General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
A Comparison of the Efficiency of Numerical Methods for Integrating Chemical Kinetic Rate Equations

Krishnan Radhakrishnan
Lewis Research Center
Cleveland, Ohio

Prepared for the 1984 JANNAF Propulsion Meeting
New Orleans, Louisiana, February 7–9, 1984
A COMPARISON OF THE EFFICIENCY OF NUMERICAL METHODS FOR INTEGRATING CHEMICAL KINETIC RATE EQUATIONS

K. Radhakrishnan
NASA Lewis Research Center
Cleveland, Ohio 44135

ABSTRACT

A comparison of the efficiency of several algorithms recently developed for the efficient numerical integration of stiff ordinary differential equations is presented. The methods examined include two general-purpose codes EPISODE and LSODE and three codes (CHEMEQ, CREK10 and GCKP84) developed specifically to integrate chemical kinetic rate equations. The codes are applied to two test problems drawn from combustion kinetics. The comparisons show that LSODE is the fastest code currently available for the integration of combustion kinetic rate equations.

An important finding is that an iterative solution of the algebraic energy conservation equation to compute the temperature can be more efficient than evaluating the temperature by integrating its time-derivative.

INTRODUCTION

Many practical problems arising in chemically reacting flows require the simultaneous numerical integration of large sets of chemical kinetic rate equations. Examples of such problems include the development and validation of reaction mechanisms, combustion of fuel-air mixtures, and pollutant formation and destruction. The rate equations for chemical species constitute a set of coupled first order ordinary differential equations (ode's) of the type

\[
\begin{align*}
\frac{dn_i}{dt} &= f_i(n_k, T), \quad i, k = 1 - NS \\
n_i(t = 0) &= n_{i,0} \\
T(t = 0) &= T_0
\end{align*}
\]

where, \(n_i\) is the mole number of species \(i\) (kmole/\(kg\) mixture), \(T\) is the temperature and \(NS\) is the total number of species involved in the reaction; the initial values \(n_{i,0}\) \((i = 1 - NS)\) and \(T_0\) and the function \(f_i\) \((i = 1 - NS)\) are given.

The initial value problem may be stated as follows. Given, (i) at time \(t = 0\), initial values for \(n_i\) \((i = 1 - NS)\) and temperature, (ii) the pressure, and (iii) the reaction mechanism; find the mixture composition and temperature at the end of a prescribed time interval.

Multi-dimensional modeling of reactive flows requires the integration of the system of ode's given by equation (1) at several thousand grid points. In addition, at each grid point, the solution to equation (1) may be required several times per numerical simulation. To make such calculations practicable, it is necessary to have a very fast batch chemistry integrator.

The major problem associated with the numerical solution of the system (1) of equations by classical methods (such as the popular explicit Runge-Kutta method) is as follows. These equations are often characterized by widely varying time constants. To insure stability of the numerical solution, classical methods are restricted to using very small steplengths which are determined by the smallest time constants. However, the time for all chemical species to reach near-equilibrium values is

1 Work partially funded by NASA Grant NAG3-147.
2 NRC-NASA Research Associate; on leave from The University of Michigan, Dept. of Mechanical Engineering and Applied Mechanics, Ann Arbor, Michigan 48109.
3 In this paper attention is restricted to adiabatic, constant pressure (hence, isenthalpic), exothermic chemical reactions.

Approved for public release; distribution unlimited.
determined by the largest time constant. As a result, the computation time required to solve a practical chemical kinetics problem by classical methods can become excessive.

In the present study we examine several techniques that have been proposed for the integration of differential equations with widely different time constants. The codes examined in this work include the general-purpose codes EPISODE and LSODE (1-3), and the special-purpose (for chemical kinetic calculations) codes CHEMEO (4), CREKIO (5-7), and GCKP84 (8-9). In addition, the explicit fourth-order Runge-Kutta-Merson differential equation solver (IMSL Routine DASCRU) is used to illustrate the problems associated with the solution of the system (1) of ode’s by a classical method. These codes are summarized in Table I. The above codes are applied to two test problems drawn from combustion kinetics and details of the computational work (including computer time), required by these methods are presented. In this paper, the total computer time required by each code to solve the test problems is used as a measure of its efficiency.

