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The equation of the original curved surface of end harmonic gearing; is
determined by displacement analysis of flat flexible gear. The dis-
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of the gear. The latter is regarded as a circular plate with two
concentrated loads, since its torsional rigidity is much larger than
its bending rigidity. Small-deflection theory of thin plates is used
to solve for	 the displacement of any point in the middle plane of
the gear. New expressions are given For given for radial and tangential
displacements of the middle plane under asymmetrical loading. A digital
computer is used to )btain numerical values for the displacements.
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TM 77493

A DEFORMATION ANALYSIS OF FLAT FLEXIBLE GEAR AND ITS

EQUATION OF ORIGINAL CURVED SURFACES

SHEN YUNWEN*

ABSTRACT	 /175**

Based on the elastic thin plate theory, the displacement of

an arbitrary point on the flexible gear affected by a wave

generator was investigated, an equation for the original curved

surface which is required to study the engaging theory of the end

harmonic gearing was derived, analytical solutions as well as

calculated results of "u", "v", and "w" were obtained. Thereby,

this paper offers the theoretical basis for studying the

geometric theory and the strength calculations of the end

harmonic gearing transmission.

FORWARD

Although it has been twenty years since the beginning of the

development of the harmonic gearing transmission, yet current

research and application of the harmonic gearing are limited to

radial Eagagement transmission. Along with the extended

application of the harmonic gearing transmission, some equipment

require more strictrequirements for the axial dimensions as well

as the torsion rigidity of this type of transmission.

Consequently, end surface engaging of harmonic gearing

transmission is being developed. In foreign countries, some

patents have been awarded. However, due to the complexity of the

theoretical study, few theoretical papers with systematical

analyses have been published. Moreover, some papers even

presented dubious results. For example, reference (1) presented

an erroneous result with an imperfect analysis. Reference (2)

used excessive approximations. Due to the urgent applications of

this transmission method, a systematical study on the end

harmonic gearing transmission was conducted. This paper not only

pointed out the error in reference (1), but also presented an

analytical method for the deformation of a flat flexible gear.

*Associate Professor, Northeastern Polytechnical University
** Numbers in margin indicate foreign pagination.
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In addition, it also introduced the original curved surface

equation which is necessary for the engaging analysis of the end

harmonic gearing transmission.

II. MATHEMATICAL MODEL OF DUAL WAVE TRANSMISSION

When we study the flat flexible gear of the end harmonic

gearing transmission, we can treat the flat gear as a thin plate

of uniform thickness which is held along the circumference of an

inside circle with a radius (r = rc).

Figure 1. Diagram of the Flat Flexible Gear

As shown in Figure 1, two concentrated loads p are applied on the

free boundary of the thin plate which also takes a torsional

moment "T" in the middle plane. For more precise analysis, the

effect of the bending moment due to engaging which will be

distributed according to a certain pattern in the engaging zone 	
/176

should also be considered. For simplification, we temporarily

ignore the effect of this engaging force. This effect on the

stress distribution will be solved by the proper adjustment of a

certain constant (Ref. 3).

From the plate and shell theory (Ref. 4), we can see that

the stress and the deformation state can be described by the T.

Karman's non-linear equations. Let us assume that the middle

plane stress function is ^ , and the displacement of any point on

the middle plane along the z-axis is w, then in a polar

coordinate ( r - T ), the group of non-linear equations can be

written as

2



D, a 'w	 1 aP 1 010 1	 aw

l a
7r-

'w 
a'A  1 00 a 1	 au' 9

+ r =	 aa^=) Or' - 2—L(-ar  r ar > Or ( r	 ar  + d

V v m = E
a	 1f [	 (

8'w
a'N )I

' a'w
-

1	 our	 ( 1)
ar	 r ar= \ r	 Or

I 
a'w

+ r  Or' A.

where, D - cylindrical rigidity of the plate D= E5 3 /12(1- 4 2 ),E and
u,elastic modulus and Poisson ratio respectively; 6- plate

thickness, i.e., the wall thickness of the flat flexible gear; q

- uniformly distributed load on the plate in the lateral

direction; v' - operator,

	

-
a 	 1	 a	 1 a=

- -07r- a

	

Or 	 T 	 + T = ^ _ ,

From the engineering point of view, it is not necessary to

include the geometric factors and mechanical factors to solve

these equations, because these two factors would complicate the

problem. This problem can be simplified into a small deflection

problem because the effect of the deformation due to the torsion

moment 'T" can be neglected since the rigidity of the flat

flexible gear is high. In addition, the gear is in a very slight

bending configuration because the maximum axial deformation W

of the flexible gear under the concentratedload is about the same

as the working height of the gear-tooth or the gear thickness.

