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PREFACE

This Annual Status Report describes the results of work performed during the
first year of the NASA Hot Section Technology program, "3-D Inelastic Analysis
Methods for Hot Section Components" (contract NAS3-23697). The goal of the
program is to develop computer codes which permit more accurate and efficient
structural analyses of gas turbine blades, vanes, and combustor liners. The
program is being conducted under the direction of Dr. C. C. Chamis of the
NASA-Lewis Research Center. Prime contractor activities at United Technologies
Corporation are managed by Dr. E. S. Todd. Subcontractor efforts at the United
Technologies Research Center, MARC Analysis Research Corporation, and the
State University of New York at Buffalo are led by Dr. B. N. Cassenti, Dr. J.
C. Nagtegaal, and Dr. P. K. Banerjee, respectively.
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SECTION 1.0
INTRODUCTION

Aircraft powerplant fuel consumption and expenditures for repair/replacement
of worn or damaged parts make up a significant portion of commercial avia-
tion's direct operating costs. For modern gas turbines, both factors depend
heavily on the degree to which elevated flowpath temperatures are sustained in
the hot section modules of the engine. Higher temperatures reduce fuel con-
sumption by raising the basic efficiency of the gas generator thermodynamic
cycle. At the same time, these elevated temperatures work to degrade the dura-
bility of structural components (combustor liners, turbine blades and vanes,
airseals, etc.) that must function adjacent to or within the hot gaspath it-
self, leading in turn to larger maintenance/material costs. Pursuit of the
best compromise between performance and durability presents a challenge that
will continue to tax the ingenuity of advanced gas turbine design analysts for
years to come.

Hot section durability problems appear in a variety of forms, ranging from
oxidation/corrosion, erosion, and distortion (creep deformations) to occur-
rence of fatigue cracking. Even modest changes in shape, from erosion or dis-
tortion of airfoils for example, can lead to measurable performance deteriora-
tion that must be accurately predicted during propulsion system design to in-
sure that long-term efficiency guarantees can be met. Larger distortions in-
troduce serious problems such as hot spots and profile shifts resulting from
diversion of cooling air, high vibratory stresses associated with loose tur-
bine blade shrouds, difficult disassembly/reassembly of mating parts at over-
haul, etc. These problems must be considered and efforts made to eliminate
their effects during the engine design/development process. Initiation and
propagation of fatigue cracks represents a direct threat to component struc-
tural integrity and must be thoroughly understood and accurately predicted to
insure continued safe and efficient engine operation.

Accurate prediction of component fatigue lives is strongly dependent on the
success with which inelastic stress/strain states in the vicinity of holes,
fillets, welds, and other discontinuities can be calculated. Stress/strain
computations for hot section components are made particularly difficult by two
factors - the high degree of geometrical irregularity which accompanies so-
phisticated cooling schemes, and complex nonlinear material behavior associ-
ated with high temperature creep/plasticity effects. Since cooling air ex-
traction reduces engine cycle efficiency, concerted efforts are made to mini-
mize its use with the result that elaborate internal passages and surface
ports are employed to selectively bathe local regions (airfoil leading edges,
Touver liner lips, etc.) for which the high temperature environment is nost
severe. These cooling features frequently interrupt load paths and introduce
complex temperature gradients to the extent that the basic assumptions of one-
and two-dimensional stress analysis procedures are seriously compromised and
the use of three-dimensional techniques becomes mandatory. Even in the pres-
ence of cooling, component temperature and stress levels remain high relative



to the material's melting point and yield strength values. The combinations of
centrifugal, aerodynamic, thermal, and other mechanical loadings that typical-
ly occur in flight operation then serve to drive the underlying material re-
sponse beyond accepted 1imits for Tinear elastic behavior and into the regime
characterized by inelastic, time-dependent structural deformations. Thus, an
ability to account for both complexities, three-dimensional and inelastic
effects, becomes essential to the design of durable hot section components.

General purpose finite element computer codes containing a variety of three-
dimensional (brick) elements and inelastic material models have been available
for more than a decade. Incorporation of such codes into the hot section de-
sign process has been severely limited by high costs associated with the ex-
tensive Tlabor/computer/time resources required to obtain reasonably detailed
results. Geometric modeling systems and automated input/output data processing
packages have received first attention from software developers in recent
years and will soon mature to the point that previous over-riding manpower
concerns will be alleviated. Prohibitive amounts of Central Processing Unit
(CPU) time are still required for execution of even modest-size three-dimen-
sional inelastic stress analyses, however, and is chief among the obstacles
remaining to be remedied. With today's computers and solution algorithms,
models described by a few hundred displacement degrees of freedom commonly
consume one to three hours of mainframe CPU time during simulation of a single
thermomechanical loading cycle. A sequence of many such cycles may, of course,
be needed to reach the stabilized conditions of interest. Since accurate
idealizations of components with only a few geometrical discontinuities can
easily contain several thousand degrees of freedom, inelastic analysis of hot
section hardware with existing codes falls outside the realm of practicality.

The Inelastic Methods program addresses the need to develop more efficient and
accurate three-dimensional inelastic structural analysis procedures for gas
turbine hot section components. A series of new, increasingly rigorous, stand-
alone computer codes is being created for the comprehensive numerical analysis
of combustor liners, turbine blades and vanes. Theoretical foundations for the
codes feature mechanics of materials models, special finite element models,
and boundary element models. Heavy attention will be given to evolution of
novel modeling methods that permit non-burdensome yet accurate representations
of geometrical discontinuities such as cooling holes and coating cracks. A
selection of constitutive relations has been provided for economical or so-
phisticated description of inelastic material behavior as desired. Finally,
advantages which accrue from application of the improved codes to actual com=-
ponents will be demonstrated by execution of benchmark analyses for which
experimental data exist.
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SECTION 2.0

SUMMARY

The 3-D Inelastic Analysis Methods program is divided into two 24-month seg-
ments: a base program, and an option program to be exercised at the discretion
of the Government. During the base program, a series of new computer codes em-
bodying a progression of mathematical models (mechanics of materials, special
finite element, boundary element) is being developed for the streamlined anal-
ysis of combustor Tiners, turbine blades and turbine vanes. These models will
address the effects of high temperatures and thermal/mechanical loadings on
the local (stress/strain) and global (dynamics, buckling) structural behavior
of the three selected components.

