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APPLICATION OF LARGE-EDDY INTERACTION MODEL TO CHANNEL FLOW 

S. K. Hong* and M. W. Rubesin** 

NASA Ames Research Center 

Moffett Field, CA 94035 

A procedure utilizing an expansion of proper orthogonal functions (or modes) 

to predict a fully developed flow in channel is derived. To examine numerical 

and conceptual difficulties, preliminary computations are performed with 

assigned mean velocity, and turbulence is expressed with only the first 

mode. The nonlinear interactions of the components of the first mode are 

treated specifically, with the influence of higher modes neglected; this 

treatment requires adjustment of the skewness and effective Reynolds number to 

assure energy equilibrium of the first mode. Computational results show that 

the first mode possesses the structural character similar to that of the 

entire flow. 

Nomenclature 

d 

H 
-+ 
k 

k 

P 

channel half-width 

channel width 

(k l' k3), wave number vector 

= .. /k2 + k2 ,1 1 3 

pressure fluctuation 

P1, ••• , P8 large-eddy spectra 

2 q 

Re 

Rij 
S 

t 

222 u + v + w , twice of turbulent kinetic energy 

Reynolds number 

two-~int velocity correlation 
3 2 3/2 

0.
1

/(0.
1

) ,skewness parameter 

tUo/H, dimensionless time 

instantaneous velocity 

time-averaged velocity 

mean velocity at the channel centerline 

(u,v,w), velocity fluctuation 
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u* 

uv 

wall-friction velocity 

Reynolds stress tensor 

streamwise turbulent intensity 

shear stress 
-+ 
x (x,y,z), position vector 

Greek Symbols 

a 
n 

\IT 

(n) 
'IT 

<p~n) 
1 

Subscr i pts 

i 

n 

= random coefficient 

= fa~, energy of nth mode 

kinematic viscosity 

eddy viscosity 

nth mode of pressure fluctuation 

nth mode of velocity fluctuation 

1,2, or 3 in streamwise, normal, or spanwise direction, 

respecti vely 

indicates order of mode 

Superscripts 

indicates first mode 

n indicates nth mode 

ensemble average 
) , differentiation with respect to y 

Introduction 

The mean velocities and the local structure of turbulence under given 

initial and boundary conditions are subjects of importance in the engineering 

predictions of inhomogeneous, turbulent shear flows. The most popular predic­

tion methods assume that the Navier-Stokes equations are adequate for desC1~ib­

ing turbulent flow on an instantaneous basis and are used to develop statisti­

cal equations for the various turbulent moments, including the Reynolds 

stresses. However, the Navier-Stokes equations involve more turbulent moments 

than there are equations to explain them, forming an unclosed system. Various 

levels of closure schemes have been proposed: the zero-equation model [1], 

the two-equation model [2,3], and the Reynolds stress equation model [4,5]. 

Each of the foregoing methods requires the introduction of several empirical 

constants with respect to various turbulent processes, and only provides 
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approximate predictions of the nature of individual turbulent processes aris­

ing in a given flow. An approach that examines the dynamics of the turbulence 

may require less reliance on modeling. Earlier, one of the authors used the 

Proper Orthogonal Decomposition Theorem (PODT) [6,7] to analyze the structural 

character of turbulence in boundary layers over variously curved walls [8]. 

He found that the first mode of the decomposition exhibits the structural 

character of the averaged turbulence moments quite well even though all the 

nonlinear effects were modeled in the framework called the Large-Eddy Interac­

tion Model (LEIM) [9-11]. This work suggested that only a few properly iden­

tified modes in the decomposition may be needed if the PODT is utilized in a 

predictive sense and led to the current work. 

It should be noted that Lumley's [7] primary purpose was to define unam­

bi guously the meaning of an "eddy." Given two-point velocity correlations 

from experiments, the PODT has been applied to a pipe flow [12], a wake [13], 

and a flat-plate boundary layer [14] as a means of extracting the features of 

a dominant eddy. In a similar approach with the results from a computation­

ally simulated, fully developed channel flow, Moin [15] has specifically 

investigated as to how many modes are necessary in the PODT to reproduce the 

turbulent intensities and shear stress. Moin [15] shows that in the case of 

shear stress it takes the first 15 terms in the series representation before 

the calculated stress distribution matches the value simulated earlier [16] 

across the boundary layer. However, when only the wall region is examined, 

the sum of the first three modes yields the "experimental" results quite 

well. This small number of modes needed to describe the turbulence gave 

further encouragement to the authors to extend the PODT approach as a predic­

tive tool as was done in the LEIM. 

The basic procedure of the LEIM consists of the following steps: 

(a) decomposing the velocity fluctuations into orthogonal functions with 

random coefficients; (b) constructing dynamical equations for those functions; 

(c) identifying the first mode as an organized structure that contributes most 

to the energy [7,17J; and (d) evaluating the large eddy which interacts with 

the mean flow and the eddy-eddy interactions. 