Since a circular plate is under a concentrated load "P", the uniform

distributed load can be considered as q =0. when we substitute

=0, then equation (1) can be simplified as

a'	 1	 a	 1 a = r a 'w	 1 aw	 1 a 'w	 ( 2)v 2 v'w = ( ar= + r ar + r' a^' ) t ar, + r ar ' i 	 ^°

Let u, v, and w represent the radial,tangential, and axial

displacement respectively, based on the condition that the

strain of the middle plane is zero, and according to the

3



elastic thin plate theory we can easily find the geometric

equations as follows

au1 aw =
e, = ar + ? C ar , = 01

r	 }`	 (3)

	

e•=	
+r+Z\r ^l -01

+ ON (1 aw 0

The physical equations are found to be [41 and [51

	

_	 82w	 ! 1 aw1	 a'w \^
Mr - D[ ar' + µ 1 r & + '1 W

(

aw ` 1 a=w
M•--D

-1
 r ar + r' W& + µ 8r s , 1	(4)

M,.;;U-1A ) D ^ r a^ , W)
and
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e'
	 l	 u	 1	 `w

a r a=u.	 1 aw	 l a=w `	 ( 5)
Q•- -D rZ 1 a + —a—+ r—= -99—)  J

where, Er, E(f and Er(P - radial, tangential, and shear strain

respectively; M r , M 
T 

and M rcp - the bending moment and torsion

moment along the directions of r and w respectively; Qr and QV -

shear forces along the directions of r and T respectively.

III. AXIAL DISPLACEMENT

The axial displacement w can be solved with equation (2).

The following sections will find the solutions of these

differential equations.

1. Boundary Conditions

For a flat flexible gear with an inner holding circle r = r 

the boundary conditions of the inner holding side can be

expressed as

r r^

I`	
4



Since the outside circumference ( r = rb ) of the flexible gear is

free, hence,

(Mr)r.rb COO
	 (7)

In addition, there are two concentrated loads, 180 ° apart from

the x-axis of the free boundary; therefore the shear force is not

continuous. When the positions of the two concentrated forces

are treated in such a way that the phase difference is x, then

the period will be formed by the ac:umulation of a 2x - cycle

function. In the meantime, if we assume that the effect of the

concentrated-load is equivalent to a uniformly distributed load q

acting on the minute arc 	 2rb • a y , then we can use the method in

Reference (6) to expand the concentrated load into a Fourier

series, and use relation of q b =P/2r•Alf to determine the

corresponding constants. Finally, let us find the limiting value

by assuming 69-0, and accumulate the effect of the two

concentrated forces which have a phase difference of X. Then the

expanded Fourier series will be

P = 2P I + 1: cos nC")
jrro \ 2

and we can also find the other boundary condition of the free

boundaries as

Q _ BM,, ),.r
_2Pr1+COW

rOgl 	 e	 nre 12 -.s.4.e.	 )^	 (8)

2. Solutions of Equation (2)

From Ref. (5), equation (2) can be expressed by a series

introduced by A. Clebsch. Since T is measured on x-axis, we can

keep the terms containing only cosng . Moreover, there are two

concentrated forces, hence n is an even number. Then

W = Ro(r) + E R„(r) cog nQ'^
.m2.4.e.-	

(9)1

in which the coefficients represented by R0 (r) and Rn(r)

(n=2,4,6,...) arethe functions of the polar radius "r". 	 (They

will be abbreviated as R 0 Rn ). When equation (9) is substituted

into Equation ( 2), we obtain the following differential equation

5



n' d' R.	 1 d R. _ MY,

Let us introduce a non-dimensional variable P= r/r b , the we can /178

solve equation (1) as

R° = A° + r ;B°,9' +C° 1nQ +r!D°R'i nfl ('1 n-0Rf) 	 (11)
R. = r;A.0" + ► ;"B.Q + r; ,:C.Q" • ' + rb..'D..B - .,' (at n>2	 )

"	 (12)

When we utilized the boundary conditions, i.e., equations

(6), (7) and (8), we can obtain the values of the coefficients A 

Bo , Co , Do , AO , Bo , Co and Do.

