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ABSTRACT

In this final report the following tasks on the study of advanced

stress analysis methods applicable to turbine engine structures are described:

(1) Constructions of special elements which containing traction-free

circular boundaries.

(2) Formulation of new version of mixed variational principle and new

version of hybrid stress elements.

(3) Establishment of method for suppression of kinematic deformation modes.

(4) Construction of semiLoof plate and shell elements by assumed stress

hybrid method.

(5) Elastic-plastic analysis by viscoplasticity theory using the mechanical

subelement model.
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1. INTRODUCTION

In recognizing the need for improved methods for analyzing gas turbine

engine structures under elevated temperature conditions, a research program

was initiated at M.I.T. in April 1980. The objective is to develop computer

methods for elastic, elastic-plastic and creep analyses that are applica-

ble to gas turbine structures such as blades and rotors, etc. Such struc-

tures include (1) three-dimensional solids of general geometrical shapes,

in particular, with cylindrical holes or internal ducts, (2) thin plates

and shells and (3) axisymmetric solids under arbitrary loadings including

applied torques. The present document is the final report of this research

project. Earlier successes were obtained in the study of elastic-plastic

and creep analyses for two-dimensional problems using the assumed stress

hybrid finite elements [19]. Thus, it was decided to extend this hybrid

technique to more general structural geometries indicated above.

During the course of this study, it became obvious that certain basic

shortcomings had not been resolved in the assumed stress hybrid method.

These are the control of kinematic deformation modes and the establishment

of a logical procedure for choosing the optimal stress terms in the finite

element formulation. Under the present research program a systematic

method has been developed for choosing the assumed stress terms to suppress

the kinematic deformation modes. Also through the use of a new version of

mixed variational principles a rational procedure has been established for

choosing stress terms that are in proper balance with the assumed displacement.

In the new version the stress equilibrium conditions are relaxed to the

extent that they are satisfied only in variational sense within each elements.

r^
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The result is that stresses can now be expressed in natural +:oordinates

hence, in comparison to the old method of derivation, the resulting elements

are less sensitive to distortions of the element geometry.

For plate and shell problems the conventional approach is to introduce

both lateral displacement w and two rotations at the corner nodes as

generalized displacements. A limitation for such element is that when

neighboring elements are not co-planar at a node it is not possible to

write the complete equations of equilibrium. An alternative is the so

called semiLoof element [20] for which only the lateral displacements w is

used at the corner node while normal rotations w in are introduced along

the edges to maintain the rotation compatibility along the interelement
t

boundary. It has been discovered that semiLoof elements for plate and

shells can be easily formulated by the assumed stress hybrid method.

The method of elastic-plastic analysis studied under the present

program is based on the visco-plastic theory [21] 	 Thus a static elastic-

s	 plastic problem is analyzed as a.time-dependent problem using a fictitious

time and hence can be solved using the same basic computer algorithm for

a creep analysis problem. In the present studies the mechanical subelement

model [22,23] is used to represent the kinematic hardening behavior. The
i

model has also been extended for anisotropic plastic behavior.

In the following sections the significant findings of the present

research programs are described according to the following five tasks:

(1) Constructions of special elements which containing traction-free circular

boundaries.

(2) Formulation of new version of mixed variational principle and new

version of hybrid stress elements.

2
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I	 (3) Establishment of method for suppression of kinematic deformation modes.

(4) Construction of semiLoof plate and shell elements by assumed stress

t

hybrid method.

(E) Elastic-plastic analysis by viscoplasticity theory using the mechanical

subelement model.

Details of the present research findings have been, in major parts,

documented in technical papers that have been or are to be published and

in several theses that are available for distribution from the Library of

the Massachusetts Institute of Technology.

These technical papers are listed as Refs. 1 to 15 and the theses are

listed as Refs. 16 to 18 in the reference list of this report. One particular

research result that has net been written as a technical paper is the

development of a special 3-D solid element which has a traction-free

cylindrical boundary.. A deFcription of the construction and evaluation of

such element is included aci Appendix A in this report.

1	 3
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2. CONSTRUCTION OF SPECIAL ELEMENTS CONTAINING TRACTION-FREE

CIRCULAR BOUNDARIES

The objective for this task is to develop a special 3-D element that

is to be used for analyzing solids which has cylindrical holes or ducts.

Through aninvestigation of the corresponding 2-D Plane stress problems [16]

it is concluded that the most effective element is one which contains a

houndary defined by the actual geometry and for which the traction-free

condition can be satisfied exactly. This idea has also be adopted by

Schnack and Wolf [24]. The technique used in both references are the

assumed stress hybrid method. For the 2-D problem it is easy to make the

assumed stresses to satisfy both equilibrium and compatibility condition.

