the load path through member 3 is clearly abandoned in favor of

the apparently more efficient path through members 1 and 2.

8.7 One Bay/Two Story Frame (Problem §6)

A one bay/two story frame structure subject to two independent
loading conditions is shown in Fig. 62, This structure is modelled with
eight thin walled tube elements (type 14), each having two sizing vari-
ables (R, t). All of the members are made of the same material, This
structure is designed for minimum weight subject to two independent sets
of constraints, The first set (Case A) includes stress constraints at
both ends of each member, side constraints on the element sizing vari-
ables and constraints against both local and column buckling of each
member. The local buckling constraints are applied in the form of upper
bounds on the member R/t ratios. The second set of constraints (Case B)
includes all of the constraints in Case A with the addition of con-
straints on the lateral displacements at node numbers 2-7. It should be
noted that while these two sets of constraints are quite similar to
those used in generating the reference solution (Ref. 21), they are not
identical. Additional constraints on the stresses and displacements at
intermediate points along the members were included in Ref. 21, however,
none of these constraints were reported as being critical in the final

design. Also, the effective column length parameters used in the column
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buckling constraint calculation were periodically wupdated in Ref. 21
while these parameters were held constant (equal to the values
corresponding to the final design of Ref. 21) in this work. A summary
of the material properties, loading conditions, constraint allowables,
initial design and bounds on the element sizing variables is given in

Table 25. The design element is described in Appendix C.

8.7.1 Case A: Stress, Buckling and Side Constraints

The solution for Case A was obtained using five different solution
options, The iteration history data for these runs is given in Table
26. The corresponding iteration history plots are shown in Figs. 63-67.
The first two runs (options 1(P) and 3(P)) for this problem are made
using the RSP design space option and linear constraint approximations.
The gpproximate problems are solved via & primal solution method with
40% move limits on the RSP's (d1 =0., d, = .4). Comparison of the
iteration histories for runs 1 and 2 shows a slight improvement in the
maximum constraint violation for the intermediate designs when the glo-
bal element end force variation option is employed (rum 2). It is, how-
ever, worthwhile to note the considerable increase in the solution time
resulting from the required element end force response quantity calcula-

tions.

Run 3 (option 6(P)), in this case, is the same as run 2 except
that mixed variable (hybrid) approximations are used for the behavior
constraints and the move limits are increased to 50% on the RSP’s

(d1 =0., d2 = ,5). Comparing these results with run 2 indicates little
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significant difference in terms of either convergence rate or maximum

constraint violation history.

The final two runs for this problem utilize the CSD design space
option and mixed variable behavior constraint approximations. The
approximate problems are solved via a primal method in run 4 and a dual
method in run 5 with move 1limits of 30% (d1 = .3, d2 = 0.) and 15%
(dl = ,18§, d2 = 0.) on the element CSD’'s, respectively. Comparing the.
iteration histories for these two runs one can observe significantly
poorer performance in the case where the dual solution method was used.
This can basically be attributed to large numbers of retained con-
straints (as many as 5-6 times the number of design variables) resulting
in poor convergence of the optimizer. As a result of the optimizer con—
vergence problems, relatively small move limits were required leading to
an increase in the number of design stages needed for overall problem
convergence. Comparison of runs 3 and 4 <reveals that, although the
design spaces are difference, there is little difference in the conver-
gence rate., There is, however, significant difference in the maximum
constraint violation histories, especially during the early stages of

the design process.

The final designs and critical‘ constraints for this case are
given, along with those of the reference solution (Ref. 21), in Tables
27 and 28. All of the designs have essentially thé same final weight
with the 1largest difference (between strictly feasible designs) occur—
ring between the reference solution and run 2 (less than 1.4%). The

critical constraiats _nte also nearly identical. It is interesting to
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note that the material distributions for all of the final designs are
remarkably similar considering the considerable variations that one
often encounters for frame type problems. This behavior is most likely
due to the fact that the R/t constraints are critical for all of the
members in the structure thereby effectively reducing the design freedom

to one variable per member,

8.7.2 Case B: Displacement, Stress, Buckling and Side Constraints

This case was solved using five different solution options. The
iteration history data is given in Table 29 and the corresponding itera-
tion history plots are shown in Figs. 68-72., Runs 1 and 2 (options 1(P)
and 3(P)) are made using the RSP design space option and linear con-
straint approximations. Each approximate problem is solved via a primal
solution method with move limits of 40% on the RSP’s (d1 = 0., dz = .4).
The results for these runs are essentially the same, both in terms of
convergence rate and maximum constraint violation for the intermediate
designs., It is important to note that, contrary to Case A where an
improvement in the maximum constraint violation history was observed
when the global element end force variation option was employed (compare
runs 1 and 2, Table 26), here there is little constraint violation
improvement for run 2 as compared to run 1. This is due to the fact that
the column buckling constraints play only a small role in the design
process (i.e., the design is essentially displacement and R/t con-

strained, see Table 31).

88



Based on the results of runs 1 and 2, the remaining runs for this
case are made using the invariance assumption for the element end
forces, Run 3 (option 4(P)) is the same as run 1 except that the
behavior constraints are approximated via a mixed variable approximation
and the move 1limits are increased to 50% on the RSP’'s
(d1 =0., d2 = ,5). Comparison of the iteration histories for runs 1
and 3 reveals an improvement in the maximum constreint violation history
for run 3 (considering the more liberal move limits) but no substantial

difference in the convergence rate.

The final two solutions (options 10(P) and 10(D)) are obtained
using the CSD design space option and mixed variable behavior constraint
approximations. The approximate problems are solved via a primal method
in run 4 eaend a2 dual method in rum § with move 1limits of 30%
(4 = .3, d, = 0.) and 15% (d; = .15, d, = 0.) on the element CSD's. As
in Case A, the use of the dual solution method yields poorer results due
to the large numbers of retained constraints (3-4 times the number of
design wvariables). Also, as in Case A, run 4 compares well with run 3
in terms of convergence rate but has a less attractive maximum con-

straint violation history.

The final designs and criticaI‘ constraints for runs 1-5 are
given, along with those of the reference solution (Ref. 21), in Tables
30 and 31. Again, as in Case A, all of these designs have essentially
the same final weight, material distribution and critical constraint

sets.
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8.8 2 x5 Grillage (Problem 7)

Figure 73 depicts &8 2 x 5 grillage subject to a single 1loading
condition, This structure is modelled with thin walled box section
frame elements (type 11) each having four sizing variables
(B, H, tb, th). All members are made of the same material. Since both
the structure and its loading are symmetric a half model can be used in
solving the design problem. The grillage is designed for minimum
material volume subject to two independent sets of constraints. In the
first case (Case A) constraints are imposed on the vertical displace—
ments at nodes numbers 4, 7 and 10 and side constraints are placed on
the element sizing variables. The second set of constraints (Case B)
includes all of those in Case A with the addition of member stress and
local buckling constraints. A summary of the material properties, load-
ing conditions, constraint allowables, initial design and bounds on the
element sizing variables is given in Table 32. The design element is

described in Appendix C.

8.8.1 Case A: Displacement and Side Constraints

This problem was solved using five different solution options.
Since there are no stress or buckling constraints considered for this
case all of the solution options used here utilize the element end force
invariance assumption. The iteration history data for these runs is
given in Table 33. The corresponding iteration history plots are shown
in Figs. 74-78. The first two runs (options 1(P) and 4(P)) for this

case are made using the RSP design space option. In run 1 1linear con—
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straint approximations are employed while in run 2 mixed variable
(hybrid) approximations are constructed for the displacement con-
straints, Each approximate problem is solved via a primal solution
method with 40% move limits on the RSP's (d1 =0., d2 = .4)., Comparison
of the iteration history data for these runs reveals a slight improve-—
ment in the convergence rate for run 2 but no significant improvement in

the maximum constraint violation for the intermediate designs.

In runs 3 and 4 (options 10(P) and 10(D)) the design is carried
out in the CSD design space using mixed variable approximations for the
displacement constraints. The approximate problems are solved via a
primal method in run 3 and a dual method in run 4 with 40% move limits
on the CSD’'s. The results for these runs compare well with those of
runs 1 and 2 both in terms of convergence rate and maximum constraint
violation. The final design material volume is slightly smaller (.3 -
1,0%) for the designs generated using the CSD space option. The final
run (option 1(PU)) for this problem is the same as run 1 except that the
approximate problem update procedure is employed. Here, the approximate
problem is updated, without recourse to structural analysis or response
quantity sensitivity calculations, twice between each complete approxi-
mate problem generation. Use of the update procedure leads to an
improvement in the convergence rate by a factor of 2-2.7 while at the
same time yielding a slightly improved constraint violation history and
a final design material volume only 2.9% greater than run 1. It should

be noted here that, due to the absence of stress and buckling con-
straints, it is possible, in this case, to update the approximate prob-

lem more than once between complete approximate problem generations
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thereby making greater use of the high quality nodal displacement sensi-

tivities.

The final designs and critical‘ constraints for this case are
given, along with those of the reference solution (Ref. 29) in Tables 34
and 35. In all runs the critical constraint set at the final design
includes the vertical displacements at nodes 7 and 10. In runs 3 and 4
the vertical displacement at node 4 is also critical. The materiel
volume for the various final designs varies only slightly (the maximum
variation is less than 3%), however, the corresponding material distri-
butions are significantly different. Again, this result is not unex-
pected and can be attributed to a ''flatness’’ of the design space in the
neighborhood of the optimum design which has been observed to exist for

many statically indeterminate problems.

8.8.2 Case B: Displacement, Stress, Buckling and Side Constraints

This problem was solved using four different solution options.
Since it is expected that the local buckling constraints will play an
important role in the design process and that the element end forces are
strongly dependent on 2all of the problem design variables, all of the
solution options employ the global force variation option, The itera-—
tion history data for these runs is given in Table 36. The correspond-
ing iteration history plots are shown in Figs, 79-82. In the first two
runs (options 3(P) and 6(P)) the design is carried out in the RSP design
space using linear and mixed variable (hybrid) behavior constraint

approximations, respectively. Each approximate problem is solved via a
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primal solution method. In run 1 move 1limits of 20% and 40%
(d1 = .2, d, = .4) are placed on the CSD's and RSP’'s, respectively,
while in run 2 the move limits are 20% and 50% (d1 = .2, d2 = .5). Com-
paring the results for runs 1 and 2 shows little difference in the con—
vergence rate and only a small improvement in the maximum constraint

violation history when the mixed variable approximation is used (run 2).

In run 3 (option 12(P)) the design is carried out wusing the CSD
design space option and mixed variable approximation for the behavior
constraints. The approximate problems are solved via a primal solution
method with move limits of 30% on the element CSD’'s (d1 = .3, d, = 0.).
The dual solution option is not used here due to the 1large number of
retained constraints, The iteration history data for this run compares
well with that of run 2 both in terms of the convergence rate and

overall maximum constraint violation,

The final run (option 3(PU)) for this problem is the same as run 1
except that the approximate problem update procedure is used to update
the approximate problem once between each complete approximate problem
generation, The convergence rate for this run is improved over that for
runs 1-3, however, the maximum constraint violation history is slightly

less attractive.

The final designs and critical. constraints for this case are
given, along with those of the reference solution (Ref. 29), in Tables
37 and 38. Again, as in Case A, the material volumes corresponding to
the final designs are quite close, with the maximum variation being

approximately 5.6%. Also, as was the previous case, there are
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significant variations in the material distribution and slight differ-

ences in the critical constraint sets.

8.9 Two Bay/Six Story Frame (Problem 8)

A two bay/six story planar frame structure is shown in Fig. 83.
This structure is subjected to two independent loading conditions con-
sisting of both concentrated nodal loading and uniform loading of the
structural members. The structure is modelled with 30 thin walled tube
elements (type 14), each having two sizing variables (R,t). All of the
members are made of the same material, This structure is designed for
minimum weight subject to two independent sets of constraints. The
first set (Case A) includes stress constraints at both ends of each
member, side constraints on the element sizing variables and constraints
against both local and column buckling of each member. The local buck-
ling constraints are applied as upper bounds on the member R/t ratios.
The second set of constraints (Case B) includes all of the constraints
in Case A with the addition of constraints on the lateral displacements
at node numbers 1-18, As was mentioned in the previous discussion of
Problem 6, these two sets of constraints are not identical to those used
in generating the reference solution (Ref. 21). Additional constraints
on stresses and displacements at intermediate points along the members
were included in Ref; 21, hbowever, none of these constraints were
reported as being critical in the final design. Also, the effective
column length parameters used in the éolumn buckling constraint calcula-
tions were periodically updated in Ref. 21, while, in this work, these

parameters were held constant (equal to the values corresponding to the
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final design of Ref. 21)., A summary of the material properties, load-
ing conditions, constraint allowables, initial design and bounds on the
element sizing variables is given in Table 39. The design element is

described in Appendix C.

8.9.1 Case A: Stress, Buckling and Side Constraints

The solution for Case A was obtained using five different solution
options. The iteration history data for these runs is given in Table
40, The corresponding iteration history plots are shown in Figs. 84-88,
The first two runs (options 1(P) and 3(P)) for this problem are made
using the RSP design space option and linear constraint approximations.
Each approximate problem is solved via a primal solution method with 40%
move limits on the element RSP's (d1 =0., d2 = ,4), Comparisog of the
iteration histories for runs 1 and 2 shows a moderate improvement in
both the convergence rate and maximum constraint violation for the
intermediate designs when the global element end force variation option
is used (run 2). However, it is important to note the considerable
increase in solution time resulting from the required element end force

sensitivity calculations,

Run 3 (option 6(P)) is the same as run 2 except that mixed vari-
able (hybrid) approximations are used for the constraints and the move
limits are increased to 50% on the RSP’s (d1 =0.,4d, = .5). Comparing
these results with run 2 reveals a decrease in the number of analyses
required for convergence and an improvement in the overall maximum con-

straint violation history. However, the final design weight for run 3

95



is 1.4% greater than that of rumn 2.

The fourth run (option 12(P)) utilizes the CSD design space option
and mixed variable approximations for the behavior constraints. The
approximate problems are solved via a primal solution method with 40%
move limits on the CSD's (d1 = .4, d2 = 0,). Comparison of the itera—
tion history date for this run with that of run 3 reveals an increase in
the number of analyses required for convergence and a slight deteriora-
tion in the maximum constraint violation history. The final design

weight is, however, approximately 1% lower than that of rumn 3,

The omparing approximate problem update procedure is used. Here,
the approximate problem is updated once between each complete approxi-
mate problem generation. In this case the use of the update procedure

results in only a slightly improved coanvergence rate,

The final designs and critical‘ constraints for this case are
given, along with those of the reference solution (Ref. 21), in Tables
41 and 42, All of the final designs have essentially the same weight
with the largest difference occurring between runs 3 and 5 (approxi-
mately 1.6%). The material distributions and oritical constraint sets

are also very similar,
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8.9.2 Case B: Displacement, Stress, Buckling and Side Constraints

Case B was solved using five different sointion options, The
iteration history data for these runs is given in Table 43. The
corresponding iteration history plots are shown in Figs. 89-93. The
first two runs (options 1(P) and 3(P)) for this problem are made using
the RSP design option and 1linear constraint sapproximations, Each
approximate problem is solved via a primal solution method with 40% move
limits on the RSP’s (d1 =0., d, = .4). Comparison of the iteration
histories for runs 1 and 2 reveals a slight increase in the number of
analyses required for convergence and a small improvement in the maximum
constraint violation for the intermediate designs when the global ele—
ment end force variation option is used (rum 2). It is importamt to
note that, contrary to Case A where the overall design process was
improved through the use of the global element end force variation
option (compare runs 1 and 2, Table 40), here there is little signifi-
cant improvement. This is basically due to the fact that in Case B the
displacement constraints (whose approximations do not depend on the
choice of the element end force variation option) play and important

role in the design process (see Table 45).

Based on the results of runs 1 and 2, the remaining runs for this
case are made using the element end force invariance assumption. Run 3
(option 4(P)) is the same as run 1 except that mixed variable (hybrid)
approximations are wutilized for the behavior constraints and the move

limits are increased to 50% on the element RSP’'s (d1 =0,, d, = .5).

2

Comparison of the iteration histories for runs 1 and 3 reveals & signi-
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ficant improvement in the maximum constraint violation history for run 3
(especially when considering the more liberal move limits) but little

difference in the convergence rate.

The fourth run (option 10(P)) utilizes the CSD design space option
and mixed variable approximations for the behavior constraints. The
approximate problems are solved via a primal solution method with 40%
move limits on the element CSD’s (d1 = .4, d2 = ). Comparison of the
iteration history data for run 4 with that for runs 1-3 reveals a signi-
ficant improvement in the convergence rate for run 4 while maintaining a

comparable maximum constraint violation history.

The final run for Case B is the same as run 1 except that the
approximate problem update procedure is employed. Here, the approximate
problem is updated once between each complete approximate problem gen-—
eration, Comparing the results of run 5 with runs 1-3 reveals a sub—
stantial improvement in the convergence rate for run 5 with only a small
increase in the maximum constraint violation for the intermediate

designs.

The final designs and critical®* constraints for this case are
given, along with those of the reference solution (Ref. 21), in Tables
44 and 45, As in Case A, all of the final designs have essentially the
same weight with the largest difference being less than 1,6%. The
material distributions and critical constraints for the final designs

are also quite similar.
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8.1

Helicopter Tail Boom (Problem 9)

Figure 94 depicts a space frame idealization of a helicopter tail
boom subject to a single loading condition. All members are made of the
same material and have the same cross section (thin-walled tube with two
sizing variables (R,t)). This structure is designed for minimum weight
subject to constraints on the nodal displacements in the y and z direc—
tions et node numbers 5-28 and side constraints on the element sizing
variables. Stress constraints are also imposed at both ends of each
member along with column buckling and local wall buckling constraints
(in the form of R/t constraints). A summary of the material properties,
constraint allowables, loading conditions, initial design and bounds on
the element sizing vaeriables is given in Table 46. The design element

(type 14) is described in Appendix C.

This problem was solved using five different solution options,
Since this problem is expected to be essentially displacement and R/t
constrained all of the solution options chosen make use of the element
end force invariance assumption. The iteration history data is given in
Table 47. The corresponding iteration history plots are shown in Figs,
95-99. In the first two runs (options 1(P) and 4(P)) the design is car-
ried out in the RSP design space using linear and mixed variable
(hybrid) behavior constraint approximations, respectively. Each approx-
imate problem is solved via a primal solution method with move limits on

the RSP's of 60% (d1 =0., d2 = ,6) for run 1 and 70% (d1 =0., 4, = .7)

2
for run 2. Comparison of the iteration histories for these runs reveals

no difference in the convergence rate and only a slight change in the
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maximum constraint violation for the intermediate designs. It is
interesting, however, to observe that, even though the initial design is
highly infeasible (211.6%), near feasible designs are achieved after

only three design stages.

In runs 3 and 4 (options 10(P) and 10(D)) the design is performed
using the CSD design space option and mixed variable behavior constraint
approximations, The approximate problems are solved via a primal method
in run 3 and a dual solution method in run 4 with 40% move limits on the
CSD's (d1 = .4, d, = 0.). There is little difference in convergence rate
or maximum constraint violation for these runs, however, the dual solu-
tion method is less efficient here due to the large number of retained

constraints (twice the number of design variables).

The final run (option 1(PU)) for this problem is the same as run 1
except that the spproximate problem update procedure is employed. Here,
the approximate problem is updated, without recourse to structural
analygis or response quantity sensitivity calculations, once between
each complete approximate problem.generation. Comparison of the itera—
tion history for this run with those of runs 1-4 reveals a dramatic
improvement in both the convergence rate and the maximum constraint vio—
lation history. Also, it is important to note that the total solution
time is improved here due to the fact that the increase. . in optimization
time 4is more than offset by the decrease in analysis time (which
includes the time required for the approximate problem generation),
This improvement is expected to be much more dramatic for large practi-

cal problems where the solution of the structural analysis problem
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represents the primary computational burden.

The final designs and critical. constraints for this problem,
along with those of the reference solution (Ref. 21), are given in
Tables 48 and 49. 1In all cases, the critical constraint set at the
final design includes the displacement constraints at nodes 25 and 27
and the local wall buckling (R/t) constraints for mnearly all of the
members, Also, the final design weight and materiel distribution is
nearly the same for all runs. Finally, it is interesting to observe the
intuitively satisfying result whereby the 1lighter designs contain

slightly larger members at the base (fixed) end of the structure.
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CHAPTER IX

Conclusions and Recommendations

9.1 Conclusions

A synthesis methodology for the design of frame-—truss structures
subject to multiple static loading conditions has been developed. This
methodology has been implemented in the COMPASS computer program and has
subsequently been used to solve a variety of frame—truss synthesis prob-
lems, The numerical results presented here illustrate the feasibility
of obtaining near optimum designs after only 5-10 structural analyses

for most frame—truss structures,

While it is believed that the primary goel of this study has been
achieved, it is important to realize that attaining this goal has
required not only the introduction of & full gamut of approximation con-
cepts, but also the proper spplication of these technigques to the prob-
lem at hand. Unlike the truss—membrane synthesis methodology, which
tends to employ a rather standard set of approximation concepts to the
solution of most problems with uniform success, the key to the efficient
solution of a frame-truss design problem, in many cases, lies in the
thoughtful selection of appropriate approximation techniques and

mathematical programming methods from a2 set of available options,

BEngineering insight and experience has long been a part of tradi-
tional design methods and it is not surprising to find that somewhat

analogous insights and experiences must now become a part of an
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efficient frame—truss synthesis methodology. The considerable body of
computational experience reported here is intended to provide the design
engineer with the foundation mneeded to build expertise in the use of
frame synthesis methodology. While most of the points that will be dis-
cussed in the sequel have been previously mentioned in Chapter VIII, it
is useful to summarize these results here in the form of guidelines for

solving frame design problems,

By now it should be apparent that the efficient solution of a
frame—truss synthesis problem involves meking important decisions about
the construction and solution of the approximate design problems. The
items which must be gonsideted include the types of approximations
employed, the choice of design space, the optimization method used to
solve the mathematical programming problems, the choice of appropriate
move limits and even the frequency of performing the structural analyses
and response quantity sensitivity calculations, While all of these
items are important, probably the most important decisions to make are
those related to the construction of the behavior constraint approxima-
tions, This involves deciding which design variables the constraint is
believed to be dependent on (i.e. choosing the appropriate element force
variation option) and selecting the basic character of the approximation
to be wused (i.e., linear vs. mixed variable). The following guidelines

are offered:
1. the element end force invariance option is recommended if

a,  the structure is statically determinate.