For the solution Rol when n = 0, the group of linear

equations containing the coefficients A O , Bo , Co , and Do can be

derived from the boundary conditions. After the solution is

obtained, when we assume

'	 a° = (;rD/Pr; )A°f b° = OrD/P)B° , c ° = (.-D; Pr' )C° , d ° = (nD/P)D°t

then "Ro" can be expressed as

R° = ( Prp /nD)(o°+b,,6 +c°ln# +d°p 'ln#), 	 (13)
in which all the coefficients can be expressed as

o ° = - b °Ri -c ° lnP. - d °^l lnb

c° (1-P)	 (3+A)
bD- 2 (1+A)- d020+14)

(210. +1)(1+µ)-(3+µ)
Cc= - d °Q.	 1 -µ)+#-I(1 + p )	 (14)

d ° _ - 0.25.
where p i = rc/rb.

As to the condition n-.,-Z,  when we consider

OR

[

38 8'R° 
1 2R

° )]	

- P
aR° + µ 1	 a► /J	 = 0 ' La r\ r ' + r Vr r.r, 'rD '

6



we can obtain the group of linear equations containing the

coefficients A n , Bn , C n , and Dn , which can be obtained by solving

this group of linear equations. Let

a. _ (rD/Pr;" • ' )A. , b. _ (xD/Pr; •' )B., c. = (jrD/Pri")C., d. = (nD/Pr: )D. .

the R  can be expressed as

(15)

where

- R! 
/ n + 1	 'O"O 1

b. Q^C ^s. d.R

3+µ 1l
-[(n+1)(1-'0i)-Qi 

..
'i 

C,-	 n(n+1)0 -A)K 	(16)

[ (n- 1) (1 -J61) + 	
3+Ng..i 

+ 1 -µJ
d"	

n(n- 1)(1 -µ)K

K=( 1-Qi)(n=-1)+(0ii..i+l±µ)\0:" ♦2+1± N)'

Therefore, the axial displacement "w" of any point on the middle

plane of the flat flexible gear will be

w = :rD [(a, +b,0'+c,1nQ+do0'1n#) +	
/ 173

(0.^'+6.^- "+c„^""
..:...e.

+ d +fl''") eos n9'],
	

(17)

When R= 1 and f= 0', the axial displacement "w" reaches maximum

"wo ", then from equation ( 17), we can use "wo " to express the

equation for an axial displacement as

u',w =	 (a,+bofi'+ce10+ +d,R'In#)
(a,+b,)+ E (a. +b. +c. +d")	 (18)

. Wl.66.

Al

6.2.4.6.

7



end harmonic gearing

determined in the design

is very simple and easy to

ANGENTIAL DISPLACEMENT

the radial displacement "u"

In practical design, w o for the

transmission flexible gear is always

specification. Hence, equation (18)

use.

IV. RADIAL DISPLACEMENT AND T

From the first equation of (3),

can be expressed as

s	 2f(-A;-) dr - 3 ^ i f̂ 1W/!d^'

when we substitute (18) in this equation, and let

+6 ') + 1: ( o, +b, +c. + d o ) ,	 then after inte-

gration, we obtain

w - ( 4!2) r i'K0' iU, +2 

	

U" 00l1nW + r, U. oo,,: nm
•02.....-	 .........	 (19)(^, w)

In which

Uo = 8B 'lb o +do[(In,6)' - 3 ln,6+36]+d^(2b^+d,) clap-
(20)

+b, d ,} +2Qco[bo +2d,lnfl-d,J- cot$-'

P",1 lU..= (n+ 1)[2nboo'+nd 'a,+(n+2)c'c.+2ndoo.(Infl—n+1)J

+(n_1)[2nb,b. +nd,b.+ ( n - 2)c,d.+2nd,b.(Inp+ n 11),

+(n+3)[2(n+2)boc.+ (n+2)d,c.+2(n+2)d,c,(ln#-n+3)J

+	

W	 1 /J
(n_2(n-2)b,d.+ (n- 2)d,d.+2(n-2)d;d;(lnQ+n-3

+^- 1 "C' O ' + "+ 1 ^ acob.I
(21)

8



j-

U,w 	 p,,_,_ n'b:	 Jr^.,"+(^2) 'c.'^:.,^
(2n-1)	 2n+1	 (2n+3)

_ (n-_2) 'd;	
6	 , 2n(n+2)a.c"

(2n-3)	
+^n o. "^ +	 (2r+1)