This is done by using Airy stress functions which satisfy the bi-harmonic

equation in polar coordinates. The traction-free condition at the circular

boundary can then be imposed. It is shown in reference 16 and in Appedix A

of the present report that this satisfaction of both equilibrium and

compatibility condition for the assumed stresses is essential for the

excellent performance of the resulting special elements.

For 3-D solids, although equilibrating stresses can be constructed

through the use of Maxwell's , or Morera's stress functions [25], there is
a

no readily procedure for maintaining also the compatibility equations.

The approach taken in the present work is to assume that the changes in

all components of stresses are only linear along the direction parallel

to the axis of the cylinder which defined the traction-free boundary.

In such case, four stress functions can be defined in terms of only r and e

coordinates and, it is easy, to maintain the compatibility condition in the

limit that the stresses no longer vary along z. A description of this

element and an evaluation of its performance is given in Appendix A.I	
4



1
3. FORMULATION OF NEW VERSIONS OF MIXED VARIATIONAL PRINCIPLE AND

NEW VERSION OF HYBRID STRESS ELEMENTS

The original version of the assumed stress hybrid element was based

on the principle of minimum complementary energy [26]. Hence, the assumed

stress must be made to satisfy the equilibrium equations pointwise. The

derivation of hybrid elements has been extended later to the use of

Hellinger-Reissner principle [27]. However, the apriori satisfaction of

equilibrium equation is still called for. The argument is that without

the constraining of the assumed stress in the element level the resulting

element will tend to become the conventional assumed displacement element.

Because of such specified equilibrating conditions, the assumed stresses

for the early versions of hybrid stress elements were always expanded

either in Cartesian or cylindrical coordinates. Also because of the

difficulty in satisfying the equilibrium equations, the hybrid stress method

were never widely used for shell elements.

The restriction of assumed stresses in Cartesian coordinates leads

to a rather serious shortcoming. On the one hand, in order to obtain an

invariant element the assumed stresses must be complete in polynomial

expansions. On the other hand, it has also been well recognized that hybrid

elements formulated by using complete polynomials tend to be overly rigid.

Performances of such elements also deteriorate badly when element geometry

is distorted.

To get around the problem of element invariance properties, methods

of remedy have been suggested such as the use of local Cartesian coordinates

[28] or local skewed coordinates [29] for the assumed stresses. It is

O clear that the obvious coordinate system to be used for the assumed stresses

is the natural isoparametric coordinates. However, when such system is

5



used, in general, it is not possible to satisfy the equilibrium equations

exactly. A new approach in the formulation of hybrid stress element is

to relax the pointwise equilibrium condition but only to maintain its

satisfaction in the variational sense. This is accomplished through the

following version of the Hellinger-Reissner principle for finite element

applications [2].

TrR
	 f

Vn

 [-2a TSo + aT (Du q ) - (D
T
 a)u X3dV = stationary	 (3.1)

Here the element displacements a are divided into two parts

u = uq + uX	(3.2)

where u 	 are expressed in terms of nodal, displacements q and compatible

with neighboring element.

u^ are expressed in terms of internal parameters a which are

eliminated within the element level through the variational method.

f
	

Here DTa = 0 is the homogenious equilibrium equation. Thus, equilibrium

condition is not imposed initially, but the process 37r R/8a = 0, vi11

enforce its satisfaction in the element level.

I
	

In the finite element formulation, one assumes

a = P6
	

(3.3)

a

where P are not coupled among different stress components.

t

6



1

n

uq - Nq	 (3.4)

uA - MA	 (3.5)

The functional Tr R then takes the form

1r R 	- 1 STHB-BTGq - B TRX	 (3.6)

where

H = I
V 

PTS P dV	 (3.7)

n

G	 =PT (D N) dV	 (3.8)
fVn

and	 R = j (DTp ) TM dV	 (3.9)
Vn

From the variation of 7TR with respect to S and A one obtains

9 = H-1 (Gq- Ra)	 (3.10)

and	 RT 8 = 0	 (3.11)

By eliminating A and recognizing the element strain energy is

U = 2 9T kq = 2 ST  S	 (3.12)

one can obtain the following expression for the element stiffness matrix k,

k	 GTH-1G - G TH
-1 R(RTH-1

R) -1 RTH-l G	 (3.13)

7
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i	 In this formulation the equilibrium equations need not be s.tisfied

in Eq. (3.3), the P-matrix can now be expressed in the natural isopara-

metric coordinates instead of the Cartesian coordinates. The resulting

element stiffness matrix will then always be an invariant.