103



b. the structure is statically indeterminate but the coupling
between the structural members is believed to be weak (see

Problems 2 and 3, Chapter VIII),

c. the design problem is believed to be essentially displace-
ment constrainted (see Problems 6 and 8 (Case B) and Problem

9, Chapter VIII),

the local element end force variation option can be useful in
cases where the invariance assumption is inadequate and the
expense associated with the global force variance option is prohi-
bitive. This option should be used with care as it can, in some
cases, yield approximations which are inferior to the force

invariance option (see Problem 3, Chapter VIII).

the global element end force variation option is recommended 1if
the structural behavior is strongly coupled and the design problem
is believed to be essentially strength critical (see Problems 1, 5

and 6, Chapter VIII).

the linear constraint approximetions are recommended if the con-
straints controlling the design process are believed to be linear

or nearly linear functions of the design variables.

the mixed variable (hybrid) approximation generally yields equal
or superior performance as compared to the linear approximations
(except as noted in item 4) with little additional computational

expense,
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6. the mixed variable (hybrid) epproximations may, in some cases, be
used in 1lieu of higher levels of element end force sensitivity
information without the added computational expense (see Problem

2, Chapter VIII),

The guidelines for selecting the appropriate design space option
(i,e,, either reciprocal section property (RSP) or cross sectional
dimension (CSD) space) are not as specific as those for selecting the
constraint approximations. For the problems solved in this study the
overall performance of the two design spaces has been nearly the same,
although distinctly different designs may be generated depending on the
design space chosen (see Problem 5, Chapter VIII). Part of the reason
that this has been the case can be attributed to the use of the approxi-
mate sizing variable recovery transformation, described in Chapter Vf.
which compromises the quality of the constraint approximations in the
RSP design space, It is possible that & more exact recovery method
wounld lead to superior results for the RSP design space option. For the
current implementation of the frame—-truss synthesis methodology one may

wish to consider the following when making the design space selection:

1. the use of the RSP design space generally requires the addition of
sizing varisble side constreaint approximations to the approximate
design problem., While this has not been a computational burden
for the problems solved here it may be burdensome for problems

involving large numbers of sizing variables.

2, the selection of move limits in the CSD design space may be more

physically meaningful than in RSP space,
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The selection of the mathematical programming method (i.e., primal
or dual) for solving the approximate problems is relatively straight
forward, Generally, if the number of retained constraints 1is expected
to be less than 1.5 times the number of design variables the dual method
will be at least as, if not more, efficient than the primal method (see
Problems 2, 3 and 5, Chapter VIII). For problems where the number of
retained constraints is expected to be large compared to the number of
design variables the primal solution method should be used (see Problems
4, 6 and 9, Chapter VIII). Two additional comments are appropriate
here. First, the development and implementation of & specialized dual
method (in which the dimensionality of the dual space does not exceed
the number of truly critical constraints) conid‘make the duval method
more efficient even when the number of retained constraints is large.
Lastly, it should be recognized that for large problems, where the
structural analysis and approximate problem generator can be expected to
represent the main computational effort in the design process, the
sclection of the optimization method is not expected to seriously effect

the efficiency of the overall problem solution.

The selection of appropriate move limits on the structural design
variables can be quite difficult in the absence of prior computational
experience. Even with experience the selection process is often problem
dependent and may require several attempts. Move limits which are
either too tight or too loose can seriously effect the problem conver-
gence rate or, in some cases, preclude convergence altogether., For the
problems solved in this study the move limits ranged from 20% to 70% on

the RSP’'s and 15% to 50% on the CSD's, with the most frequently used
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values being 40-50% for the RSP’'s and 30-40% for the CSD’s, The follow-

ing guidelines are offered for making an initial choice of move limits:

1. problems which are expected to have a 1large number of critical
buckling constraints will gemnerally require tighter move limits
than those which are essentially stress and/or displacement con-

strained,

2. the use of the mixed variable (hybrid) constraint approximation
option generally allows for more liberal move limits, especially

when the problem is essentially strength critical.

The final decision involves the use of the approximate problem
update procedure, Based on the numerical examples presented here it can
be concluded that the use of this option generally results in an
improvement in the convergence rate of the design problem (i.e, the
number of structural analyses required for convergence is reduced). For
small problems, however, even though the convergence rate is improved
the total solution time can increase when this option it employed (see
Problem 2, Case B, Chapter VIII). For larger problems of practical
interest the use of this option does result in savings in solution time
as well as an improved convergence rate (see Problem 9, Chapter VIII).
The solution time savings are expected to be more dramatic as the
analysis problem size increases. Aside from the fact that the approxi-
mate‘problem update option is best used for 1large problems two other

comments are appropriate here:

1. the approximate problem cen be updated more frequently without
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reanalysis if the design problem is essentially displacement crit-—

ical (see Problem 7, Case A, Chapter VIII).

2. in the case where the design problem is essentially strength crit-
ical, the approximate problem may be updated more frequently
without reanalysis when the structural behavior is weakly coupled

than when it is strongly coupled.

9.

o

Recommendations for Future Work

While the frame—truss synthesis methodology presented in this work
can be used to efficiently solve a significant class of structural
design problems, several areas of future work and investigation can be
identified which will broaden the applicability of the method to include
a larger class of problems and/or lead to increased solution efficiency.

These areas are summarized below:

1. the expansion of the design element library to include =a greater

variety of cross sectional shapes,

2. the addition of a modal analysis capability for the inclusion of

frequency constraints in the design problem.

3. the addition of an optimum design sensitivity capability.

4, the extension of the approximete problem update procedure to
include the updating of the stress and buckling constraint partial

derivatives which are explicit functions of the CSD’'s and RSP’'s.

5. investigate the use of & cumulative constraint formation (or some
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other method) as a means of reducing the numbers of stress and

buckling constraints retained for each structural member,

6. develop & specialized, efficient dual solution method for solving

all forms of the approximate problems.

T. investigate the possibility of replacing the approximate recovery

method with an efficient nonlinear recovery technique.

The suggested extensions offered above can be divided into two
groups based on the probability that the work can be successfully com-
pleted. It is believed that items 1-4 pose relatively 1little risk in
thet the work basically entails the implementation of proven concepts.
Items 5-7, however, may require considerable investigation and if com-

pleted may not produce the desired resunlts,
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APPENDIX A

Stiffness Matrices and Load Vectors for Structural Elements

A.l Prismatic Frame Element

The space frame element, shown in Fig. Al, is & two node, twelve
degree of freedom element oriented with the longitudinal axis in the
local x coordinate direction and the cross section principal axes in the
local y and 2z <coordinate directions. The element is assumed to have

linear axial and torsional displacement states given by

u(x) = [N (x),N,(x)] {ul}
o
2 (A-1)
Gx(X) = [Nl(x).Ni(x)] le
ex
2 (A-2)
and cubic bending displacement states of the form
v(x) = [NB(x)'Nl(X)’NS(X)’N6(x)] ( vy
921
N
V2
ez
\ %) (A-3)

and
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w(x) = [Ns(x) .N4(X) :Ns(x) IN6(x)] '1

(A-4)
where u, v and w are the displacements in the local x, y and z coordi-
nate directions, Ox, Gy and Gz are the rotations about the x,y and z

axes and where the displacement shape functions are given by

im

Né(x) =

(ol

=1 - 3(%2 X3

(A-5)
N = LI - 252 + (B

N =3DH? - 2¢H?

N =Ll - 32+ &%

The assumed displacement states (Eqs. (A-1) - (A-4)) lead to the follow-

ing strain-displacement relations

du _
Axial strain: ax [BI] ‘ul

|
| l“zs
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Torsional strain:

Curvature:

where

The total strain

20

i [B1] exl
ex
2
2
a7V _
2 = B1( v
0x
0
{1y
Af)
ez
2
22w /
2 = [BZ] v
x
o
e
Y2
0
9

L 2 L

L
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L

6 (2%, 2., 3% _62x 1) 2.,3x
(1 L)' L(2 ) ( 1) ,-7(1—52)

L

1
d

energy for the frame element can now be written as

(A-6)

(A-7)




L L a6 26
T - EA, (8u,T.du 6y, ., xT __x
U-2 j{ax} {ax}dx+2 J{ax} {ax}dx+
o o
EI_ L .2 2 EI 2 2
=21 EAT e« 52 T ERTE e
o dx ox ox dax
= 2 'K’
where
E - materiel modulus of elasticity
G - material shear modulus
A - cross sectional area
I - cross sectional principal moment of
y inertia about the y axis
Iz - cross sectional principal moment of
inertia about the z axis
and

T
(¢} = {u, v, w, 6 6_ ©_ u, v, W, 6. 6_ 6_}
1171 LTI SR 2 2 2 X, Y, 2

Evaluation of the integrals of Eq. (A-8) yields the following

the element stiffness matrix in local coordinates

121

(A-8)

form

of



A o 0o 0 o 0 -A 0 0 0 0 o |
121, 61, -121, 61
r o o o —Z% o L 0 0 o —Z
121 -61 - -
121 61
—X o —X o o 0 0o —X o
12 L 12 L
%} 0o o0 o0 0 0 :%1 0 0
61
41 0 o0 0 —31 0 21 0
e_E _612
[K1°=F 41 o 0 0 0 21
A
A 0 0 0 0 0
121, 61
Sym, 0 0 0
12 L
121 61
Ty o, Iz,
12 L
%g 0 0
41 0
y
41
L z_]
(A-9)

Similarily, the external work expression for the space frame element

subject to uniformly distributed loads can be written as

V= ? {p p.mm m} ( u(x) \ dx
o x py Z x y z

v(x)

< w(x) >

9x(x)

dw
dx(x)

dv
\ dx(x)}

122




T
= {P}° (g

(A-10)

where P, P

y and p, are forces per unit length in the x, y and z direc-

tions and mx, my, m are moments per unit length about the x, y and z

axes, Evaluation of Eq. (A-10) using Eqs. ((A-1) - (A-5)) and assuming

Pys Py» P, 85 well as m_, my, m_, are constants (uniformly distributed)

leads to the following form for the work equivalent load vector

' 2 2
T L L L m L L L
@y° =2 B P B P By
2 ¢+ 2 z ' 2 v T2 T T12 0 T12¢
2 2
pr p. L sz m_L sz p L
2 * 2 tB& 2 "~ %% T2 127 T12
(A-11)

A.2 Prismatic Truss Element

The space truss element, shown in Fig, A2, is a two node -element
oriented with the longitudinal axis in the local x direction. The ele-

ment is assumed to have a linear displacement state of the form

u(x) = [1 - f. fl ‘“1)

=]

(A-12)
where u is the displacement in the x direction. This assumed displace-
L
ment state leads to the following strain-displacement relation -
du(x) _ =1 1
ax - v 1! _‘“1)
L=,
2 (A-13)

The strain energy for the truss element can now be written as
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- EA
2

al

3u, T 3u
{ax] [ax]d‘

0 -

3 (v, u,}KI° s nII

,
l 2‘ (A-14)

which leads to the following expression for the element stiffness matrix

1 -1

e _ EA
[K1® = T [ }
-1 1

Similarly, the external work due to a uniformly distributed axial load

in local coordinates

(A-15)

px can be written as

L eT
v=/ P, u(x)dx = {P} ‘ul

0 |
(5,

(A-16)
which leads to the following work equivalent load vector
L
® = uf
(A-17)

Rewriting (K1 and {P}® in terms of the full twelve nodal degrees of
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freedom gives

[x]°

n
i
=]
=]
=]
=]
=]
o
=]

sym o 0 0 O 0

0 0 0
0 o0
L OJ
(A-18)
and
T p,lL
{p)° =—-(100000100000]
(A-19)
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APPENDIX B
Generalized Inverse Transformation

Consider the m—vector {X} and the n-vector {Y) related by the m x
n linear transformation matrix [J] as follows:
[I1{Y} = {x}
(B-1)
For the case where m = n and [J] is non—singular the inverse transforma-
tion is clearly given by
) = (n7x
(B-2)
For the general case where m # n and the rows of [J] are not mnecessarily
linearly independent, an inverse transformation of the form given by Eq.
(B-2) does not generally exist, It is, however, possible to determine a
set of linearly independent (free) variables [{XF], {YF}]T and a set of
dependent (basic) variables [{XB}, {YB]]T and to construct a linear

transformation between them having the form

{Xp} {X;]
B F
B F

The transformation matrix [H] can be comstructed from [J] via two sets

(B-3)

of pivot operations as shown in the following comstruction, which relies

heavily on material contained in Ref., 54.

Consider Eq. (B-1) and imagine that it is partitioned in terms of

the free [YF} and basic {YB} variables as follows:

126




(¥,
(B Fl|° =
F

Pivoting to determine the basis inverse and allowing for the existence

(B-4)

of linearly dependent rows gives

-1.] [(¥.) B
[(1) BOF] [[YB]:I - [Bl] (X}
F 3
- (B-5)
B
- 1
[B "] =
[Bz]

where

(B-6)
Eq. (B-5) yields the following two equations:
-1
{x.} + [B "F1{Y_} = [B,]{X)
B F 1 (B-7)
[BZ]{X} = {0}
(B-8)

The existence of Eq. (B-8) indicates that the ({X)} variables are not
linearly independent. Therefore, partitioning Eq. (B-8) in terms of the

free and basic {X]} variables gives

B, | B = {0
2g | 2| |Zg)

Pivoting yields

| {X,}
1| 518 ][B] = {0}
[ | 2p 2g ||}

Solving Eq. (B-10) for {XB} gives

(B-9)

(B-10)
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-1
(Xg) = - [ B, 10%g) = [c](x)
(B-11)

¥e now have {XB] expressed in terms of {XF}. To express {YB} in

terms of the free variables let

[B,] = [B, B, ]
1 1B 1F

{Xp}
- B
{x} [{X'F}]

Substituting Eqs. (B-12) and (B-13) into Eq. (B-7) and solving for [YB}

(B-12)

and

(B-13)

gives

-1
(Tg) = [, 105y) + (B 10xp) - [8F1(Y)

(B-14)
Substituting Eq. (B-11) for (XB] in Bq. (B-14) yields
-1
{YB} = ([BIF] + [BIB][C])[XF} - [B F][YF]
(P-15)
Finally, writing Eqs. (B-11) and (B-15) in matrix form yields
(B-16)
(X)) (x.)
[{y:} = [{xi}]
- (B-17)

It should be noted that if Eq. (B~1) is written in terms of the variable

perturbations {AX)} and {AY]} as
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[J1{AY} = {AX}

(B-18)
where
- Gl (B-19)
then Eq. (B-17) becomes
[{AXB}] = [H] (AZ)
- (B-20)
where
Az} = [(AX) (av )"
(B-21)
and
EEE
[A] = :é
9z (B-22)
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APPENDIX C

Design Element Library

The design element library contains the descriptions of the vari-
ous design elements available for comstructing the structural design
model. Each element is completely described by the following: 1) e
basic structural element type (e.g. frame or truss), 2) a description of
the element cross section and 3) a set of element 1level constraints
(e.g. stress, local buckling). The element end forces used in the ele-
ment level constraint calculations are shown in Fig. Cl1 for both the

frame and truss type elements.

C.1 Design Element Descriptions

The following design elements are available and are described in

this section,

Element Type
Truss with one sizing variable 1
Box beam with four sizing variables 11
I-beam with six sizing variables 12
Square beam with one sizing variable 13

Thin walled tube with two sizing variables 14

Box beam with three sizing variables 15
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Element: TRUSS

Type: 1

Description: This element is a truss element with the cross section

described by the sizing variable A as shown in Fig., C2,

constraint is computed for this element.

Reciprocal Section Property

X = 1/A

Stress Constraint

[T . L

g C -
a a

s=

where o is the sllowable stress in tension and compression.
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Element: BOX BEAM

Type: 11

Description: This element is a frame element with the cross section
described by the sizing variables B, H, tb and th as shown in Fig., C3.
Eight stress and four local buckling constraints are computed at each
end of the element for a total of sixteen stress and eight local buck-
ling constraints. The locations on the cross section at which these
constraints are evaluated are shown in Fig. C3 for the first node (nl)

end of the element.

Cross Sectional Dimensions

Y, =B
Y, = H
Y, =ty (C-3)
Y, =ty

Reciprocal Section Properties

1A Y, - (Y, - 2Y,) (Y, - 2Yy)
£ 1. Y,Y, + Y,
2 T
ZYi Yi I3 Y

(C-4)
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N 12
371 3
y LT - (T, - 21,)(¥, - 2Y,)
g oo 12
4= 1 i} 3
2 YlY‘Z (Y,-2Y,) (Y,-2Y,)

Stress Constraints

The stress constraints for this element are based on the Von Mises

criterion and have the form

2

(ci 1,2,...16

1 2, _ .
8; =75 + Sti) 1<0 ; i
®a
(C-5)
where °, is the allowable stress. The normal stresses (ci) are obtained

from technical beam theory and are given by

(

-l M YX, -1 MY,X3 +FX 5 i=1,2,9,10
1 - . 4=
fh M,Y,X, - Y MYXg +F Xy 5 i=3,4,11,12
o, = <
Yy M 3,X, + 1y M Y,X; + F X 5 i=5,6,13,14
-1 1 s 4=

\

(C-6)
The shear stresses are calculated assuming that the box beam is thin
walled (i.e. horizontal walls do not resist vertical shearing forces and
vice—versa; shear stresses due to shearing forces are uniformly distri-
buted over the appropriate wall areas; shear stresses due to the twist-

ing moment is uniformly distributed over the cross section) and are
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given by

Mx Fz
wev * i 1=1,8,9,16
2Y,%,Y, © 21,
M F
X Y
- + 5 i=2,3,10,11
2Y,7,Y, © 2Y,Y,
Ti =
Mx Fz
- ; i=4,5,12,13
2Y,Y,Y, © 2L Y,

M F
. p 4 Y
+ ;  1=6,7,14,15
\ N, 2N,

(c-7)

Local Buckling Constraints

To protect against local buckling of the box beam walls each side
of the member is conservatively modelled as a simply supported infin-
itely long plate, subject to combined axial, bending and shear stresses

as shown in Fig. C4. Defining the buckling stress ratios

R =</<

s cr
Rb = o’b/O'bcr (C-8)
Rx = cxlcxcr

where, for an infinitely long plate of width b and thickness t (Ref., 55)

134




tcr = 5,358
cbcr =23.8 8§
O cr = 4.0 8 (C-9)

2
s = —Et— 82 = ¢, (t/0)?
12(1-v°)
and combining Eqs. (C-8) in one interaction formula leads to the follow-
ing local buckling constraint equation
g =R + R% + ni ~1¢0

* (€-10)
Eq. (C-10) is evaluated at four points on each end of the element for a
total of eight constraints, The expressions for Ops» Ops T and S for

each of these constraints is given below:

(- yb MY,X, -FX ; j=1,5
o MY X -F X 5 §=2.6
oxJ = <
y, MY,X, - F X, ; §=3,7
\ -1, MY,Y; - FX =48

(C-11)

where o > 0 is a compressive stress,
J
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Sj=<

1
f oYY,

1
2 M,Y,X,

1
f WYX

k %& MzY2Y4

+

2Y1Y2Y4

2Y1Y4

+

2Y1Y2Y3

+

2Y2Y3

2Y1Y4

/ 2
Ce(Y4/Y1)

|

2
\ce(YB/YZ)

2Y2Y3

ji=1,

i=2,
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Element: I-BEAM

Type: 12

Description: This element is a frame element with the cross section
described by the sizing variables Bl' t1, BZ' t2, H, and t3 as shown in
Fig. C5. It is intended primarily for use in planar frame structures.
Three stress and three local buckling constraints are computed at each
end of the element for a total of six stress and six local buckling con—
straints. The locations on the cross section at which these constraints

are evaluated are shown in Fig. C5 for the first node (nl) end of the

element,

Cross Sectional Dimensions

4=t (C-15)
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Reciprocel Section Properties

x1=;1;=Y1Y2+Y31Y4+Y5Y6=A1+A12+A3
X, = 5= :
N, + AT, ¢ AT
y AT+ AT + AT (c-16)
X4='11'= )
z A1y§+A2yi+Aafs+1zn

where

Y2 Y

B=A1(;'T)2+A2(;'Y2'Ys’?i)2+53(;'Y2'_2—’

- AI(Y2/2) + AZ(Y2 + Y5 + Y4/2) + Aa(Y2 + Y5/2)

Stress Constraints

Constraints on normal stress for the flanges and on shear stress
for the web are applied at each end of the element. These constraints

have the form

lo:l
(—1-1go ;5 i=1,2,4,5
[+]
a
g, = < (C-18)
17,1
= -140 ; i=3,6

where % and T, are the normal and shear stress allowables. The expres—

138




sions for o, and T; are obtained from technical beam theory and are

given by
f—uz(yz+y4+ys—y)x4+pxx1 ; i=1,4
o, = <’ (C-19)
L %, 7, ;i 1=2,5
and
2 LYy nn %
Ty = FX | Ys_'216'Y2Y+2 3 1=3,6

(C-20)

It should be noted that since I-sections are generally not designed to
carry twisting moments, bending moments about the vertical axis or hor-
izontal shear forces, the stress computations do mnot include these
effects. Therefore this element should not be used for structures in

which these effects are expected to be significant.

Local Buckling Constraints

To protect against local buckling of the element flanges and web
local buckling stress constraints are evaluated for both the flanges and
the web at each end of the element. The flanges are assumed to experi-
ence only normal compressive stresses and each half of therflange is
conservatively modelled as an infinitely long plate, simply supported at
the ends and along onme side, and free along the remaining side. The web
is assumed to be subject only to shear stresses and is conservatively

modelled as an infinitely 1long simply supported plate. The buckling




constraints have the form

%3
/ -1¢0 ; i=1,2,4,5
cri
81 = (C-21)
Izl
=140 ; i=3,6

where .r and T,p 8re given by (Ref. 56)

i i
/ 2
047> E [2Y4] C io14
2 Y » = ’
12(1- ) 3
o =<
cr,
i
r] =2'5
\ 12(1-

T = [Y] i=3,6
°ry 12(1-

where E is the material modulus of elasticity and is the Poissons

ratio,
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Element: SQUARE BEAM

Type: 13

Description: This element is a frame element with the cross section
described by the sizing variable B as shown in Fig., C6. Four normal
stress and four shear stress constraints are calculated at each end of
the element for a total of sixteen stress constraints., The locations on
the cross section at which these contraints are evaluated are shown in

Fig. C6 for the first node (nl) end of the element.