-2n(n-2)b.d.,. - 2(n-2)(n+2)c.d„
(2n- 1)	 3 --

- 2n(n - 2)a.d.fl - 2n(n + 2)b.r .fit

U"'" 
_ nma .aw 0,.,._, - nma b,. r.,,

17+m-1	 n-m-1

+[n(m +2)a.cw+m(n+2)c.a.]
n+m+ 1

2)a.dw+m(n+2)c.bw]^._w.,-	 ---n- m+j -- -

nmb.o., ,r.._ , _ nmb.bw d .._.. ,

m - n - 1	 n+m+1

_ [n(m +2)b.cw +m(n _2)d.aw]^_m+^-
- [m(n- 2)d.bw_+n(m-2)b.d,]B_._w.,

a+M- l

+ (P.+2)( m+2)c.c,.^..*.^ _(n+ 2)( m -2)c.d„^...,,^
n+rn+j- 	 _ n-rn+3

(n-2)(m+2)d.cw r_ ".^ _ (n-2)(m-2)d.c.,
m-n+3	 n+M--3	 -

The integration constant Cn (p,•) can be determined by the

boundary conditions. When P- P,, and u - 0, then

C.(B,m) wC.(O,.T) w
_2
u -', ► j'K;' ^U, +2 1: U..co^n^

..s.4.e,

• dd.6 ._	 ..'.^.^. w.S.^.^...	
1•I.
	 (24)

(?2)

(23)

9



Thr tangential displacement v can be determined by the

second equation of equation (3), thus

r(r	 ) ' ]df.
+2rC-OT - ^ - J` n + 2U IW-F 	

(2S)

When we substitute equation (19) and the results of the second

derivative from the equation (18) with respect to 	 ♦, after
integration we obtain

1
V = 2 

u,I KO >r & l ( U. _ d-iv,) +C► ( R. IF).	 ( 26)

where

U.-2 Z 1 (L..-U...) sin nT+	 1 (U.-L,. ) (-!L + A sin2Rr)
..e.^.s n	 2	 /

2(m +n)	 +	 2(/11-11)	 ^	 (27)

in which U
con' Ucn' 

and Ocum explain the values of Uon , Un ; and

Unm when	 -p i . They can be obtained by substituting p=pi

respectively in the equations (20), (21) and (23).

V = - F. 4:R din 2rW	
/ 181

..:...a

",">	 !in(m - Of _ tin (M+n)m_1	 (28)
+ E E nmR „Rw[ 2(m- n) 	 2(m+n)

0.2.4.6.	 0.2.4.4. -

The integration constant C v (a,•) can be obtained by

considering the following two conditions: when p= p 1 , v - 0; and

when o - 0' and 90', v - 0. The physical meaning of the latter

is apparent: in order to satisfy the condit.-n that the strain in

the middle plane is zero for any value of 'Y', when i - 0' and 90'

"v" has to be zero. Therefore, we can ignore the terms which do

not satisfy the boundary condition in equations (28) and (27),

hence,

Cr (R. = Cy 061 1 V) - - Z U.22 K o' r : ' C U . -10`V. Is. a, .	 (29)

10
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r
V. ORIGINAL CURVED SURFACE EQUATION C 

Similar to studying of the engagement theory for the

harmonic gearing transmission, we define the middle plane

equation after the deformation of the flexible gear with the

initial curved surface equation C p . Based on the displacements
U, v, and w, we can obtain Cp.

Let us assume o 1 represents the equivalent rotating angle of
the vector generated by the tangential displacement of any

considered point on the flexible gear, then C 	 can be expressed

by the first order approximation as	 X _ ( ^ '^
+v)oov^^

S Y = (r.d +v) ljoT,^
Z awe	 (30)

in which,	 47, M T+v ,
Equation (30) is a basic equation for studying the end hC:^^r^^.ic

gearing transmission geometry.

VI. CALCULATION RESUirS AND CONCLUSION

For our convenience, we can write Equations (18), (19), and

(26) in Lhe following forms

v . —ul(wn/rb)!

V a V I (wo/ r ,, ) 1	 (31)

W = u'' LU ..

In application, for a flexible gear: r c 	(0.3--,0.4)rb,
therefore we conducted a series of calculations assuming a 1 - 0.3
and 0.4. In the calculations, we select P  - 0.3, and the terms

in the series n = 2,4,6,...20. The calculated results u', v',

and w', from a FtLIX C-256 computer, are shown in Figure 2 (a 1 =
0.3) and Figure 3 (p 1 . 0.4), in which the solid lines represent
the values of w'; dotted lines, v'; and dot-dash lines, u'. From

Figure 2 we can see whatever P varies, the maximum values of w'

and u' always occur at • - 0', yet the values of "v'" always vary

with p. For example, when 0- 1.0, the maximum v' occurs at

around •- 15'; and p= 0.6, 25 % Figure 4 shows the curves of
the maximum valuer if u', v', and w' vs p.