The first year (Task I) of the base program dealt with "linear" theory in the
sense that stresses/strains and temperatures in generic modeling regions are
linear functions of the spatial coordinates, and solution increments for load,
temperature and/or time are extrapolated Tinearly from previous information.
Three linear formulation computer codes, hereafter referred to as MOMM (Me-
chanics of Materials Model), MHOST (MARC-HOST), and BEST (Boundary Element
Stress Technology), have been created and are described in more detail in
Sections 3.2, 3.3, and 3.4, respectively.

The second half of the base program (Task II), as well as the option program
(Tasks IV and V), will extend the models to include higher-order representa-
tions of deformations and loads in space and time to deal more effectively
with collections of discontinuities such as cooling holes and coating cracks.
Work on Task II (polynomial theory) has commenced and will be the subject of
primary interest in the next Annual Status Report.

2.1 CONSTITUTIVE MODELS

Three increasingly rigorous constitutive relationships are employed by MOMM,
MHOST, and BEST to account for noniinear material behavior (creep/plasticity
effects) in the elevated temperature regime. The simplified model assumes a
bilinear approximation of stress-strain response and generally glosses over
the complications associated with strain rate effects, etc. (Section 3.1.1).
The state-of-the-art model partitions time-independent (plasticity) and time-
dependent (creep) phenomena in the conventional way, invoking the Mises yield
criterion and standard (isotropic, kinematic, combined) hardening rules for
the former and a power law for the latter {Section 3.1.2). Walker's viscoplas-
tic theory, which accounts for the interaction between creep and plasticity
that occurs under cyclic loading conditions, has been adopted as the advanced
constitutive model (Section 3.1.3).

2-1



2.2 MECHANICS OF MATERIALS MODEL

In essence, the Mechanics of Materials Model (MOMM) is a stiffness method fi-
nite element code that utilizes one-, two- and three-dimensional arrays of
beam elements to characterize hot section component behavior. Limitations of
such beam model representations are recognized, of course, but are fully ac-
ceptable in view of the benefits of having a fast, easy to use, computation-
ally efficient tool available for application during the early phases of com-
ponent design. The full complement of structural analysis types (static, buck-
ling,. vibration, dynamics) is provided by MOMM, in conjunction with the three
constitutive models mentioned above. Capabilities of the code have been tested
for a variety of relatively simple problem discretizations (examples are pro-
vided in Section 3.2.2). Work to establish modeling guidelines for simulation
of two- and three-dimensional behavior is in progress.

2.3 SPECIAL FINITE ELEMENT MODEL

The MHOST (MARC-HOST) code employs both shell and solid (brick) elements in a
mixed method framework to provide comprehensive capabilities for investigating
local (stress/strain) and global (vibration, buckling) behavior of hot section
components. Development of the code has taken full advantage of the wealth of
technical expertise accumulated at the MARC Corporation over the last decade
in support of their own commercially available software packages to create
new/improved algorithms (Section 3.3.2) that promise to significantly reduce
CPU (central processing unit) time requirements for three-dimensional analy-
ses. First generation (Task I) MHOST code is operational and has been tested
with ? variety of academic as well as engine-related configurations (Section
3.3.4).

2.4 ADVANCED FORMULATION (BOUNDARY ELEMENT) MODEL

Successful assembly of the all-new BEST (Boundary Element Stress Technology)
code constitutes perhaps the most important accomplishment of the Task I ef-
fort. The difficult challenge of extending the basic theory and algorithms to
encompass inelastic and dynamic effects in three-space was effectively met by
combining the special skills and efforts of the research and programming teams
at SUNY-B and P&W. As with MOMM and MHOST, the initial version of BEST is.exe-
cutable and has been exercised with a number of small and large test cases
(Section 3.4.5). While MHOST and BEST are currently viewed as mutually com-
plementary, they are also competitors; and overall performance on large in-
elastic models will be watched with high interest as the codes mature.



SECTION 3.0
TECHNICAL PROGRESS

3.1 CONSTITUTIVE MODELS

Three material models are available for use with the mechanics of materials,
special finite element, and boundary element models: 1) a simplified material
model, 2) a state-of-the-art material model, and 3) an advanced material mod-
el. The simplified model uses secant moduli and assumes a bilinear stress-
strain response which is currently neither strain-rate nor temperature depen-
dent. Later versions of the simplified material model will include provisions
for both temperature and strain-rate dependence. The state-of-the-art material
model is a standard elastic-plastic-creep model (Reference 1). The advanced
model is a modified form of Walker's viscoplastic material model (References 2
and ?). The following sections provide a detailed discussion of each of these
models.

3.1.1 Simplified Secant Elastic Model

In the simplified elastic model, stress-strain curves for various strain rates
are the basic input material properties. Tension response is assumed to be the
same as compression response. The initial response is represented by an elas-
tic material with modulus, Ey, and Poisson's ratio, vg. At the conclusion
of the calculation for the response, an equivalent strain is predicted. At
this strain, two equivalent stresses can be considered: 1) the calculated
stress, and 2) the stress from the input stress-strain curves at the predicted
strain. If the two stresses are sufficiently close in value, then the calcula-
tions can be terminated. If the two stresses are not sufficiently close, then
the new modulus is taken to be the stress from the stress-strain curves divid-
ed by the strain, and the calculations are repeated.