Another possible advantage is that since the P-matrix in Eq. (3.3)

is no longer coupled, the flexibility matrix H can be reduced to a

supermatrix with submatrices only along the diagonal. The inversion of

such H-matrix can be simplified considerably. Reference 5 gives an

example indicating that an eight-node hexahedral element can be constructed

more economically using this new method of formulation.

An alternative procedure is to use Eq. (3.10), to constrain equations

for 0 to reduced the assumed stress terms to fewer number of independent

0-parameters of the form

a	 .•	 !3	 (3.14)

Then with	
r

H =	
VJ . 

PTS P dV	 (3.15)

The element stiffness matrix is simply

k = GTH-1 G	 (3.16)

In this case, however, the P-matrix will, in general, be coupled among

the various stress components and the inversion of H matrix cannot be
I	 "

simplified.
r
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i
One of the criticisms of the assumed stress hybrid method in the

early days was its lack of guidelines for selecting the assumed stress

terms.	 It turns out that the new formulation using Eq. 	 (3.1) can leed

to a logical way to choose the assumed stresses that are consistent with

the assumed displacements. 	 [14,15]

The procedure is as follows: 	 First the element displacement	 uq,

! in general	 are not complete polynomials, the u. terms are to be chosen

so that	 u = u 	 + u.	 are now complete up to a certain order. 	 The

assumed stresses in Eq.	 (3.3) are then chosen to be uncoupled and complete

polynomials of the same order as that of the strains derived by the

displacements	 u.	 The resulting constraint equations	 Eq.	 (3.11)	 then

yield the ideal	 independent stress terms	 PS for the hybrid stress formu-

lation.

One additional	 step to be introduced in this formulation is that

p the resulting Eq.	 (3.11) may be redundant in the sense	 that the number

y of independent constraint equations are smaller than the number of Vs.

In that case a small perturbation of the element geometry is introduced

in order to obtain additional 	 equations	 [10,11,18].	 This method has been

applied to different elements including 4-node and 8-node quadrilateral

plane elements, 8-node hexahedral element, 4-no0e axisymmetric elements

under symmetric loading & torsional 	 loading 3-nude triangular plate

element and 16-DOF semiLoof rectangular plate element. [14,15]

Table (3.1) lists the resulting number of independent stress terms

obtained by this approach.	 Indeed, the resulting	 5-6 stress terms for

a rectangular plane stress element are exactly the five terms that have

ielded elements which do not have any shear locking difficulty under

bending actions [10]. 	 It has been shown that the corresponding 5-g stress

^z 9



terms in natural coordinates determined by the present method also lead

to most desirable element performance [111.

If the desirable stress terms for a problem in Cartesian coordinates

have been determined for a regular rectangular or brick-shaped element,

the corresponding stress terms for distorted elements can also be

constructed by first expressing the tensor stresses T'i in natural

coordinates with the same $-stress terms. The physical components of

stresses can then be obtained by the following transformation

aij = 0 k i J Zd T kr	 (3.17)

where J k i , JRJ are the Jacobians between the two coordinates systems.

For the resulting elements to pass the patch-test, it is necessary to

take the value of Jacobian at the origin of the element [11,12,18].

Eight-node solid elements have been constructed by the same approach.

It is used to analyze the bending of a rectangular bar with two elements

which are distorted. The effect of element distortion on the displacement

and stress has been studied for this element and for those obtained by the

ordinary assumed displacement method and by the original hybrid method

using the beam axis as the reference Cartesian axis. It can be shown

that the present element is much less sensitive to geometric distortions

[12]. It has also been shown that for axisymmetric solids the 4-node

elements constructed by the present approach are least sensitive to

geometric distortions when compared with all other elements [13].

(,	 10
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1	
4. ESTABLISHMENT OF METHOD FOR SUPPRESSION OF KINEMATIC DEFORMATION MODES [6]

I

When the formulation of the stiffness matrix of an element of n

d.o.f. is based on the Hellinger-Reissner principle, the displacement

distribution of the element can be represented by n-R basic deformation

j	
modes with parameters a and P. rigid-body modes with parameters R in the

form of	 4	 4

a

I	
u = N 

R	

(4.1)
R

The deformation energy is then given by

Ud = 2 ST Ga a	 (4.2)

In order to prevent any kinematic deformation modes, the assumed

t
stress terms must match the assumed displacements such that the deformation

energy will not vanish for any one deformation modes oi- any combination of

basic modes. Two basic steps are:

1. Based on the strain distributions for the basic deformation modes

in an element, a choice assumed stresses can be made on a scheme involving

one S-stress term for one a-mode. In this case the stress equilibrium

conditions are,, in general, incorporated.

