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SUMMARY

Several topics in optimal symmetric flight of éirbreathing vehicles
are examined. In one study an approximation scheme designed for on-
board real-time energy management of C]imb-dash is developed and calcu-
lations for a high-performance aircraft presented. »In another a vehicle
model intermediate in complexity between energy and point-mass models is
explored and some quirks in optimal-flight characteristics peculiar to
the model uncovered. In yet another study, energy-modelling procedures
are re-examined with a view to stretching the range of va]idity of
zeroth-order approximation by special choice of state variables. In a
final study time-fuel tradeoffs in cruise-dash are examined for the
consequences of nonconvexities appearing in the classical steady cruise-
dash model. Two appendices provide retrospectiverlooks at two early
publications on energy modelling (Ref.b22) and related optimal-

control theory (Ref. 58).
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CHAPTER 13
INTRODUCTION

The present report brings together four studies of optimal sym-
metric flight which have order-reduction as a common feature. The
research started out as an effort to implement a singular-perturbation
approach to optimal flight, that of Ref. 25, in closed-loop form along
the Tines of a concept put forth in Ref. 20. The effort stayed on
‘track during a minimum-time climb-dash phase which appears as Chapter 2.
It wandered off down an interesting by-way offered by a vehicle model
intermediate in complexity between the familfar point-mass and "energy"
modeTs, which had been previeﬁsly employed in the literature but not
thoroughly researched. The quirks discovered in this vehicle model are
reported in Chapter 3 and are of considerable research interest; however,‘
~the intermediate vehicle model does ‘not appear to have sufficient merit
for use in the applications work of main interest.

In the course of the minimum-time climb-dash research it became
evident that a need exists to stretch the zeroth-order asymptotic theory
as far as possible and that there is freedom in choice of state variables
which recommends itself for this purpose. Chapter 4 reports the synthesis
of two "fast" state variables potentially useful in this connection.
Although further research along these lines appears worthwhile, it is
aTready clear that possible improvements make the scheme attractive for

applications.




The fourth study, that of Chapter 5, began as a seemingly straight-
forward exercise to incorporate a fuel constraint. Analysis of the
"slowest" motions, cruise-dash, encountered complications due to the
appearance of nonconvexity phenomena, with resulting ambiguities. This
matter deserves further study; even more so, perhaps, does the related
V“chattering” phenomenon which appears in energy apprdximation, and which
is related to oscillatory behavior in point-mass app}oximation.

An excursion into the origin of the "energy-climb" technique, which
traces back to WWII Messerschmitt, appears as Appendix A. A look at a
mathematical technique for freating optimal-control problems of small
dimension linear in a scalar control (Ref. 57) appears as Appendix B.

The technique lends itse]f to thelenergy-climb problem and one of ManciT]'s
results is recognizable as the generalized Legendre-Ciebsch condition for

the special low-dimensional problem.

Ny
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CHAPTER 2
ON-BOARD NEAR-OPTIMAL CLIMB-DASH ENERGY MANAGEMENT
A. R. Heston
E. M. Cliff
H. J. Kelley



SECTION 2.1
PREFACE

On-board flight control and guidance is a subject which has had
varying reception in different fields of Aerospace Engineering. In
the area of unmanned missiles there has been extensive research, with
many resulting applications, in developing on-board guidance systems,
as reported in the survey papers, Refs. 1 and 2. These studies have
encompassed many new optimal control and even differential gaming ideas
(Ref. 3): in this field the on-board flight computer is an accepted
and usually ﬁecessary part of the guidance system. While conventional
homing and proportional navigation guidance laws are simple, and require
minimal computation, more complex guidance schemes may be implemented on-
bboard by the use of singular perturbation methodology, as in Ref. 4.

The willingness to apply state-of-the-art theoretical developments
to manned aircraft is not as evident. This may be the result of a more
conservative approach in applying new technology to machines which are
responsible for peoples' lives, machines which are also extfeme]y ex-
pensive, generally larger and more complex than many missiles. However
one of the greatest obstacles may be the threatened removal of authority
from the pilot; despite the existence of sophisticated autopilots on many
expensive aircraft, there is an aversion to total automation, particular-
ly on the part of the pilot. As a result there is a significant gap be-
- tween the flight-path optimization and différentia] gaming resu}ts which
have been achieved in the last twenty years, and their applications in

on-board use. A part of this is due to the Timited computational resources




available, particularly on fighter and small general aviation aircraft,
where weight and space are at a premium. Some of the latest develop-
ments relating to the latter case are given in Ref. 5. On the other
hand in the area of large transport aircraft the cost, weight and com-
plexity of a small main-frame computer is justified, but this has yet to
be implemented. In civil aviation much research has been done in the
area of tfajectory optimization, with particular emphasis on efficient
fuel usage and minimizing the direct operating cost. Attention has
focused on the calculation of sub-optimal flight paths, using order-
reduction to simplify the problem, as in Refs. 6-9. Burrows (Ref. 6)
used singular perturbations and order reduction to derive sub-optimal
short and long haul trajectories, with on-board corrections to speed and
energy errors based on expanding the'pérformance index to second order,
which he found to be more effective than simple linear feedback. Sorenson
and Waters (Ref. 7) used an assumed constant energy cruise (as did
Erzberger and Lee, Ref. 8), and pointed out that the on-board flight
control needs to be coordinated with the ATC system, so that fuel saved
during the flight is not wasted due to traffic congestion at the»termina]
area. Chakravarty and Vagners (Ref. 9) attempted to provide justification
for their state variable selection through the use of non-dimensional-.
ization. Transitions onto fuel-optimal climbs and descents are studied
in Ref. 10, where they are used to derive a near-optimal feedback control
law. Sub-optimal terminal guidance is examined by Erzberger, Ref. 11,
for a fixed-wing aircraft, and by Beser, Ref. 12, for a tilt-rotor air-

craft. Optimal shipboard terminal guidance is studied in Refs. 13-15.




Despite the active interest and work, as described above, in this area
the applications have lagged behind. A description, for example, is
given in Ref. 16 of the DC-9-80 Digital Flight Guidance System; here
the emphasis is on establishing reliability and safety criteria for

the engine and flight control systems. It seems safe to say that in
this area applications efforts have focused on feasibility and re-
1iability rather than optimality. As mentioned earlier, the computat-
ional resources or a fighter aircfaft are even more limited than on a
transport, for obvious reasons of space and weight constraints. In
contrast with Targe transports there is a much greater range of ap-'
plications for dn-boardoptima] control for fighter aircraft. This is
because a fighter can and often nas to perform a much wider range of
maneuvers (in terms of flight path angles and bank angles for instance)
as studied in Refs. 17-19. In many missions there is less, if any, a
priori knowledge of the flight path. Also it is often desirable for
security to minimize the communication with the ground, which e]iminates
the possibility of solving flight-control problems on the ground and
relaying commands to the air.

With this background it is the objective of this study to in-
vestigate on-board real-time flight control, with the intention of
developing algorithms which are simple enough to be used in practice,
for a variety of missions involving three-dimensional (3-D) flight.
Initially an approach is developed which is restricted to the intercept

mission in symmetric flight, based on Ref. 20. Extensive computation




is required on the ground prior to the mission but the ensuing on-

board exp]oitétion is extremely simple. The scheme takes advantage

of the boundary-layer structure common in singular perturbations,

studied in Ref. 21, arising with the multiple time scales appropriate

to aircraft dynamics. Energy modelling of aircraft, as first examined

in Refs. 22-24 and extensively developed in Refs. 25-27 is used as the

, starting point for the analysis. In the symmetric case, a nominal path
is generated which fairs into the dash dr cruise state. Feedback co-
efficients are found as functions of the remaining energy-to-go (dash
eﬁergy less current energy), a]ong-the nominal path. These serve to
generate transitions towards the nominal path, closed Toop and to counter
disturbances. In this situation the guidance method is similar to the
neighboring-optimal guidance methods of Refs. 28-32; these have been ap-
plied to space shuttle re-entry problems, Refs. 33-35, and orbital trans-
fer guidance, Refs. 36-37. However there are two significant differences
between thié study and these references. In the present work the gain
indexing is done in terms of the current energy; this avoids the problems
encountered in estimating the index time, as in the time-to-go or min-
distance methods. Also, for the extension to.3-D f]ith, families of
reference paths are used instead of a single trajectory, with heading-to-

go as the additional running variable.

2.1.1 Problem Formulation

The overall problem is to develop an orn-board, real-time flight

control system, which is near-optimal, for an aircraft flying an




intercept mission, with arbitrary initial conditions. The equations

of motion for a point-mass model of an aircraft can be written:

E = V(nT - D)/W (2-1)
h = Vsiny : (2-2)
y = (Lcosu - Wcosy)/mV | | (2-3)
x = Lsinu/mVcosy ‘ : (2-4)
X = Vcosycosy (2-5)
y = Vcosysiny (2-6)
»ﬁ = -nQ | o | | ' - (2-7)

These equations embody the assumptions of thrust along the path, zero
side-force, and flight over a flat earth with constant gravity. Also
winds aloft are assumed to be zero, and the atmospheric properties

standard.

2.1.2 Symmetric Flight

The first approach was to restrict the problem and simplify the
model considerably, to reduce the ana]ytica] and computational burden,
during the initial research and development of the guidance scheme.

The restrictions in the problem are the following: to consider only
symmetric flight, with fuel oper, i.e. fuel optimization is not examined,

which leads to maximum thrust in most maneuvers of practical interest.




The target is assumed to be at a sufficient distance from the inter-
ceptor that a climb-dash is required: in other words a range-optimal
climb to the dash point on the level flight envelope, blending into a
steady-state dash. This sequence ends with a terminal transient, which
is considered briefly in the next chapter; The time spent during the
climb is assumed to be much smaller than the time spent at the dash
state. The restriction in the aircraft model is that the variation in
mass due to the.fuél expenditure is‘ignored. Under these limitations,

the equations of motion are reduced to:

E = V(nT - D)/H - . (2-8)
h = Vsiny o ‘ o : (2-9)
4= (L - Wcosy)/mV - (2-10)
x = Vcosy ' | (2-11)

2.17.3 Aerodynamic Modelling

The aircraft which is used as an example to perform numerical cal-
culations is a high-performance interceptor. The drag is modelled as
a parabolic function of the control:

2

C,.=C, +C C (2-12) -
D Do DCL2 L
The coefficients C and C are functions of Mach Number:
D D ‘
0 CL2
Ch =C. (M) (2-13)
DO D0 :




and

Cp  =Cp. (M) (2-14)

The thrust is a function of Mach Number and altitude:

T = T(M,h)

The way in which these three functions are represented is important
in the computational work undertaken in this study. The reasons for
this are discussed, and the different methods which were used are de-

" scribed in Section 2.5 and Section 2.6.

SECTION 2.2
OPTIMAL CONTROL: REDUCED-ORDER MODELLING

Reduced order mode11ing, based on time-scale separations observed
iﬁ vehicle dynamics, is particu]ar]y-attractive to the analyst in solv-
ing problems for 1ifting atmospheric flight. »Numefical computations are
simplified by the reduction in the system order and as a result the
number of initial conditions which may have to be guessed or jterated
upon is also reduced. Further, an improvement in the conditioning of
the differential equations results ffom the confinement of the more un-
stable dynamics to boundary-layer corrections, which are relatively short
in time. It has been appreciated since Kaiser's early work (Ref. 22) that

the h and y variables can be changed much more rapidly than the specific

energy, E, which explains the introduction of this new variable. Also

10




the energy can be thought of as a 'fast' variable in comparison to
the range, at least in cases where the climb is a transient which
fairs into a steady-state cruise or dash condition, i.e. when the
time spent {n the steady state is much greater than that spent on
the climb, as assumed here. This leads to the reformulating of the
equations of motion, following the development of Ref. 25, with the
inclusion of the interpolation parameters, e? on the left hand sides
of the differential equations for h and y, and ¢! on the left hand
side of the differential equation for E:

2 .

e“ h = V siny (2-15)
2 ¥ =(L - W cosy)/MV (2-16)
& E=V (DM | \ (2-17)

x = V cosy | (2-18)

To solve the problems of time-optimal control the variational Hamilton-

ian is formed:
H=2gE +ah+ ALY AKX

and the Maximum Principle (Refs. 38 and 39) is applied. The resulting

Euler differential equations are:

2 2 _ 9H :
© T | (2-19)
2 : oH
€ )\Y ailrw (2-20)
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1: _  3H -
€ )\E = - aE (2 2] )
. oH -
Ax © 7 ax (2 ?2)

" The introduction of three separate time scales in the state system

must conform to the requirement of the Tihonov theory (Ref. 40) that

1 2

the ratio (ez/e]):+ 0 as € - 0, as shown in Ref. 25. When both ¢

and e] are equal to 1 the originaT point-mass model is recovered.

2.2.1 Rectilinear-Motion Model
The simplest model possible is obtained when both.e] and szlare
taken 0. By examination of the differential equations, the following

consequences of these assumptions may be noted:

el =0 — |h=0|l—[y=0 (2-23)
y=0 L =W]|
e 20— o F = Q————nT = D (2-24)

These equations embody the assumptions that the altitude, h, the
path angle, y, and the energy, E, can all be varied instantaneously in
a control-like fashion subject to the constraints; In this slow rec-
tilinear-motion model the path-angle is, however, fixed at a value of
zero, and the 1ift coefficient is chosen at any energy/altitude com-
bination so that the 1ift equals the weight. Further, the throttle is

constrained so that the horizontal forces are balanced. The energy and
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altitude are chosen to minimize the Hamiltonian. This consists only

of the range rate and the associated mu]tiplier, which is constant
because the Hamiltonian is not an explicit function of range in this,

or any other modelling in this study. As a result the min-H operation
leads to the high speed point on the level flight envelope. In the _
language of singular perturbation theory this is the zeroth-order 'outér
solution', into wﬁich the solutions from the other time scales must fair
asymptotically. The matching of different solutions and the composité
generatioh are discussed in a Tater sub-section. The next time-scale is

now examined.

2.2.2 Energy-State Models

The next level of order reduction is generally referred to in the
literature as energy modelling. In this case e] is set to 1, and 82
to zero. Again the altitude and path-angle are assumed to be 'fast'
and ‘control-like', but the energy change is analyzed and E assumes
the role of a 'slow' variable. Again the path-angle is fixed at zero,
and the 1ift coefficient chosen so that the 1ift equals the weight; but.
the only remaining 'control-like' variable (apart from the throttle, n)

is the altitude: at any energy the altitude must be picked so as to

minimize the Hamiltonian, which is now defined as:

-

E=2aAV+ kL (2-25)

H =Axx + AE X E

where the differential equation for E is given by:
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E = V(nT-D)/w‘ | (2-26)

)\E = - a_E (2'27)

The altitude which minimizes the Hamiltonian is therefore going
to be determined, at any energy, by the relative values of Ag and Ay
and their signs: their ratio determines the relative importance of
range rate and energy rate, and their signs determine the sense of the
optimization.  For example, if Ap is small enough the altitude picked
will correspond to the maximum possible instantaneous range rate possible
~at that energy, if Ax is negative. This is the Towest altitude (and
highest speed) which is allowed by thé terrain limit, dynamic-pressure
limit or Mach limit, whichever is greatest. On the other ﬁand if the
range multiplier is set to zero the altitude chosen will maximize the
instantaneous excess power or energy rate, if Ag is negative. This
special case is the so-called 'energy-climb', and is discussed in the
following subsection. Note that if either multiplier-is positive the
rate of change of thevassociated state will tend to be minimized.

<

2.2.3 Energy Climbs

0f the possible energy-state results the energy-climb is the simp-
lest to calculate: as the Hamiltonian only contains one term, only one
differential equation needs.to be integrated assuming that AE remains
negative. The initial value of the multiplier does not in general have

to be determined: so long as it is negative the same path will rasult.
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Indeed if time histories are not required none of the differential
equatioﬁs need to be integrated at all: the altitude-energy path

may be found simply by maximizing the level-flight energy rate at

any energy. The energy climb for the aircraft studied is shown in

Fig. 2.1. It is interesting to note that this schedule shows multiple
jumps in altitude, arising from realistic variations in the thrust data.
This is somewhat different from other examples which have been examined,
for example the F-4, where the altitude discontinuities in the energy-

climb are primarily due to the transonic drag-rise (Ref. 41).

2.2.4 Enerqgy-Range Climbs

When the range multiplier, Ay is not assumed to be zero, i.e.,
'energy-range climbs' are examined, the analysis and resulting computa-
tionsare slightly more complex than the 'energy-climb' discussed above.
First of all the Ag equation must be integrated, as the relative magni-
tude of AE to Ax at any time or energy is important in choosing the
q]titude. Secondly, as a resﬁ]t of this, the initial ratio of AE to
Ax, r° » must be carefully picked: different values of r® will result
in different paths with different terminal states. As the value of r°
is increased from zero the resulting trajectories move downward in the
flight envelope, with the terminal energy moving from the maximum ehergy,
Emax’ towards the dash energy, Ed' At a certain value of r° = R® a path
results which fairs gracefully into the dash-point. This is the range-

optimal 'energy-range climb' which is desired and is shown in comparison

to the energy climb found earlier in Fig. 2.2, with the level flight
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envelope also shown. Determining the correct value of r° is an initial-
value problem, but limited to only one dimension, and the usual one-
dimensional search techniques, (i.e. golden-section, cubic and parabolic
fits) may be employed. For values of r® which are greater than R® the
resulting trajectories are rahge-optima] for terminal energies which are
lower than Ed’ over différent time spans. These paths are characterized
by a climb which approaches the dash point, a dash, and finally a terminal
transient which takes the energy down to the desired level. This tran-
sient begins with an instantaneous dive to the maximum range rate (speed)
lat Ed, as allowed by the terrain, dynamic-pressure, or Mach limit, which-
ever is the most severe restriction at the current energy level. In the
case studied, no Mach Timit and dynamic-pressure limits were applied;
rather the thrust data was faired off to limit the level-flight envelope
from exceeding such Timits, as explained in Section2.6. As a result the
terminal maneuQer takes the aircraft down to the terrain 1imit, (outside
‘the flight envelope), where it remains, losing energy. This situation
is unchanged until the energy is reached corresponding to the dash speed
| at the terrain limit. .At this point the engine is switched off (AE chang-
es sign) and were speed brakes included in the model they would be applied:
the instantaneous energy rate is made most negative. This sequence is
shown in Fig. 2.3 for the aircraft being studied. For the case where
Mach and dynamicjpressure limits are applied the equivalent maneuver is
shown in Fig. 2.4. |

This processvneeds some explanation: when Ef is 1ess‘than Ed’

the aircraft must perform some terminal transient which loses enérgy in
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the most range-optimal way. There are two choices, or ways in which

it can lose energy: at speeds below or speeds above the dash speed.
Obviously the range-optimal strategy is to spend as much time in the
latter region and as little in the former as is possible. This is

done by switching off the engine when the speed drops below the dash
speed, and if possible extending the drag brakes. The problem of the
‘terminal-maneuver transient is not pursued here; it is of research in- |

terest.