This concept must now be expanded to multidimensional stress states. For this
purpose, consider an elastic material, then:

1+yv v .
E_ij = T‘ oij - ‘E' Ckk Sij (3.1"1)
where:
€43 is the mechanical strain tensor (i.e., total strain minus thermal strain),
ojj is the stress, and

§ij is the Kronecker delta.

3.1-1



The stress and strain can be partitioned into deviatoric and volumetric parts,

€

ij eij + 1/3 ekk Gij

oij Sij + 1/3 Ukk Gij

The volumetric components, from equation (3.1-1) are related by

1-2v 1
kk = TEF °kk = 3K °kk

where K is the bulk modulus.

The deviatoric parts can be shown to be related by

Let the equivalent stress be represented by

o = = » e o
o V3J2 v3/2 S1J S_IJ

where J2 is the second invariant of the deviatoric stress tensor.

Then, from equations (3.1-5) and (3.1-6)

5= o V372 ey, e

v ij eiJ

Similarly, the equivalent strain can be taken to be

£ = V3j2 = 3/2 ei. [

J U

where jo is the second invariant of the deviatoric strain tensor.

Equation (3.1-7) now becomes

Qi
]

<TE—\,> T = 262

3.1-2

(3.1-2)

(3.1-3)

(3.1-4)

(3.1-5)

(3.1-6)

(3.1-7)

(3.1-8)

(3.1-9)



Since only the ratio /¢ will be used to represent the material response, an
additional assumption is needed to obtain the second elastic constant. For
this purpose, assume the bulk modulus is constant, and given by equation
(3.1-4)

E EO 2 (1 + Vo) Go

K = 3 (1 - 2\;) = 3 (1 o 2\)0) = 3 (1 T 2\)0) (3.1"10)

where Gy, Eg, vg are the moduli and Poisson's ratio at the origin (i.e.,

o=e=0). The current shear modulus is known from the slope 5/%. Then from equa-
tion (3.1-9)

2 1+ v 6 21V & (3.1-11)
3 (I -2v) = 3 (1- 2v0) * '
Solving equation (3.1-11) for
veg|l- 3 (675) (3.1-12)
2 (1 + vo) + G
l - 2v° G0

Figure 3.1-1 presents the variation in Poisson's ratio with modulus. The
Young's modulus can be determined from

E=2(1+v)G=(1+yv)aole (3.1-13)

As an example, consider a uniaxial stress state

(s} i:j::l € 1 1
%55 = Yo ifl, jél and ey = {-ve : 2,3 (3.1-14)

Then

5' =0 and E = (1 + \)) € = ell - 522 (3.1"15)

The G, & curve is now the input stress-strain curve.

To illustrate the convergence of the iterative procedure, consider three par-
allel bars supporting an equivalent total load. The bars are assumed to be
elastic-plastic. Each has a Young's modulus of 10 x 10° psi and a hardening
slope of 0.5 x 10° psi. The yield stresses are different. The central bar
will be assumed to have a yield stress of 20 ksi while the two outer bars have
a yield stress of 10 ksi. The area of each bar is 1/3 in4, making a total
area of 1.0 1in2, Figure 3.1-2 illustrates that convergence has occurred in
six iterations for a total load of 30,000 1b and that each of the bars has
yielded.

The material constants for the simplified model are input to the computer code
through data input cards.

3.1-3
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3.1,2 Current State-of-the-Art Model
L

The current state-of-the-art model has been taken to be the classical elastic-
plastic-creep model that is available in the MARC code, and described in Ref-
erence 1. The creep model 1is essentially a steady state power law (stress)
model. The plasticity model includes isotropic, kinematic, and a combined
hardening law. Both the creep and plasticity models assume no permanent volu-
metric deformations. For the mechanics of materials computer code, the materi-
al properties for the state-of-the-art constitutive model are included in data
statements in subroutine SOACON.

Plastic Iteration Procedure

Consider the case of a small strain elastic-plastic response of a typical
structure. Sufficiently large applied loads will result in permanent or plas-
tic deformation. A procedure for calculating the response of the structure un-
dergoing plastic deformation is required.

To evaluate the response of the structure, the loading history is divided into
a number of incrementally applied loading steps. Each of these load increments
can then be applied sequentially to the structure. An iterative scheme is then
required to calculate the response of the structure to each individual 1load
increment.

At the beginning of a new Toad increment it may be assumed that the strain
will change in a manner analogous to the previous increment. As an initial
estimate all of the strain change is then assumed to be elastic. The change in
the stresses can then be calculated using Hooke's Law or

e -

where: Aoij is the incremental stress vector,

beyy is the incremental total strain vector, and

L?jk1 is the matrix of elastic constants.

If the resulting total stress is within the yield surface, the matrix of mate-
rial constants, Ljjk1 is simply given by

e -
Lijk] = Lijk1 (3.1-17)
If the resulting total stress is outside the yield surface, weighted material
constants and stiffness matrices will have to be calculated. It should be
noted at this point that if a load increment is exceedingly large and if there
is a sudden change in the type of loading, care must be taken in order to
iterate to the correct solution.

3.1-5



If the resulting total stress is outside the yield surface, the fraction of
the stress increment that remains elastic must be determined. This corresponds

to Ae?%l in Figure 3.1-3. Lf the yield surface in stress space is considered
to be given by
f(o.ij) = 0,
then the appropriate m in
flol7l + mac,.) = 0 (3.1-18)
ij ij’ -~ :

may be determined where 0;31 is the stress tensor from the previous increment.
The mean material matrix is calculated from

+ (1:m) LE3P (3.1-19)

L i3k

e
i3kl = ™k
e"p ° e . ;

where Lijk] is the tensor relating 533 and €y e
Once the tensor Ljjk1 has been determined, standard solutions can be applied
to find the incremental changes in the displacements, strains and loads. For
example, if the strains are given by

{ae} = [8] {au} (3.1-20)
where {au} is the vector of incremental nodal displacements, and [g] is the

matrix relating the vector of element strains {Ae} to the nodal displacements,
the stiffness matrix can be found from

[K] = J/‘[‘s]T [p] [8] dv (3.1-21)
v

where [D] is the matrix representation of the tensor Ljikg. The strain-dis-
placement matrix [g] depends on the formulation of the proglem.