Cross Sectional Dimensions

Y. =B
1 (C-22)
Reciprocal Section Properties
1 1
X = = = =
1 A
T
1 1
X, ==
2 7 1406 Y3
1 _12
X =71 4
y Y,
(C-23)
-1 _ 12
X "I
1
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Stress Constraints

The normal and shear stress constraints for this element have the

form
losl
-1¢0 ; i=1-4,9-13
%a
8; = < (C-24)
(L
- 1<0 H i=5-8,14-16
a

where S, and T, 8re the normal and shear stress allowables. The expres-

sions for o, are obtained from technical beam theory and are given by
( -1 M Y,X; - Y MV,X, +F X, i=1,9

-1 1 . =
/2 MyY1X3 + 1/ MZY1X4 + FxX1 ; i=2,10

Yo MY,Xg + Yy MY,X, 4B X 5 i=3,11

\ Y MIX - MLX, +EX 5 i= 4,12 (c-25)

The shear stress T is obtained by the superposition of the parabolic
horizontal shear stress distribution from technical beam theory and a
torsional shear stress distribution for a solid square bar (Ref. 57).

The expressions for T, are given by
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/- oM Y,X, +1/8 FinX4 i i=5,13
- e MYX, +1/8F LXK ; i=6.14
T, = <
¢ M Y X, +1/8 Fyyix4 5 i=1,15
\ cMYX, +1/8F VK, ; 1=8,16 (C-26)

~ where ¢ = .676
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Element: THIN TUBE
Type: 14
Description: This element is a frame element with the cross section
described by the sizing variables R and t as shown in Fig. C7. Two
stress and two local column buckling constraints are evaluvated at each
end of the element for a total of four stress and four local column
buckling constraints, These constraints are evaluated at the points of
maximum normal stress defined by the angle 6, as shown in Fig, C7, where
@ is given by

6 = arctan (leuy) (C-27)
It should be noted that 6 is assumed to be constant during the solution
to each approximate design problem and is updated for each approximate
problem, In addition, onme local wall buckling constraint 1is evaluated

for this element.

Cross Sectional Dimensions

Y1 =R
Y2 =t (C-28)

Reciprocal Section Properties

x, =1=-1
1 A 2nY1Y2

2
4_n4 _
n(R° Ri) (C-29)

(Y
L L
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1 4

X, == =

3 Iy n(Ri— 4)

X, = %L =T % 4

z n(Ro— 1)
where
Ro = Y1 + Yélz
Ri=Y) - Y,/2 (€-30)

Stress Constraints

The stress constraints for this element are based on the Von Mises

criterion and have the form

2

2 4 3fi) -1¢0 ; i=1,2,3,4

= 1

83 = 2

%a

(C-31)

where oa is the allowable stress. The normal stresses o; are obtained

from technical beam theory and have the form

sin® + Fxxl ; i=1,3

Mlexs cos@ + Mzle4
o, =
-Mlex3 cos® - qu1x4 sinf® + Fxxl H i=2,4 (C-32)

The shear stresses T, are obtained from the superposition of a parabolic
horizontal shear stress distribution from technical beam theory and a
uniform shear stress distribution due to the twisting moment from thin

walled tube theory. The expressions for T, are given by
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( - .
Finx3 cos® FZY§X4 sind + MYX, ; i

|

T, = <’ (C-33)

\’Finxa cos@ + FzYiX4 sind + MY X1 ;i

1.3

2,4

Local Wall Buckling Constraints

To protect against local wall buckling of the thin tube element
the following constraint between the wall thickness and mean radius is

used (Ref. 58).

=Y /Y -1<0
22 (C-34)

with

Y

[ 1. 65x10 psi (C-35)

where dy is the material yield stress in temsion.

Local Column Buckling Constraints

To protect against column buckling of individual elements subject
to axial compressive forces the following buckling stress constraint is

used

(C-36)
This interaction formula (Eq. (C-36)) is conservative (Ref. 59) when
applied to elastically supported columns under combined loading. Equa-

tion (C-34) is evaluated at two points on each end of the element as
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shown in Fig., C7. The values of Tor and o, . are given by

(C-37)
c o
kL2 [ ¥)| =X NGB
\ 1 .0506 (R) (E) FS H A V2
and
P
cr
nv
(C-38)
where
1.92 ; A> V2
FS = 3
1.67 + .265 A — .044 A ; AL V2
vooo= a0 B (o TE
) y
1

.561(L/2Y1)'5
W = min | 1, 25

(2Y1/Y2)
ay = material yield strength in temsion
E = material modulus of elasticity
L = column length
k = effective length factor

{.0983 ; M =0
X

0629 Mx #0

The effective length factor k is dependent on the element end restraint
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stiffnesses, Currently the value of k must be supplied as input data
and is assumed to be constant during the design process. It should be
noted that A and VW are assumed to be constant during the solution of
each approximate problem but they are updated for each approximate prob-
lem. Additional details on the column buckling constraint formulation

are available in Ref. 21.
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Element: BOX BEAM

Type: 15

Description: This element is a frame element with the cross section
described by the sizing variables B, H and t as shown in Fig. C8. Eight
stress and four local buckling constraints are evaluated at each end of
the element for a total of sixteen stress and eight local buckling con-
straints, The locations on the cross section at which these constraints
are evaluated are shown in Fig. C8 for the first node (nl) end of the

element.

Cross Sectional Dimensions

Y. =8 (C-40)

Reciprocal Section Properties

1 1
17 A Y, ¥,-(Y,-2Y,) (¥,-2Y,)

x, -1 A0S bl 1A
7 2(Y1Y2Y3)2
(C-41)
1 =1 - 12
351 P oy 13
Y Y,T-(Y,-21,) (Y;-2%,)

149




12
T o3
z erg (Y,-2Y,) (Y,-2Y,)

Stress Constraints

The stress constraints for this element are of the same form as
those for element type 11 and they are givem by Eqs. (C-5) — (C-7) with

Y‘ set equal to Y3.

Local Buckling Constraints’

The local buckling constraints for this element are of the same
form as those for element type 11 and they are given by Egqs. (C-8) -

(C-14) with ¥, set equal to ¥,.
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APPENDIX D

Derivatives of Structural Response Quantities

with Respect to Element Reciprocal Section Properties

D.1 Displacement Derivatives

For the linear static structural analysis problem, the displace-
ment derivatives are easily obtained through the implicit differentia-
tion of the governing equilibrium equations with respect to the element

reciprocal section properties (RSP's). In general, differentiation of

Eq. (3-1) with respect to the j—th RSP of the i-th element (xij) yields
d{u) a{P}
8[K) {u}, + [K] L k ; k=1,2,...K
ax, ., k ox ax, .,
1 i i (D-1)

Under the assumption that the external loading is independent of the
a{P},

axij

element RSP’s (i.e. = 0) Eq. (D-1) becomes

a{u}k -
=V, ; k=1,2,...K
axij ijk

K]
(D-2)

where the pseudo load vector Vijk is given by

v, = o[kl

ijx T 7 ax, tuly

J (D-3)

Writing the system stiffness matrix [K] as

I T T e
(K] = ¥ [p)" (IT,1°[K,1°IT,1)[p,]
i=1 (D-4)

where [Ki]e is the element stiffness matrix in local coordinates, [Ti]
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is the element coordinate transformation matrix, [Bi] is the element
local to global degree of freedom transformation matrix and I is the

total number of structural elements; substitution into Eq. (D-3) gives

alk,1°
T - _ T T i
vijk = [Bi] [Ti] axi' [Ti][Bi] {u]k
J (D-5)
Finally, Eq. (D-5) may be rewritten as
b _ 2 T T~ ,e
vijk = I/xij([Bi] [Ti] [Kij] [Ti][Bi] {u}k) (0-6)
where it is recognized that
N aIK,1°
Byy) =5z
J (D-7)

is the unit element stiffness matrix formed by assigning the j-th sec-
tion property a value of unity while the remaining section properties

are set to zero.

Using the expression for the pseudo load vector given by Eq. (D-

6), Eq. (D-2) can be solved for the unknown displacement derivatives

d{u)
iz k ; k=1,2,...K via the same procedure used to solve the equili-

ij
brium equations (Eq. (3-1)). Solving Eq. (D-2) directly yields the

derivative values for all of the displacement degrees of freedom. For
the case where the number of displacement degrees of freedom associated
with the retained constraint set is fewer than the number of pseudo load
vectors associated with Eq. (D-2) it is computationally more efficient
to solve Eq. (D-2) using a partial inverse technique represented by the

equation
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9 {u}
k —
ox, ., = [c]Vi
ij

ik
(D-8)

where [u}k represents the displacement degrees of freedom associated
with the retained constraint set. The partial inverse matrix [C] is
constructed such that its n—-th row contains the vector [c]: obtained
from the solution of the equation

[Kl{c] = (e}, 09y
where {e]n is a unit vector corresponding to the n—th degree of freedom
associated with the retained constraint set. It should be noted that
the solution of either Eq. (D-2) or Eq. (D-9) requires only the back
substitution of the vectors Vijk or {e]n if the decomposed stiffness

matrix has been saved from the previous structural analysis.

D.2 Element Force Derivatives

The element force derivatives are obtained through the implicit
differentiation of the element force—displacement relations. Rewriting
Eq. (3-8) in terms of the global coordinate system gives

(F )8 = [k )8 (v}, + (FEF_)}8
r'k r r'k r'k (D-10)
g 8 8
where {Fr}k’ [Kr] ’ {ur]k and {FEFr}k are the element force vector,
stiffness matrix, vector of nodal displacements and fixed end force vec—
tor for the r—th element and k~th load set. Differentiation of Eq. (D-

10) with respect to xij gives
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8 8
(b[xr] {uv ), + [K_18 2ol + it i=r1
axij r’'k T 8xij
a(F_ )3 <
axij
9{u_}
g 'k
[Kr] ox ' iér (b-11)
\ N
d{u_]
where the displacement derivatives ax are calculated as shown previ-

ij

ously. Under the assumption that the external loading is independent of

the element RSP'S

g
3 (FEF }, )

axij

0

and Eq. (D-11) becomes

Rewriting [Kr]8 as

(arx_1® g 2luly
axij {nr}k + [Kr] axij

a{ur]k
[Kr] ox, .,

g _ T e
[Kr] = [Tr] [Kr] [T:]

and substituting into Eq. (D-13) yields
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a{u_)
T r T e r’'k
[Tr] ax [Tr]{ur}k + [Tr] [Kr] [Tr] ax H i=r
ij ij
g
a[Fr]k _ <
axij
o{u_}
T e r'k .
k [Tr] [Kr] [Tr] axij 3 idr (D-15)

Introducing the unit element stiffness matrix [E; 1°, Eq. (D-15) becomes

3

(4 T,> e T, e 3w, ly
- L a0 D e ¢ )T T 5 s ik s
xij Y |
a(F )} <
axij
d{u_}
T e —r'k
R L (5-16)
\

Finally, writing the element force derivatives in the 1local coordinate

system gives

a(F_}; atr 1§
axij = [Tr] axi.
J (D-17)

or
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a(F )5

ij

(

<2
ij

%

e
[Kr] [Tr]

\

a{ur]k

axij

since, by orthogonality of [Tr]'

T _ -1
[T 0T, 1" = [T 10T ]

1 g e e
- [Krj] [Tr][nr]k + [K.] [Tr]

it~

= [I]
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ij
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(D-19)




APPENDIX E

Data Command Descriptions

E.1 Analysis Data Commands

The synthesis problem structural analysis model may be defined

using the analysis data commands listed below.

'ANALYSIS DATA'

'BEAM ELEMENTS'’

'BOUNDARY CONDITIONS'

' COORDINATES'

'LOAD CONDITIONS'

'MATERIALS'

'NODAL LOADS'

' TRANSFORMATIONS'

'TRUSS ELEMENTS’

'UNIFORM BEAM LOADING'

These commands are described in this section in alphabetical order.
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Command: 'ANALYSIS DATA’

Description: This command denotes the beginning of the analysis input
data block and must precede the first occurrence of any other analysis

data command.
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Command: ’'BEAM ELEMENTS’

Description: This command allows the user to define the beam element

data for the structural analysis model.

w3, |

1

Data: n, m n11 n21 [A T IYY IzZZ IYZ]1 c; ay
(annz)l

n, m al, n2, [A T IVY IZZ IVZ], cy I(x ;kz) ‘
IR <
Entry Definition Note Variable
o, Beam element number IDBEM(I,1)
m, Material specification number (1) IBEAM(I,1)
n1i First end node number (2) IBEAM(I,2)
n2, Second end node number (2) IBEAM(I,3)
Ai Cross sectional ares (3) PBEAM(I,1)
Ji Torsional constant (3) PBEAM(I,2)
IYYi Moment of inertia about local (3) PBEAM(I,3)
y axis
IZZi Moment of inertia about local (3) PBEAM(I,4)
z axis
IYZi Product of inertia (3) PBEAM(I,S)
4 Beam orientation specification code (4) PBEAM(I,6)
n3i Beam orientation node number (4) PBEAM(X,7)
a, Beam orientation angle (4) PBEAM(I,7)
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Notes:

PBEAM(I,7)
Components of beam orieantation vector (4) PBEAM(1,8)
PBEAM(I,9)

Total number of beam elements NBE

The corresponding material must be defined by the 'MATERIAL’ com—

mand.
The end nodes must be defined by the 'COORDINATES'’ command.

The beam section properties need not be given if the beam is to be
associaied with a design element. For the case where the beam is
associated with a design element, any section properties supplied
by the user will be replaced by section properties calculated from

the corresponding design element information.

The orientation of the beam element local y axis may be defined by
supplying & =node or vector which lies in the beam’s local x-y
plane (Fig. E1) or an angle a (Fig. E2) which is a measure of the
angle between the local x-y plane and the Xiocal ~ Yg1obal plane
(counter—-clockwise looking down the local x—axis). For the spe-
cial case where the local x—axis and global y—axis are coincident
a is the measure of the angle between the local x—y plane and the
X ocal ~ Z;1obal plane (Fig. E3). The means by which the orienta-

tion information is supplied is determined from c; as follows:

¢, = 1 - node point n3i
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2 - angle a;

3 - vector (x.y.z)i
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Command: ‘BOUNDARY CONDITIONS'’

Description: The boundary condition command allows the user to specify
the nodal degrees of freedom which are to be considered restrained for
the purposes of analysis,

Data:  ['SEI" k, ]

11 11
n SpC
ml ml
['SET’ X;]
n SPC
1L 1L
n SPC
Moo
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Notes:

Definition Note Variable

Boundary condition set number (1) IDBCS(J,1)

Node number (2) ISpCs(I1,1,))
Degree of freedom code (3) ISPCS(I1,2,7)
Number of restrained nodes (4) NCN

for boundary condition set kj

Number of boundary condition NBS

sets

The absence of the 'SET’ descriptor and its associated boundary
condition number will cause the following boundary condition

specifications to be applied to all boundary condition sets,

The use of the 'ALL' descriptor in place of the node number will
cause the associated boundary condition specification to be

applied to all nodes.

Any combination of the values 1-6 may be used to specify res—
traints on the mnodal degrees of freedom, The values 1,2,3 and
4,5,6 correspond to the x,y,z translations and rotations, respec-
tively. A negative sign preceeding any individual value will

cause a previously set restraint to be removed.

The maximum number of restrained nodes for 211 boundary condition

sets is stored in the variable NCN (i.e. NCN = max mj)
j=1,L.
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Command: ‘COORDINATES'

Description: This command allows the user to specify the problem node

point data.

Data: =n, x; ¥y, % [k1]

% *m Ym %m [km]
Entry Definition Note Yariable
n, Node number IDGRD(I1,1)
x, X-coordinate PGRID(I,1)
Y Y-coordinate PGRID(I,2)
2, Z-coordinate PGRID(I,3)
ki User coordinate system number (1) IGRID(I)
m Number of nodes NND
Notes:
1. The user coordinate system number ki refers to a user supplied

coordinate transformation given by the 'TRANSFORMATION'’ command.
All guantities associated with the node except its location are
described in the user coordinate system, If the transformation
specification includes an origin specification then the node loca-

tion is also described in the user coordinate system.
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Command: 'LOAD CONDITIONS'

Description: The load condition command allows the user to specify the
load sets and their corresponding analysis types and boundary condition

numbers.

Data: =n "type’y  [be,l

n 'type’, [bec)]

Entry Definition Note Variable
n, Load set number IPLOD(I,2)
'type'i Analysis type (1) LOADT(I,1)
bci Boundary condition number (2) LOADT(1,2)
n Number of load sets NLS
Notes:

1, The descriptor ’'type’ defines the type of analysis to be performed
for the associated 1load set, Currently only 1linear static
analysis may be performed and therefore 'STATICS’ is the only

valid descriptor.

2. The absence of the boundary condition number bci will cause the

load set to be associated with boundary condition number 1,
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Command: 'MATERIALS'

Description: This command allows the user to specify material properties

to be used for analysis and design purposes.

Data: m p, B, YV 6 oy T, [c,1

mn pn En vn Gn 6.n tn [Cn]

Entry Definition Note Variable
m, Material number IDMAT(I,1)
Py Mass density PMATE(I,1)
Ei Modulus of elasticity PMATE(I,2)
vy Poissons ratio PMATE(I,3)
Gi Shear modulus (1) PMATE(I,4)
;i Allowable stress in tension PMATE(I,8)
and compression
;i Allowable stress in shear PMATE(I,9)
Ci Additional material constant (2) PMATE(I,10)
n Total number of materials NMT
Notes:

1. If a value of 0. is supplied for G the actual value of G will be

calculated from

= 2(1+v)
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The additional material constant Ci may be used to supply any
additional data required for the element strength constraint cal-

culations (e.g. effective member length for buckling constraint

evaluation, factor of safety).
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Command:

Description: This command allows the user to describe discrete loads

be applied to specific nodal degrees of freedom.

Data:

'NODAL LOADS’

['SET’ k]

n DOF1 P

1 1

['SET' Kk ]

nmj+1 DOFmj+1 ij+1

nmL DOFmL PmL
Definition Note
Load set number (1)

Node number

Degree of freedom specification (2)
Magnitude of load

Number of load sets

Number of applied nodal loads

168

Yariable

NLOAD(J,1)
NLOAD(J,2)
NLOAD(J,3)
FLOAD(J)
NLS

NAF

to



Notes:

The absence of the 'SET’ descriptor and its associated 1load set
number will cause the following loading data to be associated with
load set number 1, The load set number must correspond to a load

set defined by the 'LOAD CONDITIONS' command.

The degree of freedom specification may be any value between 1 and
6. The values 1, 2, 3 and 4, §, 6 correspond to the x,y,z trans-

lations and rotations respectively.
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Command: ‘'TRANSFORMATIONS'®*

Description: This command may be used to to create user defined coordi-
nate systems to facilitate data input and/or to impose boundary condi-
tions and displacement constraints in directions other than the global

coordinate directions.

Data: =, ‘axisl’', x1, yl; z1, 'axis2';, x2, y2, 22, ['o’ x0; you zoll

n ‘axisl' x1 yl 2zl ‘axis2' x2 y2 22 ['o’ x0_ yo_ z0 ]

Entry Definition Note Variable
n, Transformation number IDTRN(I,1)
'axisl'i First user axis designation (1)

x1i CTRAN(1,1I)
y1i Components of user ’axisl’ (2) CTRAN(2,1)
zli CTRAN(3,1I)
'axisZ'l Second user axis designation (1)

XZi CTRAN(4,I)
y2i Components of user 'axis2’ (2) CTRAN(S,I)
zZig CTRAN(6,1I)
"o’ Indicates that user coordinate (3)

system origin specification follows
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X0
oy

z0

Notes:

1.

CTRAN(10,1I)
Location of user coordinate
system origin (3) CTRAN(11,1I)

CTRAN(12,I)

The user axis designations 'axisl’ and ’‘axis2’' may be given as

‘X', 'Y', or 'Z' and need not be given in cyclic permutation

order.

The components of the user coordinate axes must be given in terms
of the global referenﬁe system. The axes ’'axisl’ and ‘axis2’' need
not be perpendicular., >The third nser axis (’'axis3') is calculated
from the cross product of ’axisl’ and ’‘axis2’ and then ‘axis2’ is

recomputed from the cross product of 'axisl’ and ’'axis3’.

If the origin specification 'Q' is given then the user coordinate
system origin (xo0,yo0,z0) must be given in terms of the global
reference system. In this case the node point locations supplied
via the 'COORDINATES’ command are assumed to be measured with

respect to the user coordinate system origin.

¢ The
under

capabilities available through the use of this command are still
development at this time and have not been fully tested.
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Command: °’'TRUSS ELEMENTS'

Description: This command allows the user to define the truss element

data for the structural analysis model.

Data: n, my n11 n21 [A]l

o m nl, n2, [A]k

Entry Definition Note

Truss element number

i
m, Material specification number (1)
nl, First end node number ' (2)
n2, Second end node number (2)
Ai Cross sectional area (3)
k Total number of truss elements
Notes:

Variable

IDTRS(I,1)
ITRUS(I,1)
ITRUS(I,2)
ITRUS(I,3)
PTRUS(I,1)

NTE

1. The corresponding material must be defined by the 'MATERIAL’' com—

mand.

2. The end nodes must be defined by the ’‘COORDINATES' command.

3. The truss cross sectional area need not be given if the truss is

to be associated with a design element.
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truss is associated with a design element any cross sectional area
supplied by the user will be replaced by the cross sectional area

calculated from the corresponding design element information.
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Command: ‘UNIFORM BEAM LOADING'

Description: This command allows the user to specify uniformly distri-
buted 1loading for any beam element in the structural model. This load-

ing is applied in the form of work equivalent nodal loading.