2.2.5 Method of Matched Asymptotic Expansions

By the use of singular-perturbation theory, bcundary-layer type
corrections can be used to overcome the energy—model]ing weakness, i.e.
initial and final jumps in altitude, as in Refs. 25 and 42, and tran-
sonic or intefna] jumps, as in Ref. 41. While the altitude discontinuitf
- ies are eliminated by expansiqn to the zeroth order, realistic path-angle
values are obtained, in the Ref. 25 approéch, only by continuing the ex-
pansion to the .first order or higher. This is a nontrivial problem in the
case where the altitude transitions occUr at the beginning or the end of
a trajectory, and is even more complex in the case of the internal Jjump.
As a result, even the corrected energy model Toses its attraction when
realistic path-angles are required for onboard use as commands. A scheme
for providing more realistic path-angle results in the zeroth order is

explored in Ref. 43.
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2.2.6 Conclusions

To conclude this section, some of the results of the reduced-order
modelling are summarized below.

First of all energy-state model1ing, while attractive in its simplici-
ty, is inappropriate and unsuitable for on-board guidance use on ité own,
i.e. uncorrected, for the intercept mission contemplated. This is because
it generates significant initial and terminal discontinuities in altitude
and path-angle, which the aircraft is supposed to follow instantaneously.
Secondly, multiole instantaneous jumps are also possible along the optimal
path, and lastly the path-angle is obtained as zero, in the usual approxi-
mation, which is again a big disadvantage as the actual path-angles can be
quife large.

Corrections to the energy-state model which overcome these weaknesses
are possible and have been demonstrated in the literature (Refs. 41,42).
However this additional complexity is extremely unwelcome for on-board
calculations due to limited storage and, more importantly, execution time
available on-board; indeed solutions are not guaranteed due to the in-
stabilities of the state-Euler system which need to be suppressed. In
this context it is questionable whether this approach is in fact easier
or quicker than solving the optimal control problem for the full system.

However, certain ideas from the energy-state model are undeniably
attractive. The solutions suggest a hierarchical structure of states in
optimal control solutions. This is exhibited in the Tollowing way:

altitude and path-angle 'command' values are determined by the current




7

-energy, gnd in this sense the energy is the dominant state. If the
current values h and y do not coincide with these predetermined values,
a rapid transition can be made which brings them to their 'correct’
values. These ideas form the basis of the guidance scheme which is

“presented in the next section.

SECTION 2.3
ON-BOARD GUIDANCE
An alternative to using ordef reduction, suggested in Ref. 20,
which is simple enough to lend itself to onboard implementation is now
developed, for the case of symmetric flight. The scheme has rbots in
the hiearchical structure of optimal-control solutions of the energy
model, in which the specific energy is a relatively 'slow' variable

and its value determines the control-like 'fast' variables, h and v.

2.3.1 Nominal Path

The phenbmenon described above suggests that trajectories of the
point-mass model funnel rapidly, (rather than instantaneously as in the
energy model), into fhe vicinity of a single path, which leads to the
dash-point. The fdea pursued in this Chapter, and Ref. 20, which is
based upon an antecedént memorandum, is to determine this 'skeletal
path' for the point-mass model, for as wide a range of energies as pos-
sible. This is the nominal, or reference trajectory and the altitude
and path-angle histories are recorded as functions of the energy or
energy-to-go, rather than time or time-to-go, as ﬁs common in other

neighboring optimal guidance schemes (Refs. 28-37). The advantage of
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this approach in an on-board context is the approximations to the final
time are not necessary, and implementation of the scheme is greatly

simplified as a result.

.2.3.2 Feedback Law

The next step is to generate a neighboring-optimal feedback
guidance Taw which will control the aircraft so as to follow a neigh-
bor of the nominal optima1 path. There are two basic reasons for doing
thfs. First of’a11 the reference path is of 1ittle use open loop: even
if the aircraft is at any time on the reference path, the control com-
mands which‘are stored along this trajectory will be insufficient to
keep the aircraft close to it. This is because disturbances and errors
inevitably arise both in the actual flight (i.e. variable winds etc.)
and in representing the control history using a cubic spline (Ref. 44).
Secondly, even if this first problem could be ignored, the reference
path is of 1ittle, if any, use when the aircraft has initial conditions
which are far removed from the nominal: for instance if the aircraft is
initially Toitering at high altitudes aﬁd subsonic speeds, on combat
patrol, for example. Linear-feedback coefficients are proposed to
generate the necessary transients to bring the aircraft to the neighbor-
hood of the nominal optimal and stabilize the subsequent path. The
guidance law is a linear feedback control based on the difference be-

tween the nominal and actual altitude and path-angle values.
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~ 2.3.3 Feedback Coefficients

Thé feedback coefficients, which correspond to minimizing the
secoﬁd-var}ational approximation to the performance index, as in Refs.
28-37, are found by perturbing the altitude and path-ang]e separately
from their nominal values along the reference trajectory. The optimal-
control problem is re-solved and the partial derivative of the contro]
with respect to the states (at fixed energy) is estimated by difference
quotient approximation. The partial derivatives which are mentioned
here are the variations in the parameters of an initial value problem;
they should not be confused with the variations of the control along the
trajectory. They are defined for an arbitrary value of energy = E] in

the following way:

let CL*(t) be the control which takes the aircraft from an initial point
at Tow energy, Eo, (altitude and path-angle zero), along the nominal path

up to the dash point on the level flight envelope, while optimizing range;

o ;f@ﬁe resultant state time histories are given by

| h*(t)a Y*(t)’ and E*(t)

 1et-the energy of the aircraft reach the value El, while travel]ing along

~ the nominal path, at a time t]:

1

Then at E' the 'correct’ altitude and path-angle are given by_h*(t])
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and y*(t]). To find the altitude feedback coefficient at this energy

“level the procedure is as follows:

find the range-optimal path which has the same terminal conditions,
and terminal time as before but use the nominal state at t1 as the

initial conditions, with a perturbation, Ah, introduced in the initial

altitude:
v(0) = yx(th) (2-28)
E(0) = E' (2-29)
h(0) = h*(t') + ah . (2730).

The solution of this prob]em results in a new control time history,

CL .(t). The altitude feedback coefficient is found by the following
new

secant approximation:

w(t]
BCL(E]) _ anew(O) " A ()

- = - (2-31)

2.3.4 On-Board Use

| The CL commands to the autopiiot are taken from the nominal path
- with linear corrections for the variation of the altitude and path-
angle from their nominal vaiues. On-board use requires only the
storage of the states (h and v), control (1ift coefficient or load

factor), and the two feedback coefficients, each as functions of
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energy, or energy-to-go. The feedback guidance law with the appropriate
functional dependenciesl is shown below:

_ aC aC
= cx(6) +5p B (nee(e)) + 5 (B Grevrce)) (2-32)

L

To summarize, the only variables required to be stored on-board in
the symmetric problem are:
*
¢ *(E)
h*(E)
v*(E)

—L (E)

L (E)

SECTION 2.4
OPTIMAL SOLUTIONS FOR THE POINT-MASS MODEL
A requirement of the proposed idea is a large number of optimal-
control solutions to the point-mass-modelled problem. Optimal cohfroT
solutions can be found in many different ways. They can be found by
the use of direct methods, such as gradient methods, where the control
history is parameterized in sactionally-linear or spline approximation

and the terminal conditions are met by either penalty or projection

23




techniques. Alternatively, the problem can be resolved into a two-
point boundary value problem, with sp1it'boundary conditions. Half
are known at the initial time and the other half at the final time.
This can be solved by the use of indirect methods such as simple or
multiple shooting (Refs. 22, 23). To solve the problem of time-optimal

control the variational Hamiltonian is formed:
H = agE +ah + 2y + A X , (2-33)

and the Maximum Principle (Refs. 38, 39) is applied.

The resulting Euler differential equations are: .

e =- 2 . (2-34)
ih - | (2-35)
A = - % (2-36)
R S - (2-37)

The 1ift and the throttle setting must be chosen to minimize the

Hamiltonian, which requires that:

Mooy (2-38)
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n =1 (2-39)

2.4.1 Method of Solution

Euler solutions were found in the present work by the method of
multiple shooting, using the algorithm and computer program of Refs. 33,
45-47 kind]y supplied by DFVLR, Oberpfaffenhofen, West Germany. In
this method, the interval of integration is broken up into many sub-
intervals. This is preferable to 'simple shooting', where the initial-
value problem is attempted diréct]y, as optimization problems of lift-
ing atmospheric flight are ill-conditioned, the state-Euler system being
violently unstable. Partitioning the time interval has the effect of
suppressing error growth. This method was.used primarily for reasons of
accuracy. This need arises, for éxamp]e, in the ca]cu]atioh of the feed-
back gains, found by the difference of the control at the beginning of
two optimal solutions. Typically to find the gains to 5 figures the
control must be known to about 8 figures. The multiple-shooting method
has greater accuracy than the other methods available, and although it
is often difficult to generate the initia1'reference trajectory, the
subsequent calculation of the feedback gains is relatively eésy as the
method has good convergence properties in the vicinity of a solution.

Further discussion on these topics is found in Section 2.8.



SECTION 2.5
INITIAL EXPOSURE TO OPTSOL

The first use of the multiple shooting program OPTSOL obtained
from DFVLR was to solve a very simple optimal control problem. This,
taken from Bryson and Ho (Ref. 48) page 121, is similar to the brachi-
stochrone, and was solved numerically both with and without a con-
strained arc, to test the user-supplied software required for the

program,

2.5.1 Aircraft Data Manipulation

The program OPTSOL had been brought to VPI&SU with subroutines
é]ready created to enable the solution of aircraft flight mechanics
problems and, rather than try to start from the beginning, attempts
were made to use the existing computational tools, at least until
familiarity had been gained with the program. In particular, the data
which was used to model the aircraft under study was extensively
modified so that the integration subroutine in OPTSOL, known as DIFSYS,
was able to funétion. This proved to be a problem, as DIFSYS, as re-
ceived, was extremely sensitive to the degree of smoothness of the right
hand sides of the differential equations. In fact if discontinuities
are encountered in any derivative up to the eighth, the stepsize of
integration shrinks to zero. As all data of the point-mass model had
been represented by cubic splines and spline lattices to facilitate -
interpolation, considerable effort was spent on the generation of an

analytical representation which would reproduce both the values and the
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shapes of the data with consistency. This had been done at DFVLR

by using polynomial expressions, and this method was examined for

the aircraft data on hand and abandoned. While a polynomial of
sufffcient]y high order will fit any number of consistent data points
exactly, there is an increasing distortion of shape with increasing
order of pb]ynomia]. In fact even low order polynomials did not match
the data at all well. The approach taken was to use a combination of
polynomials, exponentials and arctangent functions to accomplish this.

In the case of the single valued functions, i.e. ¢ M), ¢ (M), this
0 L2

D
was not too difficult. The arctangent functions can be usedcas 'soft’
switches, separating different portions of the data, which can be re-
presented by a simple function locally (i.e. by a straight line or a
parabola). However in the case of mu]tivariab]é functions such as thrust
and fuel flow this is definitely a nontrivial problem (however only thrust
was attempted). In the case of thfust, thé representation was achieved
by fitting against Mach number, using coefficients which were functions
of altitude. 19 variables were optimized using a conjugate gradient
process which minimized the sum of the square of the errors at the grid
points. The functions developed for Thrust, CDo and CDCL2 are shown in
Table 2.1, and the aerodynamic data are shown graphically in Figs. 2.5
and 2.6.

After constrﬁction of the smooth data, the flight envelope was cal-
culated and drawn (Fig. 2.7). As in the case of some high-performance

jet-fighter aircraft the envelope turns out not to be performance limited,

i.e. the level flight maximUm sustainable speed-is much higher than the
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2.4 is the Mach 1imit and the high speed

Mach 1imit. In this case M
point occurred at roughly M = 3.0. It should be mentioned that aero-
dynamic and thrust data are not actually available for M = 2.4 and the
flight envelope found by extrapo]ation is essentially a conjecture. The
important thing is that the excess power at level flight is greater than
zero for a rahge of altitudes along the Mach 1imit, for which both thrust
and aerodynamic data are reliable. This problem, which in general re-
quires treatment of state-inequality constraints, was dealt with in the
following way: the thrust was faired off sharply against Mach Number, |
near the Mach limit so that the flight envelope no longer exceeded it.
This was done by multiplying the thrust by a switching arctangent
function which rapidly (but smoothly) brought the thrust to zero while
leaving it unaffected elsewhere. The dynamic-pressure limit was treated
in the same way. lThe analytical formulation for these two limits are |
included in Table 2.1. The flight envelope with the Mach-number Timit
‘ is shown in Fig. 2.8; the effect of both of the limits is shown in Fig.
2.9.

2.5.2 1Initial Flight-Mechanics Problem

Once the dataset had been finalized, OPTSOL was used to generate
some optimal trajectories for a simple atmospheric flight problem:
maximize final speed, from a given initial state, with final path angle
zero and final altitude free. This was solved for several different
time intervals, using simple shooting (initially), and also multiple

shooting, to gain familiarity with the use of multiple shooting and te
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investigate the methods of finding families of trajectories, for in-
stance by time stretching. The time-histories for a family of four
different trajectories are shown in Fig. 2.10 - 2.12. These are,

respectively, speed, path-angle, and altitude plots.

2.5.3 First Trajectories to the Dash Point

The next step was to attempt to find baths which went to the high.
speed point, over a fixed time interval and to try to decrease the in-
itiai energy while ]engthening the overall flight time. This was done
by starting at an a]titudé and speed combination, (path-angle zero), just
below the dash point, guessing the values of the costates. A total in-
tegration time of 5 seconds was used, and as can be imégined, the first
guess was far from the targeted final conditions; however by requiring
OPTSOL to satisfy boundary conditions by successive proximity rather than
in one jump, a trajectory which reached the specified altitude and path
angle combination was found. However, it was not possible to get the .
final speed to the desired value in the 5 second interval, because the
time was not Tong enough to reach it. To achieve the desired final speed
and to observe the manner in which the system approaches the equilibrium
point (the possibility of an oscillatory so]ution.near the high speed point,
analogous to oscillatory cruise solutions was considered a possibility),
attemptﬁ were made to lengthen the time of integration, by stretching the
sub-intervals in the multiple-shooting scheme. Initially it was found to
be very difficult to extend the trajectory at all - OPTSOvaould not con-

verge for even extremely small increases in the final time. Eventually

29




the interval was increased to 6 seconds. The final speed also increased
but still did not reach the value at the dash point. It became virtually
impossible to increase the final time any further due to numerical
integration difficulties. For this reason and computational expense,

the approach was reassessed at this point.

2.5.4 Eigenvalue Analysis

The system was linearized about the high speed point to examine the
dynamics of the system in the vicinity of the equilibrium point. The
analysis revealed that the stability eigenvalues were all placed along
the real axis. At first thé absence of compiex roqts akin to phugoid
6sc111ation suggested that the linearization had been incorrect. After
this had been checked and rechecked, the analysis was repeated at a
point removed from the vicinity of the sharp arctangent functions which
had been used fo 1imit the flight envelope, as it was conjectured that
the switching functions may have introduced large gradients affecting
the dynamics of the closed-loop system. The throttle coefficient”was_
reduced to 0.68, reducing the speed of the dash point by about 100
ft/sec, well away from the arctangent switch region, and the linearized
analysis was repeated. The.eigenvaiues were found to have both.rea1 and
imaginary parts, as expected, showing that the steps taken to limit the
flight envelope had engendered significant effect on the dynamics of the
state-Euler system. The s-plane positions of the two cases are shown in

Fig. 2.13 and 2.14.
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2.5.5 Backwards Integration of Stable Eigenvectors

It was thought.that a useful starting trajectory could be found by
the stable eigenvectors of the linearized system. If the equilibrium
state is disturbed in proportion to a stable eigenvector the disturbance
will die out in the linear case and should fair in towards the equilibrium
point, for some finite time at least, in the nonlinear case, if the
disturbance is small enough. So if such a trajectory is integrated
backwards in time (using the full nonlinear system) a series of points
will be generated which will fair in towards the dash point, at least
for some time. Only one of the three eigenvectors approached the dash
point from the desired direction, i.e. from points lower in altitude and
slower in speed. This was integrated ?or 22 seconds and used as an |
initial guess for OPTSOL. The pathjang]e at the initial time was non-
zero and attempts were made to»reduce it to zero. Again convergence
~ troubles were encountered: OPTSOL could not tolerate 1ar§e changes in
the initia1.va]ues and the effort was finally abandoned. Apart from the
cost of computing and poor convergence behavior, the system also displayed
an alarming instability to s$mall changes: on occasions the spéed_in the
final seconds dropped from its maximum value (about 2300 ft/sec) to 1

ft/sec.