2. A check should be made that all columns of the 
a
 matrix in the

deformation energy term are linearly independent.

Examples in membrane element, axisymmetri.c element and brick elements

have indicated that there exist a wide choice of assumed stress terms for

higher order elements. In that case, it is advisable to relax the equili-

brating condition for the higher order stress terms.

11



5. CONSTRUCTION OF SEMILOOF ELEMENTS AND SHELLS ELEMENTS BY

ASSUMED STRESS HYBRID METHOD

I
Ordinarily the nodal displacements of a plate or shell element are the

lateral displacement w and its derivatives in order to maintain the complete

interelement compatibility. For plates with both membrane and bending

actions and for shells, the number of D.O.F. at the node is equal to five.

A drawback for this type of arrangement is in the case when the neighboring

elements are not coplanar at the node. In that case six D.O.F. are needed

in determining the equilibrium conditions at each node. A remedy suggested

by Irons is the semiLoof element [20]. In such element a corner node will

have only the u, v and w degrees of freedom, while normal rotations w in are

used along the sides of the element. The formulation of semiLoof elements

for plates and shells by the assumed displacement method was accomplished

by Irons. The method , however, includes complicated procedures involving

the application of a system of constraining conditions.

The assumed stress hybrid method is, however, a natural approach for

the construction of semiLoof elements for plates and shells [1,9,18]. In

a 16-DOF quadrilateral plate element presently developed the nodal dis-

placements are the lateral displacement w at the corners and the mid-side

points and the normal rotation w in at the 1/3 points along each side.

The boundary displacement is approximated by quadratic distribution for

w and linear, for w . The assumed stress couples are chosen by the same

approach outlined in section 3, i.e. the additional internal displacements

terms wX are used to determine the constraint equations for the initially
I

uncoupled stresses. The number of stress terms for the resulting element

is 23 while the minimum of terms required to suppress the kinematic deforma-

tion modes is only 13. As shown in Reference 15, the 23-stress terms is

12



apparently the optimum for improving the performance of the element.

1	 Details for the formulation of semiLoof shell elements by the assumed

I

stress hybrid method are presented in Reference 9 and 18. The formulation

is based on a modified version of the Hu-Washizu principle. Initial

discussion of this method is given in Reference 2. Limited examples with

triangular and quadrilateral elements have indicated clearly that the

assumed stress hybrid method can now be extended to the construction of general

shell elements. Also with appropriate choice of assumed stresses and

internal displacements, it is possible to obtain an element for which rigid

body motion, and the in-plane and out-of-plane strains can all be decoupled.

Reference 18 include examples showing that a cylindrical shell element

constructed by the present method can pass very severe tests suggested by

Morley [30].

}
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6. ELASTIC-PLASTIC ANALYSIS BY VISCOPLASTICITY THEORY USING THE

MECHANICAL SUBELEMENT MODEL

I'
Under the present grant a formulation of time-independent elastic-plastic

analysis by the assumed stress hybrid method is made based on viscoolasticity

theory and the mechanical subelement model. In the mechanical subelement

model the strain hardening behavior is represented by that of individual

subelements all of which are elastic-perfectly-plastic but of different

yield stresses. The model can approximate the Bauschinger effect for

materials under reversal of loading and is most convenient in conjunction

with viscoplastic analysis. In Reference 7 the formulation of this method

by the Hellinger-Reissner principle is presented in detail and an example

i

	 solution for a plane-stress shear log problem is given. For this problem

the plastic behavior is anisotropic. To accomodate this property, the

corresponding mechanical sublayer model is developed and presented in

details in Reference 8.

The basic step in the construction of mechanical multi-element model

is to determine the relative proportions of the individual elements in terms

of the tangent modudii of the individual segments of the piece-wise linear

4	

stress-strain diagram. The ordinary procedure is to use the same relative

proportions of the individual elements obtained under uniaxial loading

conditions for that of solids under multiaxial loading. For example when

the modudii for the various segments are given by E i (i = 1 ... n), with

El being the elastic modulus, the area of the i th element is given by

14
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where A is the total area of all elements. For the plane stress problem,

it turns out that when a plate is modelled as a multi-layered one with

elastic-plastic materials of different yield stresses, it will produce

a uniaixial stress-strain diagram with the individual segments slightly

curved, except the initial elastic segment. For a two-layer model, for

example the thickness ratio is

t
i
 -	 t l 	E1 - E2

t	
tl+t2	 E _

	
E

1	 5-4v	 2

where v is the Poisson's ratio in elastic range and E2 is the initial tangent

modulus at the yield stress. As a comparison for a general 3-D solid the

relative proportion of a two-element model is given by [31].

j

^A

Y.

h•,

Y

0

(6.2)

V 1 -	 El-E2

V	 1-2vEl - 3 E2

(6.3)

For 3-D problem, however, a multi-element model will lead to uniaxial stress-

train diagram with linear segments.