Data: ['SET’ k1]

n1 DIR1 P1

['SET' k1]

nmj+1 DIRmj+1 Pmj+1

L DIRmL PmL
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Entry

Notes:

Definition Note Variable
Load set number (1) I0LOD(J,1)
Beam element number IULOD(J,2)
Direction specification (2) IULOD(J,3)
Magnitude of loading in ULOAD(J)
load per unit length
Number of load sets NLS
Number of applied uniform NULB

beam loads

The absence of the 'SET' descriptor and its associated 1load set
number will cause the following loading data to be associated with
load set number 1. The load set number must correspond to a load

set defined by the 'LOAD CONDITIONS' command.

The direction specification defines the direction of the applied
loading in the beam element local coordinate system. The specifi-
cation may be any value between 1 and 6. The values 1,2,3 and
4,5,6 correspond to the directions of local x,y,z translations and

rotations, respectively.
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E.2 Design Data Commands

The synthesis problem design model may be defined using the design

data commands listed below.

'DESIGN DATA'

- 'DESIGN ELEMENTS’

'DISPLACEMENT CONSTRAINTS'

' ELEMENT GEOMETRY'

'LOCAL BUCKLING CONSTRAINTS'

'STRESS CONSTRAINTS'

These commands are described in this section in alphabetical order.
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Command: 'DESIGN DATA’

Description: This command denotes the beginning of design input data

block and must precede the first occurrence of any other design data

command.
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Command: °'DESIGN ELEMENTS'’

Description: This command allows the user to specify the structural ele-
ments which are to be considered as design elements during the design

process.,

Data: mll ny [m21]

ml, n, (m2,]
Entry Definition Note Variable
mli Analysis element number IDESG(I,1)
n, Geometry number (1) IDESG(I,2)
mzi Master element number (2) IDESG(I,4)
k Number of design elements NDE
Notes:
1, The geometry number n, must correspond to a design element
geometry number specified by the ’‘ELEMENT GEOMETRY' command.
2. The master element number m2i allows the user to 1link several

analysis elements together for design purposes. The master ele—
ment number must appear in the design element list and must not

itself refer to another master element. The absence of a user
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specified master element causes 1::2i to be set equal to mli.
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Command: 'DISPLACEMENT CONSTRAINTS'

Description: This command allows the user to specify allowable upper and

lower bounds on nodal translations and rotations.

Data: m o i o 181 UB1

my By Jy ©p LBy UBy

Entry Definition Note Variable

m, Load set number IDISC(I,1)

n, Node number IDISC(I,2)

ji Degree of freedom number (1) IDISC(I,3)

4 Constraint shift value (2) RDISC(I,1)

LBi Lower bound value (2) RDISC(IX,2)

UBi Upper bound value (2) RDISC(I,3)

k Number of displacement constraints NDC

Notes

1. The degree of freedom specification may be any value between 1 and

6. The wvalues 1, 2, 3, and 4, 5§, 6 correspond to the x, y, 2

translations and rotations, respectively.

2. The displacement constraint is written for strictly negative lower
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bound and strictly positive upper bound values. For the case
where the actual displacement bounds are of the same sign the con-—

straint shift wvalue c; may be used to shift the constraint value
such that the upper and lower bounds will have the correct signs.

The form of the displacement constraint is given by
(u—c)/ua <1

where u is the displacement value and LA is the shifted displace-

ment allowable (i.e. IBi or UBi).
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Command: 'ELEMENT GEOMETRY'

Description: This command allows the user to specify data pertaining

the design element sizing variables,

Data: ml n1
Y L, v,
Y1 Ty O,
"L n
Tpivr Mpien Whyn
T Ty Wy
Entry Definition Note
m, Design element geometry number
n, Design element type (1)
Yj Initiel value of design element
sizing variable
YLj Lower bound value of design
element sizing variable
YUj Upper bound value of design
element sizing variable
L Number of design element

geometries
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Variable

IDGOM(I,1)
IGEOM(I,1)

DGEOM(J,1)

DGEOM(TJ,2)

DGEOM(J,3)

NEG




kL Total number of design element NCD
sizing variables

Notes:

1, The design element type must correspond to an element type avail-

able in the design element library.
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Command: 'LOCAL BUCKLING CONSTRAINTS'

Description: This command allows the user to request the calculation of
local buckling constraint values for the specified load sets. Local
buckling constraint values are calculated for all elements whose
corresponding element type has an associated local buckling computation

as described in the element library.

Datsa k1

k

n
Entry Definition Note Variable
ki Load set number IBLOD(I)
n Number of load sets for which NBL

buckling constraints are to be calculated
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Command: ’'STRESS CONSTRAINTS'

Description: This command allows the user to request the calculation of
design element stress constraint values for the specified load sets.
Stress constraint values are calculated for all elements whose
corresponding element type has an associated stress computation as

described in the element library.

Data: kl

k

n
Entry Definition Note Yariable
ki Load set number ISLOD(I)
n Number of load sets for which stress NSL

constraints are to be calculated
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E.3 Control Data Commands

The solution of the structural synthesis problem may be controlled

using the commands listed below,

' ANALYSIS'’

* CHECKPOINT'

' CONMIN'

' CONTROL DATA’

'CSD '

'DUAL’

'FORCE VARIANCE'

' ITERATIONS'

'MIXED'

'MOVE LIMITS'

' OPTIMIZATION'

'PRINT’

'RESTART'

'SCALE’

'SENSITIVITIES'
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' SETOP'

' UPDATE'’

These commands are described in this section in alphabetical order.
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Command: 'ANALYSIS’

Description: This program function control command causes the program to
terminate after the structural analysis has been completed. In this

case the program control variable IPCIL is set to 1.
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Command: 'CHECKPOINT’ [n]

Description: This command causes the program analysis and design data to
be written on external file number n upon successful termination of a
design run. The external file number is stored in the variable ICKFL.
The absence of the file number specification will cause ICKFL to be set

to 1.,
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Command: ‘CONMIN’ [c]

Description: This command allows the user to specify that the solution
to the approximate design problem is to be performed using a primal
mathematical programming formulation. The mass minimization problem is
solved using the CONMIN optimization program. The parameter c¢ controls
the constraint push off factor. If ¢ > 0. then the displacement, stress
and Jlocal buckling constraints are treated as being nonlinear and ¢ is
used as the push off factor. If ¢ = 0. then all constraints are con-
gsidered to be 1linear. In the absence of a user specified value ¢ is
given a value of 1.0, Specification of the 'CONMIN’ command causes the
variable IOPTY to be set to 3. The value of ¢ is stored in the variable

OPTPRM(1) .
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Command: 'CONTROL DATA'

Description: This command denotes the beginning of the program control
data block and must precede the first occurrence of any other control

date command.
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Command: ‘CSD '

Description: This command allows the user to specify that the element
cross sectional dimensions are to be used as the design variables during
the solution of each approximate design problem. In the absence of this
command either the element reciprocal section properties or a combina-
tion of element reciprocal section properties and cross sectional dimen-
sions are chosen as the design variables. Specification of this command

causes the variable ICSD to be set to 1.
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Command: 'DUAL’

Description: This command allows the user to specify that the solution
to the approximate design problem is to be performed using a dual
mathematical programming formulation. The dual function maximization
problem is solved using the CONMIN optimization program., This feature
is currently operational only when used in conjunction with the ’'CSD '’
command and will auntomatically specify that a mixed variable approxima-
tion is to be used for all behavior constraints. Design variable scal-
ing is also activated automatically for this feature, Specification of
this command causes the variables IOPTY, IMIX, and ISCALE to be set to

2, 1 and 1, respectively.
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Command: 'FORCE VARIANCE'’ n

Description: This command allows the users to specify that the variation
of the design element forces with respect to the problem design vari-
ables is to be included in the stress and 1local buckling constraint
approximations during the approximate problem generation. If this com—
mand is not specified the element forces are assumed to be invariant
during any design step. If n =1 then the element force sensitivities
are calculated only with respect to the design variables associated with

that eclement. If n

2 then the element force sensitivities are calcu-
lated with respect to all design variables, The value of n is stored in

the variable IFVAR.
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Command: 'ITERATIONS' n

Description: This command allows the user to specify the anumber of

design steps which are to be performed. Each design step consists of

the generation and solution of one approximate problem. The number of

iterations n is stored in the variable NSTEP.
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Command: 'MIXED APPROXIMATIONS'

Description: This command allows the user to specify that a mixed vari-
able approximation will be used for all behavior comnstraints. Design
variable scaling is activated automatically for this feature. Specifi-

cation of this command causes the variables IMIX and ISCALE to be set to

1.
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Command: 'MOVE LIMITS’ d d

1 "2

Description: This command allows the user to specify the allowable
changes in the problem variables during any single design step. The
move limits d1 and d2 are applied to the element cross sectional dimen—
sions and reciprocal section properties, respectively. The limiting

values (YL, YU, XL, XU) are given by the following equations:

L

ol S8 5
=Y+ v
x' =X - x4,
' = X + x4

If zero is given for either move limit then the limiting values for the
corresponding variables are determined from the overall limits on the
element sizing variables supplied via the 'GEOMETRY command. The values
of d1 and d2 are stored in the variables DMOVE(1) and DMOVE(2), respec-
tively.
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Command: 'OPTIMIZATION'’ [¢]

Description: This program function control command causes all major pro—
gram functions (data processing, analysis, approximate problem genera-
tion, optimization and design recovery) to be performed. In this case
the program control vafiable IPCTL is set to 3. The value ¢ controls
the diminishing returns convergence criterion on structural mass, The
design process is terminated if the relative change in structural mass
is less than ¢ for three consecutive design steps. The value of ¢ 1is
stored in the variable DELOBJ. In the absence of a user specified value

for ¢ DELOBJ is set to ,01.
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Command: ‘PRINT’ n1 n, n3 Oy ng Ng Ny Ng Ny Iy,

Description: This command allows the user to control the program print-
ing optionms. If the value of n, is set to 0 then the corresponding
printing option is disabled., A value of n, greater than 0 enables the
printing options as described below. The value of n, is stored in the

i
variable IPS(I),

n, - Design data is printed at the beginning of each
design step.

n, - Analysis data is printed at the beginning of each
design step.

ng - Not used at this time.

n, - Structural analysis results are printed for each
design step.

n, - Design results are printed for each design step.

ne - CPU timing summary is printed for each design step.

n, - Not used at this time,

ng - Not used at this time.

n9 - All program data storage is printed at completion
of specified program function,

n;o - Controls optimizer print option.

* Currently is used to control the CONMIN optimizer output. A value

of n =1 is suggested for normal program operation with higher values
10 :
(up to o = 6) being used for debug operations.
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Command: °'RESTART' [n]

Description: This command allows the user to begin the design process
from the termination point of 2 previous design run by causing the pre-
viously written analysis and design data to be read from external file
number n. The external file number is stored in the variable IRSFL.
The absence of the external file #umber specification will cause IRSFL
to be set to1l. It should be noted that at this time only control data

modifications are allowable for restarted design runs,
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Command: °‘SCALE’

Description: This command will cause the design variables to be scaled
to unity at the beginning of each approximate problem stage. Specifica-
tion of this command causes the variable ISCALE to be set to 1. The

default value of ISCALE is O and scaling is not performed.
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Command: 'SENSITIVITIES'

Description: This program function control command causes the program to
terminate after the approximate problem generation has been completed.

In this case the program control variable IPCIL is set to 2.
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Command: ’SETUP’

Description: This program function control command causes the program to
terminate after the input data processing has been completed. In this

case the program control variable IPCIL is set to the default value O,
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Command: ’'UPDATE’ [n]

Description: This command will cause the approximate design problem to
be partielly reconstructed and re~solved n times between each complete
structural analysis and approximate problem generation. The value of n
is stored in the variable NUPDAT. If n is not specified NUPDAT is set

to1l, In the absence of the ‘UPDATE’ command NUPDAT is set to 0.
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Fig. 1 - Structural Element Orientation
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Name Pointer Length
RMASS 151 100
STIFFK 1 100
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ommand

INITIALIZE

INSERT
LOCATE
DELETE

EXPAND

CONTRACT

COMPRESS

CHANGE NAME

DEBUG

QUERY

CHECKPOINT

RESTART

Description

Initialize data management
dictionary and void area table,

Insert new variable in the data vector.
Locate a variable in the data vector.,
Delete a variable from the data vector.

Increase the storage available for
& variable.

Decrease the storage avaiable for
a variable,

Remove voids from dats vector.

Change the name of a variable
in storage.

Print data vector, dictionary and void
area tabdle,

Return maximum storage used.

Write data vector, dictionary and
void area table on external file,

Read data vector, dictionmary and void
area table from external file.

Fig. 8. Storage Management Commands
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— INITAL

= PREPRO

MAIN == CONTRL

= PSTPRO

~— FINISH

Fig. 9 - Main Routine Flow Diagram
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—READA

—=RENUM ==

PREPRO =

—ADPRO ==

F‘DDPRO -

~SCAN == SCARD

DCODE

SCARD

L--READD —— SCARD

—~READC == SCARD

=RESTRT

— SORTI
~ SRCHI
~ CMBCS === CMBSPC == INTBIN
SRCHI
— ADDLST
SHFTI
— BLDBCT —— SRCHI
= BLDLST
VCPRD
— TRANC
VSPRD
— VSPRD
— VCPRD
— PRSEC
~ CSDPRO
— CNTPRO

Fig. 10 - Pre-processor Flow Diagram

214




— ANCTL

= APPCTL

= OPTCTL

CONTRL=-

— RLZCTL

~ CONVRG

= PRTCTL

Fig. 11 - Design Control Flow Diagram
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[~ CMBSPC = INTBIN

—BLDLBN =——1=MATCOM

== SORTI

SRCHI
— BLDDFT BLDLFN == BLDFN { SRCHI

ADDLST "[
SHFTI

=BLDDOF == INTBIN

== COLHGT
VCPRD
ROTATE
== GENRAT VSPRD
BEMELE
TRNMAT = MIMLTI1
~ ASMBEM INTBIN
BEMTRN
ASSEMB

ANCTL =t— ASMBLY ==
TRNMAT === MTMLTI

L AsyTRS INTBIN
TRSTRN
ASSEMB
VIPSS
~ FACTOR = SKYFCT =— SKYFAC SKYRDM

VIPSS
SKYSOL —I
SKYMUL

®
Fig. 12 - Analysis Control Flow Diagram
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SKYMUL

Fig. 12 - Analysis Control Flow Diagram (cont.)
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|
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-~ CONDEL
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- CONLST { SHFTI
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- MATCOM
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| DSPDEP =—— SETDEP — SRCHI
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~— COLGEN = SKYSOL —[
APPCTL~ SKYMUL
~ TRNMAT =— MTMLT1
. BEMELE
— DDSPBM == BEMTRN
L~ MTMLTS .
L INTBIN

® ©

Fig. 13 - Approximate Problem Generation Control Flow Diagram
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@ @ p= TRNMAT e MTMLT1

— BEMELE
- BEMTRN
- MTMLT4
- MTMLT5
— RDSPGR === SRCHI

— DFORBM =

b~ SENSIT ==
TRNMAT === MTMLT1

TRSTRN
MTMLTS
INTBIN

= DDSPTR

— TRNMAT == MTMLTI
— TRSTRN
— DFORTR —f~ MTMLT4
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— RDSPGR
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DSDF13
DSDF14
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DSDX14

= DSTRDX

— DSDY11
- DSDY12
~ DSTRDY =—f= DSDY13
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- DSDY15
® dﬁg

Fig. 13 - Approximate Problem Generation Control Flow Diagram (cont.)

219




® ©

DBDF11
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DBDF14
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Fig. 13 - Approximate Problem Generation Control Flow Diagram (cont.)
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—~SCALDV
~SCALOB
~SCALGR
~ OBJGRD == VSPRD
- CONSCL
— CNMNO1
- CNMNO2
| comIn —f CNMNO3 — CNMNO4
rDULINT _ CNMNO5 =— CNMNOS
CNMNO4
— CNMNO6 —[
OPTCTL ol CNMNOT
— PRIVAR
[~ CONAPR
— OBJVAL
b VSPRD
~OBJGRD — VSPRD
— CNMNO1
. CNMNO2
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—CNMNO5 == CNMNO6
L~ CONINT = CNMEOG
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NMNO7
-~ CONGRD
~ CONAPR
== OBJVAL

Fig. 14 - Optimization Control Flow Diagram
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~CSDRCV == MVPRD

RLZCTL"~

DESG11
DESG12
DESG13
DESGl4

=DESLIB

Fig., 15 - Design Recovery Control Flow Diagram
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~DDPRNT

SORTI
-

INTBIN
PRTCTL=

=ARPRNT —— SORTI

—~DRPRNT

Fig. 16 - Printing Control Flow Diagram

223



- CLENUP

PSTPRO =

=CHECKP

Fig., 17 - Post-processor Flow Diagram
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' COMMAND ' data [data]
Form 2
* COMMAND '
date [data]
data {data]
Form 3
' COMMAND'
! SUB~COMMAND '

data [data]

data [data]l

Fig., 18 -= Data Command Forms
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$ FRAME OPTIMIZATION PROBLEM - ONE BAY / TWO STORY FRAME

$:‘:z‘::‘:-.‘.--.‘:-.‘:-.‘.-v‘:-.'r~.':~.':-.':-.'r-k:‘r.‘:-.':-.‘:-.‘:-.‘.--.'n‘::'r*-.‘:-.‘:-.‘.--.':-.‘:-.’r*-.'::‘:-.‘:-.‘:-.'.--.':-.':-.‘:-.‘:7‘::'::‘:*-.‘:-.‘:-.':-.':-.':-.‘::‘r-.'r-.‘:-.':-.‘:-.':-.'::‘n':-.'::‘.--.‘::‘.-:':-.‘.--.‘:-.‘.--.‘::':
$
$ ---------------------------------------------------------------------
$ DESIGN DATA BLOCK
$ ---------------------------------------------------------------------
'DESIGN DATA'
$
'DESIGN ELEMENTS'
$
$  ANALYSIS ELEMENT NO. GEOMETRY NO. MASTER ELEMENT NO.
$
1 1
2 1
3 1
5 1
8 1 1
7 1 2
4 - 1 3
6 1 5
$
'ELEMENT GEOMETRIES'
$
$  GEOMETRY NO. GEOMETRY TYPE
$
1 14
$
$  INITIAL VALUE LOWER BOUND UPPER BOUND
$
16.61 1.00 25.
.45 .01 5.
$
'STRESS CONSTRAINTS'
$
$ LOAD SET NO.
$
1
2
$
"LOCAL BUCKLING CONSTRAINTS'
$
$  LOAD SET NO.
$
1
2

'"DISPLACEMENT CONSTRAINTS'
$

Fig. 19 - Sample Program Input Data
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$  LOAD SET NO. NODE NO. DOF SHIFT LOWER BOUND  UPPER BOUND

2 2 1 0.0 -.36 .36
2 3 1 0.0 -.72 .72
2 4 1 0.0 -.36 .36
2 5 1 0.0 -.72 .72
2 6 1 0.0 -.36 .36
2 7 1 0.0 -.72 72
$ .....................................................................
$  ANALYSIS DATA BLOCK
$ .....................................................................
'ANALYSIS DATA'
s .
'BOUNDARY CONDITIONS'
$
$ NODE NO. DEGREE OF FREEDOM SPECIFICATION
$
'ALL' 123456
2 -126
3 -126
4 -126
5 -126
6 -126
7 -126
$
"MATERIALS'
$
$  MATERIAL NO. RHO E NU G SIGY FS K-EFF
$
1 .2836 30.00E6 0.30 0.785E7 3.6E04 1.51 1.00
2 .2836 30.00E6 0.30 0.785E7 3.6E04 1.51 1.14
3 .2836 30.00E6 0.30 0.785E7 3.6E04 1.51 1.38
4 .2836 30.00E6 0.30 0.785E7 3.6E04 1.51 1.37
$
"BEAMS'
$
$ ELEMENT NO. MATERIAL NO. NODE 1 NODE 2 ORIENTATION DATA
$
1 1 1 2 3 1. 0. 0.
2 2 2 3 3 1. 0. oO.
3 3 3 5 3 0. 1. 0.
4 3 5 7 3 0. 1. 0.
5 4 2 4 3 0. 1. 0.
6 4 4 6 3 0. 1. 0.
7 2 6 7 3 1. 0. O.
8 1 6 8 3 1. 0. oO.
$
"COORDINATES'
$

Fig. 19 - Sample Program Input Data (cont.)
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$ NODE NO. X Y Z
$
1 0.0 0.0 0.0
2 0.0 180.0 0.0
3 0.0 360.0 0.0
4 120.0 180.0 0.0
5 120.0 360.0 0.0
6 240.0 180.0 0.0
7 240.0 360.0 0.0
8 240.0 0.0 0.0
$
'LOAD CONDITIONS'
$
$ LOAD SET NO. TYPE BOUNDARY CONDITION NO.
$
1 'STATICS' 1
2 'STATICS' 1
$
'NODAL LOADS'
$
$ LOAD SET NO.
$
'SET' 2
$
$ NODE NO. DIRECTION MAGNITUDE
$
2 1 45000.
3 1 45000.
$
'UNIFORM LOADS'
$
$ LOAD SET NO.
$
'SET' 1
$
$ BEAM NO. DIRECTION MAGNITUDE
$
3 2 -500.
4 2 -500.
5 2 -500.
6 2 -500.
$ .....................................................................
$  CONTROL DATA BLOCK
s .....................................................................
'CONTROL DATA'
$

"ITERATIONS' 15
"MOVE LIMIT' .0 .5
'CONMIN'

Fig. 19 - Sample Program Input Data (cont.)
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"MIXED'

'SCALE'

'OPTIMIZATION' .001
'"PRINT' 0001110001

Fig. 19 - Sample Program Input Data (cont.)
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Fig. 20 - Tied Cantilevered Beam (Problem 1)
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Fig. 21 - Iteration History for Problem 1, Run 1 (Option 1(P))
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Fig. 22 - Iteration History for Problem 1, Run 2 (Option 2(P))
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Fig. 24 - Iteration History for Problem 1, Run 4 (Option 6(P))

Tied Cantilevered Beam
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Fig. 25 - Two Member Frame (Problem 2)
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Fig. 26 - Iteration History for Problem 2, Case A, Run 1 (Option 1(P))
Two Member Frame
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Fig. 27 - Iteration History for Problem 2, Case A, Run 2 (Option 2(P))
Two Member Frame
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Fig. 28 - Iteration History for Problem 2, Case A, Run 3 (Option 3(P))
Two Member Frame
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Fig. 29 - Iteration History for Problem 2, Case A, Run 4 (Option 4(P))