The incremental nodal displacements and strains can be evaluated by solving
for au in

K] {au} = {aP} + {aG} (3.1-22)
and then applying equation (3.1-20).

In the mechanics of materials computer'code the stiffness matrix K is held
constant, and changes in the stiffness matrix are included in aG.

3.1-6
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Figure 3.1-3 Elastic-Plastic Strain Decompositions for Bilinear Stress-Strain
Law

The term AP in equation (3.1-22) is the applied incremental load. The term aG
is defined as the pseudo-load correction to the stiffness matrix due to in-
elastic strains which is added to equation (3.1-22). The aAG vector calculated
from creep strain, for example, is shown in equation (3.1-34).

One iteration cycle is completed each time the stiffness matrix is formed and
the resulting equations solved. At the end of each cycle the resulting solu-
tion must be tested for convergence. This is accomplished, by considering the

change in energy,

N N-1

N*-l)

N N-1
E" - E E° - E
r = N

E T2 (BV 4

where EN-1 §s the change in energy summed over all elements on the previous
cycle and EN is the energy including the present cycle.

(3.1-23)

An accurate solution will usually result if r is maintained less than 0.1 for
elastic-plastic problems.

3.1-7



If the solution has satisfied the convergence, the stresses and strains can be
updated and a new load increment added. If the solution has not converged,
then a new guess for the strains, based on the latest cycle, must be input and
the calculation procedure repeated. When the solution has not converged after
a given number of cycles, the program should exit from the load incrementing
Toop.

Figure 3.1-4 is a flow chart illustrating the small strain elastic-plastic it-
eration procedure,

For isotropic materials the moduli in equation (3.1-19) are given by

e E v
Liski =155 36ik6j1+ T2 % 6k1£ (3.1-24)
and
3/2 (S;: - Q::) (Spq - 9q)
e-p _ E v ij ij k1 k1
E1 AN Cr B TAF TS ek S Bl 6 ST W & S W R Rl
[1 +3 E JH+ 3 G:]oo
where E  is Young's modulus
v is Poisson's ratio
sij is the Kronecker delta
o, = He' + oy (3.1-26)
. P .
Q'ij = G t-:,ij (3.1-27)

éE. are the plastic strain rates

=P / N
€ = 2/3 E.ij E.ij (3.1-28)

G 1is the kinematic hardening slope
H dis the isotropic hardening slope
oy is the initial yield stress, and
Sij = oij - 1/3 okksij is the deviatoric stress.

The strain rate has been decomposed into elastic (including thermal), plastic
and creep components, or

RPN (3.1-29)
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The plastic yield surface was assumed to satisfy an equivalent Mises yield
surface given by

The method presented in Reference 4 is used to calculate the elastic-plastic
moduli.

ASSUME
A= Acel + pc0lp!
Y

ASSUME

Ao= A8 = EAe SOLVE

o flo+mag) =0
FORm
<INSIDE YIELD Y
MEAN STIFFNESS Ev:ﬁg‘gfs . ASSUME
L=mE+(1~mpelpl [=% ""ﬁ°+ o - Acel a¢ elpt
g O] =
L=E ‘

SOLVE
Kau=aP+AG

[

CALCULATE
Ae=BAu

UPDATE ERROR EXIT )
o=0+A0

€=¢e+ e

NEXT
INCREMENT

Figure 3.1-4 Elastic-Plastic Iteration Procedure
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Time Effects Iteration Procedure

The creep strain rate will depend in general on the stress, the accumulated
creep strain, the temperature and time. To illustrate the incrementing proce-
dure, assume that the creep strain rate is normal to the Mises yield surface
in stress space, then the creep strain rate is given by

n
o [,/3/2 Se1 Seq J 3/2 5y,
K J3/25_ s

mn mn

i3 (3.1-31)

For a specific time increment the incremental creep strains were approximated
by

cr .cr : .
Asij = eij Ato (3.;1"32)

The incremental displacements are

[K] {au} = {aP} + {aG} (3.1-33)

where
{26} =f[s]T [E] {ac€} av (3.1-34)

is the pseudo-creep load, {Aec} is the vector of element creep strain, and
[E] 1is the elasticity matrix. The strain increment can be calculated from
equation (3.1-20) and the strains, creep strains, stresses and displacements
can be updated.

A convergence test on the stresses should be performed. If the algorithm has
not converged, a shorter time step should be used and the calculations re-
peated. If the criterion has been satisfied, then the time step can be in-
creased. Figure 3.1-5 is a flow chart illustrating the small strain creep it-
eration procedure.
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Figure 3.1-5 Creep Iteration Procedure
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3.1.3 Advanced Viscoplastic Model

The viscoplastic model described in References 2 and 3 has been selected as
the advanced constitutive model. Reference 2 describes the basic theory; while
Reference 3 describes modifications to the form of the basic theory, and modi-
fications to the material parameters for Hastelloy X. The modifications pro-
vide more accuracy at relatively Tow temperatures.

For uniaxial loading the viscoplastic material model (Figure 3.1-6) reduces to

n o
é = [lc 'ZQI} Sgn(o 'Q) + (U "‘Q) é] - k% Loe> (3.1"35)
0w =~ Ko
Q = nyc - ny el (3.1-36)
C=¢ - -E- (3.,1—37)

where C is the inelastic strain,
Q is the back stress,
¢ is the stress,
e is the strain, and
K, 0ws N, K, N2, n3 and E are material constants.