In the past, all the nonlinear terms in the LEIM were modeled in a linear 

form utilizing either an anisotropic eddy viscosity or a diffusion velocity. 

In this process three empirical constants were introduced in the closure and 

then determined by matching shapes between normalized Reynolds stresses 

3 



calculated from the first mode and experimental measurements. In view of the 

emphasis of the past applications of the LEIM on evaluating the normalized 

structure of the first mode, it was primarily a diagnostic method. In the 

present work to develop a predictive method, the turbulent transport processes 

have been reexamined and retained in their nonlinear form to minimize the 

dependence on turbulence modeling and to allow evaluation of the magnitudes of 

the moments. The applicability of the new transport model has been illus­

trated in a channel flow that is inhomogeneous in the direction normal to the 

wall. The computed results shown here are restricted to use of only a single 

mode in the decomposition and, as stated earlier, this forced the introduction 

of the skewness and the effective Reynolds number as parameters of the prob­

lem. Although the current work has not yet demonstrated the uni queness of a 

set of these parameters, results based on different sets of these parameters 

that satisfy the energy equilibrium of the large eddy yield Reynolds stresses 

that are less than a few percent apart over the entire c~annel. 

2 Large-Eddy Interaction Model 

One can consider a decomposition of the instantaneous velocity, U
i

, into 

a time-mean valu8 ~nd its fluctuation as 

(1) 

where Ui is the time-averaged mean velocity. The velocity fluctuation in 

equatio~ (1) may be represented as a series in terms of orthogonal functions, 

{4>~n), n = 1,2,3 ... }, that is 
1 

-+ 
u.(x,t) 

1 

Q) 

E (2) 
n=1 

Here a. (t) are random coefficients and uncorrelated from one another, , .. hich 
n 

means 

The overbar, (-), represents an ensemble average. In addition, the 

are assumed to be orthonormal fU .. l1ctions: 

f 4>(P)4>(q) d~ 
1 1 

(4) 
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It then follows [7] that the two-point velocity correlation, Rij , can be 

expressed with An and ~in) in the form: 

CD 

= E A~~~n)(;) • ~~n)(~,,) 
n=1 

(5) 

Equation (5) implies that if one can predict (A ~~n», then various two-point 
n 1 

correlations and Reynolds stress components can be calculated directly. 

To formulate a framework for (A ~~n», we first substitute equation (2) n 1 

into the Navier-Stokes equation for ui. After a few manipulations, dynamical 

equations for the nth mode then become the following under incompressible 

flow assumptions [7]: 

ao ~ (n» au 
n i + U a 0 ~(n» + _i 0 ~~n» 
at j ax j n i ax j n J 

The continuity relationship yields 

aO ~(n» 
n j _ = 0 
ax j 

(n = 1,2,3, ••. ) 

(sum over index j) 

(6) 

(7) 

where (A n(n» = -a pip. However, only the system of equations corresponding 
n n 

to n = 1 in the above will be considered in the current paper. The index, 

i, may have values of 1, 2, or 3, corresponding to the streamwise direction 

(x), the local normal to the wall (y), and the spanwise direction (z), respec­

tively. The nonlinear term appearing in equation (6) when n = 1 represents 

the interaction process between eddies of various order and requires a closure 

assumption in view of the presence of higher order modes, ~i2) ,cp~3) , ..... 
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2.1 Transport Process 

The nonlinear interaction between the first mode is retained in its 

original form, but the interactions involving modes higher than ~~1) are 
1 

modeled. A simple way of accounting for the effect of the higher modes is to 

group them together and to relate this effect to a known quantity. An eddy 

viscosity is introduced for this purpose [18,19J: 

'" '" :E:E 
p=1 q=1 

(8) 

which has also been suggested by Lumley [7J. In equation (8), vT denotes an 

eddy viscosity. In the present analYSis, vT is kept equal to a constant, 

independent of mesh dimensions or the distance from the wall. This has an 

effect of reducing the effective Reynolds number by a factor of v/(v + VT ). 

The purpose of the current study is to investigate whether we need to include 

the effects of higher modes. Although improved models (with variation in 

the y-direction) are required, in the present preliminary study a constant 

eddY-Viscosity model is incorporated to achieve a steady-state solution. We 

realize that the computational results indicating the magnitude of the effect 

of higher modes will be affected by this choice. 

Upon substituting equation (8) into (6), one obtains a closed system of 

equations for (Al~~l)) 

~t (Al~il)) + Uj a~. (Al~il)) 
J 

+ s _a_ 
ax. 

J 

where S 

{(Al~~l))(Al~;l))} 

(= (1~/«(1~)3/2) is 

a 
ax. 