Two Member Frame
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Fig. 30 - Iteration History for Problem 2, Case A, Run 5 (Option 7(P))
Two Member Frame
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Fig. 31 - Iteration History for Problem 2, Case A, Run 6 (Option 10(P))

Two Member Frame
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Fig. 32 - Iteration History for Problem 2, Case A, Run 7 (Option 10(D))
Two Member Frame
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Fig. 33 - Iteration History for Problem 2, Case A, Run 8 (Option 1(PU))
Two Member Frame
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Fig. 34 - Iteration History for Problem 2, Case B, Run 1 (Option 1(P))
Two Member Frame
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Iteration History for Problem 2, Case B, Run 2 (Option 2(F))
Two Member Frame
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Fig. 36 - Iteration History for Problem 2, Case B, Run 3 (Option 3(P))

Two Member Frame
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Fig. 37 - Iteration History for Problem 2, Case B, Run 4 (Option 4(P))

Two Member Frame
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Fig. 38 - Iteration History for Problem 2, Case B, Run 5 (Option 10(P))
Two Member Frame
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Fig. 39 - Iteratijon History for Problem 2, Case B, Run 6 (Option 10(D))
Two Member Frame
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Fig. 40 - Iteration History for Problem 2, Case B, Run 7 (Option 1(PU))
Two Member Frame
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Fig. 41 - Three Member Frame (Problem 3)
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42 - Iteration History for Problem 3, Run 1 (Option 1(P))

Three Member Frame
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Fig. 43 - Iteration History for Problem 3, Run 2 (Option 2(P))

Three Member Frame

253



VOLUME (in3)

8000

7000

6000

5000

4000

3000

2000

1000

|

O CONSTRAINT VIOLATION
[0 CONSTRAINT VIOLATION

<
<

1%
10%

@ CONSTRAINT VIOLATION > 10%

_

ANALYSIS NUMBER

6

10

12

Fig. 44 - Iteration History for Problem 3, Run 3 (Option 3(P))

Three Member Frame
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Fig. 45 - Iteration History for Problem 3, Run 4 (Option 4(P))
Three Member Frame
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Fig. 46 - Iteration History for Problem 3, Run 5 (Option 10(P))
Three Member Frame
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Fig. 47 - Iteration History for Problem 3, Run 6 (Option 10(D))
Three Member Frame
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Fig. 48 - Iteration History for Problem 3, Run 7 (Option 1(PU))
Three Member Frame
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Fig. 50 - Iteration History for Problem 4, Run 2 (Option 2(P))
Seven Member Frame
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Fig. 51 - Iteration History for Problem 4, Run 3 (Option 3(P))
Seven Member Frame
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Fig. 52 - Iteration History for Problem 4, Run 4 (Option 6(P)).
Seven Member Frame
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Fig. 53 - Iteration Histcry for Problem 4, Run 5 (Option 12(P))
Seven Member Frame
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Fig. 534 - Iteration History for Problem 4, Run 6 (Option 12(D))

Seven Member Frame
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Fig. 55 - Iteration History for Problem 4, Run 7 (Option 3(PU))

Seven Member Frame
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Fig. 56 - Portal Frame (Problem 5)
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Fig. 57 - Iteration History for Problem 5, Run 1 (Option 1(P))

Portal Frame
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Fig. 58 - Iteration History for Problem 5, Run 2 (Option 2(P))

Portal Frame

268




VOLUME (cm3)

185,000 — ‘
O CONSTRAINT VIOLATION < 1%
O CONSTRAINT VIOLATION < 10%
170,000 |- @ CONSTRAINT VIOLATION > 10%
155,000 |~
140,000 |
125,000 —
110,000 |~
95,000 |-
80.000 ] 1 ] 1 | { ] 1 B |
o 5 10

ANALYSIS NUMBER

Fig. 59 - Iteration History for Problem 5, Run 3 (Option 3(P))
Portal Frame
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Fig. 60 - Iteration History for Problem 5, Run 4 (Option 12(P))

Portal Frame
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Fig. 61 - Iteration History for Problem 5, Run 5 (Option 12(D))
Portal Frame
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Fig. 62 - One Bay / Two Story Frame (Problem 6)
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Fig. 63 - Iteration History for Problem 6, Case A, Run 1 (Option 1(P))
One Bay / Two Story Frame
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Fig. 64 - Iteration History for Problem 6, Case A, Run 2 (Option 3(P))
One Bay / Two Story Frame
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Fig. 65 - Iteration History for Problem 6, Case A, Run 3 (Option 6(P))
One Bay / Two Stroy Frame
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Fig. 66 - Iteration History for Problem 6, Case A, Run 4 (Option 12(P))
One Bay / Two Story Frame
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Fig. 67 - Iteration History for Problem 6, Case A, Run 5 (Option 12(D))
One Bay / Two Story Frame
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Fig. 68 - Iteration History for Problem 6, Case B, Run 1 (Option 1(P))

One Bay / Two Story Frame
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Fig. 69 - Iteration History for Problem 6, Case B, Run 2 (Ooption 3(P))
One Bay / Two Story Frame
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Fig. 70 - Iteration Histery for Problem 6, Case B, Run 3 (Option 4(P))

One Bay / Two Story Frame
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Fig. 71 - Iteration History for Problem 6, Case B, Run 4 (Option 10(P))
One Bay / Two Story Frame
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Fig. 73 - 2x5 Grillage (Problem 7)
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Fig. 74 - Iteration History for Problem 7, Case A, Run 1 (Option 1(P))
2x5 Grillage
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Fig. 75 - Iteration Histroy for Problem 7, Case A, Run 2 (Option 4(p))
2x5 CGrillage
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Fig. 76 - Iteration History for Problem 7, Case A, Run 3 (Option 10(P))
2x5 Grillage
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Fig. 77 - Iteration History for Problem 7, Case A, Run 4 (Option 10(D))
2x5 Grillage

287



25,000

20,000

VOLUME (in3)

15,000

10,000

5,000

O CONSTRAINT VIOLATION
O CONSTRAINT VIOLATION

1%
10%

A A

@® CONSTRAINT VIOLATION > 10%

] ] ] 1 J

1 2 3 4 5

ANALYSIS NUMBER

Fig. 78 - Iteration History for Problem 7, Case A, Run 5 (Option 1(PU))

2x%5 Grillage

288




25,000 — O CONSTRAINT VIOLATION < 1%
o ‘ O CONSTRAINT VIOLATION < 10%
® CONSTRAINT VIOLATION > 10%
20,000 |—
N
£
w
s
2 15,000 |
o ’
>
10,000 {—
5,000 ] ] | ] Bl ] | ] | ]

0 2 4 6 8 0 12 14 16 18 20

ANALYSIS NUMBER

Fig. 79 - Iteration History for Problem 7, Case B, Run 1 (Option 3(P))
2x5 Grillage
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Fig. 80 - Iteration History for Problem 7, Case B, Run 2 (Option 6(P))
2x5 Grillage
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Fig. 81 - Iteration History for Problem 7, Case B, Run 3 (Option 12(P))
2x5 Grillage
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Fig. 82 - Iteration History for Problem 7, Case B, Run 4 (Option 3(PU))
2x5 Grillage
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Fig. 83 - Two Bay / Six Story Frame (Problem 8)
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Fig. 84 - Tteration History for Problem 8, Case A, Run 1 (Option 1(P))

Two Bay / Six Story Frame
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Fig. 85 - Tteration History for Problem 8, Case A, Run 2 (Option 3(P))
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Fig. 86 - Iteration History for Problem 8, Case A, Run 3 (Option 6(P))
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Fig. 87 - Iteration History for Problem 8, Case A, Run 4 (Option 12(P))
Two Bay / Six Story Frame
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Fig. 88 - Iteration History for Problem 8, Case A, Run 5 (Option 3(PU))
Two Bay / Six Story Frame
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Fig. 89 - Iteration History for Problem 8, Case B, Run 1 (Option 1(P))
Two Bay / Six Story Frame



00¢

WEIGHT (Ib)

27,750

27,000

26,250

25,500

24,750

24,000

O CONSTRAINT VIOLATION
O CONSTRAINT VIOLATION
@® CONSTRAINT VIOLATION

L | | 1 ]

v IAIA

1%
10%
10%

2 4 6 8 10

ANALYSIS NUMBER

Fig. 90 - Iteration History for Problem 8, Case B, Run 2 (Option 3(P))
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Fig. 91 - Iteration History for Problem 8, Case B, Run 3 (Option 4(P))
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Fig. 92 - Iteration History for Problem 8, Case B, Run 4 (Option 10(P))

Two Bay / Six Story Frame

10

1%
10%
10%



£0€

WEIGHT (Ib)

27,750

27,000

26,250

25,500

24,750

24,000

1 2 3 4 5

ANALYSIS NUMBER

Fig. 93 - Iteration History for Problem 8, Case B, Run 5 (Option 1(PU))

Two Bay / Six Story Frame

O CONSTRAINT VIOLATION < 1%
{1 CONSTRAINT VIOLATION < 10%
@ CONSTRAINT VIOLATION > 10%
— o
—\J
| | ] | ] ] J
0 6 8



v0¢

P,= 1.4903 kips ’ 3
- 3
PZ— 1.6918 kipS / 15
P3= 0.1400 kips 13 P
P,= 1.3658 kips //// 16 P
14 { P
YA
A P,
'P
3
15
19
23
17
SN 2% 25
\ -
\\‘
6
22 26
14 18
10

Fig. 94 - Helicopter Tail Boom (Problem 9)

P
27 2
2 P
.
28 P
26
27
= \"h.x
28



G0t




90¢

WEIGHT (Ib)

110

100

90

80

70

60

-O -O

O CONSTRAINT VIOLATION < 1%

0 CONSTRAINT VIOLATION < 10%

@ CONSTRAINT VIOLATION > 10%
e L ] | ] 1 L L L 1
5 10

ANALYSIS NUMBER

Fig. 95 - Iteration History for Problem 9, Run 1 (Option 1(P))
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Fig. 96 - Iteration History for Problem 9, Run 2, (Option 4(P))
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Fig. 98 - Iteration History for Problem 9, Run 4 (Option 10(D))
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Fig. A2 - Space Truss Element
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Fig., C2 - Cross Section for Design Element Type 1
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Fig, C3 - Cross Section for Design Element Type 11
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Fig. E2 - Angle Representation of Beam Element Orientation
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Option*

10
11

12

Table 1, Descriptions of Design Problem Solution Options

Design Space

RSP

RSP

RSP

RSP

RSP

RSP

CSb

CSD

CSD

CSD

CsDh

CsD

Approximations Element Force Variation

(objective function/behavior
constraints/side constraints)

None/Linear/Linear Invariant
None/Linear/Linear Local
None/Linear/Linear Global
None/Hybrid/Linear Invariant
None/Hybrid/Linear Local
None/Hybrid/Linear Global
Linear/Linear/None Invariant
Linear/Linear/None Local
Linear/Linear/None ‘ Global
Hybrid/Hybrid/None Invariant
Hybrid/Hybrid/None Local
Hybrid/Hybrid/None Global

* The letter designation following the option number indicates the type of optimization
method used to solve the approximate problem ((P)=Primal, (D)=Dual). Also, the desig-
nation (U) indicates that the approximate problem update feature was employed.



Table 2. Definition of Problem 1
Tied Cantilevered Beam

Material Properties

Young's Modulus

Shear Modulus

Poisson's Ratio

Weight Density

Allowable Normal Stress (Truss) :

Allowable Normal Stress (Beam)

Allowable Shear Stress (Beam)

Nodal Loading

6

6

.3

284 lb/in3
120,000 PSI
20,000 PsI

10,000 PSI

30.0 x 10" PSI

11.5 x 10" PSI

Load Node Loading Components (1lb, in-1b)
Case No. F F F M M M
X y z b y z
1 2 0. -10.,000 0. 0. 0. 0.
Uniform Loading
Load Member Loading Components (1lb/in, in-1b/in)
Case No. P P P m m m
X y Z X y z
2 1 0. -83.33 0. 0. 0. 0.
Initial Design and Side Constraints
Member Sizing Initial Lower Upper
Variable Value Bound Bound
(in, in") (in, in™) (in, in")
5.00 1.00 10.00
.20 .01 1.00
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Table 3. Iteration History Data for Problem 1
Tied Cantilevered Beam

8z¢

Weight (1b) [Maximum Constraint Violation (%)]
Analysis Run 1 Run 2 Run 3 Run 4
No. Option* 1(P) Option* 2(P) Option* 3(P) option® 6(p)
0 861.64 [0] 861.64 [0] 861.64 [0] 861.64 [0]
1 697.00 [0] 697.00 [0] 697.00 [O0] 697.00 [0]
2 563.97 [1.2] 563.92 [2.2] 563.98 [1.0] 563.98 [1.0]
3 531.34 [1.4] 519.21 [1.8] 476.97 [3.1] 476.97 [3.1]
4 523.20 [.5] 520.14 [0] 475.18 [0]) 475.18 [0]
5 520.14 [.2] 520.14 [0] 473.00 [0] 473.00 (0]
6 520.15 [0] 520.14 [O0] 473.04 [0] 473.04 [0]
7 520.15 [0] 473.04 [0] 473.04 [0]
CPU |Tot. .800 .797 1.035 1.033
Time |Anal. .131 .196 .249 .249
(sec)|Opt. .166 142 .192 .192

*See Table 1
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Table 4. Final Designs for Problem 1
Tied Cantilevered Beam

Final Design (in, inz)

Linking | Member Sizing { Ref. 51 Run 1 Ref. 51 Run 2
Group Nos. Variable | Method I {Option* 1(P) | Method II-B } Option* 2(P)

1 1 B 3.8850 3.8874 3.8819 3.8874

2 2 A .1061 .1066 .1062 .1066

Weight (1b) 519.40 520.15 516.80 520.14

Number of Analyses - 8 - 7

*See Table 1
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Table 4. Final Designs for Problem 1

Tied Cantilevered Beam (cont.)

Final Design (in, inz)

Linking | Member Sizing Ref. 51 Run 3 Run 4
Group Nos. | Variables| Method IV-B | Option* 3(P) | Option* 6(P)
1 1 B 3.6394 3.6421 3.6421
2 2 A L4571 L4354 L4354
Weight (1b) 473.40 473,04 473.04
Number of Analyses - 8 8

*See Table 1
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Table 5.

Critical Constraints for Problem 1

Tied Cantilevered Beam

Run Optign Stress Constrained
No. No. Members
Load Case l}jLoad Case 2

Ref. 51 - 2 1

1 1(P) 2 1

2 2(P) 2 1

3 3(p) - 1

4 6(P) - 1

*See Table 1




Table 6. Definition of Problem 2
Two Member Frame

Material Properties

Young's Modulus : E

Shear Mod

ulus

Poisson's Ratio TV

Mass Dens

ity

Allowable Stress : Ga

Nodal Loading

20.74 x

7.97 x

2.77

= 2,76 x 4

106 N/cm2

106 N/cm2

1072 kg/cm

2
10 N/cm

3

Load Node Loading Components (N, N-cm)
Case Nos. F F F M M M
X y z X y z
1 2 0. -44480. 0. 0. 0. 0.
Initial Design and Side Constraints
Member Sizing Initial Lower Upper
No. Variable Value (cm) Bound (cm) Bound (cm)
B 15.20 6.350 25.40
tb 2.03 .254 2.54
! H 10.20 6.350 25.40
th 2.29 .229 2.54
B 22.90 6.350 25.40
tb 2.03 .254 2.54
2 H 20.30 6.3590 25.40
t 2.29 .229 2.54
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Table 7. Iteration History Data for Problem 2, Case A

Two Member Frame

Mass (kg) [Maximum Constraint Violation (%)]
Analysis Run 1 .Run 2 Run 3 Run 4
No. Option* 1(P) Option* 2(P) Option* 3(p) Option* 4(pP)
0 1220.78 [0] 1220.78 [0] 1220.78 [0] 1220.78 [0]
1 531.31 [0] 531.31 [O0] 531.31 [0] 295.74 [0]
2 313.48 [0] 313.48 [0] 313.48 [0] 188.09 [0]
3 204.35 [0] 204.35 [0] 204 .35 [0] 163.20 [3.5]
4 165.10 [24.6] 165.23 [23.7] 165.24 [23.6] 151.29 [3.5]
5 161.08 [8.0] 158.88 [6.3] 159.99 [2.5] 141.61 [.6]
) 162.68 [1.0] 150.79 [2.8] 152.69 [0] 133.80 [.3]
7 151.29 [6.8] 142.97 [2.2] 143.70 [0] 133.88 [O0]
8 144.37 [2.4] 136.46 [1.4] 136.94 [0] 130.20 [.3]
9 137.49 [1.3] 132.14 [.8] 136.88 [0] 130.32 [0]
10 132.09 [.3] 130.20 [.3] 132.35 [0] 130.32 [0]
11 132.04 [0] 130.20 [.3] 130.47 [0]
12 130.25 [.1] 130.20 [.3] 130.46 [0}
13 130.25 [.1] 130.46 [0]
14 130.25 [.1]
CPU |Tot. 2.186 2.031 2.192 1.846
Time JAnal. .293 .375 467 .217
(sec) |opt. .999 .863 .875 .394

*See Table 1




4%

Table 7. Iteration History Data for Problem 2, Case A

Two Member Frame (cont.)

Mass (kg) [Maximum Constraint Violation (%)]
Analysis Run 5 Run 6 Run 7 Run 8
No. option* 7(P) Option* 10(P) Ooption* 10(D) option* 1(PU)
0 1220.78 [0] 1220.78 [0] 1220.78 [0] 1220.78 {0]
1 686.69 [0] 686.69 [0] 686.69 [0] 313.48 [0] .,
2 397.36 [0] 397.36 [0] 397.36 [0] 165.10 [24.6]
3 285.02 [33.5] 298.48 [3.6] 298.52 [3.5] 149.25 [8.1]
4 234.82 [25.0] 247.78 [0] 247.69 [0] 137.26 [3.3]
5 193.72 [20.7] 204.49 [0] 204 .45 [0] 129.92 [1.2]
6 166.19 [0] 168.88 [0] 168.95 [0] 130.40 [0]
7 139.00 [5.9] 142.71 [0) 142.69 [0]
8 128.55 [8.2] 132.08 [.1] 132.14 [0]
9 128.13 [8.4] 132.06 [.1] 132.09 [0]
10 127.95 [8.2] 132.06 [.1] 132.05 [0]
11 129.54 [2.3]
12 130.28 [.1]
13 130.26 [0]
14 130.26 [0]
cPU | Tot. 1.915 1.451 1.146 2.078
Time |Ana. .236 177 .173 L449
(sec)]Opt. .882 .596 .329 .884

* See Table 1

**Constraint was not Retained
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Table 8.

Two Member Frame

Final Designs for Problem 2, Case A

Final Design (cm)

Linking| Member | Sizing Ref. 29 Run 1 Run 2 Run 3 Run 4
Group Nos. | Variables Option* 1(P) | Option* 2(P) | Option* 3(P) | Option* 4(P)
B 6.35 6.35 6.35 6.35 6.35
t .229° L2297 L2297 L2297 .229°
1 1 b .
H 6.35~ 6.35 6.35 6.35 6.35
ty <254 .254~ .254° .254 .254
B 6.35 25.36 25.30 25.34 25.36
ty 1.14 .248 .248 .249 .249
2 2 + + +
H 25.40 25.38 25.40 25.40 25.29
ty .254" .254" .254~ .254" .254"
Mass (kg) 133.70 130.25 130.20 130.46 130.32
Number of Analyses 19 15 13 14 11

*See Table 1

+Sizing Variable at Upper Bound

-Sizing Variable at Lower Bound
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Table 8. Final Designs for Problem 2, Case A
Two Member Frame (cont.)

Final Design (cm)

Linking | Member Sizing Run 5 Run 6 Run 7 Run 8
Group Nos. Variables | Option* 7(P)| Option* 10(P) | Option* 10(D) | Option* 1(PU)
B 6.35 6.35 6.35 6.35
t .229° .229° .2297 .229°
1 1 b
H 6.35 6.35 6.35 6.35
t, .254° .254 .254° .254~
B 25.40" 9.48 9.63 25.31
t, .248 .715 .703 .249
2 2
H 25.40" 25.407 25.407 25.40"
t, 254" .254 254 254
Mass (kg) 130.26 132.06 132.05 130.42
Number of Analyses 15 11 11 7

*See Table 1

+Sizing Variable at Upper Bound

-Sizing Variable at Lower Bound
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Table 9. Critical Constraints for Problem 2, Case A
Two Member Frame

Run Option Stress Constrained
No. No.* Members
Ref. 29 - 2

1 1(p) 2

2 2(P) 2

3 3(P) 2

4 4(P) 2

5 7(P) 2

6 10(P) 2

7 10(D) 2

8 1(PU) 2

*See Table 1
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Table 10. Iteration History Data for Problem 2, Case B
Two Member Frame

Mass (kg) [Maximum Constraint Violation (%)]

Analysis Run 1 Run 2 Run 3 Run 4
No. Option* 1(P) Option* 2(P) Option* 3(P) Option* 4(P)
0 1220.78 [0] 1220.78 [0] 1220.78 0] 1220.78 [0}
1 531.31 [0] 531.31 [0] 531.31 [0] 295.74 [0]
2 313.48 [0] 313.48 [0] 313.48 [0] 188.09 [>100]**
3 204.35 [42.2]** 204.35 [42.2]** 204.35 [42.2]** 173.83 [6.7]
4 182.90 [0] 182.05 [4.6] 181.71 [7.0] 153.25 [0]
5 159.41 [6.7] 159.55 [6.2] 159.52 [6.3] 142.27 [1.6]
6 153.69 [2.6] 151.42 [2.5] 152.19 [.5] 133.80 [1.0]
7 145.53 [1.7] 143.72 [1.3] 143.92 [6.8] 130.72 [.2]
8 138.31 [1.4] 137.09 [.7] 137.39 [1.8] 130.81 [0]
9 132.27 {1.4] 132.49 [.5] 132.72 [1.0] 130.81 [0]
10 130.22 [3.6] 130.59 [.2] 130.74 [.3]
11 130.79 [.1] 130.60 [.2] 130.74 [.2]
12 130.82 [0] 130.60 [.2] 130.75 [.2]
13
14
15
CPU Tot. 2.051 2.140 2.217 1.662
Time Anal. .276 .379 .433 .198
(sec) | opt. . 940 .899 .919 .737

*See Table 1

**Constraint was not Retained
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Table 10. Iteration History Data for Problem 2, Case B
Two Member Frame (cont.)