2.5.6 Conclusions

It was concluded that the thrust-tailoring approach taken to make
the prob]em easier had instead probably made it worse. The intégration
subroutine DIFSYS is very sensitive to small changes in derivatives of

the right hand sides. By using a multiplicity of sharp arctangent
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functions the computational burden became large, as every time DIFSYS
encountered an arctangent transition the stepsize of integration auto-
matically became very small, incfeasing the computer time required.
Further it was evident the system was overly sensitive to small changes
in initial values. As a result it was decided to use a simpler inte-

gration subroutine and to return to splined data.

SECTION 2.6

MODIFICATIONS TO OPTSOL

The first step to modify the operation of the program OPTSOL was to
change the integration routine. ‘The variable step, eighth order Runge-
Kutta package DIFSYS seemed to be a primary source of the numerical
difficulties and computational expense experienced in the early use of
OPTSOL. It was removed in favor of a much simpler fixed step-size

fourth order Runge-Kutta-Gi]l subroutine.

2.6.1 Splined Aircraft Data

This substitution enabled the use of cubic splines and spline
lattices of Ref. 44 for representation of the aircraft thrust and
aerodyrnamic data. The problem of the Mach—limit violation was handled by
fairing off the thrust data gently over four-tenths of a Mach Number and
increasing the drag by adding more missiles. The aerodynamic and thrust
data are included in Tables 2.2-2.5. The new flight envelope was calcu-
lated and isvshown in Fig. 2.15. The coordinates of the dash point were

found by a Newton iteration applied to the usual necessary conditions.
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2.6.2 Family of Trajectories to the Dash Point

The new data were used to calculate an 'energy-climb' schedule
(Ref. 25); this was used as a guide for guesses of initial altitude,
energy and trajectory time combinations. A thirty-panel division of the
trajectory was employed to find trajectories starting at lower altitudes,
over longer times. This procedure was successful in finding optimal-
range histories starting from an initial energy of 30,000 ft. After
this point it became difficult and expensive to progress any further
down in altitude and energy. It was thought that a smaller stepsize
might be necessary to evaluate partials with sufficient accuracy for the
method to cngerge. However, this did not improve matters significantly.
But when the program was bfought to Langley Research Center the situation
improved. The CDC computer has a word-length which is approximately |
double that of the IBM 370, so with double precision at Langley about 28
- decimal digits were obtainable compared to 14 or 15‘digits at VPI. This
had a significant effect on the program's operation. Much smalier step-
sizes were used to evaluate the Jacobian without a penalty in round-off
error, and it is conjectured that the resulting improvement in the
accuracy of the Jacobian helped the convergence of OPTSOL. The tra-
jectory extension continued until zero altitude was reached over a

trajectory of 282 seconds.

SECTION 2.7

OPTIMAL-REFERENCE-PATH CALCULATIONS

The first objective is to generate a reference optimal path using

point-mass-model dynamics, over the widest possible energy range. In
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the climb-dash problem, the highest energy of interest corresponds

to that of the high-speed point on the aircraft envelope, the dash
touter' solution. The lowest energy corresponds to the trajectory which
just kisses the terrain 1imit, i.e. below this energy, optimal solutions
which start at zero altitude would dive below the terrain 1imit if it
were absent. This Tower energy is found by examining the initial Toad
factor of a family starting from level flight at the terrain limit
altitude: when thé initial load factor is unity the lower energy is
determined. This is shown in Fig. 2.16, where the initial load factor

is plotted for several different initial energies.

2.7.1 Final Load Factor

Once the energy had been found for which the aircraft pulled off the
ground with an initial load factor of 1, the effect of the flight time was
investigated. To satisfy the final conditions in a finite time requires
that the aircraft perform some maneuvéring near the terminal energy: the
longer the time allowed to approach the equilibrium point, the more gradual
the approach should be. The effect of flight time on the final Toad
factor was studied (for the same initial and final conditions) and results
aré shown in Fig. 2.17. This clearly demonstrates hoW the optimal path
tends to fair inasymptotically as the flight time is increased. The
load factor dropped to 1.001 after the flight time had been increased to
360 seconds. This time was chosen for the nominal path adopted in
guidance-scheme development, and the altitude and path-angle (state
variables) wa well as the lift-coefficient (contfo] variable) have

been splined as a function of the energy. The load factor is
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shown in Fig. 2.18, drawn against energy, showing the grid points used
in the spline. Figs. 2.19-2.22 show the energy histories for path-
angle, altitude, load factor and 1ift coefficient respectively for tmax
= 360 secs. The other paths from the same initial energy, but over
Tonger times, showed identical state and control energy histories over
a]most all the energy range. However, at the terminal energies the
effect of different flight times is most evident. Comparisons of the
trajectories which result for different flight times are shown in Figs.
2.23-2.26 for path-angle, altitude, load factor and 1ift coefficient
respectively. These variables are plotted versus energy for the 1ést
2000 ft of energy, for tmax = 300 seconds and tmax»z 360 seconds. The
dramatic effect that the flight time has on the final state and control

behavior is obvious from these pictures.

2.7.2 0One Panel Integration

After each converged solution was obtained a trajectory was performed
for the entire time, from the initial conditions. At higher energies
and over shorter times this would ordinarily generate final states which
were close to those specified in OPTSOL, but owing to the error propagation
of the mismatched paths at each grid point, there is a difference between
a one-panel integration and a 30-panel integration. However, at energies
with zero initial altitude the error propagation was such the final
conditions wére not nearly met. After.about 150 to 200 seconds the
instabilities in the state-Euler system would produce extreme results.
This raised the question as to whether the solution generated by OPTSOL

is optimal or even near optimal. To this end the number of panels was
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reduced first to 10, then to 6. Attempts to drive the number smaller
than this were not successful as it appeared that the computer was
‘running out of digits', despite the fact that 28 were being used.
However, the difference between the solution for 6 panels and for 30
panels 1lies beyond the 9th digit and so it was assumed that no benefit

would be gained by trying to reduce the number of panels.

2.7.3 Energy-Model/Point-Mass-Model Comparisons

Having established the nominal optimal path which takes the aircraft
up to the dash point, it is of interest to stdp and consider the two
different models which have been used to study the problem, in particular
it is of interest to compare the two different péths which climb up to
the high-speed point. These are shoWn in the h-V plane in Fig. 2.27,
surrounded by the level-flight enve]ope.‘ The energy-range-climb model

is indeed close to the point-mass model particularly at higher energies.
SECTION 2.8

FEEDBACK COEFFICIENTS - CALCULATIONS

This section describes ‘the numerical work done to evaluate and
represent the feedback coefficients used in the guidance law for the
case of symmetric flight. In this case the coefficients are the partials
of the 1ift coefficient with respect to the altitude and path-angle,. at

a fixed energy.
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2.8.1 Method of Evaluation

The calculation of the variation in the control due to errors in
the altitude and path-angle is treated as an initial-value problem, and
has been extensively discussed in Section 2.3. To improve the accuracy
of the feedback coefficients, each one was evaluated twice, by introduc-
ing positive and negative perturbations, and taking the average of the
two difference-quotient values. This mefhod also allowed the determin-
ation of the optimal size of disturbance (in terms of the resulting
accuracy) by varying the size of the disturbance, examining the degree
of agreement between the two values until the 'best' stepsize has been
found for both altitude and path—ang]e.Whi]e it is true that the optimal
stepsize will in general vary along the reference path, it was found
that this change was negligible and one value was effective in evaluating
the entire range for either coefficient. As the stepsize is reduced . the
errors due to nonlinearities shrink, but those due to a finite word-
length grow: hence a compromise defines the optimal disturbance. It
-has been noted that a multiple shooting method such as OPTSOL is well
suited to these kinds of calculations: although it was an arduous task
to establish the nominal path, once this had been achieved, the neighboring
solutions were found rapidly (within 3 or 4 iterations) and with high
accuracy. This last point is important, as the use of numerical differ-
entiation of the initial control to find the feedback gains required
high precision control information. Typically it was found that 8-9
decimal digits of information were required for 4-6 figure accuracy in

the gains.
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2.8.2 Pilot Scheme

Feedback coefficients were initially found over a small range of
energies, to evaluate the usefulness of the scheme before committing the
computational resources needed for the full-scale operation. The last
fifth of the energy range was chosen for this purpose as the integration
times are the shortest and this minimizes ‘the CPU time required to find
optimal control solutions. The energies and corresponding times were
taken from the feference trajectory (of 360 seconds) in the following
manner: the total energy change was divided into twenty. The reference
path was then integrated again and whenever the energy at the end of an
infegration step exceeded an integer number of divisions of the total N
energy change, the time and energy were recorded. The disturbance sizes
were varied so as to maximize the agreement in between the two values
obtained for each coefficient. The optimal perturbation in altitude was
found to be 0.05 feet; in path-angle it was found to be 0.0000001 radians.
Agreement between the values of both of the coefficients was found to
vary in between 4 and 6 figures. In addition to the energy levels
already chosen for feedback coefficient evaluation, it was necessary to -
find values close to the final energy as well. This is because sp]ihe
representations ére very unreliable when used to extrapolate data. The
energy at the beginning of the last panel in the multiple=shooting
method, i.e. at 348 seconds, was chosen as the upper 1imit for this
purpose. The gains at this energy, which is just 0.11 feet below the
maximum value, turn out to be an order of magnitude larger than the
gains at lower energies. This sensitivity of neighboring-optimal-

guidance schemes close to the terminal state has been noted in the
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literature (Refs. 28-37). It is worth commenting, however, that the
apparent unboundedness in the gains near the final state could have been
a result of the method by which they were calculated; it is quite
possible that a finite integration time, which is shorter as the terminal
state is approached, was responsible. 1In other words if a longer time

of integration had been allowed for the paths which were close to the final
- statesa different behavior might have been observed. However, this
effect is highly local, and due to limitations of time and money this
topic was not pursued. Any actual implementation of the scheme would,

of course, have to take this into account, possibly by setting an upper
1imit on the magnitudes of the gains, to avoid control saturation with
small errors. To examine the transition in the feedback coefficients
near the terminal state, the analysis was repeated for three more |

; energies close to the final time, at 336, 324 and 300 seconds. This is
an inexpensive set of calculations as the integration times are extremely
shbrt. Also the coefficients were evaluated at the energy corresponding
to the trajectory time of 188.7 seconds, as it was felt that they were
needed for accurate spline representation.

The next problem was to spline the coefficients as functions of the
energy-to-go. Diffic&]ties were encountered at Tirst when the splining
was attempted. Cubic splines are nof suited in general to represent
functions where large variations in the gradient exist. In this case
the gradient changes by six orders of magnitude in the vicinity of the
end-point, resulting in large extraneous oscillaltions appearing through-
out the spline representation, which-rehder the interpolation useless.

One way (not very satisfactory) is to ignore the spurious points which
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are causing the trouble. This was done in this case, and the plots of
the coefficients are shown Figs. 2.28-2.29.

To overcome thesé difficulties the splines-under-tension of Ref. 49
were used. These are similar in charécter to the cubic splines of Ref.
44 which had been used so far; the additional feature of the splines-
under—tens{on package is the aﬁility to minimize spurious wiggles near
regions of rapidly changing gradient by the use of a tension factor, o.
By increasing o the anomalies can be reduced but not eliminated, at
least in the vicinity of the end point. The problem is that as the
tension factor is increased the oscillations near the end point die down
but the rest of the representation hecomes essentially polygonal, i.e.

linear interpolation between the data points.

2.8.3 Logarithmic Splining

It became apparent that the normal or ordinary method of splining
was inadequate and a different approach was needed to continue;. Es-
sentially this is a boundary-layer type problem: there is a region
where the coefficients vary rapidly. It seemed to be appropriate to
separate the two regions and, using different methods, spline each one
separately. The only requirement would be that the two representations
fair into each other smoothly. One possibility is to use the normal
splines in the 'outer' region, and spline the terminal coefficients -
in terms of the logarithm of the energy-to-go, matching the slopes at
the junction between the two regions. (Another possibility is to use
thé inverse of energy-to-go in the termina] region, but this was not
used for reasons as the large variations in the gradients, which are the

~ roots of this problem, still exist.) The logarithmic method was used to
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spline the coefficients for the range of energies considered in this
pilot section. The results are shown in Figs. 2.30-2.31. These show
the géins using 10 grid points for interpolation. These show a dramatic
improvement over the previous attempts to spline the data: these
earlier efforts had been so bad that they would only be visible on the
same graphs as a series of vertical 1ihes passing through the grid
points. It was considered Tikely that with a few additional points the
small remaining anoma]ies would be eliminated. An additional 16 points
were evaluated in the vicinity of these outstanding 'wiggles' and
finally a usabfe representation was generated, shown in Figs. 2.32-2.33,
as functions of energy. They are shown as functions of the logarithm of
energy-to-go in Figs. 2.34-2.35.

When the decision was made to carry on and evaluate the coefficients
over the rest of the energy range, the same method was used to spline
the data: the logarithm of the energy-to-go was used, and there was no
need to go to a-boundary layer type of approximation after all. The
coefficients as they were represented over the entire energy rahge'are
shown as functions of the energy in Figs. 2.36-2.37. The corresponding

plots versus the logarithm of energy-to-go are shown in Figs. 2.38-2.39.
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SECTION 2.9
SIMULATION AND TESTING

Following the satisfactory splining of the nominal states, controls
and feedback coefficients as functions of the energy-to-go, the guidance
scheme was tested by running a simulation of the point-mass-model, using
the feedback law, and comparing the resulting trajectory with an Euler
solution which started from the same initial conditions. Before the
entire range of feedback coefficients had been worked out a pilot scheme
tested out the idea on a small range of energy near the dash-point.

This test was performed with an initia] disturbance of 1000 ft; the
trajectory which resulted from the guidance law is compared with the
Euler solution fkom the same initial conditions and the nominal path in
Fig. 2.40 where the altitude is plotted as a function of energy. The
guidance law is so close to the optimal path from the same starting
.point that it is almost impossible to discern the difference between
them on this Fiqgure. The difference in altitude between the two is
shown as a function of time in Fig. 2.41 it can be seen that the dif-
ference is always less than 11 ft. With zero disturbance the auto-
pilot was able to follow the nominal path more than satisfactorily, over
the entire range of energies, despite the inevitable errors which arise
in the spline representations. Tests were performed with the initial
altitude disturbed from that of the nohina] path at different energies
by 1000, 5000, 10000 and 15000 feet above and by 5000, 10000 feet bélow
the nominal path. The resulting trajectories are shown in Figs. 2.42-2.46.
These show that the feedback law follows the optimal solution |

closely, even when the initial disturbance is far
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outside of the range of Tinearity of the feedback gains. The cost was
calculated for the situation with an 1ni£ia1 altitude of 15000 ft above
the nominal va]ue; at the point where the two trajectories faired into
the dash point. The difference between the ranges was less than 600 ft,

an‘extremely small number considering that the dash speed is 2400 ft/sec.

SECTION 2.10
EXTENSION TO 3-D FLIGHT

This section describes the work done to extend the analysis to
three dimensional flight, and suggests what direction future efforts

might take.

2.10.1 Cross-Range Considerations

The problem of extending the analysis to 3-D flight is now considered..
The state system is augmented te include y, the cross range, and ¥, the
‘heading angle. The addition of'the_corresponding multipliers to the
full state-Euler system raises the order of the problem to twelve. For
the intercept problem the final value of y must be zerc; the value of
the final heading, relative to the initial heading, must either be
calculated on-board, or be supplied by the GCI. This will in general
vary, for a maneuvering target, and the value stored on-board must be
periodically or continuously updated.

The boundary condition on y leads to a dependence of the optimal
solution on the cross range: for the same heading-to-go and energy-to-
go there will exist many different possible values of y. As a result,

if this formulation is used, cross rance-to-go is an additional running
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variable: this increases the order of the nominal paths required, which
means a large increase in the computations on the ground, as well as an
increase in the storage requirements on-board.

To get around this situatioh it is proposed to avoid Qsing an
additional running variable by letting the final value of y be free:-
this can be accounted for in the computation of the final heading
needed for intercépt, as specified by the on-board flight computer or
the GCI. The intercept paths which result from the two different
methods are compared in Figs. 2.47-2.48, for a target which is initially

far away from the interceptor.

2.10.2 Computational Considerations

The first approach considered to generate a family of paths to the
dash point was to use the symmetric flight reference path as a starting
point for the augmented system, and introduce a small heading-to-go at
the initial time. The argument for doing this is that for very small
headings the state-Euler system should not be changed very much: the
paths are close to each other. However, this method is only useful for
a small number of combinations of heading-to-go and energy-to-go. This
is because the turning rate at the energy at which the aircraft 1ifts
off the ground is so high that all the heading-to-go disappears in a
short time, and over a very small energy range. In general a method
must be found which generates the part of the family of reference paths
which combines moderate and large headings-to-go and moderate to small
energies-to-go. The difficulty lies in knowing what initial conditions

to pick for the altitude and the path-angle: when the aircraft is
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1ifting off the ground, these variables are specified, but in the
general case, starting from an arbitrary energy-to-go and heading-to-go
combination, the selection is a problem. Letting them be free is not
acceptable as it can lead to an initial 1ift coefficient of zero (i.e.
in the symmetric case): vthe optimization algorithm takes advantage of
the freedom td choose the initial conditions in a way which maximizes
the short term benefit. This does not fit in with the concept of a
nominal reference path, where the altitude and path-angle are the same
at the same combination of energy and heading-to-go.

The solution that is recommended is tb use the altitude that comes
out of the energy-turn model, as in Ref. 25. Here the heading is
assumed to be a 'slow' variable, and has the same status as energy.
However, 1nsfead ¢f having to choose ohe variable, (such as the rétio of
the initial energy multiplier to the range multiplier, as in Section
2.2), the initial heading multiplier must also be iterated upon. This
is done using a Davidon-Fletcher-Powell algorithm, to find the path
which fairs into the dash point with zero heading. An example of such a
path over a small range of energy and heading-to-go is shown in Fig.
2.49, where the heading is shown against energy, and in Fig. 2.50, where

the heading vs time plot for the same initial conditions is shown.