1 

the 

(A TI(l)) 
1 

skewness 

(11 . Assuming that the mean velocity is 

+ (v + v
T

) 
a2 

(A ~(1)) ( 9) ax. ax. 1 i 
J J 

factor of the random coefficient, 

gi ven, the system of equations 

involves then a structural parameter, S, and a stability parameter, vT ' which 

need to be chosen. For the LEIM to be a completely predictive scheme, it 

requires incorporation of the mean momentum equation for Ui along with 
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equations (7) and (9). However, for the present, emphasis will be placed on 

how the large eddy interacts and reacts to a known mean flow field. 

3 Application 

Fully developed turbulent channel flow is a case for which a large data 

base has become available over the years. Accordingly, two-dimensional 

channel flow has been chosen to demonstrate the validity of the approximation 

for the nonlinear eddy-eddy interaction terms as proposed in equation (8) and 

to establish the contribution of the first mode to various statistical turbu­

lence quantities. In the fully developed region of the channel, the mean 

velocity is one-dimensional and is dependent only on the normal coordinate, y, 

where y = 0 corresponds to the lower wall and y = H to the upper wall. 

Thus, the turbulent flow in the two-dimensional channel flow can be regarded 

as homogeneous in both streamwise (x) and spanwise (z) coordinates, while 

strong inhomogeneity is retained in the y-direction. For this case, one can 

define spectral functions for the first mode of velocity fluctuation, Al~~l), 
and of pressure fluctuation, A,~('), as follows. 

1 f.I m 

(1) --2 {A,(t)~i (x,y,z)} 
(2~) -a> 

f.f
a> 

1 (1) 
--2 {A,(th (x,y,z)} 
(2~) -a> 

(10) 

where k, and k3 are wave numbers and i 1=1. The superscript indicating 

mode (1) is understood in the spectral functions. Applying these definitions 

into equations (7) and (9), one obtains four complex equations with respect to 
A 

the large eddy spectra, ~i (i = ',2,3) and~. These equations can be further 

divided into eight equations for the real and imaginary parts defined accord­

ing to the following notation. 
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411 P
1 

+ iP 
2 

412 P
3 

+ iP4 ( 11) 
A 

413 P + 
5 iP6 

1T = P7 + iPS 

The nonlinear terms require the convolution theorem [20] during the 

transformation of the system of equations, equations (7) and (9), into the 

mixed, (k 1,y ,k 3 , t), space. The spectral equations become 

::1 + lk1U.1 + U'.2 + S . 6{a!j (.~1).j1))} 

- ik 1T - (v + v )(4l" - k2; ) 
1 T 1 1 

o (12) 

a</>2 A 

+ S • sr{--L (</>(1)</>(1))} -+ ik1U</>2 at aX
j 

2 j 

- 1T' - (v + v )(</>" -T 2 
k2; ) 

2 o (13) 

a</>3 " 
+ s . sr {--L (</> ( 1) </> ( 1) )} -+ ik1U</>3 at aXj 3 j 

- ik 1T -
3 

(v + v )(cj>" -
T 3 

k2; ) 
3 

o (14) 

o ( 1 5) 

where ( )' ~ d ( ) /dy and From equations (12)-(14), we denote 

A A + A + + 
+ ik"</> (k")cj> (k - k") dk" dk" 

3 i 3 1 3 
(16 ) 

where, k = (k 1 ,k 3
). 

From a consideration of two-point velocity correlations and Reynolds 

stresses, a relation can be found between the spectra of the double velocity 

correlations and the cj>.' s [21]: 
1 
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( '7) 

where 6 is the Dirac delta function and superscript (1) indicates the con­

tribution of the dominant mode. Rij is defined in 

Rij (r"y,r 3,t) 

= J][~ Rij (k"y,k 3,t)exP{1(k,r, + k
3
r

3
)}dk, dk3 

-~ 

('8 ) 

For a flow which is homogeneous in (x,y)-planes: 

(19) 

where = indicates simple truncation after the first mode. When 

r, = r3 = 0 in equations ('8) and ('9), the two-point correlation reduces to 

the usual Reynolds stress tensor, uiuj(y,t). Thus, at time t: 

(20) 

where ( )* denotes the complex conjugate of (). The following-!tructural 

~antitiea-!re !lao presented: (i) normal stress intensities (u~/q2), where 

q2 • u2 
+ v2 

+ w2; (ii) shear stress intensity (uv/q2); (iii) orientation of 

the principal axes of the large eddies (9), which is given by 
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(21) 

and (iv) anisotropy (~/~). 

4 Calculation Procedure 

The next objeotive is to calculate the first mode In the velooity fluotu­

ation expansion and to investigate the extent ot the influenoe of the first 

mode on the turbulent Intensities and the other various struotural quantI­

ties. Attention is given to the role of the skewness parameter, S, that 

appears in equation (9), on the solutIon for the fIrst mOde, ~11}, and on the 

structure of turbulence deduced therefrom. 