The detailed procedure for the construction of a multi-layer model to

represent a anisotropic plastic behavior is illustrated in Ref. 8.

^r
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i. SUMMARY OF ACCOMPLISHMENTS OF THE PRESENT RESEARCH PROGRAM

!'I

The following are the important research findings have been obtained

under the present research program.

i	
(a) A new version of Hellinger-Reissner principle has been developed for

the construction of assumed stress hybrid elements. 	 The main feature

c is that the assumed stresses need not be in equilibrium in varia-

tional	 sense within each element.	 The consequence is that the stresses

I
may now be expressed in the natural 	 (isoparametric) coordinates hence the

I
resulting elements are always invariants and are less sensitive to

] distortions of the element geometries. 	 The, new formulation has also

i	 ] pointed out a'logical way to match the assumed stresses with the assumed

displacements of the element in order to obtain an idea element

properties.	 Examples also indicate that computing effort can be

reduced using the new method of formulation.
i

(b) A method has been developed for choosing the assumed stress terms

i to suppress any kinematic deformation modes in an assumed stress hybrid

element.

i	 (c) Special elements have been constructed for plane and solid elements

which contain traction-free circular boundaries.

i
(d) The hybrid stress method has been extended to the construction of

semiLoof elements which are most convenient for plate and shell

elements that are not co-planar at the interface have been shown.

16
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(e) Shallow and deep shell element have been successfully constructed

by using the Hu-Washizu principle. In the resulting elements the

rigid-body motion and the bending and membrane straining modes can

be decoupled in order to avoid the shear locking problem.

(f) The mechanical sublayer (subelement) model has been used in conjunction

with the viscoplasticity theory for elastic-plastic analysis by the

assumed stress hybrid finite element method. A method has been developed

to construct sublayer models for anisotropic plasticity behavior.

6+
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	 APPENDIX A

t. .
EIGHT-NODE SOLID ELEMENT WITH A TRACTION-FREE CIRCULAR SURFACE

f

A-1. INTRODUCTION

For stress analyses of solids with traction-free cylindrical surfaces

by the finite element method it is more advantageous to use special solid

elements which contain traction free circular surfaces. For this purpose

the assumed stress hybrid element is most suitable. For plane stress and
i

plane strain problems it is convenient to use stress functions in polar

coordinates to maintain not only stress equilibrium condition, traction-free

condition along the circular boundary and also the compatibility condition

[16]. It has been shown that 4-node elements constructued under such stress

assumptions yield much more accurate results than that by using ordinary

assumed finite element elements and ordinary assumed stress hybrid elements.

The present note is to described the formulation for a special 3-D solids

element which contain traction free cylindrical surfaces.

A-2. GEOMETRY OF 8-NODE SOLID ELEMENT

An element with a traction-free cylindrical surface is shown in

Figure A-1. In this case, it is obvious that a cylindrical coordinates,

r, 6, and z that define the traction-free surface A BC D is the most

logical reference coordinates. The two planes DCGH and ABFE are parallel

([
	 to each other and are. perpendicular to the z-axis, while the planes CB F G and

f	 DAEH are on planes in radial direction. -The plane EFGH is parallel to the

z-axes but may make any angle with the x-axis.

The hybrid stress element in the very original form [26], is derived

by using the principle of minimum complementary energy. The stresses in

is



I

I
9

f
5

the element are in exact equilibrium and are expressed in terms of finite

number of parameters

a

	

Pa	 (A-1)

For this special element the traction-free condition along A BC D is also

maintained.

The displacements u along the element boundary are then interpolated

in terms of the nodal displacements q i.e.

"u = L q	 (A-2)

The corresponding surface tractions T is determined by

T = vTa = vTP 8 = R B	 (A-3).

where v = matrix of direction cosines

and -	 R = vT P	 (A-4)

From the principle of minimum complementary energy

arc =	 2 JS a dV - J	 TT u dS = minimum	 (A-5)

	

Vn	 Su

the element stiffness matrix k is then given by

k = GTH-l G	 (A-6)

where	 H = I	 PTS P dV	 (A-7)

Vn

19
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G	
1	

R T L dS
Su

and (A-8)

Here Vn and Su	 are respectively the volume and the prescribed boundary
n

displacement boundary of the n th element. Because the surface A B C D is

traction-free it will not appear in the determination of the G-matrix.