The absolute value and unit ramp functions are represented by

=X x<0
x| ,{ X x50 (3.1-38)
and
0 x<0
<X> = {x x>0 (3.1-39)

The inelastic strain in equation (3.1-35) consists of two components: 1) a
time dependent power law creep component, containing the material constants n
and k, and 2) a time independent plastic component, containing the material
constants o, and k. The parameter o, becomes equivalent to the yield stress
as: 1) k, in equation (3.1-35), approaches unity, and 2) the back stress, @,
approaches zero. The back stress is a key variable in many viscoplastic ma-
terial models. Its evolution is given by equation (3.1-36). Equation (3.1-37)
represents the inelastic strain as the difference between the total strain and
the elastic strain,

3.1-12



(L)

p (%'5” Q.’)(I k)(d‘,,(,l_

Ci

T e R (30} /)]

. . an 0 i LAY 9
Qii:(nl+nz)cii+c”-d—e—8 -(n ”-ﬂil-r\,(.ii)(G-?;—d—@—@)- n‘i

~nyR _
Kik;~Kpe 7 :Boy
sEf+Ch

C'l:(a‘l)\(hk+2“€'i-a'i-8”(3x+2#)°8)/2#

m=|
: - . 2 2
G:(ny+nge "5")R+r\5(—3"niiﬂii) R

2
R'\/’s CiiSij

CinCyj o Sl (ZCikaj) (c,sé,s) #[3 CixCrj _ g ] A g
CoaCpa  Cpalpag \CpqCpq/ \ C,,Cy CoqaCoq "iade

=3x’z[

1
Sli'Uii' 3 aiid'kk'

347 %.(%sii"'nii)(%’ii"nq)

° 3
laterial constants xa}t on‘nnm-n| nnz nn3|n4|n50n5 |n‘l Ky OKZ'K ’ d(n depend on temperatur('

Figure 3.1-6 Modified Walker's Theory

Subroutine HYPELA in the mechanics of materials computer code integrates
Walker's viscoplastic equations and calls subroutine HYPCON to evaluate the
material parameters. HYPCON contains the latest estimates for the parameters
in the modified Walker's theory. Each load increment in the analysis is divid-
ed into NSPLIT subincrements. The integration of the constitutive equations is
performed by using forward differences with a step size determined by dividing
the load increment by NSPLIT. Subroutine HYPELA performs the integration in
two ways: 1) a fixed step size, or 2) a variable step size. In the fixed step
size, forward difference NSPLIT is the same for all Toad increments and sub-
increments.
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In the variable step size, forward difference NSPLIT is determined by the mag-
nitude of the change in a strain measure for every subincrement. The change in
the strain measure is defined as

\/3AJ2 .
E = AR + — (3.1-40)
where
AR = 2/3 AC_ij ACij (3.1-41)
AJ2 = 3/2 ASij ASij and (3.1-42)

the quantity ae is calculated and is stored as variable ERRORO. There are
three possible ways to determine NSPLIT. The method depends on the size of
ERRORO. If

ERROR2 < ERRORO < ERRORI, (3.1-43)

then NSPLIT remains the same for the next subincrement (ERROR1 and ERROR2 are
user-specified in HYPELA). If

ERRORO < ERRORZ, (3.1-44)

then NSPLIT is divided in two for the next subincrement and rounded (up) to
the nearest integer. If

ERRORO > ERROR1, (3.1-45)
then NSPLIT is doubled and the step is recomputed. The value of NSPLIT at the
end of the increment is stored in the state variable TEMP(16). The 1initial
value of NSPLIT is user-specified in HYPELA. The maximum value of NSPLIT is
specified by MXSPLT. If NSPLIT exceeds MSXPLT, the message:

"UNABLE TO REDUCE ERROR IN LESS THAN MXSPLT SUBINCREMENTS"

is written where the value of MXSPLT is inserted in the WRITE statement. After
this, the integration is performed using a constant step size.
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3.1.4 List of Symbols

Symbol
E-ij

aij

J2

al

o]

Lijke
{au}
{ac}
L8]
K]

List of Symbols
Referenced Within Section 3.1

Description

Strain

Stress

Kronecker delta
Poisson's ratio
Young's modulus
Deviatoric strain
Deviatoric stress
Bulk modulus

Second invariant of the deviatoric
stress tensor

Second invariant of the deviatoric
strain tensor

Equivalent stress

Equivalent strain

Shear modulus

Matrix of material constants
Incremental nodal displacements
Incremental stress
Strain-displacement matrix

Stiffness matrix
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Symbol
{ap}
{26}

EN

[E]
G

H
Q

c

As By SDZ: n,
m, ni, N2,
n3, n4, ng,
ng, n7, Ki,

Ko, k, 0w

List of Symbols
Referenced Within Section 3.1

Description

Incremental applied load vector
Incremental pseudo-load vector
Energy in Nth cycle

Convergence parameter
Elasticity matrix

Kinematic hardening slope
Isotropic hardening slope

Back stress

Inelastic strain

Material constants
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3.2 MECHANICS OF MATERIALS MODEL
3.2.1 Computer Program: Formulation/Description

The three-dimensional nonlinear mechanics of materials finite element computer
program utilizes an intersecting network of beams to model a structural com-
ponent. The program calculates the total strain as a linear function of posi-
tion in cross section and along the length of the beam. Three material models
are included in the code: the simplified material model, Walker's viscoplastic
material model, and the state-of-the-art material model. Static and transient
analyses can be performed with applied loads, thermal loads, and enforced dis-
placements. The lowest frequency and mode shape using either initial or tan-
gent stiffness is calculated; and buckling analysis is included in the static
problem using initial or tangent stiffness. The program flow is summarized in
Figure 3.2-1.