Mass (kg) [Maximum Constraint Violation (%)]

Analysis Run 5 Run 6 Run 7
No. Option* 10(P) Option* 10(D) Option* 1(PU)
0 1220.78 [0} 1220.78 [O0] 1220.78 [0]
1 686.69 [O] 686.69 [0] 313.48 [0]
2 397.37 [0] 397.36 (0] 165.10 [>100]*=*
3 298.48 [3.6] 299.21 [2.0] 149.55 [77.6]
4 247.78 [0} 247.73 {0] 135.39 [19.6]
5 204.49 [0] 204 .42 [0] 130.35 [2.5]
6 168.88 [0] 168.95 [0] 130.75 [0]
7 142.71 [o0] 142.73 [0]
8 132.08 [.1] 132.15 [0O]
9 132.06 [.1] 132.10 [0]
10 132.06 [.1] 132.15 [0]
11
12
13
14
15
CPU Tot. 1.526 1.233 2.274
Time | Anal. .182 .177 .465
(sec)| Opt. .602 .350 .977

*See Table 1

**Constraint was not retained




Table 11. Final Designs for Problem 2, Case B
Two Member Frame

8¢€E

Final Design (cm)
Linking | Member | Sizing Ref. 29 Run 1 Run 2 Run 3
Group Nos. { Variables Option* 1(P) | Option* 2(P) | Option* 3(P)
B 6.35 6.35 6.35~ 6.35"
t .229° .229° .229° .229°
1 1 b
H 6.35° 6.35 6.35 6.35
ty 254" 254" .254° .254°
B 6.35 18.41 18.36 18.41
t, 1.14 .348 .348 .348
2 2
H 25.40" 25.407 25.40" 25.407
ty .254° .254 .254" L2547
Mass (kg) 133.70 130.82 130.60 130.75
Number of Analyses 22 13 13 13

*See Table 1
+Sizing Variable at Upper Bound

-Sizing Variable at Lower Bound
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Table 11. Final Designs for Problem 2, Case B
Two Member Frame (cont.)

Final Design (cm)

Linking | Member Sizing Run 4 Run 5 Run 6 Run 7
Group Nos. | Variables | Option* 4(P) | Option* 10(P) | Option* 10(D) | Option* 1(PU)
B 6.35" 6.35 6.35 6.35
t .229° .229° .2297 .229°
1 1 b
H 6.35 6.35 6.35 6.35
£y .254" .254" .254° .254~
B 16.74 9.48 9.64 18.35
ty .385 .715 .704 .349
2 2
H 25.38 25.40" 25.40" 25.40"
£y .2547 .254" .254" .254
Mass (kg) 130.81 132.06 132.15 130.74
Number of Analyses 10 11 11 7

*See Table 1

+Sizing Variable at Upper Bound

-Sizing Variable at Lower Bound
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Table 12, Critical Constraints for Problem 2, Case B

Two Member Frame

Run Option Stress Constrained Local Buckling
No. No.* Members Constrained Members
Ref. 29 -- 2 --

1 1(P) 2 2

2 2(p) 2 2

3 3(p) 2 2

4 4(P) 2 -

5 10(P) 2 -

6 10(D) 2 -

7 1(PU) 2 2

*See Table 1




Table

Material Properties

Young's Modulus ¢ E

Shear Modulus

Poisson's Ratio SRY)

Allowable Stress : Oa

Nodal Loading

13. Defintion

of Problem 3

Three Member Frame

30.0 x 106 PSI

11.5 x 106 PSI
.3
= 40,000 PSI

Load Node Loading Components (1lb, in~1b)
Case No. F F F M M M
X y z X y z
2 0. 0. -10000 0 0. 0.
1
3 0. 0. -10000 0. 0 0.
Initial Design and Side Constraints
Member Sizing Initial Lower Upper
Nos. Variable Value (in) Bound (in) Bound (in)
B 9.0 2.5 10.0
1-3 H 9.0 2.5 10.0
t .9 .1 1.0

341
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Table 14. Iteration History Data for Problem 3

Three Member Frame

Volume (in3) [Maximum Constraint Violation (%)]

Analysis Run 1 Run 2 Run 3 Run 4
No. Option* 1(P) Option* 2(P) Option* 3(P) Option* 4(P)
0 8748.00 [0] 8748.00 [0] 8748,00 [0] 8748,00 [0]
1 3138.34 [0] 3138.34 [0] 3138.34 [0] 1976.35 [40.3]**
2 1808.55 [48.7] 1600.01 [100] 1808,51 [48.7] 1895.92 [8.0]
3 1857.16 [10.1] 1797.94 [19.1] 1857.60 [10.1] 1869.33 [0]
4 1867.32 [.7] 1880.41 {[0] 1867.53 [.7] 1806.43 [0]
5 1850.23 [0] 1853.33 [0] 1824 .50 [0]) 1758.83 [0]
6 1779.38 {0] 1774.28 [.7] 1780.04 [0] 1720.58 [0]
7 1744.35 [0] 1742.52 [.2] 1746.63 [0] 1690.07 [0]
8 1714.93 [0] 1715.20 [0] 1716.11 [0] 1669.84 [0]
9 1690.33 [0] 1690.44 [0] 1691 39 [0] 1668.23 [.1]
10 1673.16 [0] 1682.79 [0] 1682.85 [0] 1667.82 [.1]
11 1670.60 [0] 1666.43 [0] 1667.96 [0]
12 1670.18 [0] 1666.43 [0] 1667.96 [0]
13 1670.18 [0} 1666.43 [0] 1667.96 [0)
CPU Tot. 3.189 3.423 3.884 2.591
Time | Anal. .335 .675 .866 .262
(sec) | Opt. 1.935 1.820 2.114 1.551

*See Table 1

**Constraint was not Retained
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Table 14, Iteration History Data for Problem 3

Three Member Frame (cont.)

Volume (in3) [Maximum Constraint Violation (%)]

Analysis Run 5 Run 6 Run 7
No. Option* 10(P) Option* 10(D) Option* 1(PU)
0 8748.00 [0] 8748.00 [0] 8748.00 [0])
1 4286.52 [3.5]** 4286.52 [3.5]*F 1590.87 [>100]*"
2 3066.00 [O] 3084 .45 (0] 1751.41 [16.7]
3 2312.58 [0] 2311.07 (0] 1773.40 [1.2]
4 1982.69 [0] 1981.12 [0] 1715.05 [0]
5 1846.23 [0] 1841.54 [0} 1674.,29 [0]
6 1739.91 [0] 1727.85 (0]} 1671.03 [0]
7 1680.03 [0] 1673.63 [0]
8 1668.90 [0] 1666.48 [0]
9 1666.65 [0] 1666.66 [0]
10 1666.65 [0] 1666.71 [0]
11 1666.65 [0]
12
13
Cru Tot. 2.437 1.449 3.321
Time | Anal. .243 .221 .507
(sec) | opt. 1.421 .516 1.982
*See Table 1 **Constraint was not Retained
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Table 15. Final Designs for Problem 3

Three Member Frame

Final Design (in)

Linking | Member Sizing | Ref. 52 Run 1 Run 2 Run 3
Group Nos. | Variables Option* 1(P) | Option* 2(P) |Option* 3(P)
B [i0.00" 10.00" 9.99 9.99
1 1 B fl0.00" 10.00" 10.00" 10.00"
t .199 .201 .200 .201
B 2.50° 2.50° 2.50 2.50"
2 2 H 2.50° 2.50" 2.50 2.50"
t .100” .100” .1007 .100”
B [10.00" 10.00" 10.00" 10.00"
3 3 H  |10.00" 9.99 10.00" 9.99
t .199 .201 .200 .200
Volume (ind) 1656.96 1670.18 1666.43 1667.96
Number of Analyses 14 14 14 14

*See Table 1

+Sizing Variable at Upper Bound

~Sizing Variable at Lower Bound
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Table 15. Final Designs for Problem 3
Three Member Frame (cont.)

Final Design (in)

Linking | Member Sizing Run 4 Run 5 Run 6 Run 7
Group Nos. Variables |Option* 4(P) | Option* 10(P) | Option* 10(D) | Option* 1(PU)
B 10.00" 10.00" 10.00" 10.00"
1 1 H 9.98 10.00" 10.00" 9.98
t .201 .200 .200 .201
B 2,50 2.5¢" 2.50" 2.50
2 2 H 2.50 2.50 2.50° 2.50"
t .100" .100” .100” .100”
B 10.00" 10.00" 10.00" 10.00"
3 3 H 9.98 10.00" 10.00" 9.99
t .201 .200 .200 .201
Volume (in%) 1667.82 1666.65 1666.72 1670.77
Number of Analyses 11 12 11 7

*See Table 1

+Sizing Variable at Upper Bound

-Sizing Variable at Lower Bound
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Table 16. Critical Constraints for Problem 3

Three Member Frame

Run Optign Stress Constrained
No. No. Members
Ref. 52 - 1,3

1 1(P) 1,3

2 2(P) 1,3

3 3(P) 1,3

4 4(P) 1,3

5 10(P) 1,3

6 10(p) 1,3

7 1(PU) 1,3

*See Table 1




Table 17. Definition of Problem 4

Material Properties

Young's Modulus
Shear Modulus
Poisson's Ratio
Mass Density

Allowable Stress

Nodal Loading

E =20
G= 7
v =.3

p=17.

g =2
a

Seven Member Frame

.74 x 10% N/cn?

.85 x 10° N/cm2

2

81 x 107° kg/cm3

0,000 N/cm2

Load Node Loading Components (N, N-cm)
Case No. F F F M M M
X y z P y z
1 3 -40000 | -40000 0. 0. 0. 0
3 -50000 0. 0 0. 0 0
2
4 0. -50000 0. 0. 0 0

Displacement Constraints

Load Node Direction Lower Bound Upper Bound
Case No.

1 3 y -.2 cm .04 cm

2 3 y —.2 cm -0[4 cm

Initial Design and Side Constraints

Member Sizing Initial Lower Upper
Nos. Variable Value (cm) Bound (cm) Bound (cm)

B 7.62 1.00 10.00

1-7 H 7.62 1.00 10.00

t .18 .076 .30
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Table 18, Iteration History Data for Problem 4

Seven Member Frame

Mass (kg) [Maximum Constraint Violation (%)]

Analysis Run 1 Run 2 Run 3 Run 4
No. Option* 1(P) Option* 2(P) Option* 3(P) Option* 6(P)
0 16.26 [11.9] 16.26 [11.9] 16.26 [11.9] 16.26 [11.9]
1 9.52 [63.8]** 9.75 [76.71** 9.93 [74.6]%* 10.07 [66.3]**
2 9.25 [20.7] 8.59 [41.9] 8.40 [20.7] 8.59 |16.6]
3 8.75 [62.5] 8.37 [21.2] 8.77 {1.5] 8.85 [.2]
4 8.49 [100] 8.49 [5.1] 8.56 [.8] 8.77 [.3]
5 8.87 [94.4] 8.53 [0] 8.57 [0] 8.65 [.1]
6 9.26 [62.3] 8.38 {2.9]) 8.43 [.1] 8.55 [0]
7 9.78 [31.3] 8.34 [1.5] 8.31 [.2] 8.52 [0]
8 10.03. [15.1] 8.36 [0] 8.27 [0] 8.40 [0]
9 10.02 [13.5] 8.29 [.5] 8.23 [0] 8.31 [.1]
10 16.22 [7.8] 8.23 [3.7] 8.12 [.9] 8.28 [.1]
11 10.20 [6.9] 8.29 [0] 8.14 [.2] 8.16 [.4]
12 10.14 [6.0] 8.25 [5.9] 8.11 [0] 8.18 [0]
13 10.06 [5.7] 8.12 [3.4] 8.10 [0] 8.12 [.6]
14 10.00 [4.9] 8.19 [0] 8.08 [0] 8.12 [0]
15 9.94 [4.5] 8.17 [.7] 8.08 [0] 8.10 [.2]
l6 9.86 [4.7]
17 9.82 [3.8]
18 9.78 [2.9]
19 9.75 [2.1]
20 9.72 [1.3]
CPU Tot. 10.627 10.615 10.929
Time | Anal, No Convergence 1.963 3.388 3.291
(sec) | Opt. 6.369 4.921 5.322

*See Table 1

**Constraint was not Retained




Table 18. Iteration History Data for Problem 4
Seven Member Frame (cont.)

6%¢

Mass (kg) [Maximum Constraint Violation (%)]
Analysis Run 5 Run 6 Run 7
No. Option* 12(P) Option* 12(D) Option* 3(PU)
0 16.26 [11.9] 16.26 [11.9] 16.26 [11.9]
1 9.70 [100]#** 10.60 {81.8]** 8.62 [95.5]**
2 8.70 [39.6])*% 9.00 [10.8] 8.47 [5.6]
3 8.97 [.1] 8.65 [0] 8.37 [0]
4 8.50 [.2] 8.24 [1.3] 8.30 [0]
5 8.30 [0] 8.13 [1.4] 8.23 [.1]
6 8.14 [0] 8.09 {.7] 8.21 [0}
7 8.13 [0] s 8.10 [.3]
8 8.12 [0] 8.08 [.3] 8.09 [0}
9 8.10 [0] 8.09 [.1]
10 8.10 [0]
11
12
13
14
15
16
17
18
19
20
CPU Tot. 8.215 17.090 10.333
Time | Anal. 2.175 1.945 2.589
(sec) ] opt. 4,459 13.730 5.307

*See Table 1

**Constraint was not Retained




Table 19. Final Designs for Problem 4

Seven Member Frame

Final Design (cm)

Linking | Member | Size { Ref. 28 Run 2 Run 3 Run &
Group Nos. | Var. Option* 2(P) | Option* 3(P)| Option* 6(P)
B |10.00" 9.96 8.39 7.22
1 1 H 3.73 2,73 5.18 5.09
t .165 .162 173 .192
B |10.00" 10.00" 7.91 8.06
2 2 H |10.00" 10.00" 2.10 2.97
t .096 .099 .199 .180
B | 7.81 9.97 9.99 9.97
3 3 H |10.00% 10.00" 1.73 2.49
t .110 .096 .158 .149
B |10.00" 10.00% 10 oot 9.99
4 4 H 5.49 8.06 3.08 3.56
t .201 173 .201 .198
B | 1.50 1.07 1.76 2.13
5 5 H 1.32 1.00” 1.06 1.29
t .076~ .076" .076" .076~
B 1.28 1.00” 1.00~ 1.29
6 6 H 1.28 1.00" 1.00° 1.00-
t .076" .076" .076” 076~
B | 5.31 3.02 2.91 3.06
; 7 H | 5.13 7.56 10.00°" 10.00"
t 076 .087 .081 .079
Mass (kg) 8.25 8.17 8.08 8.10
Number of Analyses - 16 16 16

*See Table 1

+Sizing Variable at Upper Bound
-Sizing Variable at Lower Bound
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Table 19. Final Designs for Problem 4

Seven Member

Frame (cont.)

Final Design (cm)

Linking | Member Size Run 5 Run 6 Run 7
Group Nos. Var. | Option* 12(P) | Option* 12(D) | Option* 3(PU)
B 7.62 8.13 10.00"
1 1 H 4.64 4.18 5.52
t .191 .184 .153
B 6.49 6.88 9.17
2 2 H 6.00 5.56 1.43
t .155 .158 .188
B 7.72 7.49 9.36
3 3 H 3.98 3.81 1.28
t .163 .170 .173
B 7.92 8.88 9.96
4 4 H 6.14 5.40 2.16
t .202 .199 214
B 1.18 1.07 1.80
5 5 H 1.17 1.11 1.12
t .076 .076" .076~
B 1.00” 1.00” 1.15
6 6 H 1.00” 1.00~ 1.00"
t .076 .076" .076~
B 4.95 4.52 2.99
7 7 H 5.34 4.65 10.00"
t .092 .106 .081
Mass (kg) 8.10 8.09 8.09
Number of Analyses 11 10 10

*See Table 1

+Sizing Variable at Upper Bound
-Sizing Variable at Lower Bound
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Table 20. Critical Constraints for Problem 4

Seven Member TFrame

Run Optigu ?Displacement Stress Constrdained
No. No. Constrained Nodes Members
Load Case l]Load Case 2|Load Case 1]Load Case 2

Ref. 28 - - 3 3 1,2,4,7

2 2(pP) - 3 3 1,2,4,7

3 3(@) -- 3 3 1,4

4 6(P) - 3 3 1,4

5 12(P) - 3 3 1,4

6 12 (D) - 3 3 1,4

7 3(r0) - 3 3 1,4

*See Table 1




Table 21. Definition of Problem 5
Portal Frame

Material Properties

7.0 x 106 N/cm2
2

Young's Modulus : E

2.7 x 106 N/cm

Shear Modulus : G

Poisson's Ratio v=.3

Allowable Normal Stress :

Allowable Shear Stress

Nodal Loading

o =2.0 x 10* N/em?

1.16 x 104 N/cm2

Load Node Loading Comnonents (N, N-cm)
Case Nos, F F F M M M
X y z X y z

1 3 5 x 104 0. 0. 0. 0. 0.

2 3 0. 0. 0. 0. 0. [-2 x 10
Displacement Constraints
Load Node
Case Nos. Direction Lower Bound Upper Bound

1 3 X =4.0 cm 4.0 cm

2 3 ez -.015 rad .015 rad
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Table 21. Definition of Problem 5
Portal Frame (cont.)

Initial Design and Side Constraints

Member Sizing Initial Lower Upper
No. Variable Value (cm) Bound (cm) Bound (cm)
B1 30.0 5.0 100.0
t) 1.0 .1 5.0
B2 30.0 10.0 100.0
1
t, 1.0 1. 5.0
H 50.0 50.0 100.0
t3 1.0 .1 5.0
B1 30.0 5.0 100.0
t, 1.0 .1 5.0
B 30.0 10.0 100.0
2 2
tz 1.0 .1 5.0
H 50.0 50.0 100.0
ty 1.0 .1 5.0
B1 30.0 5.0 100.0
t) 1.0 .1 5.0
B 30.0 10.0 100.0
3 2
t, 1.0 .1 5.0
H 50.0 25.0 100.0
ty 1.0 .1 5.0
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Table 22, Iteration History Data for Problem 5
Portal Frame

Volume (cm3) [Maximum Constraint Violation (%)]

Analysis Run 1 Run 2 Run 3
No. Option* 1(P) Option* 2(P) Option* 3(P)
0 275,000 [O] 275,000 [0} 275,000 [0]
1 193,179 {0] 193,179 [0] 193,179 [0]
2 126,224 [84.0]*%x 126,224 [84.0]*% 126,224 [84.0]%*
3 119,299 [17.6] 133,432 [10.9] 121,745 [21.5]
4 102,977 [>100.0])** 119,212 [12,5] 102,563 [>100.0]**
5 101,275 [55.1] 101,976 [>100]%* 101,018 [46.1]
6 104,134 [1.0] 99,087 [70.3] 97,564 [8.6]
7 99,506 [>100.0]** 100,041 {12.9] 97,444 [.3]
8 86,049 [>100.0]** 100,527 [.8] 97,459 [.2]
9 94,010 [>100,0]*%* 100,547 [.1] 97,460 [0]
10 91,575 [>100.0] 99,083 [1.7]
11 93,696 [>100.0] 99,110 [.1]
12 93,575 [37.2] 97,880 [1.3]
13 93,955 [.2] 97,934 [0]
14 94,091 [.1] 97,560 [.6]
15 93,702 [.2] 97,675 [0]
16 93,773 {.1] 97,574 [0]
17 93,732 {.3] 97,226 [.6]
18 97,365 [0]
19 97,239 [0]
20 97,240 [0]
CPU | Tot. 5.339 6.093 - 3.759
Time | Anal, .956 1.613 .953
(sec)|Opt. . 2.825 2.739 1.804

*See Table 1

*%kConstraint was not Retained
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Table 22, Iteration History Data for Problem 5

Portal Frame (cont.)

Volume (cm3) [Maximum Constraint Violation (%)]

Analysis Run 4 Run 5
No. Option* 12(P) Option* 12(D)
0 275,000 [0] 275,000 [0]
1 136,028 [86.2]** 108,464 [>100]**
2 109,962 [>100]*+* 95,044 [31.1]
3 94,857 [30.2] 88,177 [41.2)**
4 88,267 [43.8]** 86,557 [0]
5 86,899 [0] 84,766 [0]
6 85,469 [0} 84,238 [.8]
7 84,824 [0] 84,109 [.7]
8 84,483 [91.0]** 84,022 [.5])
9 84,265 [10.6] 84,056 [.7)
10 84,215 [.1] 84,058 [.3]
11 84,272 [0]
12
CPU Tot. 3.754 3.527
Time | Anal. 1.042 1.069
(sec) | Opt. 1.672 1.436

*See Table 1

**Constraint was not Retained




LSE

Portal Frame

Table 23. Final Designs for Problem 5

Final Design (cm)

Linking | Member | Size | Ref. 53 Run 1 Run 2 Run 3 Run 4 Run 5
Group Nos. | Var. Option* 1 (P) | Option* 2(P) | Option* 3(P) | Option* 12(P) | Option* 12(D)
Bl 13.00 24,26 22,90 22.66 11.55 11.26
t, .450 .624 .567 .550 .415 410
H 74.90 65.62 66.83 67.17 77.86 78.21
1 1 t3 497 475 461 .460 .523 .523
B, 12.10 5.00 5.00" 5.00" 10.40 10.17
t, 487 1.290 1.496 1.610 463 456
B1 11.40 19.34 18.26 17.57 11.63 11.69
t) 404 .463 463 .455 .410 417
H 89 .90 87.81 76.00 72.92 100.00" 99.47
’ ’ ty .397 .401 .354 .341 .436 .435
B, 10.70 5.00" 5.00" 5.007 10.71 - 10.94
t .435 1.236 1.356 1.430 446 .447
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Table 23. Final Designs for Problem 5
Portal Frame (cont.)