To solve equations (12)-(15), after one adopts a numerioal algorIthm he 

or she needs: (i) initial and boundary conditIons. (Ii) the local mean veloc­

ity profile, and (iii) a proper skewness tactor as well as an eddy viscos­

ity. Numerical results of the statistical quantities can then be compared 

with the classical measurements owing to Laufer [22], for example, from which 

a particular flow condition is selected as 

Uo = 7.574 (m/sec) 

u* = 0.2891 (m/sec) 

H • 12.7 (cm) 

Re U H/v - 60380 o 
where Uo ' u*, H, and Re are the mean velocity at the channel centerline, 

wall-friction velocity, channel width, and ReynoldS number, respectIvely. 

4.1 Initial and Boundary Conditions 

A numerical solution for the large eddy spectra governed by the system of 

equations (12)-(15) is determined as an initIal-boundary value problem in the 
~ 

(y,t) space for various values of wave number, k. The initialization can be 

arbitrary because of the goal of achieving a steady solution in the presence 

of a fixed-mean strain. 

At the wall (y = 0), the no-slip condition requires 

P, = P2 = P3 = P4 ~ P5 ~ P6 • 0 (22) 
The boundary condition for the pressure spectrum Is deduoed again from the 

v component (normal to surface) equation applied at the wall [23]. The 

spatial derivative for the pressure fluctuation Is then discretized using a 

three-point forward formula beginning at y ~ O. 
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For the other set of boundary conditions, the flow field has been assumed 

to be symmetric with respect to the centerline (y H/2), gi ving 
pI 

1 
= pI = pI = pI = pI = 
256 7 

pI 
8 0 (23) 

P3 = P4 = 0 ( 24) 

where ( ) I denotes the deri vati ve with respect to y. It should be pointed 

out that the entire channel from y = 0 to Y = H has been solved in a 

single instance with the no-slip condition imposed at both ends, y = 0 and 

y = H. The results show symmetric profiles for u and w spectra and antisym­

metric for v spectra (P3 and P4), justifying the use of the current boundary 

conditions at the centerline. 

The implicit numerical scheme employed [24J utilizes a two-point backward 

differencing in time and a three-point central differencing in y. The non­

linear convolution integrals are treated as known by evaluating them at a 

previous time step when the solution is known. The numerical integration for 

these terms is carried out employing the trapezoidal rule over the wave number 

space, (kil,k:P, at a given point, (k 1 ,y,k 3 ,t). This enables the fonnation of 

a system of matrix equations for all y at each advanced time level, where 

the coefficient matrix becomes block tridiagonal and diagonally dominant. The 

inhomogeneous y-coordinate is discretized as suggested by Murphy and Rubesin 

[25J and the half of the channel is divided by 35 nonuniform grids. 

The wave number space, (k 1,k 3), has also been di vided into strongly 

nonuniform meshes. The wave number plane is covered with (17,17) grids where 

the values are equally spaced in the logarithmic scale for each wave number 

direction in the range between -10 and 10 (1/cm). It is found (via numerical 

experimentation) that the wave numbers outside this range have negligible 

effect on the turbulent stresses. 

4.2 Mean Velocity Profile 

The mean velocity profile is approximated by a near-wall Prandtl-Taylor 

model and a blending profile near the center plane. 

(i) U+ + (y + < 12) y 

(i i) U+ 3.0 In + + 5.5 (12 ~ y+ < 760) y 

(iii) U/U = 
0 

1 .0 + 0.068 log (y/d) (y+ ~ 760) 

where U+ = U/u* , + = yu*lv, and d = H/2. The mean velocity profile in the y 

outer layer (iii) has been modified in this form for the purpose of matching 

with the law of the wall (ii) smoothly using the experimental data. 
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4.3 Effect of Parameters 

During the computation, a fairly small time step (normalized by the mean 

velocity at the channel centerline and by the channel height) of about 0.001 

has to be used to ensure numerical stability. Although ~., governed by 
1 

equations (12)-(15), can vary in time in any fashion with the current eddy-

viscosity model, the fully developed steady-mean flow and boundary conditions 

used here cause the solution to converge to a steady state. In the current 

computation, the procedure has been continued up to 200 iterations in time to 

achieve an accurate asymptotic solution. 

5 Results and Discussion 

The effect of various values of the parameters, Sand vT' in equa-

tions (12)-(14) on the solution is discussed. After a pair of those values is 

selected, numerical results obtained in the mixed space (k l ,y,k 3,t) are inte­

grated over the wave number space to yield Reynolds stresses as a function 

of y. The computed stresses and structural quantities are compared with the 

experimental data of Laufer [22J. 