The equilibrium equations are

Ba r + 1 a"or + aTzM - or ae - 0

ar	 r a 	 a 	 r

ae + r 11 + LT
8 + 2 r

e	 0	 (A-9)fir 

aTrz + 1 NZ 
+ aaz + Tzr = 0

r	 r 5	 a z	 r

The construction of equilibrating stresses can be most conveniently

accomplished through the use of stress functions. When the variations of

all the stress components are assumed to include only up to linear terms

along the z direction it is possible to obtain two different sets of

stress function in (r,e) coordinates. Each of these contains four stress

functions. Based on a preliminary investigation of performances of elements

derived by these two versions, only the one indicated in the following

is used in the present development. The equilibrium equations Eq. (A-9)

are satisfied if the stresses are expressed in terms of four stress func-

tions oi (r,e), i = 1,2,3,4 in the following manner:
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(A-10)

The assumed eq uilibrating stresses can then be obtained by expanding the stress

functions as trigonometric functions along 0 and polynomials along r. The

stress terms are also chosen to satisfy the traction-free condition along

the cylindrical surface.

From an evaluation of the resulting displacement and stress distribu-

tions of a thin plate with a circular hole obtained by using different

expansions for stress functions in the finite element formulation the following

set of assumed stresses was chosen.

2	 4	 2	 4	 2°r	 (1 - r2)6 1 + (1 + r4 - ^2 )cos29 62+ (1 
+3-^- - 2 )sin2e 63

4	 4	 4+ (r- 3̂ )cose 64 + (r- a2)sine 65+(r-5 a3 + 4, a5)cos3e 66
	r 	 r	 r

+ (r-5 r3 + 4 
a6

)sin3e 67

2	 4

	

+ Z[(1 - a ) 6 	 3a
+ (1 +

	_ 4a2 )cos2e 6 + 1 + 3a 4 _ 4a2
r2 8	 r4	 r 2	 9 (	 rq	 r2 )sin2e 6101
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ia206	 (1 + ^Z)8 1 - 4(1 + 3 ^)cos2B 82 - (1 + 3
J

4	 4)sin26 83 + (3r	 a3)cose 64
i

Y	 r

+	 (3r+ a4)sine 85- (r-4+ 4 &6)cos39
4

86- (r-r3 +	 M5WOO4	 R7

2
+	 z[(1+ a 	 )8 8

4
-	 (1+3 â )cos2e sy - (1 +3

a 4
rq)sin20 610]

r
1

r

a4
Tre	 -(1 - 3 4 +

r

a2	
4

2 2)sin29 82 + (1 - 3 a4 + 2 a
2

2)cos2a 83 + (r -
4
 )sine 04

i
r

r

4
-	 (r - 	 )cose

q	 6
85-(r +3 r3 - 4 ^5)sin39

6

86+(r+3 
r3 - 

4 a5)cos36 S,

a4
1	 +	 zL-(1 - 3
1

a2	 4
+ 2 -)sin26 gg + (1 - 3 a

_r4
+ 2 7

2
 )cos29 5 10 1 r

a2
T rz	 (1"a')s11 +

a4
(r-a4)cose a 12 + ( r-

4 
)sine 5 73 +(1-4

4
 )cos2e a14

r r
a4

+	 (1 -4)sin2e 815
r 

4

T6z -	 -(r-	 )sin6
4

8 1L +(r-	 )cose	 813-2(1
q

a	
)sin26	 a14+2(1-2  4 cos26	 6" 7	 157)r r

'^	 2	 4
az c 816 + r8 17 + 6818 - r C(1 + 2)811 + (r+3a)Cosa 812

1	 (r+3
4 
)sine 813 (3- 7 7

4 
)cos2e 814 (3 - 7	 )sin26 8 15 3	 (A-11)

It is seen that there are 18 independent 8- parameters which is the minimum

number required for the suppression of kinematic deformation modes [6].
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Unlike the two-dimensional problems it is not possible to choose the

stresses that also satisfy the compatibility egi,iations. The set of stresses

given by equation A-il, however, does satisfy the compatibility equations

in the limiting cases when the stresses do not very along z.

I
It is seen that although the cylindrical coordinates are used for

the stresses, other coordinate systems must also be included in the formula-

tion. For example, it is more convenient to use u, v and w in Cartesian

coordinates for the nodal displacements and the interpolation functions L

(Eq. A-2) for all the boundary surface, in particular, for the top bottom

surfaces DCGH and ABFE , are bi-linear shape functions in the natural

coordinates (;,n,^) system similar to the isoparametric coordinates. In the

integration of the H-matrix (Eq. A-7) over the volume of the element Gaussian

quadrature method is used. This is also based essentially on the use of

the natural coordinate ft,n,C) system.