Discussions with Prof. D. T. Pratt of the University of Washington were most helpful. Dr. A. C. Hindmarsh of Lawrence Livermore Laboratory provided copies of EPISODE and LSODE.

TEST PROBLEMS

The algorithms summarized in Table I were applied to two test problems drawn from combustion kinetics. Both problems describe adiabatic, constant pressure transient batch chemical reaction and include all three regions of interest to a combustion researcher -- induction, heat release, and equilibration.

Test problem 1, taken from Pratt (10), describes the ignition and subsequent combustion of a mixture of 33 percent carbon monoxide and 67 percent hydrogen with 100 percent theoretical air, at a pressure of ten atmospheres and 1000 K initial temperature. It is comprised of 12 reactions which describe the time evolution of eleven species. Test problem 2, taken from Bittker and Scullin (9), describes the ignition and subsequent combustion of a stoichiometric mixture of hydrogen and air, at a pressure of two atmospheres and 1500 K initial temperature. It involves 30 reactions which describe the time evolution of fifteen species. The reaction mechanisms for both test problems are given in Radhakrishnan (11). Both test problems were integrated over a time interval of 1 ms in order to obtain near-equilibration of all chemical species.

Figures 1 and 2 present the variations with time of the temperature and the chemical species mole fractions for test problems 1 and 2, respectively. These solutions were generated with LSODE using a low value (10^-5) for the relative error tolerance.

EVALUATION OF TEMPERATURE

Of the codes tested, only CREKIO and GCKP84 were written explicitly for the integration of exothermic, non-isothermal, combustion rate equations. These therefore have built-in procedures for calculating the temperature. For the other codes, the temperature was computed using one of two different methods, labelled as methods A and B, and described below.

In method A, the temperature was calculated from the mole numbers and the initial mixture enthalpy using the enthalpy conservation equation

\[\sum_{i=1}^{NS} n_i h_i = h_0 = \text{constant} \]

(2)

where, \(h_i \) is the molal-specific enthalpy of species \(i \) (J/kmol) and \(h_0 \) is the mixture mass-specific enthalpy (J/kg). The algebraic equation (2) was solved for the temperature using a Newton-Raphson iteration technique with a user-supplied relative error tolerance, ERMAX. In this method, the temperature is not an explicit independent variable so the number of independent ode's is equal to the number (NS) of species and the Jacobian matrix \((\frac{\partial f}{\partial \mu}; i,j = 1 - NS) \) is of size NS x NS. The integrator therefore tracks only the solution for the species mole numbers.

The following convention was adopted in naming these other codes: those using temperature method A were given the suffix A (e.g. LSODE-A, EPISODE-A, etc.) and those using temperature method B were given the suffix B (e.g. CHEMEO-B, DASCRU-B, etc.).

4
In method B, the temperature was treated as an additional independent variable and evaluated by integrating its time-derivative obtained by differentiating equation (2) and given by

$$\frac{dT}{dt} = \sum_{i=1}^{NS} \frac{f_i n_i}{\sum_{i=1}^{NS} n_i c_{p,i}}$$

where, $c_{p,i}$ is the constant-pressure specific heat of species i (J/kmol K). This increases the number of independent ode's to $NS+1$, and the computation of the Jacobian matrix (of size $NS+1 \times NS+1$) involves the calculation of $2NS+1$ additional terms. In this method, the integrator tracks the solutions for both the temperature and the species mole numbers.

RESULTS

The numerical techniques summarized in Table I were applied to the two test problems discussed above. All codes were run on the NASA Lewis Research Center's IBM 370/3033 computer using single-precision accuracy, except GCKP84 which was in double precision. A typical computational run consisted of initializing the species mole numbers, temperature and CPU time. The integrator was then called with values for the necessary input parameters. On return from the integrator the total computer time (CPU) required to solve the problem was calculated. In addition, the following performance indicators were recorded: total number of steps (NSTEP), total number of functional (i.e., derivative) evaluations (NFE), and total number of Jacobian matrix evaluations (NJJE). For CHEMEQ and DASCRU, NJJE = 0.