5.1 Determination of Parameters (S and vT) 

The skewness parameter, S, can be regarded as a structural parameter 

affecting the anisotropy obtained from the solution, ~i. On the other hand, 

the primary role of the eddy viscosity, vT' is to stabilize the growth of the 

solution subject to production in a fixed-mean velocity field. We pick a 

value of S first and then determine corresponding value of vT which yields 

a steady-state solution. One may argue that a choice of a particular set of 

Sand vT is not unique on the ground that other combinations of Sand vT 
could also produce steady-state results. It has been found, however, that the 

solution is rather insensitive to the choices of the combinations of Sand 

vT that yield steady solutions. 

Figure 1 shows the growth of the turbulent kinetic energy, integrated 

over the channel, for the various values of S as a function of time in the 

absence of higher modes, vT = 0, and for a single case with vT = 18. With 

vT = 0, the growth rate increases with increasing S, and it was found for 

lSi ~ 0.03 the solution grows so rapidly that it becomes unstable. However, 

for S = 0.01 and vT = 18, the desired steady state in kinetic energy is 

achieved. Also, for S = 0.03 a steady solution for kinetic energy occurs 

when vT = 22. 
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To examine further whether each component of the kinetic energy has 

indeed reached a steady state for the above two sets of parameters, each 

component of the three turbulent intensities is integrated over the channel 

from y = 0 to Y = d. The results are presented in Fig. 2 as a function of 

time. It turns out that the u-component energy for S = 0.01 and \I = 18 
T 

maintains a constant value, but that for S = 0.03 and \IT = 22 continues to 

decrease slightly in Fig. 2. For both cases the w component continues to 

increase whereas the v component decreases, again at a slow rate. The 

behavior of these different growth rates can be attributed to the use of an 

isotropic eddy viscosity in equation (8) and suggests the use of an aniso­

tropic eddy viscosity or some other alternative. Nevertheless, in view of the 

small growth rate in the v and w components, this behavior is believed to be 

relatively unimportant so that no attempt was made to eliminate this continu­

ally varying anisotropy. The authors favor the case of S = 0.01 and 

\IT = 18 because it yielded a steady solution slightly better than the other 

case. However, the calculated Reynolds stresses for these two sets of param­

eters were well within a few percent of each other (see Table 1 for numerical 

values of the Reynolds stresses). Thus, the choice of which set to use is not 

critical to the results shown in the rest of the paper which is based on 

S = 0.01 and \IT = 18. 

5.2 Eddy-Eddy Interactions 

Let's write the eddy-eddy interactions affecting the net production of 

the first mode in the form: 

(25) 

The term "A" governs the interaction wi th the mean flow. The term "B" corre­

sponds to the transport of the 4> ~ 1) 4> ~ 1) , whereas the term "C" represents the 
1 J 

effects of the higher modes modeled by the eddy viscosity. Figures 3-5 illus-

trate the nature of interactions among the eddies which are identified with 

"B" and "c" in equation (25). The large-eddyllarge-eddy interaction in the 
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P1 equation [which is the real part of equation (12)J is used as an illustra­

tive example and is shown for three sets of wave numbers, 0.2, 0.5, and 1.0 

(1 /cm) , in Fig. 3. It is found that the values of "B" in equation (25) for 

wave numbers the same as or less than 0.2 (l/cm) are predominantly negative in 

the inner part of the boundary layer. A negative value of "B" refers to an 

energy supply and a positive value, an energy drain because the value of P1 
itself in the inner layer is negative for those wave numbers. The profiles of 

the nonlinear term show both types of behavior at the wave number about 0.5 

(l/cm) and positive behavior at higher wave numbers than 0.5 (l/cm). Thus, 

the nonlinear eddy-eddy interactions for lower wave numbers cause energy gain 

while that for higher wave numbers dissipates the energy. 

Shown in Figs. 4 and 5 are comparisons between "B" and "c" terms in 

equation (25) for the P1 equation. Figure 4 shows terms "B" and "c" at the 

low wave number kl = 0.1 (l/cm) and Fig. 5 compares the same terms at the 

value of kl = 5.0 (l/cm), both for a fixed value of the wave number k3 at 

0.05 (l/cm). Profiles of the P1 are also provided in the two figures to 

indicate their behavior in y at the same wave numbers. An opposite sign in 

"B" or "c" from that of P 1 impli es energy loss and the same si gn impli es 

energy gain. The value of k3 = 0.05 (l/cm) was chosen in these illustrations 

because it emphasizes the differences occurring in the alternatives of k1• 

Similar results are expected of "B" and "G" for other values of k3 when 

kl is varied in the same manner. Figure 4 shows that at the same wave number 

(k 1 = 0.1) and y/d = 0.5, the turbulent energy transfer because of the first 

mode self-interactions is much smaller than that caused by the rest of the 

modes when the latter are modeled with vT = constant. If other models were 

employed for the eddy-eddy interactions, this emphasis on energy loss could be 

reduced. The magnitude of the higher mode-interactions exceeds that of the 

first mode self-interactions considerably in both Figs. 4 and 5 to dissipate 

the energy gained not only from the large eddy but also from the mean flow 

[term "A," equation (25) J. Again from the signs of P1 , "B", and "G" in 

Figs. 4 and 5, one can infer that the higher modes interactions drain the 

energy consistently for all wave numbers, while large eddy self-interactions 

either supply energy for lower wave numbers or subtract it for higher wave 

numbers. Study of these figures illustrates that the influence of the eddy­

viscosity model for the higher modes interactions is dominant and suggests 
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multiple mode analysis (in cOnjunction with improved models for higher modes 

interactions) is necessary to capture the nonlinear process properly. 