11



When p= 1, the values of u, v, and w are critical for the

engaging analysis of the end harmonic gearing transmission.

Hence, for the designer's applications, we calculated the values

(Table I) of u', v', and w' under the conditions of p 1 = 0.3 and

0.4 respectively when p = 1.

1.0

0.8

OA

0.4

10A

0

-0.1

c,	 \

M

o-

V-0-0.8) \ S0•
20° to* 60

Ms

).14

D.1

)-06

1.02
P
go*

_o,a

1/ 82

Figure 2 Values of u', v' and w', when p 1 = 0.3.

U, v' M
1.0

0.1

OA

0.4

0.1

0

Figu?. 3 Values of u', v' and w', when p 1 = 0.4.
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0 2

8 I

6 I

0

02

0.3	 n.5	 n.9	 .9

1.

0.

0.

0.

0.

4

.00

.60

.20

.08

.04

W(W)
1.6

1.2

0.8

U , w' v'

Figure G p 1 = 0.3, u', v' and w' vs

0.4

0	
20`	 40 	 60'	 80°

Figure 5 Theoretical Analysis of Actual Measurement
( p 1 = 0.37, p = 1)

In order to verify the accuracy of this calculation method,

we conducted the measurement of a flat flexible gear (with the

following dimensions: number of teeth z = 268, gear module m =

0.8mm, tooth width b = 13mm, thickness 9 = 2.Omm, rc = 40mm)

under the condition that wo = 1.6mm. Figure 5 shows the results.

In this figure, the solid line represents the calculated values,

and the circles represent the measured data (each datum point is

13



the average of five measurements) . The measurement shows calculated

value and the measured value exceed no more than 0.015mm.

Hence, the error is within the tolerance and the two values are

very close. It is concluded that the calculating method

recommended in this paper can meet the precision requirement of /183

the end harmonic gearing transmission analysis, and is a feasible

method.

Table I. Values of u', v', and w', when p= 1.0

Ot=0.30.4

u p

	
WO

	 YI	 I	 v,	 w,

0' 0.8321T26 0.0000000 1.0000000 0.9775204 0.0000000 1.0000000
5 . 0.7965759 0.0764656 0.9T988TT 0.9260779 0.0868258 0.9749692

10' 1	 0.7017223 0.1314390 0.9235048 O.T916194 0.1418512 0.9054893
15 - 0.5T5TO25 0.1551112 0.8410518

'	 20' I	 0.4468286 0.1556352 O.T449075 0.4541346 0.1384896 0.6937554
1	 25' 0.3325486 0.1406631 0.6453400 0.3179190 0.10T1461 0.5827968

30' 0.2385098 0.119236T 0.5481229 0.2150134 0.0717533 0.4803274
_	 35' 0.1636258 0.0947998 0.4548851 0.1396382 i	 0.0513040 0.3873TT1

40' 0.1052355 0.0684TO4 0.3553760 0.0849351 i	 0.0271207 0.3021504
45' 0.0515529 0.0417016 0.2798554 0.0464886 i	 O.OG51485	 1 0.2235859

t	 50' 0.0314350 0.01T2052 0.2001617 0.0217489 -0.0128444	 i 0.1529013
55' 0.0131310 -0.0020920 0.12891T3 0.0080536 I	 -0.0241142 0.0926124
60'	 1 0.0038425 -0.0145858 0.6081082	 1 0.0019453 -0.0299428 0.0443598
65' 0.0004945 -0.0209949 0.0180181 0.0001214	 ; -0.0299427 O.00T44T8
TO' 0.0006224 -0.0224488 -0.2250559 0.0004063 -0.0267283 -0.020T643
75' 0.0025T64 -0.0203551 -0.0548138 0.0016114 -0.0217060 -0.0430344
80' 0.0051915 -0.0155142 -O.OT92365 0.0033314 -0.0154536 -0.0604660
85' O.00T3893 -0.0084348 -0.0948413 0.047949 -0.0081088 -0.0121311
90' 0.0082858 -0.0000000	 I -0.1002553	 I 0.0053911 0.0000000	 I -0.0163083

14
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