Slip casting and reaction sintering of silicon powders were described. The cast slips of silicon tend to stick firmly to the plaster mold. In order to remove the cast ware from the mold successfully, the thin layer of soft soap was coated on the inside surface of the mold and then the porous membran of sodium alginate containing cellulose powders was coated. This double coating technique settled the sticking problem mentioned above.

The cast ware was nitrided in nitrogen flow or nitrogen containing 5% hydrogen at atmospheric pressure and the temperatures in the range of 1000 to 1420°C.
金属シリコン粉末の鰐込み成形と変化

2.2.2 シリコンのデザイン

歴史的には、粘土系シリコンがまず完成し、ついでアルミナ等の酸化物シリコンや、非酸化物、金属シリコンに関する報告がなされるようになった。これらシリコンの熟处理は特別の場合を除き水である。分離剤がないと熟处理としては、まず始めに水ガラス＝ペースソーザ系が用いられ、ついで塩酸やテトラメチルアンモニウムハイドロオキサイドが、また最近では水泡性高分子が使われるようになった。

本研究では分離剤として水を、分離剤なしと熟处理としてアルミ酸ソーダとポリアルカリアルカリソーダの配合系を用いた。これら分離剤を持つ水泡性高分子の使用は、鰐込み成型を引火し密を効果があり、したがってグリーン強さの増大が期待できる。

2.2.2 雑型対策

シリコン粉末のスラリーを前処理のないセッコウ系に流しこむと、シリコン粉末は強くセッコウ系に付着し、雑型できない。シリコンを限らず、雑型困難な原料は多く、したがって雑型に関してはいろいろな方法が行われているが、注目すべきは“film technique”である。この方法は希薄なアルミ酸ソーダ溶液をセッコウ型に流しこみ、数分間後に排出し、その後、数分間放置することにより、ソーザ型内面にアルミ酸ソーダ半透膜を形成させ、鰐込み成形において、成形体とセッコウ型との付着を防止しようとするものである。

本実験では“film technique”の欠点を改良し、さらに新しい雑型方法を考案し、雑型、脱型において鰐込み成形体の破壊をほとんどゼロにすることに成功した。

2.3 雑化条件

鰐込み成形を終えたシリコン成形体は乾燥後雑化した。シリコンは雑化にあたり、体積変化が極めて小さいため、昇温スピードを大きくできると考えがちであるが、雑化が発熱反応であることが、雑化を一応を行わせたいこと、雑化の初期における特異性や晶出の異なるため、昇温スピードは大きくできない。このため、ともあれ基本研究においては20℃から1,000℃までを4時間、1,000℃から1,300℃までを140時間、1,300℃から1,420℃までを24時間かけて昇温した。

変化に使用した炉は高圧電気炉（シリコネック工業製DSPH-30）であり、この炉に内径35 mmの炉管（日本化成工業製KM-15T）を挿入した。シリコン成形体は、2管を切断した形のアルミナポット（日本化成工業製SSA）の上にのせて、炉の中央部に置いた。炉管に入力した雑化条件を変化させ、温度を指示させ、温度調整器を使用してその温度を上記スケジュールにした。

変化中は雑素ガス、または雑素と水素の混合ガスをポンプから炉管内に送入した。炉管内ガスには、大気圧よりも1,000 N/m²あるいは2,000 N/m²だけついて大きくなり、ガス流量は15 ml/minあるいは40 ml/minとした。

3 実験結果及び考察

3.1 新しい脱型方法

“film technique”をシリコン粉末の鰐込み成形に応用してみたところ、特に成形体とセッコウ型との直接の付着は完全に防止できた。しかしアルミ酸ソーダ半透膜とセッコウ型との付着が、脱型にあたり相当の力を与えなければならない。このため脱型前に成形体の一部は破損し、破損率は約25％に達した。

実験では脱型時の破損を低下させるため、新しい方法を採用した。その第一はセッコウ型内面のカルセッケンの塗布である。これはセッコウ型の内面に付着防止効果がある。第二はアルミ酸ソーダ雑型の酸化によるカルセッケンの塗布である。これもセッコウ型に成形されるアルミ酸ソーダ半透膜の強化に効果があった。

3.1.1 カリセッケン製造

セッコウ型に塗布するカリセッケンの濃度は0.2〜3.2％とされたが、0.4〜1.6％の範囲で成績がよく、0.6〜1.0％が最適であった。濃度が1.6％以上すると、セッコウ型の吸水能力が弱まり、鰐込み時間が長くなった。また0.4％以下では脱型時の破損が増大した。なお付着防止能力を永続させるためには、2回鰐込みにおいてカリセッケン数を塗布しなおす必要があった。

3.1.2 半透膜強化処理

アルミ酸ソーダ半透膜の強化のため、カルセッケン粉末
本を、アルギン酸ソーダ 0.25% 溶液に対し、0.02～1.6% 添加した。添加率 0.2% 以上において効果があり、脱型時の破損率は 10% 以下に減少した。