5.3 Reynolds Stresses 

From the deterministic large-eddy spectra, P1 through P8, Reynolds stress 

components have been obtained from equation (20). In Figs. 6 and-I, the __ 

Reynolds stresses obtained as a function of (y,t) are given for u2 and v2 

only at every 25 time steps to show the development in time. The solution 

adjusts itself quickly in time and the effect of the initial conditions 

appears to be minimal. To see whether the Reynolds stresses in Figs. 6 and 7 

change their profiles, the u and v profiles at t = 0.15, 0.175, and 0.2 are 

compared in Fig. 8 as a function of y/d. It shows that the u and v compo­

nent intensities have indeed achieved an equilibrium profile for t > 0.15. 

The same observation has been made for other Reynolds stress components. 

For detailed comparison, the Reynolds stresses are given as a function 

of y/d at time t = 0.2 in Fig. 9 along with experimental distributions 

taken from Laufer [22J. The first mode contributes approximately 30% of the 

observed intensities, although the shape agrees in general trend with the 

experimental distribution. In case of the w component, the use of the 

isotropic viscosity has caused spuriously higher proportion of the calcu­

lated w component than the u or v component in the contribution to the 

energy. 

5.4 Structural Quantities 

The single-point structural quantities defined in Section 3 are calcu­

lated from the Reynolds stresses and are compared with corresponding quanti­

ties obtained from measurements of Laufer [22J. In spite of low intensity 

levels of the large eddy as shown in Fig. 9, the normalized structural quanti­

ties in Fig. 10(a-d) agree well with the corresponding experimental quantities 

except for the anisotropy of the flow in the outer part of the boundary layer 

sho .. m in Fig. 10(d). It is believed that this latter result is the conse­

quence of the imposed symmetry at the channel centerline, that is, v = o. 

6 Concluding Remarks 

Since the current paper deals only with the first mode and the balance 

regarding the first mode's origin, maintenance, and destruction, the question 

as to the number' of modes in the series required to represent the turbulence 

field accurately to predict engineering quantities still remains unanswered. 
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However, the first mode is shown to be so significant that it supplies about 

30% of turbulent kinetic energy and possesses a structural character that 

closely matches the experimental trends of the entire turbulence field. 

When the turbulent transport is truncated to only the interactions 

between the components of the first mode, it is found that the drain of energy 

through the first mode is insufficient to balance the energy gain from the 

mean motion. Thus, the nonlinear interactions of higher modes are necessary 

in the dynamics of the first mode. However, the constant eddy viscosity used 

in the current closure is inadequate. For the improvement of the closure with 

respect to the higher modes interactions, it appears to be necessary to solve 

the first few modes simultaneously and to model the interactions from the rest 

of the modes. In that case, the difference between the first few modes in the 

role of forming a complete flow should become clear and this should answer the 

earlier question of the number of modes essential for the flow. The aniso­

tropy in the interactions involving the higher modes will also decrease Since 

the higher modes are expected to be more isotropic than the lower modes. 
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Table 1 Comparison of Reynolds stresses based on two sets of 

parameters: S = 0.01 and vT = 18 (Case I); S = 0.03 and 

vT = 22 (Case II). 

J y/H 

1 fiJ.fiJfiJfJfiJfiJ 
2 JiJ.JiJfJ!J75 
3 fJ.f3fJ15JiJ 
4 JiJ.JiJ,{1'225 
5 :.r • fiJ,fJ3fJfiJ 
6 fJ.fiJfiJ375 
7 fJ.fiJfJ475 
8 fJ.fiJJJ525 
9 JJ.fiJfiJ825 

UJ JJ.fiJlfl75 
tl ~.fiJI3fiJfJ 
12 fJ • fJ2,~rfiJfiJ 
13 X1.fJ25fiJJiJ 
14 fJ.JiJ35JiJJiJ 
15 f!J.f345JiJfiJ 
1:; /lJ. fiJ6J'!fiJfiJ 
17 £J.fiJ7SfiJJiJ 
18 fiJ.fiJ9XJfiJfiJ 
19 JiJ. If35HJiJ 
2.1'J fJ. 125JiJJiJ 
21 fJ.15fJDfiJ 
22 D.17SfiJfiJ 
"23 fiJ. 2!5fHJfiJ 
24 fiJ.225fiJfiJ 
25 fJ. 25fJJHr 
26 fJ.275fiJfiJ 
27 fiJ. 3fJJ.erD 
28 fiJ. 325fiJfiJ 
29 fJ.3'=iJfiJfiJ 
3fJ .cr. 375ZfiJ 
31 .cJ. 4fiJ.(JfJfiJ 
:32 fiJ. 42SfiJfiJ 
33 fJ. 45,r;fJfiJ 
34 .GJ.47SfiJYJ 
35 0. 5fJ,:JfiJfiJ 