A-3. NUMERICAL RESULTS

1. A rectangular plate with a circular hole

A thin plate of a dimension 4R x 8R x D.IR with a circular hole of

radius R at the center is acted by uniform tensile loading at the two ends

as shown in Figure A-2. The problem has also been analyzed as a plane stress

problem by Kafie [16] using different elements and two different mesh patterns.

It is also analyzed here using only one layer of 3-D solid elements in two

different meshes shown in Figure A-3. The average values of circumferential

stress ae along the thickness direction at point A of the rim of the hole

is given in Table A-1. It is expected that if a 4-node plane stress element

with one circular boundary is formulated by take from Eq. A-11 only the plane
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stress terms o r , a e and Tre that are not varying with z, the result should

be identical to that of the present 3-D analysis. The equivalent 2-D

element, thus, is one derived by using a l to 87 terms in Eq. (A-11). This

^ I	is a stress pattern which satisfies the compatibility condition in addition

to the equilibrium and traction free conditions. In Kafie's study, a similar

plane stress element was derived using only 01 to B5 
terms in Eq. (A-11).

For comparison of element performance Kafie also included two hybrid elements

with circular boundaries derived by using stresses which do not satisfy

the compatibility conditions. These 	 results are also given in Table A-1.

It is clear that the satisfaction of compatibility conditions in the stress

terms is essential for achieving a good element performance. This comparison

also shows that the present element with 7 s- parameters for the plane stress

terms yields better accuracy than that by the 5 6-parameter element.

i
In Kafie's study some higher order elements with 8 and 10 nodes were

derived using the assumed stress hybrid method. These correspond to the

use of 3 and 5 nodes respectively to represent the curved boundary. The

results obtained by these elements as well as that by using eight node

isoparametric element derived by the conventional assumed displacement approach

are also included in Table A-1. The total numbers of unconstrained D.O.F.

used in the different solution are also listed in the table. It can be

seen that the 8-node assumed displacement element actually performs very well

in comparison to some of the hybrid stress elements. But the present hybrid

element which is derived by using stresses which satisfy both equilibrium

and compatibility conditions and also prescribed traction-free conditions

clearly yields the best performance.
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2.	 A thin square plate with a circular hole

A square plate of 8R x 8R with a center hole of radius equal to R and

thickness equal to MR is acted by uniform tension along two opposite edges.

The problem is analyzed by only one layer of elements using two different

I
meshes with 4 and 16 elements respectively for 1/4 of the plate as shown

in Fig. A-4.	 The distributions of the circumferential 	 stresses aB around

the rim of the hole are obtained by the following two systems of elements

and are shown in Table A-2.

(1) combining the present elements with ordinary 8 node hybrid stress

•. elements which are derived by expanding in stresses in natural	 isoparametric

coordinates with 18-5 parameters.rk'

and	 (2) using the ordinary 18-g hybrid stress elements everywhere.^

S The analytical solution given by Hengst [32] ., is included for comparison.

Fes-̀ 	 IUD
The solutions obtained using mesh-2 are also plotted in Figure A-5. 	 It is

seen that the stress ae obtained by the finer mesh is already very close

- to the analytical solution.	 It is to be remarked that an even finer mesh
y'

with 36 elements was tried with the size of the special element limited to

only 0.25R.	 But the results are worse than that by obtained only 16 elements.

This means that if the special elements cover too thin a layer from the

rim of the hole the special contribution of the element cannot be fully'

utilized.

3.	 A square block with a circular hole

A square block of 8R x 8R with a center hole of radius equal to R

and thickness equal to 2R is acted by uniform tension over two opposite faces.

The Poisson's ratio for the material 	 is taken as 0.25.	 The problem is

analyzed by using 64 elements over one-eighth of the block as shown in
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I
Figure A-6. It is seen that the mesh pattern from the top view is the

I,	 same as mesh-2 in Figure A-3. Solutions are obtained agc;n by two different

element arrangements: (1) one layer of special elements are used around the

I '	 rim of hole, (2) all elements are ordinary 8-node hybrid stress elements. The

resulting solutions for a 8 for a = 7T/2 and a
Z 
fore = 0 and e =n/2

at the face and the middle plane along the rim of the circular hole are

I	 shown in Table A-2.

There is no analytical solution for this problem. The only similar
I

problem that has been analyzed is the stretching of a thick plate of

infinite dimension with a circular hole. Green [33] and Sternberg and

Sadowsky [34] have treated this problem and obtained the distributions of

a8 and c z around the rim of the hole. In both cases, similar to the present

problem, the thickness of the plate is equal to the diameter of hole.