Input parameters to the computer code consist of information defining the mod-
el itself and information describing the method of solution desired. The model
is defined by beams which are connected at grid points. The element coordinate
system of a given beam is defined by an orientation grid point. The geometry
of a beam is rectangular in cross section, with the dimensions of the cross
section along the element coordinate axes specified. The material properties
are specified for each beam, including Young's modulus, Poisson's ratio, mass
density, coefficient of expansion, and yield stress. The initial temperature
of the beam network is input, and the time at initial conditions is set to
zero. A hardening slope for use with the simplified material model is entered,
with a zero slope indicating perfectly-plastic behavior. Boundary conditions
are specified by indicating at each node, excluding orientation grid points, a
constrained or nonconstrained condition for the six degrees of freedom.

Input associated with the selection of the method of solution include the pa-
rameters that indicate:

1. the choice of constitutive model to be used,
2. the choice of a static or transient analysis,

3. the choice of initial or tangent stiffness in solving for the lowest
frequency and mode shape, and

4. the choice of including buckling analysis with either initial or tan-
gent stiffness.

The number of integration points in each beam is user-specified; stresses and
strains are calculated at each integration point, and the user specifies be-
tween two and ten points along each element coordinate axis direction in each
beam. The convergence value, defining the allowable energy change between two
consecutive iterations in the static analysis or aliowable range in internal
energy for the adaptive time step calculation in the transient analysis, is
entered by the user. The number and type of loading increments are also speci-
fied. :
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!

APPLY BOUNDARY CONDITIONS TO
STIFFNESS MATRIX

!

INVERT STIFFNESS MATRIX

//
STATIC ANALYSIS TRANSIENT ANALYSIS
FREQUENCY USING INITIAL OR FREQUENCY USING INITIAL
TANGENT STIFFNESS STIFFNESS

|

Y

BUCKLING USING INITIAL OR f STOP
TANGENT STIFFNESS \
sTOP
sTOP

Figure 3.2-1 3-D Inelastic Mechanics of Materials Computer Program Flow Chart
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The stiffness and mass matrices for each beam in the element coordinate system
are computed and transformed to the global coordinate system. The stiffness
and mass matrices are then assembled to form the global mass and stiffness ma-
trices. The boundary conditions are applied to the stiffness matrix, and the
matrix is then inverted. Any change in the stiffness due to nonlinear effects
will be accounted for in the pseudo-load vector; therefore, the stiffness ma-
trix is only inverted once.

Depending on user-input, the program now is directed to the appropriate branch
of the program: static or transient analysis. For static analysis, the loading
increment is read from the data input, including forces and moments or en-
forced displacements, specified at each degree of freedom of the structure.
The temperature increment is also entered. An initial incremental displacement
vector is set to zero and strain, stress and pseudo-load vectors are calculat-
ed from the incremental displacement vector using the mechanics of materials
model selected by the user. The pseudo-load vector accounts for the effects of
nonlinearity and allows the use of the original stiffness matrix throughout
the calculations. The equations governing the system are as follows:

(k1 {su} = {aP} + {aG} (3.2-1)
where [K]

{au}
{ap}
{a6}

elastic stiffness matrix,

H

incremental displacement vector,

incremental applied load vector, and

pseudo-load vector, due to inelastic strains.

§a6} = S8BT [ET f{ac} av (3.2-2)
where [B] = strain-displacement matrix,
[E] = elasticity matrix, and

{ae}

Equation (3.2-1) is solved for the incremental displacement vector, au, which
is substituted for the initial incremental displacement vector and used in the
second iteration, continuing until the change in energy in two consecutive it-
erations is less than the convergence value input by the user. When conver-
gence occurs, the incremental loading, displacements, strains and stresses for
that loading increment are printed; the total load, displacement, strain and
stress vectors, as well as temperature, are then updated. Each loading incre-
ment is read in and executed similarly, and the values of stress, strain and
displacement for the total loading are calculated and printed upon conclusion
of the last increment.

inelastic strains.

The transient analysis is based on a simple Euler integration and includes a
self-adaptive time step scheme. Damping is not included directly in the tran-
sient analysis but is present in the viscoplastic material models. The loading
for each increment is the total load at that given time, which is entered into
the program by a user-supplied subroutine. The temperature increment and time
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step are also entered. As in the static branch, the initial displacement vec-
tor is set to zero and the strains, stresses and pseudo-load vector are cal-
culated using the designated mechanics of material model. An Euler integration
is then used to calculate current displacements at the end of the present time
step. The governing equations are as follows:

{ab = {ar} - IKD {au,} (3.2-3)
{av} = [M17L {a} * DT (3.2-4)
{aub = ({vh + 172 {av}) * 0T (3.2-5)
where {Al = acceleration vector,

{aF} = applied and pseudo-loads,

[K]l = elastic stiffness matrix,

{AUO} = displacement vector at beginning of time step,

{av} = change-in-velocity vector,

[M] = mass matrix,

DT = time step,

{AUI} = displacement vector at end of time step, and

{v}

A measure of the work done and the change in internal energy of the system
during the time step is computed, and the time step is adapted accordingly. If
the time step is accepted, the current displacements, strains and stresses are
printed, and the current displacements are inserted for the initial displace-
ments in the following time step. If the time step is unacceptable according
to the adaptive scheme, the time step is changed, the 1load is recalculated,
and the displacements are reset to the initial value at the beginning of that
time step. The analysis continues until the user-designated number of incre-
ments is completed.

velocity vector,

Following the static or transient analysis, the user has a choice between cal-
culating the Towest frequency and mode shape or all frequencies and mode
shapes. The method of solution for the calculation of the lowest frequency and
mode shape is the inverse power method, which is represented by the following
expression:

(a7 0 - 0D fxg ) = £xg) (3.2-6)
where [K] = stiffness matrix,
[M] = mass matrix,
[I] = identity matrix,
A = eigenvalue, and

{x}

The method of solution in the calculation of all frequencies and mode shapes
for a given problem is the Jacobi method, which is based on simple similarity
transformations.

eigenvector,

3.2-4



The procedure for determining the coefficients of the inverse stiffness matrix
is one that can represent the original stiffness of the structure or the cur-
rent stiffness including nonlinear effects. A small load is placed at one of
the nonconstrained degrees of freedom of the structure, and the displacements
are computed using the specified constitutive model. The coefficients of the
appropriate row of the inverse stiffness matrix are calculated by dividing the
calculated displacements by the applied force. This procedure is continued for
each nonconstrained degree of freedom until an inverse stiffness matrix, with
dimensions equal to the number of nonconstrained degrees of freedom of the
structure, is formed. If the frequency is to be calculated using the initial
stiffness of the structure, all variables used in the static or transient
analysis are set to the original values. If the tangent stiffness is request-
ed, all variables retain the current values for use in the frequency calcula-
tion. Only the initial stiffness option is available for use in a transient
analysis since current stiffness cannot be readily calculated.