Final Design (cm)

Linking| Member | Size [ Ref. 53 Run 1 Run 2 Run 3 Run 4 Run 5
Group Nos. Var. Option* 1(P) | Option* 2(P) | Option* 3(P) | Option* 12(P) | Option* 12(D)
B, 7.50 14.27 5.00" 5.00 5.00" 5.00°
tl .268 .356 1.356 1.354 .142 .143
H 61.90 36.35 55.31 59.21 25.00" 25.00"
’ ’ ty .250 152 .262 .282 .100~ .100"
B2 10.007 16.00° 15.37 15.24 10.00™ 10.00"
t2 .369 .619 .535 .541 .276 .276
Volume (cm3) 90,592 93,732 97,240 97,460 84,272 84,058
Number of Analyses - 18 21 10 12 11

*See Table 1

+Sizing Variable at Upper Bound

~Sizing Variable at Lower Bound
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Table 24. Critical Constraints for Problem 5

Portal Frame

Run Option Displacement Stress Constrained Local Buckling
No. No.* Constrained Nodes Members Constrained Members
Load Case 1 Load Case 2 ]| Load Case 1 Load Case 2| Load Case 1 Load Case 2

Ref. 53| -- 3 3 - - 1 2,3

1 1(P) 3 3 - - 1,2 2,3

2 2(P) 3 3 - - 1,2 2,3

3 3(P) 3 3 - - 1,2 2,3

4 12(P) 3 3 - - 1 2,3

5 12(D) 3 3 - - 1 2,3

*See Table 1




Table 25. Definition of Problem 6
One Bay / Two Story Frame

Material Properties

30.0 x 106 PSI

11.5 x 106 PSI

Young's Modulus : E

Shear Modulus : G

Poisson's Ratio : Vv =.,3

.2836 1b/in>

Weight Density : o]

Yield Stress oa = 36,000 PSI
Factor of Safety : FS = 1.51
Nodal Loading
Load Node Loading Components (1b, in-1b)
Case No. F F F M M M
X y z X y z
2 45000 0. 0. 0. 0. 0.
2
3 45000 0. 0. 0. 0. 0.
Uniform Loading
Load Member Loading Components (lb/in, in-1b/in)
Case No. Py py P, m, my m,
3 0. -500. 0. 0. 0. 0.
4 0. ~500. 0. 0. 0. 0.
1
5 0. -500. 0. 0. 0. 0.
6 0. -500. 0. 0. 0. 0.
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Table 25. Definition of Problem 6
One Bay / Two Story Frame (cont.)

Displacement Constraints

Load Node Direction Lower Bound Upper Bound
Case No.
2 X -.36 in .36 in
3 X -.72 in .72 in
4 X -.36 in .36 in
2
5 X -.72 in .72 in
6 X -.36 in .36 in
7 X -.72 in .72 in
Initial Design and Side Constraints
Menber Sizing Initial Lower Upper
Nos. Variable Value (in) Bound (in) Bound (in)
R 16.61 1.00 25.0
1-8
t .45 .01 5.0
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Table 26. Iteration History Data for Problem 6, Case A
One Bay / Two Story Frame

Weight (1b) [Maximum Constraint Violation (%)]

Analysis Run 1 Run 2 Run 3
No. Option* 1(P) Option* 3(P) Option* 6(P)
0 15982.6 [0] 15982.6 [0] 15982.6 [0]
1 12210.8 [0] 12210.8 [0] 11906.4 [O]
2 10922.1 [2.7] 10995.8 [0] 10603.6 [O]
3 10011.0 [2.3] 10117.5 [0] 9936.6 [0]
4 9414.1 [2.2] 9701.1 [0] 9126.1 [O0]
5 8939.0 [1.9] 9075.9 [0] 8869.6 [.3]
6 8830.8 [1.2] 8857.4 [0] 8885.9 [0]
7 8887.5 [0] 8857.4 [0] 8885.9 [0]
8 8887.1 [0] 8857.4 [0] 8885.9 [0]
9 8888.5 [0]
10
CPU Tot. 2.615 4,410 4,755
Time | Anal. .418 2.384 3.000
(sec)} opt. .906 . 848 .902

*See Table 1
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Table 26. Iteration History Data for Problem 6, Case A
One Bay / Two Story Frame (cont.)

Weight (1b) [Maximum Constraint Violation (%)]
Analysis Run 4 Run 5
No. Option* 12(P) Option* 12(D)
0 15982.6 [O0] 15982.6 [0]
1 10573.1 [8.3] 11812.6 [5.7]
2 9075.5 [36.4]** 10130.0 [0]
3 9007.6 [0] 9116.0 [0]
4 8886.3 [0] 8915.5 [0]
5 8886.3 [0] 8799.3 [2.5]
6 8886.3 [0] 8791.9 [1.4]
7 8826.9 [1.1]
8 8848.5 [.6]
9 8850.0 [.6]
10 8845.6 [.6]
CPU Tot. 4.150 16.299
Time | Anal. 2.203 3.479
(sec)| opt. .957 11.494

*See Table 1 **Constraint was not Retained
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Table 27. Final Designs for Problem 6, Case A

One Bay / Two Story Frame

Final Design (in)

Linking | Member | Size | Ref. 21 Run 1 Run 2 Run 3 Run 4 Run 5
Group Nos. | Var. Option* 1(P)| Option* 3(P) | Option* 6(P) | Option* 12(P) | Option* 12(D)
L R | 16.099 16.076 16.008 15.988 15.951 16.005
' ' t .3513 .3508 .3496 .3492 .3505 -3493
, . R 11.825 11.691 11.726 11.779 11.711 11.681
’ t .2580 .2553 .2560 .2570 .2571 .2549
\ 34 R 11.427 11.432 11.305 11.293 11.238 11.361
’ t .2493 2494 .2468 .2465 .2499 .2481
. ‘6 R 15.277 15.134 15.166 15.243 15.137 15,158
| t .3333 .3302 .3314 .3333 .3348 .3308
Weight (1b) 8980.7 8888.5 8857.4 8885.9 8886.3 8845.6
Number of Analyses 16 10 9 9 7 11

*See Table 1




Table 28. Critical Constraints for Problem 6, Case A
One Bay / Two Story Frame

19

Run Option Stress Constrained Buckling Constrained R/t Constrained
No. No.* Members Members Members
Load Case l]|Load Case 2 | Load Case 1]Load Case 2

Ref. 21 - - - 2,7 3-8 1-8

1 1(P) -- - 2,7 3-8 1-8

2 3(pP) -- - 2,7 3-8 1-8

3 6(P) - - 2,3,4,7 3-8 1-8

4 12(P) -- -— 2,3,4,7 3-8 1-8

5 12(D) - - ) 2,7 3-8 1-8

*See Table 1
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Table 29. Iteration History Data for Problem 6, Case B
One Bay / Two Story Frame

Weight (1b) [Maximum Constraint Violation (%)]

Analysis Run 1 Run 2 Run 3
No. Option* 1(P) Option* 3(P) Option* 4(P)
0 15982.6 [0] 15982.6 [0] 15982.6 [0]
1 12210.8 [0] 12210.8 [0] 11889.0 [0}
2 10930.2 [2.4] 11055.4 [0] 10633.0 [1.4]
3 10462.8 {0] 10491.1 [0] 10265.0 [.7]
4 10212.0 [0] 10219.2 [0] 10231.1 [0]
5 10201.8 [0] 10195.1 [0] 10224.2 [0]
6 10199.6 [0] 10193.9 [0] 10193.8 [0]
7 10197.3 [0] 10188.3 [0]
8 10188.2 [0]
9
10
11
CPU Tot. 2,148 3.056 2.700
Time | Anal. .616 1.335 .815
(sec)| Opt. .506 .596 .656

*See Table 1
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Table 29. Iteration History Data for Problem 6, Case B

One Bay / Two Story Frame (cont.)

Weight (1b) [Maximum Constraint Violation (%)]

Analysis Run 4 Run 5
No. Option* 10(P) Option* 10(D)
0 15982.6 (0] 15982.6 [0]
1 10400.4 [27.4]** 11817.5 [5.7]
2 10350.2 [5.9] 10398.8 [2.9]
3 10252.0 [4.6] 10364.2 [.3]
4 10238.4 [.9] 10166.8 [0]
5 10181.7 [0] 10214.0 [.7]
6 10181.6 [0] 10156.4 [1.1]
7 10181.5 [0] 10163.6 [.1]
8 10232.4 [0]
9 10253.8 (0]
10 10240.8 [0]
11 10220.7 [0]
CPU Tot. 2.613 7.309
Time | Anal. .696 .996
(sec)| Opt. .794 4.873

*See Table 1

**Constraint not retained
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Table 30. Final Designs for Problem 6, Case B

One Bay / Two Story Frame

Final Design (in)

Linking { Member | Size | Ref. 21 Run 1 Run 2 Run 3 Run 4 Run 5
Group Nos. Var. Option* 1(P) | Option* 3(P) | Option* 4(P)| Option* 10(P) | Option* 10(D)
R 15.658 15.635 15.599 15.606 15.699 15.730
1 e t .3416 .3411 .3404 .3405 .3426 .3435
R 13.206 13.259 13.269 13.277 '13.227 13.449
: &7 t .2881 .2894 .2895 .2902 .2901 .2937
R 13.072 13.109 13.015 13.031 12.934 13.534
’ e t .2852 .2871 .2850 .2844 .2822 .2952
R 17.011 17.031 17.133 17.074 17.032 16.401
) >0 t .3711 .3717 .3740 .3729 .3719 .3582
Weight (1b) 10166.6 10199.6 10197.3 10188.2 10181.5 10220.7
Number of Analyses 22 7 8 9 8 12

*See Table 1




Table 31. Critical Constraints for Problem 6, Case B
One Bay / Two Story Frame

69¢

Run Option Buckling Constrained Displacement R/t Constrained
No. No.* Members Constrained Nodes Members
Load Case 1 Load Case2 Load Case 2

Ref. 21 - - 8 3,5,7 1-8

1 1(P) - 8 3,5,7 1-8

2 3(p) -— 8 3,5,7 1-8

3 4(P) - 8 3,5,7 1-8

4 | 100 — 8 3,5,7 1-8

5 10(D) - 8 3,5,7 1-8

*See Table 1




Table 32. Definition of Problem 7
2x5 Grillage

Material Properties

Young's Modulus : E=30.0 x 106 PSI
Shear Modulus G =11.5 x 106 PSI
Poisson's Ratio : VvV = .2963
Allowable Stress : Oa = 20,000 PSI
Nodal Loading
Load Node Loading Components ( 1lb, in-1b)
Case No. Fx Fy Fz Mx My Mz
1 0. 0. 0 -13330 0. 0.
2 0. 0. 0. 0. 37040 0.
3 0. 0. -9000 0. -27780 0.
4 0. 0. -3333 0. 0. 0.
5 0. 0. 0. 0. 37040 0.
6 0. 0. -9000 0. -27780 0.
7 0. 0. -3333 0. 0. 0.
1 8 0. 0. 0 0. 37040 0.
9 0. 0. ~9000 0. -27780 0.
10 0. 0. -3333 0. 0. 0.
11 0. 0. 0. 0. 37040 0.
12 0. 0. -9000 0. -27780 0.
13 0. 0. -3333 0. 0. 0.
14 0. 0. 0. 0. 37040 0.
15 0. 0. -9000 0. -27780 0.
16 0. 0. -3333 0 0 0.
17 0. 0. 0. 13330 0. 0.

379




Table 32. Definition of Problem 7
2x5 Grillage (cont.)

Displacement Constraints

Load Node Direction Lower Bound Upper Bound
Case No.
4 z -0.1 in 1 0 in
1 7 z -0.1 in 1.0 in
10 z -0.1 in 1.0 in

Initial Design and Side Constraints

Member Sizing Initial Lower Upper
Nos. Variable Value (in) Bound (in) Bound (in)
B 12.00 1.00 19.00
tb .95 .045 1.00
1-16
H 15.00 1.00 20.00
th .80 .05 .95
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Table 33. Iteration History Data for Problem 7, Case A

2x5

Grillage

Volume (in3)

[Maximum Constraint Violation (%)]

Analysis Run 1 Run 2 Run 3
No. Option* 1(P) Option* 4(P) Option* 10(P)

0 32,382.4 [0] 32,382.4 [0] 32,382.4 [0]
1 15,687.5 [16.2] 15,687.5 [16.2] 19,946.8 [0]
2 9,737.9 [13.6] 9,566.4 [14.9] 11,727.0 [15.5]#%
3 9,759.1 [1.9] 9,702.2 [1.9] 9,962.9 [.5]
4 8,853.3 [.2] 8,829.2 [.1] 8,415.9 [0]
5 7,961.3 [0] 7,953.8 [0] 7,440.8 [0]
6 7,418.6 [0] 7,434.6 [0] 6,898.1 [0]
7 7,123.0 [0] 7,100.9 [0] 6,828.7 [0]
8 7,087.6 [0] 6,900.7 [0] 6,812.7 [0}
9 6,872.6 [.2] 6,887.7 [0] 6,800.1 [0]
10 6,861.4 [0] 6,840.0 [0] 6,794.8 [0]
11 6,851.1 [0] 6,771.4 [.7] 6,786.7 [0]
12 6,774.9 [.5] 6,807.4 (0] 6,776.7 [0]
13 6,802.2 [0] 6,801.5 [0] 6,769.7 [0]
14 6,800.3 [0] 6,796.4 [0] 6,762.6 [.1]
15 6,794.9 [0] 6,756.4 [0]

CPU Tot. 5.094 5.626 4.505

Time | Anal. 1.695 1.607 1.642

(sec)] opt. 1.955 2.361 1.284

*See Table 1

*%*Constraint was not Retained
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Table 33. Iteration History Data for Problem 7, Case A

2x5 Grillage (cont.)

Volume (in3) [Maximum Constraint Violation (%)]

Analysis Run 4 Run 5
No. Option* 10(D) Option* 1(PU)
0 32,382.4 [0] 32,382.4 [0]
1 19,943.8 [0] 10,417.2 [7.1]
2 11,696.8 [16.8]** 8,903.1 [0]
3 9,859.8 [.2] 7,857.5 [0]
4 8,406.6 [0] 7,166.5 [0]
5 7,419.1 [0] 6,989.3 [.1]
6 6,874.5 [0]
7 6,822.5 [0]
8 6,800.2 [0]
9 6,793.7 [0]
10 6,783.0 [0]
11 6,778.7 [0]
12 6,772.8 [0}
13
14
15
CPU Tot. 3.304 4.275
Time Anal. 1.300 1.105
(sec)| opt. .738 1.967

*See Table 1

**Constraint was not Retained
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Table 34, Final Designs for Problem 7, Case A

2x5 Grillage

Final Design (in)

Linking| Member | Size | Ref. 29 Run 1 Run 2 Run 3 Run 4 Run 5
Group Nos. Var. Option* 1(P)| Option* 4(P)| Option* 10(P) | Option* 10(D) | Option* 1(PU)
B 6.31 8.93 9.03 3.35 3.65 19.00"
ty, .045~ .047 .046 .230 .236 .049
1 1-6 + + + +
H 18.90 20.00 19.97 20.00 20.00 20.00
ty .050~ .050" .050" .050" .050~ .050"
B 6.62 6.49 5.54 1.67 1.00° 17.82
ty .045" .045~ L0457 .133 .056 .045
2 7-10
H 15.7 20.00" 19.99 10.27 12.10 19.98
£y .050 .050~ .050" .050" .050" .050"
B 13.50 18.97 19.00 15.36 13.09 19.00"
ty .822 482 .500 .558 .639 .381
3 13-16 +
H | 20.00 20.00" 20.00" 20.00" 20.00" 20.00"
t .050" .050" .050" .050" .050~ .050"
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Table 34. Final Designs for Problem 7, Case A
2x5 Grillage (cont.)

Final Design (in)

Linking| Member | Size | Ref. 29 Run 1 Run 2 Run 3 Run 4 Run 5
Group Nos. Var. Option* 1(P) | Option* 4(P) | Option* 10(P) | Option* 10(D) | Option* 1(PU)
B 4.89 18.98 19.00" 13.63 13.45 12.95
t, .993 .360 .328 .601 .640 724
4 11-12
| 20.00" 20.00" 20.00% 20.00" 20.00" 20.00"
£y .050" .050" .050" .050" .050 .050"
Volume (in3) 6971.0 6794 .9 6796.5 6756.4 6772.8 6989.3
Number of Analyses 38 16 15 16 13 6

*See Table 1

+S1zing Variable at Upper Bound

-Sizing Variable at Lower Bound
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Table 35. Critical Constraints for Problem 7, Case A
2x5 Grillage

Run Option Displacement
No. No.* Constrained Nodes
Ref. 29 -- 7,10 ’

1 1(P) 7,10

2 4(P) 7,10

3 10(P) 4,7,10

4 10(D) 4,7,10

5 1(pPU) 7,10

*See Table 1
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Table 36. Iteration History Data for Problem 7, Case B

2x5 Grillage

Volume (in3) [Maximum Constraint Violation (%)]

Analysis Run 1 Run 2 Run 3 Run 4
No. Option* 3(P) Option* 6(P) Option* 12(P) Option* 3(PU)
0 32,382.4 [0] 32,382.4 [0} 32,382.4 (0] 32,382.4 [0}
1 25,259.7 [o0] 25,268.5 (0] 21,663.8 [0] 20,339.4 [0]
2 19,997.0 {0] 20,724.0 [O] 13,969.4 [0] 14,469.9 [0]
3 17,270.7 [o] 17,578.1 [0] 11,573.5 [0] 11,099.0 [0]
4 14,898.8 [0] 14,605.3 [0] 9,712.1 [0] 8,762.0 [0]
5 12,535.6 [0] 12,916.8 [.6] 8,644.9 [0] 7,544.4 [100]**
6 11,092.8 [.2] 11,463.6 [.7] 7,807.2 [100]** 7,523.9 [100]
7 10,032.6 [.4] 10,630.3 [0] 7,730.0 [20.6] 7,526.1 [42.3]*%
8 9,156.0 [.4] 9,115.1 [1.8] 7,717.4 [1.4] 7,525.9 [4.3]
9 8,414.4 [79.1]%* 8,753.1 [77.4]** 7,641.5 [0] 7,510.4 [0]
10 7,881.9 [65.5]** 7,959.9 [51.9]%* 7,581.5 [0] 7,505.2 [0]
11 7,886.5 [7.7] 7,925.6 [22.2]** 7,557.1 [1.0]
12 7,884.7 [9.5] 7,914.4 [9.3] 7,550.4 (0]
13 7,887.6 [0} 7,917.5 [0] 7,545.6 [0]
14 7,913.5 [0]
15
16
17
18
CPU Tot. 9.032 10.459 10.899 14.065
Time | Anal. 3.469 3.945 4,979 4.959
(sec) | Opt. 2.486 3.263 2.981 5.269

*See Table 1

**Constraint was not retained



8.¢€

Table 37. Final Designs for Problem 7, Case B
2x5 Grillage

Final Design (in)

Linking | Member Sizing | Ref. 29 Run 1 Run 2 Run 3 Run 4
Group Nos. Variables Option* 3(P)| Option* 6(P) | Option* 12(P) | Option* 3(PU)
B 6.10 9.86 10.60 3.26 4.27
£, .159 .096 .105 .224 .234
1 1-6
H 20.00" 20.00" 19.99 20.007 20.00"
£, .093 .091 .090 .096 .094
B 8.28 11.29 11.59 11,91 1.84
£, .074 .093 .095 .148 .131
2 7-10
H 15.20 19.99 19.98 9.07 9,14
t, .064 .074 .074 .055 .056
B 6.33 15.94 16.85 12.01 11.64
+
t, 1.00 .325 .299 .595 .514
3 13-16 _
H 20.00% 20.00" 20.00% 20.00" 20.00"
t .098 .095 .094 .103 .098
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Table 37. Final Designs for Problem 7, Case B
2x5 Grillage (cont.)

Final Design (in)

Linking { Member Sizing | Ref, 29 Run 1 Run 2 Run 3 Run 4
Group ]|. Nos. | Variables Option* 3(P) | Option* 6(P) | Option* 12(P) | Option* 3(PU)
B 11.50 17.62 18.81 14.20 17.65
+
ty 1.00 .657 .614 .683 .643
4 11-12 N + +
H 20,00 19.99 19.99 20.00 20.00
ty 117 .119 .119 .113 118
Volume (in3) 7927.0 7887.6 7913.5 7545.6 7505.3
Number of Analyses 41 14 15 14 11

*See Table 1

+Sizing Variable at Upper Bound

-Sizing Variable at Lower Bound
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Table 38. Critical Constraints for Problem 7, Case B

2x5 Grillage

Run Option Displacement Stress Constrained Local Buckling
No. No.* Constrained Nodes Members Constrained Members
Ref . 29 - 7,10 - 1,6,8,9,11,13,16
1 1(P) 7,10 - 1,2,5,6,8,10,11,13,15
2 6(P) 7,10 - 1,6,8,10,11,13,15
3 12(P) 4,7,10 - 1,6,8,10,11,13,15
4 3(pPU) 4,7,10 8,10 1,6,8,10,11,13,15

*See Table 1




Table 39. Definition of Problem 8
Two Bay / Six Story Frame

Material Properties

Young's Modulus
Shear Modulus
Poisson's Ratio
Weight Density
Yield Stress

Factor of Safety

Nodal Loading

E = 30.0 x 106 PSI
G =11.5 x 106 PSI
v=.3

.3
p = .2836 1b/in
o, = 36,000 PSI
FS = 1.51

Load Node Loading Components (lb, in-1b)
Case No. F F M M
X y z x y
1 9000. 0. 0. 0. 0.
4 9000. 0. 0. 0. 0.
7 9000. 0. 0. 0. 0.
2
10 9000. 0. 0. 0. 0.
13 9000. 0. 0. 0. 0.
16 9000. 0. 0. 0. 0.
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Table 39. Definition of Problem 8
Two Bay / Six Story Frame (cont.)