2.10.3 Selection of the Initial Path-Angle

The energy-state model produces altitude predictions which are
fairly accurate as a function of the current energy, (away from altitude
jumps), as can be seen from Fig. 2.27 where the Euler solution to the ‘

climb-dash is compared to the energy-range solution. However, the same
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can not be said for the path-angle, which is predicted to be zero along
the path. As a result a modification is considered, (Ref. 43), which
produces realistic values along the path. The difference 1ies in the
Selection of the fast and slow variables: if altitude is chosen, zero
path-angle results, if velocity is chosen, a value of the path-angie
results which is too high. A new fast variable is examined in Ref. 43
which picks path-angle values in between these two values, and which may

be used as initial conditions for the problem at hand.

SECTION 2.11

IMPLEMENTATION AND CONCLUSIONS

2.11.1 Implementation

Before the scheme may be uéed on a real -aircraft there are some
important simplifications and restrictions which have been applied 1in
the interest of reducing the initial workload which must be accounted
for. _

First, the weight variation of the aircraft must be included in the
modelling as a substantial percentage of the total weight may be used up
~during a mission. This is perhaps the easiest or at least the most
straight-forward problem: the required action is to increase the order
of the system, i.e. the mass is-added as another variable and the resulting
boundary conditions are simply that the initial mass is known, initial
mass multiplier is unknown, and the final mass is unknown resulting in
the mass multipiier being zero at the final time.

Fuel optimization is a problem which will no doubt be of interest,

with different combinations of fuel and range being optimized. Problems
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can occur here with a nonconvex hodograph, i.e. leading to the possibility
of chattering controls, in this case the throttle. Other problems of

the real world which have not been addressed are variations in atmospheric
conditions, i.e. winds aloft and non-standard temperature distribution
against altitude. POssib]y tﬁese could be dealt with by analysing the
effect of small perturbations, finding an approximation to the first

order changes in the variables which are stored on-board and using

- simple Tinear corrections. Certainly this is the simplest way of tack-
1ing such difficulties and it would be interesting to examine how
effective this apprqach would be.

Another problem of interest is that of variable configuration, i.e.
the effect on the guidance scheme of changes in the aircraft's
characteristics dueAto battle damage, releasing external stores, etc.

The biggest problem that must be looked at is the extension to 3-D,

discussed in the last section.

2.11.2. Conclusions

The numerical results bear out the following conclusions: first,
that all trajectories which fair into the high-speed point consist of a
rapid transition onto a reference or skeletal path if they do not
originate on it. Secondly, the linear-feedback scheme proposed is able
to control the aircraft so that it closely follows the appropriate
‘neighbor of the nominal path for large perturbations of initial condi-

tions.

2.11.3 Future Work

A 3-D extension of the computational scheme is of interest in which
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there are two dominant states, i.e. heading-to-go in addition to energy-
to-go. As a result, families of optimal paths which fair into the dash-
point will be needed, and the feedback coefficients will be functions of

two variables (represented via a spline lattice) instead of one.
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Table 2.1 Representation of Aerodynamic Data

= 0.0242 + arctan (50(M-1.0)(1.0+0.35 exp (-4.5(M-1.8)2)(0.0]2/n)

c
D, |
+0.08 exp (-55(M-1.1)%) + 0.0096 exp (-20(M-1.35)%)
+ 0.003 exp (-20(M-1.6)%)
Cp,_ = (0.5+0.2026 arctan (50(M-1.23)) arctan (50(2.25-M)(0.39M-0.475)
Dero | |
+0.075 + 0.05 exp (-150(M-0.985)%) + 0.4(0.5+arctan (50(M-2.25))
C, = 0.82 + (0.72/xn) arctan- (50(M-0.9-M) +
max ’
(1.23-0.6M)(0.5+0.2026 arctan (SO(M-O.Q)) arctan (50(2.05-M)
Thrust(M,h) =

(0.5+(1/7) arctan (40(M-XM2))(H2-H1) + H1 +
(0.5+(2/w2) arctan (40(M-XM1)) arctan (40(XM2—M))(H2-H1/XM2-XM])(M-XM])

XM1,XM2,H1,H2 are functions of altitude:

XM1 = (3.84 (exp (0.165(h+1.74)))) - 4.82)

XM2 = 0.0156h% + 2.83h + 1.1

Hl = (f1.q1 + f2.2g2) 3 (41000)

H2 = (F11.91+f22.92)(0.5+(1/%) arctan (40(0.91-h)))40405
£1 = -2.43n% - 1.59h + 0.974

f2 = 2.38n% - 3.24h + 1.24

gl = (0.5 + (1/x) arctan (40(0.3-h))

g2 = (0.5 + (1/x) arctan (40(h-0.3))

£11 = 1.35h° - 1.53h + 1.56

£22 = 3.25h% - 6.25h + 2.98

£3 = (0.5 + (1/n) arctan (40(0.75-M))
h = altitude/10°
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Mach Limit Fairing

The thrust is multiplied by the factor given by:
f = (0.5 + (1/7) arctan (150(2.4-M)

Dynamic Pressure Limit Fairing

The thrust is multiplied by the factor giveh by:
£ = (0.5 + (1/7) arctan (150(M"-M)

M = V(4000/rho)/ss
rho = density

ss = speed of sound

50




Table 2.2 CDO Datg

Mach Number CDo
0.00 0.01950
0.50 0.01950
0.80 0.01950
0.88 0.02097
0.90 0.02134
1.00 ~ 0.03533
1.10 0.04095
1.20 0.04656
1.30 0.04570
1.40 0.04950
1.50 0.04934
1.60 0.04918
1.70 " 0.04744
1.80 0.04570
1.90 0.04450
2.00 .0.04330
2.10 0.04166
2.20 0.04001
2.30 0.03801
2.50 0.03451
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Table 2.3 CDCLZ Data

Mach Number CDCLZ
0.00 0.07500
0.40 0.07500
0.60 0.07500
0.77 - 0.07500
0.80 0.07500
0.90 - 0.10000
1.00 A 0.12500
1.10 'o.o7soq
1.20 0.10000
1.40 0.15000
1.60 0.22500
1.80 0.30000
2.00 0.38750
2.15 ' 0.45000
2.20 . 0.47500
2.25 0.47500
2.40 ' 0.47500
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Table 2.4 CLpax Data
Mach Number CLmax -
0.00 1.180
0.40. 1.180
0.60 1.180
0.80 1.160
1.00 1.080
1.20 0.930
-1.40 0.810
1.60 0.700
1.80 0.630
» 2.00 0.570
2.20 0.500
2.40 0.460
2.50 0.460
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CHAPTER.- 3
OPTIMAL SYMMETRIC FLIGHT WITH AN INTERMEDIATE VEHICLE MODEL
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SECTION 3.1
PREFACE

| There has been interest from the beginning of optimal-flight
studies in approximations featuring simplified vehicle models. Re-
presentation of drag as the drag for level flight leadsbto an inter-
mediate véhic]e model in which path angle vy takes on the rdle of a
control variable and the order of the system is reduced by one. An
additional order-reduction leads to an "energy-state" model with al-
titude or.Speed as a control variable (Refs. 22, 23 and 24). >This is
reviewed in Ref. 43 which appears as Chapter 4. The present Chapter
examines optimal symmetric flight with the intermediate vehicle model.
Optimal flight in the vertﬁca] plane with a vehicle model intermediate
in complexity between point-mass and energy models is studied; Flight-
path angle takes on the role of a control variable. Range-open problems
feature subarcs of vertical flight and singular subarcs as previously
studied. ’

The éna]ysis is based in part upon an exploration of Euler solutions
for the path-ang]e-as-contfo] model carried out in Ref. 50. The present
analysis examines higher-order optimality conditions and "chattering-
control" phenomena. The weaknesses of the model will be seen as more
extensive than previously noted. The class of altitude-speed-range-
time optimization problems with fuel expenditure unspecified is
investigated and some interesting phenomena uncovered. The maximum-

lift-to-drag glide appears as part of the family, final-time-open, with
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appropriate initial and terminal transient‘maneuyers.  A family of
‘climb-range paths appears for thrust»exceedingv]evel-f1ight drag, some
members exhibiting oscillations. Oséillatory paths generally fail the
Jacobi test for durations exceeding:a period and furnish a minimum only
for short-duration problems. | _
Minimizing paths of long duration fo]fow a certain corridor in the
V-h chart. The features of the family sharpen for the}special case of
thrust and drag independent of altitude, and considerable analytical
attention is accorded fo this for the insight it provide$ to the more
general model. Thé problem of‘"steepest climb" is found to be i11-posed
with the vehicle model under consideratiqn, straight-vertically-upward
maneuver sequences'being‘furnished by a family of paths alternating
between upwafd and downward vertical flight and inc]uding a limiting

"chattering" member.

- 'SECTION 3.2
INTERMEDIATE VEHICLE MODEL

The point-mass dynamical model of aircraft flight incorporating

the assumption of thrust-along-the-path is given by

V=g (TR sing (3-1)
h = Vsiny (3-2)
X = Vcosy | (3-3)
W=q (3-4)
y =34 - cosy ) (3-5)
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Here V is airspeed, h altitude, x down-range, ﬁ'wéight of fuel consumed
y flight-path angle, T thrust, D drag, g the acceleration due to
gravity, L 1ift and Q the fuel-consumption rate.

The sweeping assumption that drag can be approximated by its level-
f]ight-value is next invoked. This permits the deletion of equation
(3-5) and the elevation of path-angle y to control status. Lift coef-
fiéient, CL, or angle-of-attack, o , previously a control variable, is-
correspondingly assumed to be such as to satisfy (3-5). There is
obviously trouble ahead with this modelling should ? turn out to be large
in optimized maneuvering or, worse yet, should y exhibit jump behavior.

The optimal-control problem to be treated, then, is the minimization
of a function of the final va]qes of the state variables-and final time.

The Hamiltonian function is

H = Avg { ﬁlﬁgl - sinv} + Athiny + AXVCOSY

+ N0 ' (3-6)
and the Euler-Lagrange equations are

g 3_(T-D)

.

Ay =5 N AT - Ahsiny - A C0SY - Ay 5y (3-7)

g3 (T-D) _,.2Q

R T Mo3h (3-8)

A, =0 - (3-9)

iﬁ:= 0 - (3-10)
and

-Ay gcosy + AhVCOSY - AXVsiny =0 » (3-11)
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In the following, the time derivatives of (3-11) will be used to
eliminate the time-varying costates in favor of the control y and
derivatives. Note that this is somewhat formal since ¥ may not exist.
Using equations (3-7) - (3-11) one may now proceed to eliminate those

costates which are variable in the Hamiltonian. Using (3-11)

A‘v = g— (Ah - Ay tany) (3-12)
and hencé

iv = g-(kh - Axtany) + g-(xh - Ax§seczy) (3-13)
substituting for Ay from (3-12) in (3-8),

S 3 (T-D) , ,. 3Q _

Mot (Ah Axtany) °h w =p = 0 (3-14)

Using (3-13) in (3-7) and using equations (3-1) and (3-12), one obtains

a second expression for ih as

; [(_ D) , 3 T-D)]
h* *n il t v |
Y %EGE" - isecdy - gﬁanw'{ (1-D) , a (T D){]

g0 (3-15)

Equations (3-14) and (3-15) may now be used to obtain an expression. for

Ah in terms of Ax and Aﬁ.

NE Q] _
W [%%" %'SV] -0 - | (3-16)
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The expressions (3-12) and (3-16) may be used for eliminating Ay and A

in the Hamiltonian with the following result:
3__g2 | (v(T-D) }
cosy H { [ah V v ] ( )

-n2 ) ) V(T-D
cosy 330 {[.ﬁ-%w] <_§Q_J>E

2
Vel s _ga (T-D)\_ (T-D)V .iz _
-Ax; [ ah %’av] ( ) cosy ~ Y= 0 (3-17)
Note that
Gr-tt U1 =50 ']
E = Constant

where E = h + %5, the specific energy.

.In order to investigate the implications of this complicated
expression, consider first the case of free final value of range x and
‘fﬁel ﬁ. If the final values of these variables are left open, then the
;natural boundary conditions AX = 0 and Aﬁ = 0 apply and the optimization
~ problem is a trade-off between final values of time t, altitude h and
airspeed V, the maximum or minimum value of one of these variables or some
function of these variables being sought without regard to range or fuel
_consumption. In-equation (3-17), if the transversality condition for
minimum time, H = -1, is imposed, the well-known energy-climb schedule is
obtained.

One notes that, in this case, equation (3-17) can be satisfied
either by cosy = 0, vertical flight, or by vanishing of the bracketed
expression, viz., the partial derivative of specific excess power V(T-D)

with respect to altitude with specific energy held constant. Thus, the
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solution of this, or any, h-V-t optimum problem is made up of vertical
climbs, vertical dives and "energy climbs" pieced together in the proper
order. Similar considerations apply if fuel expenditure rather than
time is to be minimized. In this case H = 0, Ay = 0 and A = 1, and.
equation (3-17) yields the minimum-fuel climb péth with fixed throttle
in the V-h plane.

If range is to be maximized or minimized with final time and fuel
unspecified, then Ax = +] and H = Ay = 0, and a first-order differential

equation for path inclination emerges as follows:

(7 -] 0@ e

If oné chooses xx = -1 and a fixed value of H (to be determined),
with xﬁ = 0, expression (3-17) is the Euler equation for maximizing
“range-to-climb with fixed final time. With H = 0, A, = -1 and a fixed
value of e similarly, the maximum range to climb trajectory with
fixed final value of fuel is obtained. It may be noted that the maximum-
range-to-climb problem is illfposed in that the range-to-climb for thrust
greater than drag without time or fuel constraints does not have.a
maximum, or even an upper-bound. Further, fixed-throttle range-fuel
trajectories are not of significant interest in practical situatiohs.
Hence, attention will be focused on the problem of maximizing the range-
to-climb with a specified final time (fixed H # 0, Ax,= -1).

The system (3-1) - (3-3) and (3-18) generates a trajectory family
for the range problem. The possibility of obtaining an analytical
solution of the system for the case of thrust and drag.as arbitrary

functions of altitude and air speed is remote. However, using the
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assumption of constant-density atmosphere, with thrust and drag de-
pendent on airspeed only, one can obtain an analytical solution to

this system (Ref. 50). The expression (3-18) can be rewritten as.

chY (T-D D){_ -7 gv} (-0)

In the following, several transformations of independent variable

(3-19)

are carried out without attention to monotonicity requirements, the

thought being to fit the solution segments obtained into families in
~ due course. The temptation of range as independent variable will be
avoided, however, in anticipation of purely-vertical-motion segments.

In the interest of brevity we designate u = (T-D)/W

1 _dy (-siny + u) __!_{ .93
Cosy dV - “gulah "V av} (3-20)

With altitude-dependence suppressed, the path angle y is determined

as the solution of the first-order differential equation

1 dy /s dy
cosy~ av (Siny - w) =g

<<

1
m (3-21)

Further simplification is obtained by another change of independent

variable, this time from V to u

1
cosy du

= |-

(siny - u) = (3-22)

If the réles of independent and dependent variables are now regarded as

reversed, this equation takes the form

2 . ‘
du 1w siny g (3-23)

dy cosy Lo CcOSY
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which is the form of the Bernoulli differential equation

—?ﬁ + f(v) W+ foly) uf = 0 (3-24)

with 8 = 1. According to Kamke, (Ref. 51), this equation has the

solution
fi(y) .
1 _ 1 -
LB [y dv (3-25)
where
f
2 dy .
E(y) = e ‘ : (3-26)

with identification of f] and f2 as

1

f(v) = cosy | (3-27)
_ siny ' .
fZ(Y) B /—cosY dy ' (3-28)
The solution (3-25) becomes as follows
_[Siny dy
E(y) = e ./Eosv = @INCOSY _ coey (3-29)
1. coSy _/;~91§»-+ C = siny + C cosy (3-30)
H cos‘y

Before expressing this relationship in the form y = y(u), we relate
the integration constant C to equilibrium values of u and y corrésponding
to unaccelerated flight. Such va1ues may be designated with a super-

scribed bar:

u

C

sin7 (3-31)

coty ' (3-32)

The solution may then be'expressed as:

(3-3)

=i

siny siny + cosy cosy =
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or as

y=Y+ cos”!

] (3-34)

==

Here u is the value of u in unaccelerated flight and

7 =sin! 3 (3-35)

In Figure 3.1, the solution (3-34) is illustrated for various values
of u. The range of angle y has been restricted to + 180° in this plot.

With this solution at hand, the state histories can be generated.
If the thrust is taken as zero, the state-Eu}er system produces the
flattest-glide trajectory, flown with maximum ]ift-tb-drag ratio, along
with a family of transients to and from this point (Fig. 3.2). When a
positive margin of thrust over drag exists, a family of oscillatory solu-
tions is generated for various values of u as shown in Fig. 3.3. It may
be noted in Fig. 3.3 that the innermost point corresponding to pu = .2

in V-y space corresponds to flight at (T-D) __, while along the outermost

max
closed path, the flight path angle y switches between + 90°.