Figures 3 and 4 present the computational work (expressed as the CPU time in seconds required on the NASA Lewis Research Center's IBM 370/3033 computer) plotted against the relative error tolerance, EPS, for test problems 1 and 2, respectively. Note that for EPISODE, EPS is a mixed relative and absolute error criterion -- relative for species with initially non-zero mole numbers and for temperature (method B); and absolute for species with initially zero mole numbers. Also shown on figures 3 and 4 are the CPU times required by the explicit Runge-Kutta method for one value of EPS. For this study, the value of ERMAX (the relative error allowed in the Newton-Raphson iteration procedure used in method A to solve the algebraic energy equation) was set equal to EPS, to make comparisons between methods A and B meaningful. For the same reason, with LSODE-B, the absolute error tolerance for the temperature was set equal to zero.

To facilitate comparisons of efficiency, the values for the performance parameters NSTEP, NFE, and NJJE are presented in Tables II and III for test problems 1 and 2, respectively. For each method (except DASCRU) and problem, these values correspond to the value of EPS that resulted in the least CPU time to solve the problem.

For test problem 1, very small values for EPS had to be used for EPISODE (fig. 3). For values of $EPS > 5 \times 10^{-6}$, EPISODE predicted little or no change in the composition and temperature after an elapsed time of 1 ms. Similar remarks apply to test problem 2 (fig. 4), for which values of 10^{-4} and 10^{-3} had to be used for EPISODE-A and EPISODE-B, respectively. Although the runs with EPISODE-B and EPS $> 5 \times 10^{-4}$ were successfully completed, the solutions (especially for minor species) were significantly different from those given in figure 2. With GCKP84 and EPS = 10^{-4}, the solution for test problem 1 exhibited serious instability and so this run was terminated. A more detailed discussion of the accuracy of the codes tested in this study can be found in Radhakrishnan(11).

Figures 3 and 4 and Tables II and III illustrate the difficulty associated with using a classical method (in this case the explicit Runge-Kutta method) to integrate combustion kinetic rate equations. The CPU times required for the two test problems are approximately 1 and 16 minutes respectively. The use of this technique would make multidimensional modeling of practical combustion devices prohibitively expensive.

Examination of figure 3 shows that the difference in computational work required by methods A and B is small for test problem 1, with method B being more efficient. For test problem 2 (figure 4), the difference is small for large values of EPS. But for small values of EPS the difference is more marked, with method A being significantly superior to method B. A comparison of figures 1 and 2 shows that the temperature-time profile is steeper for test problem 1 indicating a stronger coupling between the species and the temperature. This may explain why the inclusion of the temperature as an additional independent variable works well for test problem 1. But for test problem 2 the additional

5For a detailed discussion of the parameters required as input by each code see Radhakrishnan(11).
work in computing the temperature rate and the temperature dependent terms in the Jacobian matrix does not lead to increased efficiency.

Figures 3 and 4 and Tables II and III show that LSODE and CREKID are superior to the other codes. Although GCKP84 takes significantly fewer steps than CREKID, LSODE and EPISODE, it requires longer CPU times. This implies that GCKP84 requires much more work per step. However, as shown in reference 9, GCKP84 is an efficient code for performing a wide variety of chemical kinetics calculations. For test problem 2, EPISODE is superior to the other codes. However, in using EPISODE, a word of caution is in order. The computational work can be strongly dependent on the value for the initial step length (HO) selected by the user. An incorrect guess for HO can make EPISODE prohibitively expensive to use. Table IV illustrates this behavior for test problem 2. Note an order of magnitude increase in the CPU time for a change in HO from 10^{-7} to 10^{-8}. Although not shown here, the solution was also found to be adversely affected by an incorrect choice for HO. In addition, some values of HO resulted in problems with solution instability.