Uniform Loading

Load Member Loading Components (lb/in, in-1b/in)
Case No. Px Py Pz Mx My Mz
1 . 0. -333.3 0. 0. 0. 0
2 0. - 83.3 0. 0. 0. 0
6 0. - 83.3 0. 0. 0. 0
7 0. -333.3 0. 0. 0. 0
11 0. | -333.3 | o. | o. | o. | o
1 12 0. - 83.3 0. 0. 0. 0
16 0. - 83.3 0. 0. 0. 0
17 0. -333.3 0. 0. 0. 0
21 0. ~333.3 0. 0. 0. 0
22 0. - 83.3 0. 0. 0. 0
26 0. - 83.3 0. 0. 0. 0
27 0. -333.3 0. 0. 0. 0
1 0. - 83.3 0. 0. 0. 0
2 0. - 83.3 0. 0. 0. 0
6 0. - 83.3 0. 0. 0. 0
7 0. - 83.3 0. 0. 0. 0
11 0. - 83.3 0. 0. 0. 0
9 12 0. - 83.3 0. 0. 0. 0
16 0. - 83.3 0. 0. 0. 0
17 0. - 83.3 0. 0. 0. 0
21 0. - 83.3 0. 0. 0. 0
22 0. - 83.3 0. 0. 0. 0
26 0. ~ 83.3 0. 0. 0. 0
27 0. - 83.3 0. 0. 0. 0
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Table 39.

Displacement Constraints

Definition of Problem 8
Two Bay / Six Story Frame (cont.)

Load Node Direction Lower Bound Upper Bound
Case Nos.
1-3 X -1.728 in 1.728 in
4-6 X ~1.440 in 1.440 in
7-9 X -1.152 in 1.152 in
2
10-12 X - .864 in .864 in
13-15 X - .576 in .576 in
16-18 x - .288 in .288 in
Initial Design and Side Constraints
Member Sizing Initial Lower Upper
Nos. Variables Value (in) Bound (in) Bound (in)
R 9.00 1.00 25.0
1-10
t .20 .01 5.0
R 11.00 1.00 25.0
11-20
t .24 .01 5.0
R 14.00 1.00 25.00
21-30
t .31 .01 5.0
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Table 40. Iteration History Data for Problem 8, Case A

Two Bay / Six Story Frame

Weight (1b) [Maximum Constraint Violation (%)]

Analysis Run 1 Run 2 Run 3
No. Option* 1(P) Option* 3(P) Option* 6(P)
0 23,141.4 [63.6] 23,141.4 [63.6] 23,141.4 [63.6]
1 23,503.0 [19.8] 23,475.2 [14.7] 23,792.0 [8.8]
2 23,188.3 [3.5] 23,243.1 [1.0] 23,793.4 [0]
3 23,240.5 [.5] 23,257.5 [.1] 23,536.4 [0]
4 22,945.8 [4.6] 23,083.8 [1.1] 23,117.4 [0]
5 22,804.6 [3.5] 22,793.7 [.2] 22,915.5 [0]
6 22,854.3 [.3] 22,777.9 [0] 22,906.4 [0]
7 22,668.5 [5.3] 22,804.0 [.8] 22,887.8 [0]
8 22,621.7 [2.9] 22,608.7 [0]
9 22,691.1 [.7] 22,603.1 [.2]
10 22,559.1 [4.7] 22,579.8 [0]
11 22,645.2 [.7] 22,566.8 [.1]
12 22,531.1 [2.0]
13 22,557.0 [.9]
14 22,545.7 [.5]
15 22,568.6 [.6]
CPU | Tot. 19.281 58.239 40.108
Time | Anal. 2.050 43.969 29.103
(sec) | Opt. 12.201 9.155 8.043

*See Table 1
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Table 40. Iteration History Data for Problem 8, Case A
Two Bay / Six Story Frame (cont.)

Weight (1b) [Maximum Constraint Violation (%)]

Analysis Run 4 Run 5
No. Option* 12(P) Option* 3(PU)
0 23,141.4 [63.6] 23,141.4 [63.6]
| 23,919.1 [8.7] 23,270.9 [.8]
2 23,157.4 [.4] 23,014.6 {.7]
3 22,999.2 [.1] 23,027.4 [.3]
4 22,936.1 [0] 22,982.3 [.6]
5 22,866.8 [0] 22,754.3 [2.4]
6 22,841.1 [0] 22,641.6 [0]
7 22,794.7 [.1] 22,655.2 [.2]
8 22,747.5 [.1] 22,534.2 [.1]
9 22,713.3 [.1] 22,523.0 [.1]
10 22,693.4 [.1]
11 22,674.2 [.1]
12
13
14
CPU Tot. 56.484 54.005
Time | Anal. 42,334 35.074
(sec)] Opt. 10.120 14.229

*See Table 1




98¢

Table 41. Final Designs for Problem 8, Case A

Two Bay / Six Story Frame

Final Design (in)

Linking| Member | Size | Ref. 21 Run 1 Run 2 Run 3 Run 4 Run 5
Group Nos. Var. Option* 1(P) | Option* 3(P) | Option* 6(P) | Option* 12(P) | Option* 3(PU)

1 1.2 R 10.235 10.250 10.192 9.985 10.175 10.215
’ t .2233 .2238 .2225 .2181 L2224 .2229

2 3.5 R 10.571 10.462 10.396 8.732 10.351 10.422
? t .2306 .2285 .2276 .3030 .2286 .2272

3 4 R 5.547 7.063 7.669 8.565 8.193 7.397
t .1210 1544 .1681 .1869 .1798 .1608

4 6.7 R 9.808 9.813 9.674 9.712 9.742 9.688
’ t L2140 .2143 2116 L2122 .2132 L2115

5 8.10 R 7.208 7.389 6.802 8.015 7.383 6.786
? t .1573 .1616 .1496 .1751 .1627 .1493

6 9 R 9.140 8.837 9.047 8.648 8.716 9.096
t .1994 .1937 .1978 .1890 L1905 .1992

7 11.12 R 10.082 10.139 10.092 10.019 10.096 10.104
? t .2200 2212 .2203 .2192 .2207 .2208
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Table 41, Final Designs for Problem 8, Case A

Two Bay / Six Story Frame (cont.)

Final Design (in)

Linking { Member | Size | Ref. 21 Run 1 Run 2 Run 3 Run 4 Run 5
Group Nos. Var. Option* 1(P) | Option* 3(P) { Option* 6(P) | Option* 12(p) } Option* 3(PU)
8 13.15 R 10.535 10.356 10.491 8.864 10.115 10.524
’ t .2298 .2262 .2293 .2628 .2332 .2291
9 14 R 9.233 9.212 9.541 9.859 9.688 - 9.199
t .2014 .2013 ,2089 .2151 .2118 .2004
10 16.17 R 10.395 10.420 10.432 10.390 10.422 10.478
’ t .2268 .2273 .2278 .2269 .2279 .2293
11 18.20 R 8.973 8.963 8.814 9.238 8.943 8.661
? t .1958 .1955 .1933 .2022 .1963 .1897
12 19 R 11.336 11.150 10.835 9.918 10.899 11.355
t 2473 L2444 .2596 .2713 2490 T .2486
13 21.22 R 11.076 11.176 11.182 11.182 11.174 11.182
? t 2417 .2439 .2441 .2440 2442 .2440
14 23.25 R 10.619 10,299 10.349 10.203 10.229 10.444
’ t .2317 .2260 .2258 .2232 .2525 .2273
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Table 41. Final Designs for Problem 8, Case A

Two Bay / Six Story Frame (cont.)

Final Design (in)

Linking | Member | Size [ Ref. 21 Run 1 Run 2 Run 3 Run 4 Run 5
Groupg Nos. Var. Option* 1(P) | Option* 3(P) | Option* 6(P) | Option* 12(P) | Option* 3(PU)
15 24 R 11.236 10.319 11.274 11.588 11.345 11.187
t 2452 2476 .2468 .2539 .2490 24438
16 26.27 R 10.986 11.014 11.094 10.933 11.016 11.116
’ t .2397 .2408 2422 .2389 L2408 .2430
17 28 30 R 10.687 11.095 10.989 11.810 11.258 10.790
’ t .2332 .2421 2412 .2581 2467 .2365
18 29 R 15.021 14.141 13.168 12.193 13.572 13.352
t .3277 3126 .3455 .3249 .3221 .3508
Weight (1b) 22530.5 22568.6 22566.8 22887.8 22674.2 22523.0
Number of Analyses 23 16 12 8 12 10

*See Table 1
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Table 42, Critical Constraints for Problem 8, Casc

Two Bay / Six Story Frame

Run Option Stress Constrained Buckling Constrained R/t Constrained
No. No.* Members Members Members
Load Case 1 Load Case 2 Load Case 1 Load Case 2
Ref. 21 - 7 - 1,3,4,11, 9,16,19,21, 1-30
13,14,20,24 22,24-26,29
1 1(P) 7 - 1,3,11,13, 9,16,19-22, 1-30
14,20,23 24-26,29,30
2 3(P) 7 - 1,3,10,11, 9,10,16,19-22| 1-18,20-28,30
13,20,23,24 24-26,29,30
3 6(P) 7 - 1,3,11,13, 16,17,19-22, 1,2,4,6-12,14,
20,23 24-27,29,30 16-18,20-28,30
4 12(P) 7 —— 1,3,11,13, 9,16,19-22, 1-12,14,16-28,30
20,23,24 24-26,29-30
5 3(PU) 7 — 1,3,10,11,13,] 9,16,19-22, 1-28,30
14,20,23,24 24-26,29-30

*See Table 1
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Table 43. Iteration History Data for Problem 8, Case B
Two Bay / Six Story Frame

Weight (1b) [Maximum Constraint Violation (%)]

Analysis Run 1 Run 2 Run 3
No. Option* 1(P) Option* 3(P) Option* 4(P)
0 28,536.8 [55.7] 28,536.8 [55.7] 28,536.8 [55.7]
1 27,484.3 [16.9] 27,184.2 [9.9] 27,270.2 [10.0]
2 25,692.2 [4.3] 25,495.6 [.7] 25,546.8 [1.8]
3 25,404.1 [.8] 25,168.4 [0] 25,179.7 [0]
4 25,356.5 [.2] 25,056.6 [1.5] 25,128.6 [.5]
5 25,268.1 [0] 24,651.6 [0] 24,871.5 [.2]
6 24,939.8 [.2] 24,689.4 [0] 24,889.6 [0]
7 24,853.,9 [.4] 24,488.8 [0] 24,818.5 [0]
8 24,865.1 [1.0] 24,530.4 [0] 24,855.5 [0]
9 24,672.7 [0] 24,339.1 [0] 24,808.1 [0]
10 24,661.9 [.7] 24,363.1 [0] 24,644.2 [0]
11 24,666.6 [.4] 24,314.3 [0] 24,598.2 [0]
12 24,278.8 [0] 24,618.5 [0]
13 24,608.8 [0]
14
15
CPU Tot, 17.205 54.538 23.801
Time | Anal. 7.316 39.959 8.639
(sec)| Opt. 5.702 10.048 10.435

*See Table 1
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Table 43.

Iteration History Data for Problem 8, Case b
Two Bay / Six Story Frame (cont.)

Weight (1b) [Maximum Constraint Violation (Z%)]

Analysis Run 4 Run 5
No. Option* 10(P) Option* 1(PU)

0 28,536.8 [55.7] 28,536.8 [55.7]
1 25,656.7 [19.1]** 26,576.6 [10.0]
2 24,952.5 [2.5] 24,952.4 [1.7]
3 24,654.2 [.6] 24,889.6 [1.0]
4 24,609.4 [.2] 24,890.1 [1.8]
5 24,624.1 [0] 24,676.1 [1.4]
6 24,615.2 [0] 24,675.9 [.9]
7 24,665.6 [.3]
8
9
10
11
12
13
14
15

CPU Tot. 13.617 19.436

Time | Anal. 3.749 6.483

(sec)| Opt. 7.324 8.018

*See Table 1
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Table 44. Final Designs for Problem 8, Case B

Two Bay / Six Story Frame

Final Design (in)

Linking| Member | Size | Ref. 21 Run 1 Run 2 Run 3 Run 4 Run 5
Group Nos. Var. Option* 1(P) | Option* 3(P) | Option* 4(P)| Option* 10(P)| Option* 1(PU)
1 1.2 R 10.009 10.071 9.913 10.110 10.008 10.079
’ t .2183 .2203 .2165 .2210 .2226 .2201
9 3.5 R 10.361 10.298 10.137 10.342 10.240 10.296
’ t .2261 .2252 .2214 .2266 .2273 .2250
3 4 R 6.322 7.871 6.494 6.628 6.353 7.062
t .1379 1732 .1432 1446 .1504 .1709
4 6.7 R 9.682 9.771 9.521 9.690 9.647 9.780
’ t .2112 .2141 .2078 .2120 .2148 .2137
5 8.10 R 7.825 8.338 7.746 7.681 7.655 7.923
’ t .1707 .1826 .1705 .1676 .1706 .1823
6 9 R 10.953 9.748 11.275 11.179 10.796 10.345
t .2390 .2128 .2462 .2439 .2407 .2259
7 11.12 R 10.639 10.637 10.813 10.827 10.719 10.652
’ .2321 .2322 .2363 .2363 2374 .2324
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Table 44. Final Designs for Problem 8, Case B

Two Bay / Six Story Frame (cont.)

Final Design (in)

Linking | Member | Size | Ref. 21 Run 1 Run 2 Run 3 Run 4 Run 5
Group Nos. Var. Option* 1(P) | Option* 3(P) | Option* 4(P) | Option* 10(P) | Option* 1(PU)

. 1315 R 9.891 9.668 9.245 9.781 9.615 9.636
’ t .2158 .2127 .2028 .2135 .2132 .2106

9 14 R 10,763 11.211 11.214 10.532 10.777 11.330
t .2348 .2448 .2469 .2298 .2399 2474

10 16.17 R 11.406 11.687 11.585 11.665 11.642 11.675
’ t .2488 .2557 .2535 .2556 .2578 .2554

11 18.20 R 8.687 9.675 8.782 9.148 9.188 9.440
’ t .1895 2116 1947 .2004 .2015 L2106

12 1 R 13.104 11.744 12.826 12.618 12.377 12.208
t .2859 .2565 .2801 .2754 .2737 2666

13 21.22 R 12.114 12.235 12.108 12.217 12.183 12.223
’ t .2643 .2678 L2644 L2674 .2694 L2668

14 2325 R 10.690 10.417 10.456 10.392 10.309 10.117
’ t .2332 .2287 .2282 .2267 L2271

.2268
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Table 44. Final Designs for Problem 8, Case B

Two Bay / Six Story Frame (cont.)"

Final Design (in)

Linking | Member | Siza | Ref. 21 Run 1 Run 2 Run 3 Run 4 Run 5
Group Nos. Var. option* 1(P) | Option* 3(P) | Option* 4(P) | Option* 10(P) | Option* 1(PU)
15 2 R 11.919 12.441 12.201 12.018 12.092 12,414
t .2601 .2715 .2696 .2662 .2694 .2706
16 26 27 R 11,707 11.577 11,225 11.584 11.576 11.729
’ t .2554 .2533 .2519 .2531 .2552 .2559
17 9830 R 11.413 11.636 9.480 11.493 11.385 11.468
’ t .2490 .2545 .2068 .2513 .2520 .2533
18 29 R 13.915 13.067 16.746 13.801 13.557 13.155
t .3036 .2851 .3654 .3013 .2987 .2866
Weight (1b) 24405.4 24666.6 24278.8 24608.8 24615.2 24665.6
Number of Analyses 27 12 13 14 7 8

*See Table 1
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Table 45. Critical Constraints for Problem 8, Case B
Two Bay / Six Story Frame

Run Option Displacement Stress Constrained Buckling Constrained R/t
No. No.* Constrained Members Members Constrained
Nodes Members
Load Case 1 Load Case 1 | Load Case 2| Load Case 1 ]| Load Case 2
Ref. 21 - 1-12 7 - 1,3,4,12,20 1} 25,29 1-30
1 1(P) 4-12 7 _ 1,3,13 29,30 1-30
2 3(P) 1-12 7 - 1,3,4,13,30 ] 25 1-30
3 4(P) 4-12 7 - 1,3,13 25,29 1-30
4 10(P) 1-12 7 - 1,3,13 25,29 1-3,5-30
5 1 (PU) 4-12 7 - 1,3,13 25,29,30 1-3,5-8,
10-30

*See Table 1




Material Propert

Table 46. Definition of Problem 9

ies

Young's Modulus
Shear Modulus
Poisson's Ratio

Weight Density

Allowable Stress :

Factor of Safety :

Nodal Loading

t
]

[}
]

VvV =

©
il

Q
I

FS =

Helicopter Tail Boom

10.5 x 106 PSI

40.4 x 10° PSI

.3

.1 1b/in°

4

= 4,2 x 10" PSI

1.25

Load Node Loading Components (lb, in-1b)
Case Nos. F F F M M M
X y z X y z
13-16 0. 0. -140.0} O. 0. 0.
25 1490.3 1691.8 0. 0 0. 0.
1 26 1490.3 | -1365.8 0. 0 0. 0.
27 ~-1490.3 1691.8 0. 0 0 0.
28 -1490.3 | -1365.8 0. 0 0 0.

Displacement Constraints

Load Node Direction Lower Bound Upper Bound
Case Nos.
5-28 y -.5 in .5 in
1
5-28 z -.5 in .5 in
Initial Design and Side Constraints
Member Sizing Initial Lower Upper
Nos. Variable Value (in) Bound (in) Bound (in)
R 2.0 .25 25.0
1-44 t .051 .001 5.0

396
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Table 47. lteration History Data for Problem ¢
Helicopter Tail Boom

Weight (1b) [Maximum Constraint Violation (%)]

Analysis Run 1 Run 2 Run 3
No. Option* 1(P) Option* 4(P) Option* 10(P)
0 69.11 [211.6] 69.11 [211.6] 69.11 [211.6]
1 95.86 [34.7] 93.97 [34.0] 99.51 [18.6]
2 107.94 [7.2] 105.77 [7.2] 109.45 [1.0]
3 110,69 [.4] 109.53 [.2] 109.59 [.1]
4 109.51 [.1] 109.26 [0] 109.52 [0]
5 110.13 [o0] 109.59 [0] 109.45 [0]
6 109.33 [0] 109.33 [0] 109.40 [0]
7 109.25 0] 109.12 [0] 109.36 [0]
8 108.83 [0] 109.18 [0] 109.27 [0]
9 108.71 [0] 108.60 [0] 109.22 [0]
10 108.80 [0 108.66 [0]
CPU Tot. 15.819 16.337 13.664
Time | Anal. 9.368 9.904 8.426
(sec) | Opt. 2.661 2.652 1.991

*See Table 1




Table 47. Iteration History Data for Problem 9
Helicopter Tail Boom (cont.)

Weight (1b) [Maximum Constraint Violation (%)]

Analysis Run 4 Run 5
No. Option* 10(D) Option* 1(PU)
0 69.11 [211.6] 69.11 [211.6]
1 97.87 [20.3] 105.44 [7.3]
2 108.65 [1.7] 112.34 [0]
3 109.62 [0] 110.20 [0]
4 108.74 [.4] 109.15 [0]
5 108.34 {.5] 108.90 [0]
6 108.74 [0] 108.70 [0]
7 108.66 [0]
8 108.48 [0]
9 108.52 [0]
10 108.35 [0]
CPU Tot. 41,147 13.498
Time | Anal. 9,367 6.379
(sec) | Opt. 28.039 3.235

*See Table 1
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Table 48. Final Designs for Problem 9
Helicopter Tail Boom

Final Design (in)

Linking | Member | Size| Ref. 21 Run 1 Run 2 Run 3 Run 4 Run 5
Group Nos. |Var. Option* 1(P) | Option* 4(P) | Option* 10(P) | Option* 10(D)| Option* 1(PU)
1 1-4 R 2.6695 3.1432 3.0791 3.1473 3.0816 3.1198
t .0880 .0801 .0792 .0811 .0782 .0794
9 5-8 R 1.9152 1.2850 1.3675 1.4169 1.3848 1.3364
t .0487 .0355 .0377 .0380 0.372 .0386
3 9 -12 R 2.6530 2.8813 2.9242 2.8725 2.8850 2.9110
t .0829 L0744 .0744 .0738 .0736 .0737
4 13-16 R 2.1035 2.0071 1.9918 1.9786 1.9927 1.9975
t .0535 .0511 .0509 .0512 .0507 .0509
5 17-20 R 2.6784 2.8101 2.8255 2.8328 2.8086 2.8239
t .0753 .0717 .0719 .0736 .0716 L0717
6 21-24 R 2.1488 2.0703 2.0709 2.0573 2.0656 2.0756
t .0547 .0527 .0527 .0533 .0526 .0529
7 25_28 R 2.6238 2.6724 2.6681 2.6071 2.6848 2.6672
t .0673 .0680 .0679 .0674 .0685 .0678
8 29-32 R 2.1569 2.0965 2.0959 2.0862 2.0884 2.0983
t .0549 .0535 .0533 .0540 .0532 .0534
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Table 48. Final Designs for Problem 9
Helicopter lail Boom (cont.)

Final Design (in)

l.inking | Member | Size| Ref. 21 Run 1 Run 2 Run 3 Run 4 Run 5
Group Nos. Var. Option* 1(P) Option *4 (P) | Option* 10(P)|Option* 10(P)|Option* 1(PU)
9 33-36 | R 2.5038 2.5179 2.5101 2.4670 2.4965 2.5103
: t .0637 .0642 .0629 .0638 .0637 .0640
10 3740 | R 2.1730 2.1475 2.1459 2.1347 2.1583 2.1480
t .0553 .0548 .0546 .0533 .0550 L0547
11 41-44 R 2.3748 2.3703 2.3664 2.3654 2.4109 2.3618
t 0604 ,0605 .0602 .0603 L0615 .0602
12 45-48 R 1.9707 1,9487 1.9476 1.9300 1.9938 1.9485
t .0502 L0497 .0496 .0501 .0508 L0496
Weight (1b) 111,20 108,80 108. 66 109.22 108.35 108.70
Number of Analyses 13 11 11 10 11 7

*See Table 1
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Table 49. Critical Constraints for Problem 9

Helicopter Tail Boom

Run Option Displacement R/t Constrained
No. No.* Constrained Nodes Members
Ref. 21| -- 25,27 5-8,13-16,21-24,29-48
1 1(p) 25,27 1-4,9-48
2 4(P) 25,27 1-4,9-48
3 10(P) 25,27 1-4,9-48
4 10(D) 25,27 1-4,9-48
5 1(PU) 25,27 1-4,9-48

*See Table 1
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