Case 

fiJ .!HJJiJJiJE+JiJfiJ 
fiJ.7949E-fiJ5 
fiJ.3182E-.0'4 
fiJ.7135E-fiJ4 
fiJ.1258E-f]3 
fiJ.1939E-fJ3 
fiJ.3.n4E-.0'3 
JiJ.49JiJ5E-fiJ3 
fiJ.78JiJfiJE-fiJ3 
JiJ.1159E-fiJ2 
fJ.17fJ7E-fJ2 
fJ.2.'o69E-fJ2 
fJ.2186E-fJ2 
fiJ.2D71E-fiJ2 
.0'. 1913E-fiJ2 
fiJ. 17fiJ9E-fiJ2 
fiJ.lS52E-fiJ2 
fiJ.1435E-fiJ2 
fiJ.135fiJE-fiJ2 
fiJ.1265E-fiJ2 
fiJ. 1 2i!1KIE - fiJ2 
fiJ.1144E-fiJ2 
fiJ.1112E-fiJ2 
fJ. lff78E-,0"2 
fiJ.lfJ56E-ff2 
fiJ. UJ3fJE-fiJ2 
fiJ.l.0'lfiJE-fiJ2 
fiJ.9878E-f33 
fiJ.9S86E-fiJ3 
fiJ.9436E-f!J3 
fiJ.9292E-fiJ3 
fJ.9247E-fiJ3 
JiJ.9177E-fiJ3 
fiJ.9342E-fiJ3 
fiJ.9435E-fJ3 

J sequence 

Case II 

fiJ.fiJfJfiJfiJE+fiJfiJ 
fiJ.6473E-fiJ5 
fiJ.259fiJE-fiJ4 
fiJ.58fiJ9E-fiJ4 
fiJ. lfJ25E-fJ3 
fiJ.1582E-fiJ3 
fiJ. 24 77E-fiJ3 
fiJ.4fJ54E-fiJ3 
fiJ.6523E-fiJ3 
fiJ.9853E-fiJ3 
fiJ.15fJ2E-fiJ2 
fiJ.1894E-fiJ2 
fiJ.2fiJ62E-fiJ2 
fiJ.2JiJfiJfiJE-fiJ2 
fiJ.1847E-fiJ2 
fiJ.1646E-fiJ2 
fiJ.1494E-fiJ2 
fiJ.1387E-fiJ2 
fiJ.1311E-fiJ2 
fJ.1237E-fiJ2 
fiJ.118fiJE-fiJ2 
fiJ.113fiJE-fiJ2 
fiJ.1lff1E-fiJ2 
fiJ.1fJ69E-fiJ2 
fiJ.1fJ48E-fiJ2 
fiJ.lfiJ24E-fiJ2 
fiJ. UJfiJ7E-fiJ2 
fiJ.9872E-fiJ3 
fiJ.9614E-fiJ3 
fiJ.9493E-fJ3 
fiJ.9384E-fiJ3 
fiJ.9367E-fiJ3 
fiJ.9335E-fiJ3 
.0'. 9527E-fiJ3 
fiJ.9651E-fiJ3 

Y distance from wall 

H channel width 

Case 

fiJ.XJfJfiJfiJE+I818 
18.7fiJI4E-fJ9 
18. lfiJ87E-D7 
18.5359E-187 
18. 1652E-JiJ6 
18. 393fiJE-fiJ6 
fiJ.9767E-fiJ6 
fiJ.2769E-fiJ5 
fiJ.7758E-fiJ5 
18. 1979E-fiJ4 
18. S9lfiJE-fiJ4 
18. 1287E-fiJ3 
fiJ.2fiJ7fiJE-fiJ3 
fiJ.34fiJIE-fiJ3 
fiJ.4227E-fiJ3 
fiJ. 5fJ41 E-fiJ3 
fiJ.5341E-fiJ3 
fiJ.5465E-fiJ3 
18. 5363E-fiJ3 
fiJ.5227E-fiJ3 
fiJ.4922E-fiJ3 
fiJ.4731E-fiJ3 
fiJ.442fiJE-fiJ3 
18.4175E-D3 
fiJ.3783E-fiJ3 
fiJ.3465E-fiJ3 
fiJ.2989E-fiJ3 
fiJ.2613E-fiJ3 
fiJ.2fiJ79E-fiJ3 
fiJ.1678E-fiJ3 
fiJ.1145E-.0"3 
fiJ.782BE-fiJ4 
fiJ.3589E-fiJ4 
fiJ.1348E-fiJ4 
fiJ.fJfJfiJfiJE+fiJfiJ 
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Case II 