Buckling analysis can be executed in a static problem. The buckling analysis
is based on a two step process similar to that in the NASTRAN finite element
code. In the first step, the beam loads are determined. In the second step, a
first order large displacement correction, proportional to the loads, is in-
cluded in the stiffness matrix. Buckling occurs when the determinant of the
new matrix vanishes. In the determination of the stiffness matrix used in the
buckTling calculation, the stiffness coefficients are calculated in the same
fashion as was described in the frequency calculation, with the user choosing
the initial or tangent stiffness. The beam loads are calculated using the ini-
tial stiffness matrix and then adding the pseudo-load vector. The actual buck-
1ing calculations are accomplished using the inverse power method to find the
critical buckling factor and the buckled shape.

3.2.2 Program Validation/Verification

Some of the test cases (i.e., TESTl - TEST5) which have been executed to vali-
-date the Mechanics of Materials Model (MOMM) computer code are summarized be-
Tow. Each of these cases test various segments of the theory and computer code.

TEST1 -~ Cantilever Beam With Axial Load

A cantilever beam is loaded with a single static compressive loading incre-
ment. The beam (Figure 3.2-2) is made up of one member, with all degrees of
freedom constrained at one end and all but two constrained at the end where
the 1oad is applied. The simple material model is used, and the loading causes
only elastic displacements. The lowest frequency and buckling factor are ob-
tained. The displacements, strains and stresses are found to be:

up = P/K = -10-4

e] = uy/L = -10-5

o1 = Ee1 = -100

3.2-5



100

+u]

*

A}\ T — U2
EA = 107
10

Kuj = EA/L = 106
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L

Figure 3.2-2 Schematic of TEST1 Beam

The resulting lowest frequency and buckling factor are:

Ku2
W
Flowest = 7o = __2$_— = 22,5
Ku2
)‘cr =K T 833.3

Agreement between these computed values and independent closed-form solutions

is exact.

TEST2 - Simply Supported, Centrally-lLoaded Square Plate

A quarter of the square plate is modeled using symmetry boundary conditions
(Figure 3.2-3). Four outside beams and four interior diagonal beams are used,
with dimensions of the beams chosen so as to reproduce the stiffness and mass
of the plate. One static loading increment is used with the simple constitu-
tive model in the elastic range. The nonconstrained degrees of freedom are

shown,
The theoretical central displacement is:
up = .01160 Pa2/D
up = -3.2428 x 10-6
The result from the MOMM computer run is:

up = -3.4712 x 10-6
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Figure 3.2-3 Square Plate Approximation Centrally Loaded

TEST3 - Beam With Axial Enforced Displacement (Static)

A static analysis (Figure 3.2-4) is performed using Walker's viscoplastic ma-
terial model with twelve loading increments. The properties of Hastelloy X at
a temperature of 871°C (1600°F) are used, and the tip displacement is enforced
at a strain rate of 3.9 x 10-3 seC°1; The computer program reproduces the
experimental results. A plot of the stress-strain curve obtained from the out-

put is shown in Figure 3.2-5.
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Figure 3.2-4 Schematic of TEST3
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Figure 3.2-5 Stress-Strain Response for TEST3
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TEST4 and TEST5 - Beam With Axial Enforced Displacements (Transient)

Both test cases contain a beam fixed at both ends with a node in the middle of
the beam (Figure 3.2-6). One end is displaced so that the strain rate equals
3.9 x 10-3 sec-l. A transient analysis is performed, with TEST4 containing
Walker's viscoplastic material model and TEST5 containing the state-of-the-art
material model. The viscoplastic material model uses the properties of Hastel-
Toy X at a temperature of 871 C (1600 F). Figure 3.2-7 shows the displacement
at the enforced displacement node, as well as the displacement at the center

node versus time for each model. The results agree exactly with those obtained
using a simple Euler integration.
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Figure 3.2-6 Schematic of TEST4 and TESTS
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Figure 3.2-7 Displacement History for TEST4 and TESTS

3.2-9



3.2.3 List of Input Parameters

The following 1ist contains the definitions of all variables that are included
Mechanics of Materials Model computer program,

in the input to the

NGP

GP(1,1)
GP(I,2)
GP(1,3)
NB

Ic(1,1)
IC(1,2)
IC(1,3)
IC(1,4)
IC(1,5)
NG

BC(I,1)

BC(I,2)

NM

XMAT(I,1)
XMAT(I,2)
XMAT(I,3)
XMAT(1,4)
XMAT(1,5)
XMAT(I,6)

Number of grid points
X-coordinate of grid point I
Y-coordinate of grid point I
Z-coordinate of grid point I
Number of beams

Grid point at end A of beam I
Grid point at end B of beam I
Orientation grid point of beam I
Geometry set number of beam I
Material set number of beam I
Number of geometry sets

Width of beam along Tlocal y-coordinate
geometry set I

Width of beam along local z-coordinate
geometry set I

Number of material sets

Young's modulus in material set I
Poisson's ratio in material set I
Coefficient of expansion in material set I
Zero stress temperature in material set I
Yield stress in material set I

Mass density in material set I
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TEMP(1)
SLOPE
N