With the availability of the Euler solution (3-30) to the maximum-
range problem with altitude dependence suppressed, one may proceed to
obtain a similar solution to the more general Euler equation (3-17)
using variation of parameters (Ref. 52). Equation (3-17) may be

written as

. - _o4COSY du _ 2. H 1 3 (V)
Y= 9{ Y COSY"xvzu 5V

AT A2
+ COSZY _}\_N__ -Q-Z—— -gv [%u_]} (3-36)
X H

<<
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As in equation (3-22), the independent variable is changed from

time to airspeed resulting in

y - cosy du 2.H 1 d (V)
uh =S av

dy /.. _
il (siny - qv - SoSTY 3

-
Reakrahging, one obtains

six (siny - u) - 805 2w . _ o2 H 1 _d (y)

Y‘
u oV Ax v2u dv
AG A2
2, WQ d [Vu
+ cos”y « V2 d [Q ] (3-38)

- Equation (3-30) is the analytical solution to the differential equation
(3-38) with H and Ay both zero. The expression (3-30) may be differentiated

with respect to airspeed to obtain

li.é% = (cosy - C siny) g% + q— cosy (3-39)

Note that C is no longer a constant here, but a function of the independent

variable V. Substituting for u in (3-39) from (3-30)

dY dC
1ou [(cosv C s1ny) tav c05y] (3_40)
oV (siny + C c05y)
Using equation (3-40) in (3-38)-
cos®y dC _ _ o2, H_ 1 d (W)
siny + C cosy dV Y Ax v2u dv
Ay A2
2. WQ d |Vu
t cosTy 5 v2u dy [Q ] (3-41)
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. _ 1
Since p = STy ¥ € cosy from (3-30),

cos?y €€ = cos?y [_;’_{_L,L_]_f )
: x UV

dv 2u Vu )
- |
e AR | e
X lV u Vu . )

The quantities within the { } brackets can be identified as

-d [_L] = 1,1 du (3-43)
dv | Vu v2u ' Vuz dv
and
"g__ [._Q_]= _.]__.d_Q+_]_ Q_E+9_ .
dV LVu Vu dv Vu2 dv v2u (3-44)
From which
A
dc _H d_ [J_.]_ Wod_ [.Q_]
dv A d Vu A, dV LVu (3-45)
X X
Equation (3-45) is readily integrated to yield
c-H LMo | (3-46)
A, Vu AX Vu 1 v

where C] is an arbitrary constant. Hence for the time-range-fuel

problem, the solution with altitude-dependence suppressed is

A~
1o o H___ W Q -
5 = siny + <AXVu R m + C1> cosy (3-47)
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To éxpress éhe above resﬁ]t in the.form vy = v(u), we need to
relate the integration constant C] to equilibrium values of u and vy
corresponding to unaccelerated flight. Unlike the situation in the
simpler problem, the interpretation of equation (3?47) is not straight-
forward; -

From a practical viewpoint the time-range problem is of main
interest since minimum-fuel problems with fixed throttle are rare.
Fuel-range problem will not be discussed further in the present paper
and in subsequent development the fuel multiplier Aﬁ will be taken
as zero.

Investigation of equilibrium points with Aﬁ =0 results in a plot
of the values of H/AX'vs airspeed as shown in Fig. 3.4 for a parabolic
(T-D) distribution illustrated in Fig. 3.5. In Fig. 3.4 three separate
regimes can be jdentified. H/>\X values to the left of the (T-D)

max

velocity are positive while those between the (T-D) point and the

max

V(T-D)max point have a negative sign. Al1l H/Ax values to the right of

the speed for V(T-D) are positive. Any of these values may be used

max
to evaluate the arbitrary constant C] as follows.

As in (3-31)
u = siny ' (3-48)
V=V H |
Equilibrium value of 3~ (3-49)
. .
coty = -——-—+ C (3-50
Ax Vu 1 )
or .
- H 1
C; = coty - ~— =—
1 A Vi (3-51)
using (3-51) in (3-47)
.l: 1 ﬂ_‘l_ .1... by by
= siny +KAX e = }+ coty | cosy (3-52)



putting A = %—'{%ﬁ" l:—} + cot?i]and using a well-known trigno-
X Vu
metric identity,
y = tan”) [%]-+ cos™] -—;L~—-}
| uV ala (3-53)

Equation (3-53) is the Euler solution to the time-range problem with

altitude dependence of u suppressed. In Figs. 3.6, 3.7 and 3.8, the
analytical solution evaluated for representative H/>\x values from each

of the three regimes is shown. Fig. 3.6 and 3.7 indicate oscillatory
solutions in the neighborhood of a stable equilibrium point. The
similarity of these figures to Fig. 3.3 is striking. The solutions in
Fig. 3.8 are non-oscillatory and bear some resemblance to Fig. 3.2.

Summarizing, one notes that the range problem has oscillatory
solutions when a positive margin of thrust over drag exists. With zero
thrust the solution obtained is the flattest glide with a famiiy of
transients to and from the maximum 1ift-to-drag point. For the time-
range problem, values of H/x, to the Teft (1ow-speed end) of the
V(T-D)maX point produce oscillatory solutions while, on the right of the

V(T-D) point, a family of transients to and from the equilibrium point

max
defined by the choice of H/AX is obtained.

SECTION 3.3

LEGENDRE-CLEBSCH NECESSARY CONDITION

From the Euler-Lagrange equations, with Ay = 0
M__ g cosy + A, V cosy = A_ V sin (3-54)
Ay v h TOTX v

and
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| §"g_= (AV g - A V) siny - AV cosy (3-55).
Yy o .
Setting the left-hand side of equation (3-54) to zero as required

for a stationary minimum of H leads to

AV - A Ayg - AV
tany = —hTV—V" or _Y_:X_V—h_ (3-56)
X X
From (3-56), then
(A.V - 2,9)0 .
siny =f h__V (3-57)
. 2 2,2 :
(xhv - Avg) AV
and
A Vo

X
coSy = -— (3-58)
‘ - 2 2y2
vahv N2+ A2 |
where o = + 1
- Using (3-57) and (3-58) in (3-55), it is possible to determine o.
Next, one may employ the transversality conditions for the range

problem. These lead to

2
AX =1, §~%->0 if v 1ies in the second or third quadrant
3y (3-59)
2%H
Ax = -1, "—§-<0 if vy 1ies in the first or fourth quadrant (3-60)
3y '
viz, Ax = 1 for range minimization and AX = -1 for range maximization.

From (3-59) it is clear that, with no restrictions on path-angle v,
the minimum-range-climb trajectory is that which maximizes the range in
the negative direction, a result which is perhaps obvious. The impli-
cation is that, with no constraint on the final value of time or fuel, the

“steepest-climb" problem does not possess a minimum or even a lower bound.
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Attention is drawn to the solution to this problem given by Miele
(Ref. 53) using the Green's theorem device. According to Ref. 53, the
optimal trajectory for the "steepest climb" problem consists of a. central
path flown along the (T-D)max locus in the airspeed-altitude chart with
vertical climb/dive transitions at the ends to meet the boundary
conditions, if they are off the (T-D)max path. There is an important
difference in vehicle modelling from that of the present work which should
be noted as a key to reso]ving disparities between the character of
optimal paths emerging: The analysis of Ref. 53 in essence rep]aces‘
cosy in equation (3-3) with unity so that the problem solved is maximum
altitude in a given distance (arc length) rather than in a given range.

Consider, next, the imposition of 1imits on path-angle v, say -90°
<y £90° In this case, since final time is unspecified, it is clear
that by alternating between vertical-climb and vertical-dive paths, the
range-to-climb can be made identically zero. This is a consequence of
the intermediate vehicle modeling in which there is no 1imit to the path-
angle rate.

It is of interest to examine vertical-flight sequences comprised of
alternating up and down segments. Consider, for example, the case in
which specified initial and final altitudes and velocities call for a
net increase in specific energy. An initial vertical-flight transition,
either up or down as appropriate, is performed to the neighborhood of
the maximum of specific excess power (speed V in Fig. 3.9). Choosing a
pair of reversal airspeeds V* (below V) and V** ( aboveﬁ), one constructs

an alternating sequence of straight-up and straight-down trajectory segments.
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In the case of net energy gain, both V* and V** should correspond

to positive E = !ﬁ%:gl. The relative duration of the segments can be
adjusted so that the time-averaged speed is V. If V* and V** are

chosen sufficiently close to V, the average energy rate can be made as
close to the maximum value as one wishes. The motion during this alter-
nating sequence is vertical and net-straight-up as long as the energy
rates at V* and V** are positive. The Timiting case of chattering at

v corresponds to minimum-time as an auxiliary performance index, the
primary one, "steepness", being independent of the parameters of the
sequence. A final transient, straighf up or straight down, is flown

to meet the final specifications on speed and altitude. In the case

of net energy loss specified, speeds V* and V** with negative energy
rates should be chosen for the rectangular-wave construction of the path-
angle history.

Returning to the maximum-range problem, it should be noted that the
Legendre-Clebsch necessary condition is met in strengthened form for
values of the path angle vy in the first or fourth quadrants. However,
physical reasoning makes clear that a range-maximization problem without
time or fuel constraints will not possess a proper maximum, or even an
upper bound. In view of the above, the problem of interest is to maximize
the range of climb from an initial (V,h) pair to a final (V,h) pair in a
fixed time. This problem is of value in studies of the type reported in
Ref.54 for a point-mass-modelled vehicle.

It may be noted that in the cases of time and/or fuel minimization

problems with range open, the Legendre-Clebsch necessary condition is
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met only in weak form along central arcs and, hence, these trajectories

fall into the class of singular extremals.

SECTION 3.4
CONJUGATE-POINT TEST

The Legendre-Clebsch necessary condition is met with a margin for
the time-range probliem and hence the Euler solution (3-17) with i 0
furnishes a relative minimum for initial and terminal points sufficiently
close together. For extremals of finite length, however, the task of
ensuring that the second variation is non-negative for admissible
neighboring paths leads to the accessory-minimum problem in the calculus
of variations. This in essence boils down to a search for a system of
admissible variations, not identically zero, which offer the most severe
competition in the sense of minimizing the second variation. If a system
of nonzero variations can be found which makes the second variation zero,
then it is clear that a neighboring path is competitive and that the
test extremal furnishes at best an improper minimum and at worst a merely
stationary value (Ref. 55). The first value of the independent variable
X = x* > X, for which such a nontrivial system can be found defines a
conjugate point.

Following the analysis of Ref. 55 for the Mayer problem, the rank
of the matrix of variations of states ahd the multiplier corresponding to

the state being minimized with respect to the initial values of costates is

evaluated along the test extremal, viz.
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‘The rank of réxz
3)\]

3)\2

(3-61)

provides the criterion for the existence of a conjugate point. If

the rank of the test matrix (3-61) drops at any point along the test

extremal, it is indicative of the occurrence of a conjugate point.

For the time-range problem, if the independent variable is changed

from time to range, the equations of motion become

hl

Tany

VI

WV Cosy V

9(1-D) 3 Tany

(3-62)

(3-63)

The optimal-control problem then is to maximize the final value of

altitude 'h' for a specified range with time fixed.

With the inter-

pretation of H as the time multiplier, the test matrix (3-61) becomes
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aV oV av-w oV aV aV
Bkho BHO BYO 37\h0 8H0 BYO
ot ot ot ot ot ot
= (3-64)
axh 8H0 BYO axh aHO ayo
0 0
8)\h E)Ah 8)\h 1 0 0
A oH Y '
L_ h0 0 O.J B -

‘Note that time appears in this problem as a state-like variable with

Vo 1 -
t = V Cosvy (3-65)

A prime on the variables denotes differentiation with respect to the
range variable x.

From equation (3-64), the sign of

aV_ . at _ 3V ot

3y, oHy o, ) 3Yg (3-66)

evaluated along the Euler solution determines the rank of the matrix
(3-64). If the sign changes at any point on the time-range trajectory
it is indicative of a conjugate point.

The Euler solution obtained for the time-range problem with
altitude dependence of u suppressed, may now be tested for conjugate
points. In view of the particularly simple form of the conjugate-point
test for this problem, it seems reasonable to attempt to obtain analytical
approximations for the partial derivatives in equation (3-66).

Linearizing the equations of motion and the Euler equation (3-17) with
range as the independent variable about an equilibrium point at a

particular altitude, one obtains
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sv!
st'!

8y

Where:

a5
4

Equations

efficient

= aosv - a, 8y (3-67)

= 2,8V + agsy . (3-68)
a46V - agdy + agsH (3-69)
g 3 (T-D) | | .

W Cosy 3V (3-70)
g -
7 (3-71)
. (3-72)
V-cosy
siny
v coszy
_cosygH ,3(T-D) g []_ggxﬂj
Y V(1.0 Voo,
a(T—D)‘ 2 cosy H
+ 3 2 Y [] '"—;i'f—]
V(T-D)* X
2
3-(T-D) [cosY H ]
+ _T—g_Y- — -1 (3-73)
V(T-D 8V2 v Ax
a, . ' (3-74)
g (1A o) w78
Vo(T-D) “x

(3-67), (3-68) and (3-69) constitute a linear, constant-co-

system which can be put in the following form using Laplace

transforms. (Initial conditions on &V and &t are zero.)

sV(s)

—a_l

6v(0)

s +(a]a4-a0a5)
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sV(s) _ ~21%

(3-77)

SHOY ™ ss%+(a 2 -2425)]
sv(0) s[sz+(a]a4-a0a5)] :
st(s) _ _ ~Lagag-a;a;)-asslag (3-79)
SH(s) 2r.2
s“[s +(a1a4—a0a5)]
putting wﬁ = (a]a4-a0a5) (3-80)
and
-a
| -
T= agaz-a a, (3-81)

and cancelling out common constants in the numerator, one can bring egs.

(3-76) - (3-79) to the form

sV(s) _ n _
n
sV(s) o
5] = n _ (3-83)
sH(0) S(52 N wﬁ)

<St(s) _ (]+TS)w%

&v(0) ~ S(Sz + wz) (3-84)
n

st(s) (14784

H0) " 212 1 o2 \ (3-85)
n

Equations (3-84) and (3-85) may be further simplified using the
expression (3-82) and (3-83).
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5t sV

SLis) - S 7 SUs) (3-86)
2

t _ w 8V(s)

HO) ~ 202 50T e

Equations (3-86) and (3-87) imply

st(x) - sV(x) , 7 8V(x) | ]
8Y ~ S8H *T 8y (3 88)4
0 0
st _ -1 | v (x)
St(x) _ -1 n SV{(x
s - L 7 2.2 |t T (3-89)
0 (s© + wn)s 0
Using (3-88) and (3-89) in (3-66),
2
oV 3t 3V ot :oaV(x) -1 | “n
BYO 3H0 BHO ayo GYO 52(52 + wﬁ)
fove )8 (3-90)
GHO

- consequently, one needs to obtain the inverse transform of only three

transfer functions, namely

2
sV(s)  &V(s) “n
GYO > SH(O) ° 2(52

2
S + wn)
when wﬁ is positive, the roots of the denominator polynomial are complex

conjugates and

V.. 3t _av st - . - -
g aHO aHO g wnX51n(wnX) + 2Cos(wnx) 2 (3-91)
The right-hand side of the (3-91), after being zero at x = 0, will

subsequently become zero at
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x = &% | (3-92)

implying that conjugate points will occur every full cycle of oscil-
latory solution. Hence, if the equilibrium point for the given H/Ax

is stable, i.e. it produces an oscillatory solution, a conjugate point
will occur at the end of one full cycle of the oscillation. On the

other hand, if wﬁ is negative, the roots are real and distinct, symmetric

about the imaginary axis. In this case

3V at oV ot

3y, oHy ~ ®Hy B, -

- x.d.sinh(dx) + 2 cosh(dx) - 2 (3-93)

Expression (3-93) is zero only at x = 0. In this case, conjugate points
do not occur. From (3-93), then, if the equilibrium point for the given
H/xx is unstable, conjugate points wii] not occur.

The conjugate-point test is now applied to the three regimes of
H/)«x described earlier. As expected, for all values of H/AX to the

left of V(T-D) point, conjugate points occur, indicating that the

max
Euler solutions obtained with these values of H/Ax do not afford a
maximum to the time-range problem over long intervals. Euler solutions

obtained with H/Ax to the right of the V(T-D) point, on the other

max
hand, satisfy the Legendre-Clebsch necessary conditions and Jacobi's
necessary condition, and hence are optimal trajectories for the time-

range probliem.
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SECTION 3.5
NUMERTCAL SOLUTION OF THE TIME-RANGE PROBLEM

With the insight gained for the time-range problem with altitude
depehdence of thrust and drag suppressed, one may embark upon a numerica]
study of the more general case in which the aerodynamic coefficients are
functions of Mach number and the thrust is Mach-altitude dependent. The
data for a version of the F-4 aircraft with afterburner operative are
- used in this study. A cubic-spline representation (Ref. 44) is used to
compute the values of zero-1ift drag coefficient and the induced-drag |

coefficient. The drag coefficient is then computed as

2
Ch=C, (M) +¢C (M) C (3-94)
D D0 DCL2 L
where‘C =M and C, and C are standard notation.
L D D
1,2 o} CL2
~2-pV S

" The drag is then obtained as the usual product of drag coefficient, '
dynamic pressure and the aircraft wing area. A cubic-spline lattice
(Ref. 44) is used to compute the value of thrust at a given altitude and
Mach number. Atmosphere density and speed of sound as functions of -
altitude are interpolated from standard-atmosphere tables using cubic
sp]ihes. The system differential equations are integrated using a fifth-

order Runge-Kutta-Verner method with variable step-size.

A plot of H/AX Vs airépeed for equilibrium flight conditions

2
corresponding to unaccelerated flight with specific energy, E = h + %a,

frozen at 60,000 ft is shown in Fig. 3.10. The three regimes of H/AX

identified earlier in this chépter can be seen in Fig. 3.10. Numerical
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integration of the Euler equation with H/Ax values picked from each of
these regimes indicated that the solution for H/Ax values to the left

of V(T-D) are oscillatory. Numerical solution using H/Ax to the

max

right of V(T-D) point (high-speed. end) are non-oscillatory and violent

max
in character.

Next, a numerical conjugate-point test is set up based on a scheme
suggested by Cicala (Ref. 56). In this scheme the partial derivatives
with respect to Aio required in the matrix (3-64) are calculated approxi-
mately in terms of difference quotients. Small increments in initial A
are employed in the evaluation of neighboring solutions of the original
system of Euler equations. The conjugate-point test was carried out for
various values of H/AX picked from Fig. 3.10. It was found, as expected,
‘that only the non-oscillatory trajectories corresponding to H/Ax values
on the right of V(T-D)max satisfy the no-conjugate-point condition. Oscil-
latory trajectories indicate the existence of a conjugate point after a
cycle of oscillation.