All codes used in the present study automatically select a step length during the course of the integration. Some of the codes (GCKP84, DASCRU and EPISODE) required a user-supplied initial value to be tried. The other codes automatically selected the value for the initial step length. The size of the step successfully used by the code indicates both the efficiency of the code and regions where difficulties due to stiffness arise. Figures 5 to 8 present plots of the step length used by each code through the course of each problem.

Figures 5 and 8 illustrate the small steps that classical methods have to use to insure solution stability. For both test problems, the explicit Runge-Kutta technique uses small step lengths to track the solutions through induction and heat release. During equilibration the step lengths continue to remain small, thus requiring prohibitive amounts of computer time. The difficulties with CHEMEQ (figures 6 and 8) include the selection of a very small initial step length, the continued use of small step lengths because of the very small increases allowed after satisfactory convergence, and its inability to select a suitable step length during equilibration. Much computer time is wasted in the search for an appropriate step length. In addition, this search is restricted to very small values for the step length. These factors make CHEMEQ very expensive to use.

We note that all codes use small step lengths during induction and early heat release. In these regimes the species and temperature change rapidly (see figs. 1 and 2). Most of the species and temperature have positive time constants indicating that the differential equations are unstable. Hence, the step lengths are constrained to small values.

For test problem 1, CREKID, GCKP84 and LSODE select step lengths of comparable magnitude, except immediately after ignition ($t = 10^{-5}$ s), when GCKP84 selects much larger step lengths (fig. 5). Although EPISODE uses larger step lengths in the post-ignition regime than the other codes, its difficulty in tracking the solution during induction makes it less efficient. The selection of a new step length after every step results in EPISODE using larger step lengths in the post-ignition regime than the more conservative LSODE. For test problem 2, except at small times when EPISODE selects larger step lengths, GCKP84 consistently uses larger step lengths than the other codes (fig. 7), thereby requiring far fewer steps. For longer, post-ignition times, the step lengths selected by CREKID, LSODE and EPISODE are of comparable magnitude. However, at times preceding ignition ($t = 3x10^{-6}$ s), EPISODE selects much larger step lengths than the other codes and is hence more efficient. CREKID's inefficiency stems from its inability to select a suitable step length at small times. Much effort is wasted in repeated attempts at selecting a larger step length. This is reflected by the large number (138) of Jacobian evaluations required by CREKID. In contrast, EPISODE and LSODE require only about 30 Jacobian evaluations.

The results discussed above indicate that the size of the step length to be used is regime dependent: during induction and heat release, when the solution changes rapidly, small step lengths have to be taken to insure stability. During equilibration, however, when the solutions are more stable, larger step lengths can be used. These features should be exploited by and incorporated into special-purpose algorithms for the integration of combustion kinetic rate equations.

CONCLUSIONS

A comparison of the efficiency of several algorithms (GCKP84, CREKID, LSODE, EPISODE, and CHEMEQ) utilized for the numerical integration of stiff ordinary differential equations arising in combustion chemistry has been made. To test these algorithms, two practical problems from combustion kinetics were selected: one involving eleven species and temperature with twelve reactions, and the other involving fifteen species and temperature with thirty reactions. Both problems included all three regimes of combustion: induction, heat release and equilibration.
This study has shown that the fastest package for integrating combustion kinetic rate equations available today is LSODE. This merits special note because LSODE was developed as a multi-purpose stiff differential equation solver, with no one particular application as its objective. EPISODE and CREKID are attractive alternatives. However, an inaccurate guess for the initial step-length to be tried by the integrator can make EPISODE prohibitively expensive to use. It can also result in incorrect and unstable solutions. Some experimentation with different values for the initial step-length may be necessary to obtain its optimum value. The code CREKID needs further refinement in the area of steplength selection before significant improvements in its speed can be realized.

An important conclusion from this study is that the use of an algebraic energy conservation equation for calculating the temperature does not result in significant inefficiencies. On the contrary, this method can be more efficient than evaluating the temperature by integrating its time-derivative.