However-Green used v = 0.25, and Sternberg et al used v = 0.3. According

to Green's solution the circumferential stress a8 at e = 90 0 and at the

face of the plate is lower by 7.2% in comparison to its average value through

the plate thickness while at the middle plane of the plate it is higher by

2.4%. The normal stress a  at the rim of the hole of course should be

zero at the face. The values at the middle plane are given as 0.27% and

-0.27% respectively at 8 = ?T/2 and 0.

It is now hypothesized that for the present problem the average stresses

across the thickness of the plate is equal to that given by the 2-D

problem given in Ref. [32] and that ratios between the values at the face

and the middle plane of the plate to the average value are the same as that

for the problem of circular hole in an infinite plate. The values of

estimated in this way are also given in Table A-3. It is seen that the
I

f^	 use of special elements around the rim of the hole yield much closer to the
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TABLE A-1

COMPARISON OF COMPUTED STRESS CONCENTRATION FACTORS

(SCF) FOR RECTANGULAR PLATE WITH CIRCULAR HOLE

UNDER TENSION (2-D PROBLEM)

I^

f

Coarse Mesh Finer Mesh

DOF SCF %error DOF SCF %errorType of Elements

present special elements
degenerated to 2D,	 (76)
and ordinary hybrid stress
elements 16 4.19 -3.0 0% 42 4.24 -1.8%

2D special	 elements	 (55,
compatibility enforced)
and ordinary hybrid

stress elements 16 4.52 4.6% 42 4.13 -4.4%

2D special elements	 (9$,
compatibility not
enforced) and ordinary
hybrid stress elements 16 3.00 -30% 42 3.79 -12.2%

2D special	 elements	 (125,
compatibility not
enforced) and ordinary
hybrid stress elements 16 2.77 -36% 42 3.96 -8.3%

8-node assumed
displacement elements 36 4.22 -2.4% 106 4.46 3.3%

8-node hybrid stress
element 36 3.05 -29% 106 4.29 -018%

10-node and 8-node
hybrid stress elements 44 3.03 -30% 122 4.21 -2.6%

Reference solution SCF = 4.32
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TABLE A-2

COMPUTED CIRCUMFERENT STRESS ALONG THE RIM OF

CIRCULAR HOLE IN A SQUARE PLATE UNDER TENSION

(thickness - O.1R v - 0.5)

r^

1

i

t f

Angle 6 00 22.50 45° 67.50 900

present
special a 6/a0 -1.8661 0.9822 3.494
elements
and

r ordinary error°S 26.7 -7.8 -2.4

E hybrid
element

L	 all	 a6/c0	 -0.4952	 {0.9162	 (	 2.2580
0	 ordinary	 I	 I

hybrid
element	 Ferror,./	 66.4	 -14.0	 -36.9

present
special a6/ a0 -1.4141 -0.7124 1.0681 2.770 3.4681

elements
and

r ordinary error% -3.9 -1.7 0.3 -2.'4 -3.1

E hybrid
elements

W
all ae/a0 -0.9606 -0.3849 1.0367 2.4287 2.9843

w ordinary
hybrid
elements error% -34.7 -46.9 -2.7 -12.5 -16.6

Analytical	 solutions
F-1.4718 -0.7249 1.0651 2.844 3.580

a6/a0 -
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TABLE A-3

COMPUTED STRESSES oe AND cz ALONG THE RIM OF

CIRCULAR HOLE IN A THICK SQUARE BLOCK UNDER TENSION
li

1

s

0 location along z
present special all Estimated
elements and ordinary Reference
ordinary hybrid elements Solution
stress elements

CY face 3.298 2.756 3.32
n/ 2

00 middle plane 3.552 3.075 3.67

face 0.110 0.026 0
r/2

0 z middle plane 0.225 0.297 0.27

00
face -0.109 0.022 0

0
middle plane -0.242 -0.230 -0.27

-f

l
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Figure A-1 Geometry of special 8-node element with
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traction-free cylindrical boundary
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Figure A-2 Thin rectangular plate with circular hole

under longitudinal tension v = 0.25
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+,^	 16 Nodes

48 DOF

i^

a Fine mesh

12 Elements

42 Nodes

 Z #	126 DOF

Figure A-3 Two meshes for one-quarter of rectangular plate

with circular hole
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fine mesh

16 Elements
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coarse mesh

4 Elements

Figure A-4 Thin square plate with circular hole under tension load

(h = OAR, v = 0.25) — two meshes for one quarter of plate
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Figure A-5 Thin square plate with circular hole under

uniform tension stress c
o circumferential stress ae
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obtained by fine-mesh solution
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Figure A-6 Thick block with circular hole under uniform tensile load

— mesh pattern for one-eight of block
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