From the foregoing, it is clear that the solution to time-range
optimal-control prob]em are non-oscillatory and violently unstable in
character. Within the permissible range of H/AX, as H/)\x increases, the
Euler solutions approach the energy-climb schedule in the (V,h) plane.

Of particular interest in practical applications is that trajectory which
terminates at the "dash-point" on the flight envelope, the maximum-
level-flight-speed point. To determine the value of H/Ax which will

accomplish this, a plot of the locus of equilibrium points corresponding

to unaccelerated flight at constant energy is made. Once this value of
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H/Ax is found, what remains to obtain the optimal trajectory is to
determine the initial value of the control variable, y, for a given
set of initial conditions on altitude and airspeed.

In Fig. 3.11 the level-flight envelope for the F-4 aircraft is
shown along with the energy-climb schedule. The discontinuity in the
energy-climb schedule due to transonic drag rise may be noted (Ref. 41).
The curve B is the locus of equilibrium points at each energy level
‘corresponding to unaccelerated flight with the appropriate H/Ax. The
discontinuity due to transonic drag rise is again visible. An Euler
soTution for initia] values of airspeed and altitude close to the equi-
librium Tocus is also shown. To determine this trajectory, an iteration
was undertaken on the initial value of the control variable, y. With
‘quadruple precision on the IBM-370/158, the initial path angle had to be
determined to 13 significant digits. To illustrate the sensitivity of
the Euler sb]ution to the initial value of path angle y, the last_digit
of Yo is perturbed in the positive and negative sense, with the tra-
Jectories 1 and 2 shown in Fig. 3.10 resulting.

A few more Euler solutions with initial conditions far removed from

the equi]ibrium']ocus are shown in Fig. 3.12.

SECTION 3.6
DISCUSSION AND CONCLUSIONS

In this chapter, optimal flight in the vertica]Iplane with a

vehicle model intermediate in complexity between point-mass and energy
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models was studied. Flight-path angle takes on the role of contrd]
variable in the model and range-open problems feature subarcs of
vertical flight and singular subarcs as previously studied.

The minimum-range climb problem (the steepest climb of Ref. 53) |
has been found to have no minimum, not even a ]ower bound. In Ref. 53,
the steepest-climb problem was studied using the Green's theorem device
of Refs. 57 and 58. There is an important difference in vehicle model-
ling from that of the present chapter which should be néted as a key to
resolving disparities between the character of optimal paths emerging.
The ana]ysis of Ref. 53 and 57 in essence replace cosy in equation (3-3)
with unity so that the problem solved is maximum altitude in a given
distance (i.e. arc-length) rather than in a given range. This is a
necessity with the linear-integral approach which can accommodate only
problems of dimension two and a very special form of state equations.
The solution to the distance-climb consists of a central path flown

along a (T-D) locus in the V-h plane with vertical climb and dive

max
transitions at the ends to meet specified boundary conditions.

From physical considerations it can be seen that when a positive
margin of thrust over drag exists, the maximum-range climb trajectory
without time or fuel constraints has neither a proper maximum nor an upper
bound. In view of this fact major attention has been accorded to the time-
range probliem.

For the special case in which the thrust and drag depend only on

airspeed, a plot of the ratio of time and range multipliers H/Ax for

equilibrium, corresponding to unaccelerated flight, revealed the
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existence of three regimes. Positive values of H/Ax on the low-speed

side of V(T-D) and all negative values of H/AX were shown to yield

max
oscillatory solutions. Although these meet the Legendre-Clebsch
necessary conditions, they fail the conjugéte-point test. Euler solu-

tions with H/Ax chosen to the right of the V(T-D) point satisfy

max
" both Leéendre-C]ebsch and Jacobi necessary conditions and are non-
oscillatory in character. Depending on the nature of aircraft data,
unstable equilibrium points may sometimes appear for certain H/xX

values to the left of the airspeed corresponding to V(T-D)max, at

certain energy Teve]s. These normally have short duration and are not

of major intereét.

Numerical solution of the Euler equation and a numerical conjugate-
point test for the F-4 aircraft data reinforced the conclusions arrived
at in the analytical exercise.

From a practica] viewpoint, the time-range trajectories which
| terminate at the "dash-point" on the level flight envelope are of .
particular interest. The multiplier ratio H/Ax corresponding to this
point is determined using the locus of equilibrium points at each energy
level corresponding to unaccelerated flight. With this value of H/Ax, the
Euler solution for any (h,V) pair is obtained by iterating on the
initial value of ¥.

Euler solutions were obtained for. various initial conditions. One
observes that these tend to funnel rapidly into a certain corridor in
the V-h ;hart, in the vicinity of the equilibrium locus corresponding
to unaccelerated flight. This feature of the so]utionvfamily can be

exploited in practical situations to simplify the computation of optimal

trajectories.
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Fig. 3.1 Flight-Path Angle vs Acceleration variable for the

Range Problem
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for the Range Problem
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CHAPTER 4

ENERGY STATE REVISITED

Henry J. Kelley
Eugene M. Cliff

Alan R. Weston
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SECTION 4.1
PREFACE

Fritz Kaiser, a flight-test engineer at Messerschmitt, A. G.,
~introduced the concept of "Gesamththe" ("resultant height") in con-
nection with aircraft minimum-time climbs (Refs. 22 and 59). This is
~the sum of potential and kinetic energy per unit weight. Subsequently

it has been referred to as "energy height" (Refs. 23 and 24) and
"specific energy" (Ref. 60). Its use as a state variable in trajectory
work is attractive because it is a "lower" variable than either

altitude or velocity (Refs. 27, 61). Attempts to synthesize "slow" state
variables are described in Refs. 25 and 61 in connection-with singular-
perturbation procedures. The present development attempts to synthesize
both "fast" and "slow" variables for the minimum-time-to-climb problem
along lines explored earlier in an appendix to Ref. 61. In the interest
of brevity, familiarity on the part of the reader with the development
~of Ref. 25 is assumed in the following; however, knowledge of the
relatively inaccessible Ref. 61 appendix is not. Minimum-time climbs in
“energy" approximation are first reviewed and consideration giveﬁ to
choice of variables. A pair of variabTes which seem to 6ffer attréctive
rep]aceménts %or altitude and airspeed in'singu]ar-perturbatfon procedures
fs suggested. Use of)the new Vafiab]es in an energy-modelled climb-dash

problem is illustrated.
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SECTION 4.2
CLIMB EQUATIONS

The equations of motion for climbing flight are given in terms of
conventional state variables, altitude, h, flight-path angle, v, and

velocity V, as

h=V sin& ‘ (4-1)
¥= g ﬁ- cosy) | (4-2)
V= 91%1g1 - g siny ‘ , (4-3)

Here T(h,V) is thrust, D(h,V,L) drag, L 1ift and g the acceleration of

gravity. An assumption of thrust-along-the-path has been incorporated.

SECTION 4.3
CHOICE OF VARIABLES

An essential feature of "eﬁergy" approximation is that drag be
tfeated as a function of h and V only. This_is consistent with
approximation of siny and cosy via expansion in powers of y through
first-order terms only and with déletion of the vy term as negligible-
another feature essential to reduction in order. With these simpli-

fications the system becomes

h

Vy (4-4)

v=9L=D) g (4-5)
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where now D(h,V,L) is evaluated for L = W.
Two new variables, ¢ and ¢, are to be introduced in.place of h
and V, ¢ to be "slow" and y "fast".

The equation of state for ¢ is

0
¢

[}

9% p 4 99y
sh Nt av v

n

SR Bt g 3y (4-6)

If one insists that & be independent of the control-like variable, vy,

then ¢ must satisfy the partial differential equation

3 _ 36 _ | | _
v sh = 9 3V 0 A (4-7)

This is satisfied by

2
ch eV - _
o= h+ o (4-8)

or by any once-differentia] function of this expression (Ref. 61). Thus
¢ = E, specific energy, is fs]ow" in the sense specified.

It has been usual to adopt as the second state variab]é, Vs efther ‘
V (Ref. 27) or h (Ref. 25). Either is suitable for analysis of the "slow"
‘motion,_given by the single state equation

© _ V(T-D ‘
e = UT-D) | | | (4-9)

For minimum-time passage to higher energy levels, the right member of (4-9)
is maximized with respect to V or h at constant E. The expression on the

right of (4-9) is "specific excess power", P_, of the flight-performance

3
literature (e.g. Ref. 60) and simply p later in the present chapter. With

a more -general choice of y(V,h), the maximization of (4-9) is done with
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respect to this variable aftér V and h have been replaced by suitable
functions of ¢ and ¢ representing the inverse transformation. The
resulting values of V, h and é are the same, however.

The choice of y(V,h) matters, however, in the determination of v
along the "slow-motion" (or "outer") solution, as y must be such that
¢ = 0, in the procedure of Ref. 27. With the choice of ¢ = h as in Ref.
27, the approximation y = 0 is obtained, while if y = V is assumed,

then

y = {=0) (4-10)

W
which is, to linear approximation in y, the path angle for unaccelerated

climb. More generally the expfession

© oy oy
P h + Yy v

oh
= 3 v, 430 r g(T-D) _ - (4
ah ey [ gv] = 0 (4-11)
is to be solved to obtain the zeroth-order "outer" approximation for Y.
The choice
_3p. .
Y7 3h JE (4-12)

suggests itself for compatibility with the outer solution, because this
quantity, and therefore its time derivative, is zero along the outer

solution. Here

_ V(T-D - - -
P="W ) (4-13)

is "specific excess power", a known function of h and V. This choice of

¥ 1is seen to generate zeroth-order y consistent with (4-4) and (4-5) along
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the outer solution.

Contours ¢ = E = const. and y = const. are shown 1in Fig. 4.1 for
the aircraft data of Ref. 41 (a version of the F-4). The contours of . .
Y = constant indicate a breakdown of one-to-one mapping associated with
jumps of the.energy-c]imb path, y = 0, between ridges of p(h,V) (Ref.
4); in_fact; tﬁe mapping (¢, ¥)->(h, V)is two-to-one and even three-to-
one within the fiight envelope. This local non-invertibility represents
a less-than-ideal feature for a coordinate transformation; however, one
does not actually have to transform to the new variable to exploit the
concept.

Flight-path angle y is shown as a function of ¢ = E in Fig. 4.2 for
three choices of "fast" variable: h, V and ¢. Only the "outer"
‘contributions are presented. Also presented is path angle y for obtimaT
climb with a point-mass model.

Experience is that the calculation of first- and higher-order
rcomposites is quite complex (Refs. 41, 42). Thus it makes sense to
choose variables carefully so as to enhance the fidelity of the_zeroth-

order solution as far as possible.

SECTION 4.4
CLIMB-DASH PROBLEM

Consider as an application the climb-dash problem, in which a
minimum-time trajectory to a remote value of X is sought, where x is

- down-range and, for small y, is defined by
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x =V . (4-14).

- The character of the solution is that of a combined climb-dash generaily

faster than an energy climb (Fig. 4.3) fairing into sustained flight at
the high-speed point on the level-flight envelope. vy as a function. of E

is shown in Fig. 4.4 for the three choices of fast variable. Solutions of

a corresponding point-mass-modelled problem for different aircraft data

are studied in Ref. 41.
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CHAPTER 5

CLASSICAL AND NEO-CLASSICAL CRUISE-DASH OPTIMIZATION

K. D. Bilimoria

E. M. Cliff
H. J. Kelley
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SECTION 5.1
PREFACE

This chapter investigates the problem of determining an atmospheric
flight-path between given end-points, that minimizes a linear combination
of time and fuel. In the next section the trajectory-shaping problem will
be formulated for a point-mass model and rectilinear cruise will be con-

sidered as an 'outer' solution when Newtonian dynamics are 'fast.' A

subsequent section will discuss the resulting classical cruise-dash problem.

In particular, it will be shown that nonconvexity in the fuel-flow vs air-
speed graph has .important consequences in optimum-cruise problems with
time restrictions. Some computations will then be presented illustrating
the sometime occurrence of time-shared operation between two altitude-

airspeed combinations for optimal cruise-dash.

SECTION 5.2
PROBLEM FORMULATION

While this chapter is primarily concerned with classical cruise-dash
analysis, it is appropriate to consider the connection between cruise-dash
performance and the more general problem of flight-path optimization. For
this purpose we begin with the point-mass model, albeit in a somewhat

special form:

e2h = V siny (5-1)
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? (L + e3Tsina)cosu
ey = (g/V) ( < - - COSY ' (5-2)
(W - 53“) .
. (T-D)V + €,T V(cosa - 1)
1 3
e E = - (5-3)
(W - 83W)
ely = —gLsinu (5-4)
V(W - 53W)005y
x =V cosy cosy (5-5)
y =V cosy siny (5-6)
W =Q (5-7)

These are the equations for three-dimensional aircraft flight with‘zero
side-force over a flat, non-rotating Earth. In these equations h is the
altitude, v the path-angle, E the energy per unit weight, x the velocity-
heading angle, x and y the Northerly and Easterly position components

and W is the fuel used. The symbol V is to be regarded as a convenient
shorthand for the quantity [Zg(E—h)]]/z,where g is the acceleration

due to gravity. L and D denote the usual aerodynamic force components,
1ift and drag, respectively; W is the (initial) weight of the aircraft.

T is the thrust and Q is the fuel-flow rate; each depends on a throttle
parameter, n. The angle o is angle-of-attack, while u is bank angle.

1 and 82 are introduced as in Ref. 25 to motivate an

The parameters ¢
order-reduction while €3 is convenient for imbedding certain complicating
effects. In particular, with €y = 0 the model has constant aircraft
weight and thrust along the path. Complications such as non-standard

atmosphere or winds-aloft might be treated in the same manner in terms of

ordinary perturbations.

151




In addition to the dynamical equations the system is subjected to

certain other constraints of state/control - inequality type:
By = (h-hg) >0 (terrain limit)
By = (9 - g (E-h)) > 0 (dynamic pressure limit)

=(M-M >0 (Mach 1imit)

(nW - CLqS) >0 (normal Toad-factor limit)
Bg = (CL(M) - CL) > 0 (aerodynamic Timit)

In these constraints q, M, n, C_ are maximum allowable values of dynamic

pressure, Mach number, normal load-factor and 1ift coefficient, respectively.

The last is a specified function of Mach number. The path-optimization
problem we wish to consider is:
Choosé the controls CL(or a), u, and n so as to transfer the
systeﬁ'from a given initial point (ho, Yo Eo’ Xo® %o Yo) to a
given finé] point (hf, Yeo Ef,.xf,xf, yf) while minimizing a
Mayer-fype cost function
C = uyte + uh (5-8)
The parameters My and u, are specified so as to represent a trade-off
between time and fuel. 1In particular, with Hy = 0 and Hy > 0 the problem
is to minimize fuel while with My > 0 and My = 0 the problem is to mini-
mize time. Note that the range is specified for this problem.
To 'solve' this optimization problem one proceeds to form the
variational Hamiltonian and with the prejudice of foresight defines
2. (5-9)

H=H, +H

1
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H

1 = A, Veosy cosx + Ay-Vc05y‘sinx a0 (5-10)

Hy = A f + AY‘fY *ap fe + A fx . (5-11)

The terms'éuch as fh in H2 are avshorthand for fhe right members of the
respective dynamical equations. | |

One might now apply the Minimum Principle (Refs. 39 and 48) to this
problem, deducihg the state-Euler equations with appropriate boundary con-
ditions. The result would be a two-point-boundafy—va1ue problem involving
a fourteenth-order system of differential equations. While this may be
solvable with modern computer software, its usefulness in on-board intercept
guidance might, in the current state-of-the art, be questioned.

The interpolation parameters e] and 52 separate the aircraft equatigns
of motion into three time-scales involving 'fast', 'intermediate' and
‘sTow' state variables. The approach here, as in Ref. 25, is to begin by
2

considering the problem for the reduced system with 51 =€ ey = 0.

In this case the dynamical system involves only three state variables X

¥, W (note that time is state-like since it appears in the performance
index) and seven control variables h, vy, E, Xs M CL and n. With e1 =
82 = 0 the first four system equations become constraints from which one

deduces that

p=y=0 (5-12)
L=W (5-13)
T=0D ‘ (5-14)

Lift equals weight can be 'solved' for CL given E and h, while thrust
equals drag can then be 'solved' for n. With theée explicit conditions

the part of the Hamiltonian labelled H2 is guaranteed to be zero. Hence,
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the min-H operation amounts to selecting n, E, h and x to minimize H],
subject to the inequality constraints, Bi > 0. Observe Fhat with €g = 0
none of the state variables x, y or ﬁ appear on the right-hand side of a
state equation so that the corresponding co-states Ayo Ay and Ay are
constant in time.

Proceeding with the min-H operation one expresses the unknown co-

states A and A, in polar form as

Ty

A = A cosA ' ’ (5-15)
(A > 0)

Ay = A sina (5-17)

and rewrites the Hamiltonian as

Hy = VA cos(x - A) + AQQ (5-17)
It is clear that the appropriate choice is A = (x - ), where x is
selected so that the rectilinear path goes through the specified points
(5> ¥g) and (xe ye).

The terminal transversality condition requires (Refs. 39 and 48)

that

Hite) = -uy « (5-18)
Aglte) = uy (5-19)

from which one finds

so that
== { [ g 0t ] N |V + 0 (5-21)

One now defines constants Ap (fuel) and AR (range) by
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AF = : (5-22)

and observes that the min-H operations can be intérpreted as seeking.a
point (given by E, h and n) that minimizes the quantity |

J=AQ -2V (5-24)
subject to level-flight equilibrium constraints and the inequality con-
straints B; > 0. This is a classical cruise-dash problem and will be
examined in some detail. The approach taken here will be to solve this
probiem for specified Ap and AR and compute the corresponding M1 and My
from

uy = ARV - AFQ = - Jmin (5-25)

p2 = )\F : (5—26)

SECTION 5.3
CRUISE-DASH ANALYSIS

The problem considered here is that of finding a point on or within
the flight envelope, characterized by a speed V, an altitude h and a

throttie-setting n, that minimizes the quantity
J = AFQ(n, h, V) - ARV (5-27)
subject to the Tevel-flight equilibrium constraints and inequality constraints

Bj 2 0.