Nomenclature

- \(c_{p,i} \): constant pressure specific heat of species \(i \), J/kmol K
- \(\bar{h}_i \): molar-specific enthalpy of species \(i \), J/kmol
- \(h_0 \): mass-specific enthalpy of mixture, J/kg
- \(n_i \): mole number of species \(i \), kmole \(i \)/kg mixture
- \(t \): time, s
- \(\text{EPS} \): for all methods, except EPISODE, local relative error tolerance; for EPISODE: relative error tolerance for species with initially non-zero mole numbers and for temperature, and absolute error tolerance for species with initially zero mole numbers
- \(\text{ERMAX} \): relative error tolerance for Newton Raphson iteration for temperature
- \(\text{HO} \): initial steplength to be attempted by integrator, s
- \(\text{NFE} \): total number of functional (i.e., derivative) evaluations
- \(\text{NJE} \): total number of Jacobian matrix evaluations
- \(\text{NS} \): number of distinct chemical species involved in the chemical reaction
- \(\text{NSTEP} \): total number of steps required to solve the problem
- \(T \): temperature, K
- \(Y_i \): mole fraction of species \(i \)

REFERENCES

TABLE I. - SUMMARY OF METHODS TESTED

<table>
<thead>
<tr>
<th>Code or method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCKP84</td>
<td>Details not yet available.</td>
</tr>
<tr>
<td>CREK1D</td>
<td>Variable-step, predictor-corrector method based on an exponentially fitted trapezoidal rule; includes filtering of ill-posed initial conditions and automatic selection of functional iteration or Newton iteration.</td>
</tr>
<tr>
<td>LSODE</td>
<td>Variable-step, variable-order backward differentiation method with a generalized Newton iteration(^a).</td>
</tr>
<tr>
<td>EPISODE</td>
<td></td>
</tr>
<tr>
<td>CHEMEQ</td>
<td>Variable-step, second-order predictor-corrector method with an asymptotic integration formula for stiff equations.</td>
</tr>
</tbody>
</table>

\(^a\)Other options are included in these packages.
TABLE II. - COMPARISON OF WORK REQUIRED
FOR TEST PROBLEM 1

<table>
<thead>
<tr>
<th>Method</th>
<th>EPS</th>
<th>NSTEP</th>
<th>NFE</th>
<th>NJE</th>
<th>CPU(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCKP84</td>
<td>5x10^-3</td>
<td>53</td>
<td>170</td>
<td>30</td>
<td>0.846</td>
</tr>
<tr>
<td>CREKID</td>
<td>10^-2</td>
<td>84</td>
<td>280</td>
<td>32</td>
<td>.227</td>
</tr>
<tr>
<td>LSODE-A</td>
<td>10^-2</td>
<td>93</td>
<td>155</td>
<td>26</td>
<td>.357</td>
</tr>
<tr>
<td>LSODE-B</td>
<td>10^-2</td>
<td>92</td>
<td>144</td>
<td>25</td>
<td>.344</td>
</tr>
<tr>
<td>EPISODE-A</td>
<td>10^-6</td>
<td>272</td>
<td>506</td>
<td>46</td>
<td>.894</td>
</tr>
<tr>
<td>EPISODE-B</td>
<td>10^-6</td>
<td>234</td>
<td>441</td>
<td>37</td>
<td>.708</td>
</tr>
<tr>
<td>CHEMQ-A</td>
<td>10^-2</td>
<td>7198</td>
<td>14881</td>
<td>0</td>
<td>15.1</td>
</tr>
<tr>
<td>CHEMQ-B</td>
<td>10^-2</td>
<td>8041</td>
<td>16589</td>
<td>0</td>
<td>15.5</td>
</tr>
<tr>
<td>DASCRU-A</td>
<td>10^-4</td>
<td>10700</td>
<td>59365</td>
<td>0</td>
<td>55.5</td>
</tr>
<tr>
<td>DASCRU-B</td>
<td>10^-4</td>
<td>10718</td>
<td>59760</td>
<td>0</td>
<td>48.7</td>
</tr>
</tbody>
</table>