この実験で、セルロース粉末量が増大するにしたがい、半透明成形体との密着性がよくなった。これも脱型時の破損率低下の原因と考えられる。ただし半透明脱型が乾燥によってもされないほどの密着するようになれば行くとであり、セルロース粉末含量は過剰である。セルローズ粉末添加量の上限は実験的に求められ、約 0.8% であった。またセルロース粉末の効果は、市販の 100～200 メッシュ、200～300 メッシュ、300 メッシュ以下の各段階ともほぼ同じであり、目的は十分に達せられた。

3.2 カリセッケン液処理と半透膜強化処理の併用
実際に変性成形を行う場合、ケッコウ型に対するカリセッケン処理と、染色用半透膜の強化との併用が有利である。これにより脱型は単独の場合に比べ、さらに容易になり、細分した試料を取り力も失敗がなくなくなった。また脱型に成功するセルロース添加率の範囲が拡大し、3.2.2 の場合に 0.2～0.6% だったものが、0.05～0.6% になった。

3.3 新しい鍛込み操作
3.2 に述べたところから、実際の鍛込み手順は次のようにになる。
まず水一水溶性高分子系被膜材を用意した。配合は水 100 部に対し、アルギン酸ソーダ、ギリアクリリ酸ソーダともに 0.25 部とした。この被膜の 30℃ における粘度は 0.18 Pa・S であった。同じ温度の水の粘度の 200 倍以上である。この被膜 50 部に、セルロース粉末を 70 部添加した。この粘強で、水溶性ゴムの粘着下に 20 分間放置した。なおこのスラリーの pH は 8.5 であった。

次にケッコウ型の各パーツの表面に 0.8% カリセッケン溶液を数回塗布し、乾いてから組立て、ゴムのチューブで卷いてもつづけた。このケッコウ型に対し、セルローズ粉末を 0.2% 含有する、0.2% アルギン酸ソーダ溶液を流し込み、2 分間経過後、余分の液を排出し、ケッコウ型内面にアルギン酸ソーダ＝セルローズ粉末系の半透膜を形成させた。

脱型処理を終えたシリコン粉末スラリーを上記のケッコウ型に流し込み約 20 分で鍛込みを終了した。鍛込み終了後 16～24 時間してから脱型し、シリコン粉末成形体を得た。得られたシリコン成形体は、アルギン酸ソーダ＝セルローズ粉末系半透膜で被覆されていたが、乾燥によって半透膜は破れ、成形体から出されるはげがみられた。

成形体の大きさは 50×20×4 mm または 70×40×4 mm であり、グリーン密度は約 1.35 Mg/m³ であった。

3.4 塗装
3.4.1 塗素ガスによる塗装
3.3 において得られた成形体を、塗素気流中で 1,420℃ まで加熱した。加熱前または加熱の初期（50℃ 以下）において 500 ml/min の割合で塗素ガスを 30 分間吹きつづけ、炉心室内的空間を塗素で置換した。実験塗装はガスの流量をチェックし、所定量に保った。炉温が 1,420℃ になった時、電源を切ったが、ガスは炉温がほどの塗素になるまで吹きつづけた。実験終了後、炉から試料を取りだしたところ、試料には白色的粉末状の粉末粉が一様に、あるいは塊状になって付着していた。
シリコンの塗装は周知のように次式により表されると。

\[3Si + 2N_2 = Si_3N_4 \]

この反応は実際には塗素ガスやシリコン中の不純物のため、もっと複雑になるであろう。実験前後における塗装ガスの窒素水素から計算される塗装量は、塗装ガス封じに異なり、また一般にガス入口に近いサンプルの塗装化率が低く、他のサンプルの塗装化率との差は 8～18% に達した。

炉心室内的ガス圧力、流量の変化率に与える影響は、他の条件の影響が大きかったため、検出できなかった。塗装によるサンプルの体積増加はほとんどならず、塗装が進む重力が増加するにしたがってガス比重が増大した。塗装後のガス比重は最も大きいもので 1.15 で、塗装率は 87% 前後を計算された。

3.4.2 塗素と水素の混合ガスによる塗装
塗装含有率 95%、水素含有率 5% の混合ガスを用い、3.4.1 と同様に実験を行った。この場合も、塗装化率はガス入口に近い位置のサンプルにおいて低かった。た
金属シリコン粉末の鈍込み工程と焼結

4 ま と め

シリコン粉末の鈍込み成形及び成形体の焼結を行い下記の結果を得た。
1) シリコン粉末の鈍込み成形において、成形体とベックウ型との付着を防止する新しい方法を提案した。
2) シリコン粉末の鈍込み成形は極めて容易になった。
3) 得られた成形体を窒素、窒素一水素混合気流中で窒化した。窒化率は水素を混合した場合においてやや高く、最高値は約98％を示し、なお焼成後の成形体の曲げ強さは、カタ点重が2.2前後のサンプルにおいて約150～200 MN/m²であった。

参考文献
4) 南木杉一：「セラミック製造プロセス」, 1, 76, 技報堂 (1979).
6) 中村文夫監集：同上 p. 304.
7) 八千穂：特許出願中，出願番号 57-078900
9) 上恒内修己：豊田中型 R & Dレビュー, 12, 47～51 (1977).

(1982年6月30日受付)