The parameters AF-and Ap are specified constants and their relation

to the parameters My and My in the dynamic performance index has been
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described above. Recapitulating sohe of the previous discussion, one
notes that for a given (h,V) pair the equation L = W is to be solved
for CL. One then evaluates the corresponding drag D(h, V, CL) and then
'solves' for the throttle-setting n such that T(n, h, V) equals the
determined value for drag. If the throttle-setting that emerges is not
admissible (e.g. drag greater than maximum available thrust), then one
might set J equal to positive infinity and in this way interpret J to
be a function of h and V.

To proceed with the’ana1ysis, note that the second term in the sum for

J depends only on V and since

min J(V, h) = min [min J(V, h)]
h,V v Ln |

one is led to consider minimizing the fuel-flow over altitude for fixed V.

Accordingly, define

Q*(V) min [Q(n, h, V)] (5-28)
h

and

J*(V)

AFQ*(V) - ARV (5-29)

so that the cruise problem can be restated as seeking the speed V that
minimizes the combination (AFQ*(V) - A ). A method of characterizing
solutions to this problem can be easily explained in geometrical terms
set in the (Q - V) plane. For fixed (non-negative) Ap and Aps Tines

of constant (AFQ - ARV) are as shown in Fig. 5.1 with values increasing
as one moves upward (increasing Q) or to the left (decreasing V). If
one superposes a graph of Q*(V), then it is seen that an optimal (V, Q)

is a point of contact of the Q*(V) graph and that member of the constant
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(AFQ - ARV) family that separates the part of the plane containing the
graph from the part of the plane containing no points on the graph. In

optimization theory (Ref. 62) this is called a supporting hyperplane - in

this case it is a 1ine. From Fig. 5.1 it is also 'clear' that, if Q*(V)

is smooth, then

(ﬁﬂ\}‘t)\, = (g /7 af) | (5-30)

0 .
The necessity of this condition, under the smoothness assumption on Q*(V)

can be established from the usual requirement that the first derivative

of J*(V) must vanish at a minimizing V.

SECTION 5.4

COMPUTATIONS AND RESULTS

A computational study of cruise-dash optimization was carried out,
using data for a twin-engined high-performance military aircraft. The
aerodynamic and propulsive modelling is presented in Section 5.5. Only
the aerodynamic limit (defined by EL(M) was considered in this study, and
the terrain 1imit was sea-level.

The Q*(V)vgraphs obtained from a one-dimensional minimization over
altitude are. presented in Figs. 5.2 and 5.3. Details of the numerical
procedures used to calculate Q*(V) are included in Section 5.6. Figs.
5.4 and 5.5 include the graphs of optimal altitude and throttle-setting
that emerge from the min-Q operation over altitude. As described in
Section 5.5, n equals zero corresponds to zero thrust, n equals unity
to military thrust and n equals two implies full afterburning thrust.

The most interesting features of the Q*(V) graph are its regions of
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nonconvexity. These imply that the tangency condition (5-30) is not
sufficient for optimality. In other words, a tangent line need not be a
'supporting' Tine (see Fig. 5.6 which shows three candidates marked X, Y
and Z).- |

We now consider the problem of characterizing the minimizing V in
terms of the parameter AFR(= AF/AR). Cruise-dash points are computed

for values of AER ranging form 0 ft/1b to 106

ft/1b, thus covering the
entire spectrum from the high-speed point to the minimum-fuel-flow point
respectively (Fig. 5.7). It is observed that the locus of optimal oper-
ating points has several discontinuities, and that the jumps in velocities
are closely related to the nonconvexities in the Q*(V) graph. As an
illustration, consider the behavior of the cruise-dash locus, starting

at the fixed-range minimum-fuel point (h = 46,510 ft, V = 775 fps) with
App = 1000 ft/1b. As AER decreases, the emphasis on velocity (range) in
the performance index increases while the importance of fuel-flow decreases.
Fig. 5.8 presents the level-flight envelope along with loci of constant
fuel-flow for unaccelerated level-flight. From these contours one might
expect that as AfR decreases, the cruise-dash altitude and velocity would
both increase. The cruise-dash locus does in fact follow this trend, with
velocity and altitude both increasing until AFR reaches 319.36 ft/1b.

At this value, the cruise-dash point abruptly Jjumps from (h = 48,535 ft,

V = 864 fps) to (h = 67,179 ft, V = 1075 fps). The explanation for this
behavior can be found in Fig. 5.6 which shows a region of the Q*(V) curve.
It can be seen that Q*(V) exhibits nonconvex behavior in the range 864

fps <V < 1075 fps, so that a 'supporting' Tine will not touch the curve

for any velocity in this region. Therefore, there can be no cruise-dash




points in this velocity range, thus explaining the gap in the cruise-dash
locus. ‘

The Q*(V) graph (Figs. 5.4 and 5.5) has several regions of noncon-
vexity and thus the locus of optimal operating points characterized by
AeR has several gaps (see Fig. 5.7). Note that there is a one-to-one
correspondence between nonconvexities in the (Q,V) p]ané and discon-
tinuities of the cruise-dash locus in the (h, V) plane, both Tabelled
A.through E in Figs. 5.2, 5.3 and 5.7.

There is another interesting consequence of the nonconvexity of the
function.Q*(V). Consider the question of minimum-fuel transport for
the kinematic model (e] =€, = 0) with specified average speed. The
classical-cruise exercise is to seek the altitude h0 and throttle-setting
n, that minimizes Q(n, h, V ) with V_ specified. Note that this will
produce fuel-flow Q*(Vo). If Vo is in a region of nonconvexity of Q*(V)
then one could do better by flying at speeds V] and V2 (see Fig. 5.9) with
time at each apportioned so as to average Vo' Fig. 5.10 shows the fuel
savings as a function of velocity.

One could even achieve constant average speed VO by 'chattering’

(Ref. 63) between V] and V2. (Note that for the reduced model the graph
of the function Q*(V) traces out the boundary of the hodograph figure).
The simplest and most frequently occuring type of time-shared operation
would seem to feature a single transition between two (h, V) points. The
order of the sequence is ambiguous in zeroth-order asymptotic approxi-
mation. More complex time-sharing (possible 'chattering') may corkespdnd

to oscillatory cruise-dash in optimal flight with a point-mass vehicle

model (Refs. 64 and 65).
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SECTION 5.5

MODELLING

5.5.1 Atmosphere
Air density (s]ugs/ft3) and sonic velocity (ft/sec) are supplied

in tabular form as functions of altitude (feet). The sonic velocity
and the natural logarithm of the air density are interpolated as cubic-
spline functions of altitude (Ref. 44). The acceleration due to gravity

(ft/setz) is a specified constant.

5.5.2 Aerodynamics

The aircraft drag coefficient CD is computed as a parabolic function
of 1ift coefficient C, with polar parameters C. and CD » both of which
L Do CL2
are supplied in tabular form as functions of Mach number. The maximum
1ift coefficientkEL is also specified as a function of Mach number.
C

C » and EL are interpolated as cubic-spline functions of Mach

Do’ "DecL2
ber. This is shown for C, and C in Figs. 5.11 - 5.12. The air-

nm " Do DcL2 g

craft weight (1bs) and aerodynamic reference area (ftz) are specified

constants.

5.5.3 Propulsion

Two sets of thrust (1bs) and fuel-flow (1bs/hr) tables are available
as functions of Mach number and altitude (feet). One set corresponds
to military (maximum non-afterburning) operation, and the other represents
operation with full afterburner. The afterburning thrust and fuel-fliow

data are presented in Figs. 5.13 - 5.14. Interpolation of these tables
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between (h, M) points is done by using cubic-spline lattices (Ref. 44).
Interpolation between military and afterburning is linear as is
partial-thrott)e military. One introduces a throttle parametef, n, such.

that operation at military power corresponds to throttle-setting n = 1,
and throttle-setting n = 2 gives full afterburner operation. n = 0 is

a zero-thrust setting. Thrust and fuel-flow values (for a given altitude
and Mach number) are known only for three throttle-settings, n = 0, 1, 2.
A Tinear variation in throttle is assumed between n =0, 1 and n = 1, 2,
hence given a value of thrust, the thrott]e-sefting can be computed by
linear interpolation. Note that this is not truly an assumption; indeed
it only serves to defihe the throttle parameter n. However, one ﬁow assumes
that fuel-flow also varies in a sectionally-Tinear way with n. Thus, the
specific fuel consumption is independent of throttle for idle-to-military
settings and the incremental specific fuel consumption in afterburning
operation is also independent of throttle. Given that we only have
propulsive data at three throttle-settings, a sectionally-linear model
is’reasonable. However, the results obtained may well be influenced by
this type of modelling. Finally, note that the 'data' at n = 0 is taken
as T =0Q = 0.

SECTION 5.6

COMPUTATION OF Q*(V)

By definition,
Q*(V) = m:‘n- [Q(na h; V)]
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Given a (h, V) pair, the thrust T and throttie-setting n can be com-
putéd by making use of L = W and T = D as described in the section on
Cruise-Dash And]ysis. Since the values of fuel-flow are known for three
throttle-settings (n = 0, 1, 2), one can evaluate Q(n, h, V) by linear
interpolation. |

Q*(Vo) is found by performing a one-dimensional search over altitude
for a given velocity Vo' A coarse grid is set up ranging from 0 to
80,000 feet with increments of 5000 feet. The fuel-flow Q(n, h, v,)
is evaluated at each altitude grid point (with fixed velocity Vo)’ The
minimizing altitude (h]) is then picked out by direct comparison of fuel-
flow values. Another search is carried out over a range of 10,000
feet centered at altitude h], with a grid size of 500 feet. A refined
estimate of the minimizing altitude (h2) is obtained by comparing values
of fuel-flow. Finally, a golden-section search is performed over the
1,000 ft interval centered at h2, with an accuracy of 0.1 foot. It was
observed from plots of Q(n, h, V) vs h that Q(n, h, V,) satisfies the
unimodality requirement near the minimum; hence the golden-section search
is successful.

The minimizing altitude obtained from the golden-section search is

ho and the corresponding throttle-setting is o Thus, one finds that

@*(V,) = min [ a(n, b, V,)]

V,)

- Q(no’ ho’ o

In this manner, Q*(V) can be computed for any given velocity.
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SECTION 5.7

CONCLUSIONS

The classical problem of selecting an altitude, velocity and throttie-
setting to minimize a Tinear combination of fuel-flow and (negative) range-
rate has been considered as an ‘outer' solution of a dynamic path-
optimization probiem, when Newtonian dynamics are modelled as 'fast'.

This classical cruise-dash problem has a family of so]dtions where each
member depends on the relative emphasis placed on time and fuel. Compu-
tations performed for a particular high-performance aircraft show that
the Tocus of optimal operating points has several breaks, each corres-
ponding to a nonconvexity in the Q*(V) curve. Consequently, certain
velocity regions are non-optimal for cruise-dash operation.

If a time constraint forces operation at an average velocity in
such a region, time-shared operation is more fuel-efficient than classi-
cal (steady-state) cruise. This behavior may have an interpretation as
a simple sequence of operation at two (h, V) points or, possibly, as
‘chattering', corresponding to oscillatory cruise-dash in point-mass

modelling.
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SECTION A-1

PREFACE

Energy modelling of aircraft flight had its origin in the 1944
Messerschmitt A. G. report listed as Ref. 22; it was berhaps the
most important analytical development in flight performance to come
out of WWII. The object of the present paper is to review the Kaiser
report in the context of later developments and to attempt to recreate
the main results, especially the intriguing "distance-climb" tra- |
jectories.

Reference 22 is Part 1 of a report on climb problems; it deals
with the minimum-time-to-climb case. Parts 2, 3 and 4, which were to
be concernedlwith other climb problems, were never issued. Nontheless
some "distance-climb" results foqnd their way into a figure of Part 1
ahd, although analysis is missing, it is interesting to speculate on
these data in the 1ight of optimal climb-dash results' obtained by
current.methods.

In the following, Kaiser's "resultant-height" concept is reviewed
along with his ca]cu]ationé for the Me. 262 and some results of an at-
tempt to recreate them presented. It should be noted that a variational

formulation of a related problem (minimum-fuel) had been given a year

earlier by Alexander Lippisch, using the same physical modelling approxi-

mation, but no solution had been sought (Ref. 66).
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SECTION A.2

QUASI-STEADY CLIMB ANALYSIS AND CORRECTIONS

With a point-mass-model and symmetric flight assumed, the

governing equations of motion are

h=V siny (A-1)
V=g [(T-D)/M - siny] (A-2)
y = (g/V)(L/W - cosy) (A-3)

Here, geometric altitude, h, velocity, V, and flight-path angle, vy,
are the conventiona] state variables, g is the acceleration of gravity,
T thrust, D drag, L 1ift, and W weight. The left-hand members of the
equations are the derivatives with respect to time, time differentiation
being'denoted by a superscribed dot as usual. The symbols adopted are
those of the "modern" flight-performance literature.

Traditional quasi-steady appkoach to climb performance, specifically
maximum rate-of-climb, focuses entirely on potential energy increase.
The so-called specific excess power P, = V(T-D)/W is maximized at each

altitude by choice of airspeed V. That is, for a given altitude, a

velocity is chosen to maximize PS, without regard to kinetic energy
changes. For low-performance aircraft this is a good approximation,
since the change in kinetic energy is generally small. For high-
performance jet aircraft, however, the velocity change must be accounted
for; even for purely subsonic flight the effect is appreciable. Note

that the analysis produces a climb schedule in the form V(h): i.e.
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at each altitude there is a best velocity.
The technology of the WWII period included various correction
factors to adjust the steady-state results to account for acceleration

effects. Since V changes with time, we have that
V = (dV/dh) h = (dV/dh) V siny (A-4)
Combining equations (A-4) and (A-2),
(T-D) - W siny [1+(V/g)dV/dh] = 0 (A-5)
‘Rearranging the terms equation (A-5) becomes,
siny = [(T-D)/W] /[1+(V/g)dV/dh] (A-6)
After multiplying both sides of equation (A-6) by V, one may
identify the right-hand side of equation (A-1) with the right-hand side
of equation (A-6): therefore, the "corrected" rate of climb becomes,

h =V siny = [(T-D)V/W]/[1+(V/g)dV/dh] (A-7)

Hence 1/[1+(V/g)dV/dh] is the correction factor to adjust for the
change in speed. It is important to note that whereas the analysis
provides a correction due to velocity change the optimization was done

ignoring the change.
SECTION A-3

RESULTANT HEIGHT AND ENERGY MODELLING

Kaiser presented a then-new concept of "GesamthGhe" (resultant
' height) subsequently called "energy height" and "specific energy"

(Refs. 23 and 24). This is the altitude where "the potential energy of
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the aircraft would be equal to the sum of its potential and kinetic
energy at height h and speed V'' (Ref. 22). At a given energy height
the potential and kinetic energies are regarded as easily and rapidly
interchangeable in this approximation.

It is readily shown that the resultant-height variable hres

= h + V%/2g satisfies the differential equation

hres = V(T-D)/W (A-8)

which may be thought of as replacing both equations (A-1) and (A-2).
By small-y assumption (cosy - 1) and de]etion of the ¥y term in (A-3)
the drag is approximated as the drag for level flight, L = W, and is
a function of h and V only, D(h,V). Note that the right-hand side of
(A-8) is the specific excess power, PS. In modern terminology ﬁres is
the specific energy rate; Kaiser used the symbol W, (unaccelerated
climb rate). |

Kaiser's scheme was to "reach a certain height and end speed as

quickly as possible" (Ref. 22). The velocity-altitude path is chosen so

as to maximize the time derivative of hres at each value of hres’

Altitude-speed transitions along constant—hr‘eS curves are imagined as
occurring instantly, if necessary, and without dissipation of energy.
Thus, hres is "slow" and y and h at constant hres are "fast", in the
Tanguage of singular perturbations (Refs. 25, 41, 43).

Speeds for optimum climb were obtained graphically in Ref. 22.
This was done by first plotting contours of equal spécific excess power
in a V-h chart. Such a chart with superimposed constant-hre contours

S
is sometimes called a "Kaiser diagram" (Ref. 67). Optimum climb speeds
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then Tie at the points where "the tangents to the curves of resultant
height and to the W, Tine have the same direction" (Ref. 22). Kaiser's
representation of these results for the Me. 262 are reproduced in Fig.
A-1, with certain features omitted for clarity. A cubic-spline-lattice
representation, with coefficients selected to fit Kaiser's data, was
used to generate a family of curves to approximate Kaiser's PS curves.
The PS curves generated are shown in Fig. A.1 agginst a background of
constqnt hres contours. Also shown is Kaiser's approximation to the
best climb schedule comprising two straight-line segments.

In the present re-creation of Kaiser's calculations the PS curves
in spline-lattice approximation do not match Kaiser's data exactly but
~are reasonably close. The climb trajectory also disagrees slightly since
it was obtained from the same spline-lattice fit.

Kaiser's climb schedule for the Me. 262 "condensed for display

in the cockpit" (Ref. 22), was as follows,

Altitude True Airspeed
(km) (km/hr)
500
550
10 650

The airspeeds given are 25 - 50 km/hr faster than for quasi-steady
maximum-rate-of-climb scheduling.

Note that flight along the optimum-speed curve requires a slightly
longer time to reach a desired height than does climb with classical

maximum-rate-of-climb. However, the additional speed realized can be
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converted into height.