fiJ.fiJfiJfiJfiJE+fiJfiJ 
fiJ.5776E-fiJ9 
fiJ.B941E-fiJ8 
18. 44fiJ2E-fiJ7 
fiJ.1355E-fiJ6 
fiJ.322fJE-fiJ6 
fiJ.7995E-fJ6 
fiJ.2264E-fiJ5 
fiJ.6335E-fiJ5 
fiJ.162fiJE-fiJ4 
fiJ.488fiJE-fiJ4 
fiJ.1JiJ88E-fiJ3 
fiJ.1795E-fiJ3 
fiJ.3118E-fiJ3 
fiJ.398fiJE-fiJ3 
fiJ.4867E-fiJ3 
fiJ.5172E-fiJ3 
fiJ.53fiJ2E-fiJ3 
fiJ.5195E-fiJ3 
fiJ.5JiJ82E-fiJ3 
fiJ.4795E-fiJ3 
fiJ.4634E-fiJ3 
fiJ.434fiJE-fiJ3 
fiJ.4111E-fiJ3 
fJ.3736E-fiJ3 
fiJ.3432E-fiJ3 
fiJ.2977E-fiJ3 
fiJ.2615E-fiJ3 
fiJ. ZUfiJE -fiJ3 
fiJ.17fiJ3E-fiJ3 
fiJ.1179E-fiJ3 
fiJ.BfJ64E-fiJ4 
18.3781E-fiJ4 
D.1376E-fiJ4 
fiJ.fiJJiJfiJfiJE+fiJliJ 

Case I 

fiJ.fiJfiJIME+fiJfiJ 
fiJ.6556E-fiJ5 
fiJ.2562E-fiJ4 
fiJ.5621E-fiJ4 
fiJ.9723E-fiJ4 
fiJ.1475E-fiJ3 
fiJ.2269E-fiJ3 
fiJ.3663E-fiJ3 
fiJ.574fiJE-fJ3 
fiJ.8358E-fiJ3 
fiJ.12fiJ2E-fiJ2 
fiJ.1442E-fiJ2 
fiJ.1533E-fiJ2 
fiJ.1495E-fiJ2 
fiJ .1434E-fiJ2 
fiJ.1351E-fiJ2 
fiJ.1288E-.0'2 
fiJ.1232E-fiJ2 
fiJ.1182E-fiJ2 
fiJ.1\21E-fiJ2 
fiJ .lfiJ55E-fiJ2 
fiJ.9998E-fiJ3 
fiJ.9494E-fiJ3 
fiJ. 9,0'91 E-fiJ3 
fiJ.858fiJE-fiJ3 
fiJ.8393E-fiJ3 
fiJ.8fJ55E-fiJ3 
fiJ.7885E-fiJ3 
fiJ.75fiJfiJE-fiJ3 
fiJ.7S44E-fiJ3 
fiJ.7333E-fiJ3 
fiJ.7437E-fiJ3 
fiJ.7313E-fiJ3 
fiJ.7639E-fiJ3 
fiJ.7776E-fiJ3 

-
Case II 

Z.fiJfiJfiJfiJE+fiJfiJ 
fiJ.5725E-fiJ5 
fiJ.2241E-fiJ4 
fiJ.4926E-fiJ4 
fiJ.854fiJE-fiJ4 
fiJ.1299E-fiJ3 
fiJ.2fiJfiJ4E-fiJ3 
fiJ.3254E-fiJ3 
fiJ.5146E-fiJ3 
fiJ.7598E-fiJ3 
fiJ.1123E-fiJ2 
fiJ.1387E-.0'2 
fiJ.15fJIE-fiJ2 
fiJ.1475E-fiJ2 
fiJ.14lfiJE-fiJ2 
fiJ.1319E-fiJ2 
fiJ.1255E-fiJ2 
fiJ.1199E-fiJ2 
fiJ.1149E-fiJ2 
fiJ. lJiJ8BE-fiJ2 
fiJ. U'125E-fiJ2 
fiJ.9736E-fiJ3 
fiJ.9286E-fiJ3 
fiJ.B948E-fiJ3 
fiJ.8615E-fiJ3 
fiJ.841fiJE-fiJ3 
fiJ.3166E-fiJ3 
fiJ.8JJ87E-fJ3 
fiJ.79fiJfiJE-fiJ3 
fiJ.7921E-fiJ3 
fiJ.7798E-fiJ3 
fiJ.797fJE-fiJ3 
fiJ.793fiJE-fiJ3 
fiJ.8316E-fiJ3 
fiJ.8544E-fiJ3 
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