TABLE III. - COMPARISON OF WORK REQUIRED
FOR TEST PROBLEM 2

<table>
<thead>
<tr>
<th>Method</th>
<th>EPS</th>
<th>NSTEP</th>
<th>NFE</th>
<th>NJE</th>
<th>CPU(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCKP84</td>
<td>5x10^-3</td>
<td>59</td>
<td>171</td>
<td>31</td>
<td>1.73</td>
</tr>
<tr>
<td>CREKID</td>
<td>10^-3</td>
<td>140</td>
<td>439</td>
<td>138</td>
<td>1.04</td>
</tr>
<tr>
<td>LSODE-A</td>
<td>10^-2</td>
<td>98</td>
<td>157</td>
<td>32</td>
<td>.682</td>
</tr>
<tr>
<td>LSODE-B</td>
<td>10^-2</td>
<td>88</td>
<td>144</td>
<td>27</td>
<td>.617</td>
</tr>
<tr>
<td>EPISODE-A</td>
<td>10^-4</td>
<td>90</td>
<td>167</td>
<td>31</td>
<td>.584</td>
</tr>
<tr>
<td>EPISODE-B</td>
<td>5x10^-5</td>
<td>97</td>
<td>209</td>
<td>29</td>
<td>.669</td>
</tr>
<tr>
<td>CHEMQ-A</td>
<td>10^-2</td>
<td>9038</td>
<td>18779</td>
<td>0</td>
<td>37.7</td>
</tr>
<tr>
<td>CHEMQ-B</td>
<td>10^-2</td>
<td>9139</td>
<td>18990</td>
<td>0</td>
<td>36.3</td>
</tr>
<tr>
<td>DASCRU-A</td>
<td>10^-4</td>
<td>81457</td>
<td>567490</td>
<td>0</td>
<td>1078</td>
</tr>
<tr>
<td>DASCRU-B</td>
<td>10^-4</td>
<td>98594</td>
<td>596130</td>
<td>0</td>
<td>1026</td>
</tr>
</tbody>
</table>
TABLE IV. -- EXAMPLE OF EFFECT OF INITIAL STEPLENGTH (H_0) ON WORK REQUIRED BY EPISODE-A ($\varepsilon = 10^{-5}$) FOR TEST PROBLEM 2

<table>
<thead>
<tr>
<th>$H_0(s)$</th>
<th>NSTEP</th>
<th>NFE</th>
<th>NJE</th>
<th>CPU(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-5}</td>
<td>129</td>
<td>237</td>
<td>33</td>
<td>0.786</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>129</td>
<td>231</td>
<td>31</td>
<td>0.783</td>
</tr>
<tr>
<td>10^{-7}</td>
<td>126</td>
<td>225</td>
<td>36</td>
<td>0.791</td>
</tr>
<tr>
<td>10^{-8}</td>
<td>1168</td>
<td>2355</td>
<td>353</td>
<td>7.91</td>
</tr>
<tr>
<td>10^{-9}</td>
<td>1170</td>
<td>2394</td>
<td>362</td>
<td>8.04</td>
</tr>
<tr>
<td>10^{-10}</td>
<td>133</td>
<td>231</td>
<td>32</td>
<td>0.772</td>
</tr>
</tbody>
</table>
Figure 1. - Variation with time of temperature and species mole fractions for test problem 1. Solution generated with LSODE-B and EPS 10^{-5}.
Figure 2. - Variation with time of temperature and species mole fractions for test problem 2. Solution generated with LSODE-B and EPS = 10^{-5}.
Figure 3. Variation of the CPU time (s) with error tolerance \(\text{EPS} \), for test problem 1. All runs on IBM 370/3033.
Figure 4. - Variation of the CPU time (s) with error tolerance, EPS, for test problem 2. All runs on IBM 370/3033.
Figure 5. - Variation with time (s) of the step length (s) successfully used by GCKP84, CREK1D, LSODE-B, and EPISODE-B for test problem 1.
Figure 6. Variation with time(s) of the steplength(s) successfully used by CHEMQO and DASCRU-B for test problem 1.
Figure 7. - Variation with time (s) of the step length (s) successfully used by GCKP84, CREK1D, LSODE-A, and EPISODE-A for test problem 2.
Figure 8. - Variation with time (s) of the steplength (s) successfully used by CHEMEO-A and DASCRU-A for test problem 2.