SECTION A.4
ENERGY INTERCHANGE

. The essence of energy approximation is order reduction. The
ordef of the original system, Eqs. (A-1) - (A-3), is reduced from three
to ohe for the "slow" motion or "outer" solution; the state variable is
hres’ “resultant height" or "energy height" or "specific energy." The

“fast" motion of h, y transition at constant hre is a "boundary layer."

s
The motions are not patched together but spliced in a Vasiléva composite
(Ref. 25). That Kaiser well understood the concept of fast and slow
motions taking place concurrent]yAin a composite approximation ié clear
from the following passage from Ref. 22: "For example after reaching .

a definite resultant height the speed is to be increased by pushing

the nose down. Now the pilot begins to do this earlier by the length

of time required to bring it into effect. During this time the air-
craft further increases its resultant height without variation with W,
Here the paradox is presented that the resultant height increases in
spite of the downward motion of the aircraft. The desired resultant

height is thus reached at the same moment as it would be without

increasing the speed."
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SECTION A.5
CLIMB-DASH

Kaiser was also concerned with the problem of optimum range.
For a given resultant height one might find the value of altitude which
maximizes the weighed sum Ps(h,V) + AXV, where Ay is an arbitrary
constant; this procedure produces a family of trajectories with Ax
as a parameter. If A, = 0, the minimum-time-to-climb profile is
generated. When Ay > 0 one begins to place some "weight" on the
velocity factor, hence range-rate is now receiving some emphasis.

Kafser's analysis of optimum range was to be presented in Part 2,
which never appeared. He did, however, illustrate his range findings
on the h-V plot presented in Part 1  (Fig. A.2). It is conjectured
that Kaiser may have used the weighing scheme just stated to find his
"distance climbs" by placing varying importance on the velocity term.
Therefore, the greater the range desired, the larger Ax used. Using
the data produced by the spline-lattice representation of PS and
solving the equations numerically with various constant Ax values,
curves were generated (Fig. A.3) and compared to Kaiser's. The results
obtained seem to agree with our conjecture as to Kaiser's method of
optimum range calculations.

If a family of optimal time-energy-range solutions is sought in
energy approximation from the Euler system (Ref. 25) with resultant
height (specific energy) and range on the same time scale, the curves

given in Fig. A.4 are obtained. These are seen to bear a resemblance
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to the constant-weighing-factor curves of Fig. A.3 and to Kaiser's
family of Fig. A.2. The modern formulation requires that altitude

be chosen so as to
hoPt = arg. max [AePS(h,V) + ApV] (A-9)
h

at fixed hres' The terms Ag and Ap are the co-states of optimal
control theory and in general vary along the trajectory. With XR =0
the time-varying nature of Ag does not affect the maximization operation

in equation (A-9) (as long as g > 0). However, when A, > 0, the

R
time-varying nature of AE effectively produces a variable weight

[AX = AR/}E] in Kaiser's formulation.

SECTION A.6
'CONCLUSIONS

Kaiser's resultant-height method was the forerunner of the

singular-perturbation approach to aircraft flight performance. The
computational results and procedures are, accordingly, of more than

historical interest in the context of optimal-flight methodology.

POSTSCRIPT

Recently MBB has kindly assisted the writers in making contact
with Fritz Kaiser. Herr Kaiser explains that his "Gesamth&he"
idea Qas suggested by kinetic-energy corrections to climb measurements
developed earlier (Ref. 68). With regard to the Lippisch work: "I

hear from you for the first time that he (Lippisch) too was occupied with
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this problem. It is true we worked in the same firm but within different
departments, which were shielded against each other by highly secret
classification." In connection with the projected Parts 2, 3 and 4

of his report, he explains that "I did not carry out these works as my
first report met no interest at all." About the distance-climb calcu- .
lations: "In the meantime, in February 1944, the great air raid to
Augsburg and the factories took place, which among others, destroyed my
working papers and which forced the flight-test department to move to
Lager Lechfeld. There too, I had to change four times the destroyed
offices. The parameters drawn in sheet 8 for the distance climbing

are the result of (destroyed) preparatory works. However, I cannot

explain them any more."
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IDENTICALLY NON-REGULAR PROBLEM
IN THE CALCULUS OF VARIATIONS

P. K. A. Menon
H. J. Kelley
E. M. Cliff

192

).




SECTION B.1
PREFACE

In optimal-control problems featuring scalar control appearing
Tinearly in the system differential equations, singular subarcs can
sometimes arise. Along singular subarcs which are minimizing, the
Generalized Legendre-Clebsch necessary condition should hold (Refs.

69 anc 70). A class of such optimal-control problems can be recast

as identically non-regular problems in the classical Calculus of Vari-
ations if the dimension is low. Specifically, this transformation
appears feasible if there are at most two-non-ignorable state variables
and one control variable. In general, the procedure involves a change

in the independent variable under appropriate smoothness and monotonicity
assumptions. (Thephrase "Classical Calculus of Variations" employed here
refers to unconstrained probiems, i.e., not to Lagrange-Mayer-Bolza
probiems.)

For this class of problems, Mancill (Ref. 58) has obtained conditions
for a minimizing singular arc. In this research, Mancill made use of
Green's theorem on line integrals to establish conditions for a strong
relative minimum. Miele (Refs. 57, 71) used the Green's theorem ap-
proach for probiems with control bounds, extended the technique to handle
isoperimetric constraints and carried out applications to several flight
problems. Goh (Ref. 72) examined the singular Bolza problem and noted

the connection between Miele's work and the identically non-regular
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problem in the Calculus of Variations.
This appendix deals with an evaluation of Mancill's 1950 work and
its relation to the Generalized Legendre-Clebsch necessary condition.

A critique on the nature of transversality conditions for this class

of problems is presented. Three illustrative examples are also given.

SECTION B.2

IDENTICALLY NON-REGULAR PROBLEM

The identically non-regular problem with fixed endpoints in the
Calculus of Variations (Refs. 58 and 73) is the minimization of an

integral of the form

t )
J = [2 [P(t,x) + Q(t,x)x]dt (B-1)
t
]
with
x(t]) = Xy and x(tz) = X, (B-2)
Note that
[P(t,x) + Q(t,x)x]:: = 0 (B-3)

XX

It is known that the Euler's equation for this problem is either
an identity or a finite equation (Refs. 73, 74 and 75). If it is an
identity, the integral is independent of the path joining twd fixed:
points and no proper minimum exists. On the other hand, if it is a

finite equation, the Euler's equation is satisfied only along certain

paths which in general do not pass through the specified end points.
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These functionals are sometimes called "degenerate" because
the Euler equation for such functionals is not a differential equation,
but a finite equation without any derivatives of the unknown function
(Ref. 76).

Two theorems by Mancill (Ref. 58) give necessary and sufficient
conditions for a strong local minimum in these problems. These are

presented in the following.

Theorem 1. If Ey, is of class D' and minimizes the integral J in the
class of admissible curves joining 1 and 2, where P(t,x) and Q(t,x)
are of class C2n in'a closed region R of (x,t) space, then

2n-2

3201p ;5. 2n-1 Q/atax“""¢,

82n-1

22Mp/ax%" > 32N atax2"], - (1)

if akP/axk = akQ/ataxk'], K = 1,2,350cennnnnn. 2n-2, along arcs
interior to R, including all isolated points in common with the

boundary of R:
a"/ax" > a"Q/atax"] (1g)

if akP/axk = akQ/ataxk_], k =1,2,3,....r-1, along arcs in common with
the boundary of R.

Let (I') and (Ié) represent conditions (I) and (IB) respectively
with the inequalities > replaced by the strict ineqUa1ity >. This is
a familiar notation in the classical Calculus of Variations and it will
be employed in this work.

The first part of (I) with n = 1, is the Eu]er'é necessary condition

for this problem. The inequality in (I) with'n = 1, is derived from the
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second variation. For n > ] the conditions (I) are obtained from
higher variations.

‘Theorem 2. If P(t,x) and Q(t,x) are of class C2n

in R and the conditijons
(1') and (Ié) are satisfied along an admissible curve E12 joining 1 and 2,
then E12 furnishes a strong prdper relative minimum for the integral

J in the class of admissible curves joining 1 and 2.

It is implied in Theorem 2 that the Euler equation is not an identity.
| This Theorem is proved using Green's theorem on line integrals. Mancill
has given two additional theorems on the necessary and sufficient
conditions for the identically non-regular problem with variab]e end
points. However, the interpretation of these in the 1ight of modern
optimal-control theory indicates their inapplicability owing to the
violation of the smoothness assumption essential to the results in
Mancill's work. A detailed discussion of this is presented in Sectfon B.6.

At this point, it is perhaps interesting to compare the results
obtained by Mancill with those of Miele (Refs. 57, 71). The first part of
condition (I) in Theorem 1 with n = 1 is termed the "fundamental function"
w(t,x) in Miele's work. The inequality in (I) appears as a specification
on the direction of traverse along the extremal. Similarly, the
condition (IB) of Mancill also appears in Miele's work as a specification
on the direction of traverse along the boundary of the admissible
region, applicable whenever the arcs interior to the admissible region

are non-optimal.
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SECTION B.3 |
THE PROBLEM IN AN. OPTIMAL-CONTROL FORMAT

With a short development it will be shown that with n = 1, the
inequality in (I) is the Generalized Legendre-Clebsch necessary condition
for g = 1.

Consider the optimal control problem

te
win J, [P(tx) + Q(t.ulat (B-4)
0
subject to the differential constraint x = u. It is apparent that this
problem is equivalent to the identically non-regular problem in the
Calculus of Variations. Note that the control u is unbounded.
To proceed via the "modern" approach one defines the variational
Hamiltonian |
H(x,x,t,u) = P(t,x) + Q(t,x)u + au (B-5)
and forms the adjoint equation

A=-P -Q u - (B-6)

From the expression (B-5) for H, one has that along a singular

subarc
Hy = Q(t,x(t)) + A(t) = 0 (B-7)

Differentiating this with respect to time, substituting x = u and

using (B-6) for A, one finds
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H
G < g (tx) - P (t,x) (8-8)
Differentiating with respect to time again, while using x = u, leads to

2
d” [H1 _ ) .
w T Qup = Py + (Qgy - P

Hence the Generalized Legendre-Clebsch necessary condition for first-

U | - (B-9)

order singular arc is

2
%U % iEELHu]} = Q- P, <0 (B-10)
that is
Pxx z_th (B-11)

The inequality (B-11) is the same as that in condition (I) of Ref. 58.
One notes that the inequality (I) of Mancill for n > 1 is not
equivalent to the Generalized Legendre-Ciebsch necessary condition but

is something more general. (See Example 1b to follow.)

SECTION B.4
TRANSFORMATION TO CANONICAL FORM

To investigate the situations in which specified boundary
conditions are off the path defined by the conditions (I), and the
variable-endpoint problem, a transformation approach discussed in Ref.
77 is next employed. The identically non-regular problem is first brought

into the Mayer format:

y = P(t,x) + Q(t,x)u (B-12)

X = u (B-13)
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with t,.t,, x(t]) = x],x(tz) = X, specified. A minimum of y(tz) is
0.

‘sought with y(t])

NeXt,va transformation of state variables will be performed so
that the state system has a special form. The new state variables are
z and x and the system is to have the control variable u appearing in
only one of the state equations, the one for X.

The system is

z pum)+%ﬁﬂ) | (B-14)

X = u | (B-15)
and the choice of z leading to it is
z=y+R (t,x) (B-16)
where
X
R(t,x) = - / Q(t,g)dJ (B-17)

(Refs. 69, 77). The end conditions are ts tss x(t]) = Xqs x(t2) = X,
specified as before. The initial value of z is z(t]) = R(t], x]) and a
minimum of z(t2) is sought.

Since there are no bounds on the control u, it can behave impulsively
and x(t) can jump. If the equation (B-15) is discarded and a solution
sought in the class of functions x(t) piecewise-continuous, x becomes
control-like (Refs. 69, 77). At points ty <t < to, X minimizes the

right member of equation (B-14).

x = Arg min [P(t,x) + 2% (t,x)] (B-18)
X

possibly exhibiting jump discontinuities in the interior of the interval



depending on the nature of the time dependence of equation (B-14). The
variable x will generally jump at the initial and final times to satisfy
the end conditions unless the value emerging from expression (B-18)
happens fortuitously to satisfy them.

The situation with endpoint freedom is interesting. Consider for
example, t, and t, fixed as before, but x(tz) unspecified. To minimize

y(tz),x should jump at the final time t2 to the value

x(t2) = Arg mix R(tz,x) | (B-19)

This seems to be the nearest thing to a transversality condition that

one can have with x control-like.

SECTION B.5
ILLUSTRATIVE EXAMPLES

To convey an impression of Mancill's work, three examples are given

in the following.

(1) Two elementary examples

(a) t
f 2 .
Min ]ﬂ X~ dt, subject to x

t

u

x(to) = X, and x(tf) = Xg specified. |
Since there are no bounds on the control, the differential
constraint is inactive. Hence, the problem in classical Calculus of

Variations format is
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£ L | =
min [ K@ dt (B-20)
t - | | )

With the identification of

%2 | (B-21)

P(t,x)

Q(t,x) =0 . . (B-22)

The necessary conditions of Ref. 58 become,

2x = 0 , 4 : _ (B-23)

and
2>0 (B-24)
The sufficient condition
250 ' | - (B-25)

is met in the strengthened fgrm g]ong the arc x = 0 and. hence, the
trajectory x = 0 affords a strong relative minimdm. The result (B-25)
was obtained in Ref. 69 via the Generalized Legendre-Clebsch necessary
condition. If the initial and final conditions are off the x = 0 path,
jumps in x are required at the end points. Such motions have no effect
on the performance index.

The next example is chosen to illusfrate the necessary conditions

of Mancill for n > 1.

(b) te
Min /- x4 dt, subject to ¥ = u
t
0
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The conditions x(to) = X, and x(tf) = Xg specified. Since there
are no bounds on the control variab]e, the problem in the Calculus

of Variations format is

Min j" & dt (B-26)

4x” = 0 (B-27)

Hence x = 0 is the extremal. Further,

12x% = 0 (B-28)
28% = 0 | (B-29)
24 >0 | (B-30)

Note that the sufficient condition (I') in Theorem I, (B-30) with .
strengthened inequality, is met for n = 4. Just as in the previous
example, jumps in x must be permitted at the endpoints if the specified

conditions are off the x = 0 path.

(2) Minimimum-time aircraft climb

Following Miele (Ref. 57), a model of aircraft in symmetric flight
under the assumptions of constant weight and thrust, T, and drag D,

functions of altitude, h, and airspeed, V, only, is:

v

o[ { (T-D)/W)} - siny] (B-31)

= .
1]

V siny (B-32)
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T

: Differential equations for range rate.gnd‘fué11flow‘réte=have been
;ﬂrbpped from the system, since they are ignorable in this problem. The
opﬁiha]-contro] problem is the minimization of time required to fly from
an {nitia] (V,h) pair to a final (V,h) pair, viz.

Min / dt | | (B-33)
: <vi’hi) ‘

' ‘“”Changing the independent variable from time to altitude,

aye = 4V _ g(T-D) _ g -
VT Wiy W (8-34)
O )
" dh
win ] V siny ‘
(V;5h;) (8-35)

Substituting next for siny in (B-35) from (B-34), the problem in

the classical Calculus-of-Variations format is

. W Wy : :
Min V(T"D) + g(T_D)’ dh (8‘36)
In this development, the monotonicity of the a]titude‘variable has

been.tacitly assumed. If desired, siny may be constrained by defining
an admigsib]e region in the V;h space as sﬁggested in Ref. 71, however,
thfs falls outside the Mancill model. Employing conditions (I) in

Theorem 1, the necessary conditions for a minimum for arcs interior to

the admissible region, are
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9

it o (v | (537)

2 2
:Vz { g(¥-D) } 4 ahgv '{V(¥-n)} (B-38)

The expressions (B-37) and (B-38) may be put in the following form

ﬁfﬁ[v(T'D)] =0 (B-39)
ah |E = Constant

,2 [V(T-D)] <0

3he E = Constant (B-40)

The necessary condition for a strong relative minimum, then, is

.2 [V(T-D)] <0

3h? E = Constant (B-41)

This result was obtained in Ref. 69 using the Generalized Legendre-
Clebsch necessary condition. The'exbression (B-39) corresponds to
stationary points of excess power V(T-D) along contours of constant
energy E = h + V2/29. Inequality (B-41) implies that the stationary points
of excess power along constant-energy contours must be maxima, é result in
accord with engineering intuition.

If the endpoints are off the path defined by (B-39), jumps in air-
speed and altitude must be permitted to meet the boundary condition. With
bounds on control, on the other hand, operation at one of the control

Timits is indicated.
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SECTION B.6
SMOOTHNESS DIFFICULTIES AND THEIR IMPACT

In Ref. 58, and in classical Calculus-of-Variations treatments
generally (e.g. Refs. 73-75), the function x(t),'which appears along
with its derivative, x(t), as an argument of the integrand, is assumed
to possess a first derivative which is at least piecewise continuous.
Thg various theorems of Ref. 58 do not apply to discontinuous solutions
of the type examined in the preceding sections. In the classical setting
one would say that no minimum exists in the class of admissible functions,
but only a lower bound. Indeed the classical treatment (Refs. 73-75) focuses
entirely on the degenerate case in which the integral is independent of
the path.

One is faced with the choice between extending the theory to admissible
x(t) piecewise continuous, or the introduction of bounds on the control
u(t). Unfortunately Mancill did neither and produced an array of results
of seemingly enormous power (e.g., sufficiency by strengthening inequalities),
which are in fact of extremely limited applicability because of their
smoothness hypotheses. An unwelcome complication of the Mancill theory
is the incorporation of state-inequality constraints, a relic of his
earlier work on this special type of problem (Ref. 78), which does not
alleviate the smopthness difficulties.

Treatment of variational problems with x(t) piecewise continuous
only has been given by V. F. Krotov (Ref. 79). (See also Petrov, Ref. 76.)

Bounded-control problems approached by Green's Theorem have been studied
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by Miele (Refs. 57, 71).

SECTION B.7
CONCLUDING REMARKS

Mancill's two Theorems given in the present work are of interest
and seem to have been ahead of their time. For the narrow class of
problems considered by Mancill, the inequality (I) withn = 1 is
equivalent to the generalized Legendre-Clebsch condition. Perhaps
equally important was Mancill's introduction of the Green's Theorem

device for the study of problems of small dimension.
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