NI
NIP

EE

Jd

ICM

ITRAN

ISIC

ILA

Temperature at initial conditions
Hardening slope for simple material model

Number of grid points containing degrees of
freedom

Number of load increments

Number of integration points in each direc-
tion in each beam

Static analysis: convergence parameter for

energy change between two consecutive it-

erations

o Transient Analysis: convergence parameter
for change in internal energy for the
adaptive time step calculation

Boundary conditions for each degree of freedom

JJ = 1: nonconstrained
JJ = 0: constrained

Constitutive model indicator

ICM = 0: simplified material model

ICM = -1: Walker's elastic-plastic-creep ma-
terial model

ICM = 1: state-of-the-art material model

Transient problem indicator

ITRAN = 0: no transient analysis
ITRAN = 1: transient analysis, forces input
ITRAN = 2: transient analysis, enforced dis-

placements input

Indicates modulus slope used for frequency
calculation

ISIC
ISIC

0: initial slope
1: current slope (not available in
transient problem)

Indicates choice of solving for lowest or all
frequencies

ILA
ILA

0: Tlowest frequency
1: all frequencies



IBUCK

ISICB

DF

DTEMP(1)
DTEMP(2)

Buckling problem indicator

IBUCK = 0: no buckling analysis

IBUCK = 1: buckling analysis (not available
in transient problem)

Indicates modulus slope used for buckling
calculation

ISICB = 0: 1initial slope
ISICB = 1: current slope

Applied load or enforced displacement for
each degree of freedom for an increment

Temperature increment

Time increment
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3.2.4 List of Symbols

List of Symbols
Referenced Within Section 3.2

Symbol Description Page
{A} Acceleration vector 3.2-4
{AF} Incremental force vector 3.2-4
{V} Velocity vector | 3.2-4
[M] Mass matrix 3.2-4
DT Time step 3.2-4
A Eigenvalue 3.2-4
[1] Identity matrix 3.2-4
{x} Eigenvector 3.2-4
f Frequency 3.2-6
T Aer Critical buckling factor 3.2-6
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3.3 SPECIAL FINITE ELEMENT MODEL
3.3.1 Literature Survey

Numerical technology available for use in nonlinear analyses of turbine engine
hot section components was investigated. An extensive literature survey was
conducted for MARC by Professor T. J. R. Hughes, Stanford University, as a
subcontractor, containing 352 references (Reference 1).

The first topic considered involved recent developments in global solution
techniques for nonlinear finite element equations, including time discreti-
zation methods and strategies for nonlinear quasi-static analyses. Literature
on linear equation solvers was also covered.

As the second item, the finite element basis and approaches for constructing
element stiffness matrices were studied with particular emphasis on continuum
and shell elements. Special elements were also discussed, including elements
for fracture mechanics applications.

The numerical treatment of constitutive models, in particular problems asso-
ciated with computational plasticity, was surveyed, including the effects of
large strains and rotations.

Topics such as the self-adaptive mesh refinement associated with error esti-
mates and error indications, and developments in hardware configurations in
association with coding strategies were included in the survey.

A few papers concerning the finite element modeling of hot section components
were uncovered and reviewed. These papers were mainly concerned with linear
systems with simplified geometry.

In the final section of the survey, new developments in the numerical treat-
ment of contact and friction conditions were studied by virtue of modern math-
ematical concepts of variational inequalities.

Overall, the current literature indicates that extensive research and devel-
opment needs to be carried out on new finite element code concepts in order to
obtain the significant gains in computational efficiency needed for three-di-
mensional inelastic analysis of hot section components.

Solution strategies in nonlinear finite element processes have been given much
attention in recent years. In particular, a class of computationally efficient
jterative solution schemes such as the quasi-Newton type techniques has been
developed for solving nonlinear finite element equations. To avoid reassembly
and refactorization of the tangent matrix and yet to achieve the quadratic
convergence properties of the full Newton-Raphson method, 1line-search, sub-
space search and secant search techniques have been introduced in the litera-
ture and have proven useful for certain classes of problems. Such techniques
are also combined with an automatic load increment size control strategy, usu-
ally referred to as arc-length type methods. A sophisticated iterative solu-
tion scheme with an adaptive nonlinear incrementation procedure is one of the
key ingredients for the solution of the present problem.
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Possible exploitation of dynamic relaxation and iterative solvers for linear
equations is suggested in the literature survey. The results reported to date
show that these methods are perhaps useful for well-conditioned problems, but
no convincing numerical results are yet reported for ill-conditioned problems
of engineering importance such as plates and shells, meshes with distorted
elements, and incompressible problems. Iterative procedures for linear equa-
tion systems resulting from nondisplacement methods need to be investigated
from a slightly different point of view in order to obtain some computational
advantage. It is anticipated that a straightforward implementation of algo-
rithms available in the Titerature is not robust enough to meet the present
purposes.

In the context of nonlinear dynamic analysis of hot section components, a num-
ber of time integrators were considered. It was strongly suggested that parti-
tion and operator splitting methods needed to be investigated in conjunction
with appropriate automatic schemes to determine the time step size. From such
a point of view, exploitation of a class of single step algorithms is possible
and perhaps most appropriate. A1l the important algorithms that appeared in
recent publications were covered in the Titerature survey. Progress subsequent
to the survey has also been reviewed at MARC.

It should be noted that no systematic investigation to date has been reported
on the methodology of adaptive time stepping algorithms. This is in contrast
to the numerous reports and scientific papers that have been found for auto-
matic load incrementation in the context of quasi-static finite element analy-
sis. It seems to be a major task to develop a dynamic transient solution algo-
rithm capable of handling nonlinear problems in a stable manner and control-
ling the time increment size adaptively. Only a few references dealing with a
rather primitive version of such a numerical solution were found in the liter-
ature survey.

A number of mathematical contributions noted in the survey were associated
with a posteriori error estimates and algorithms for adaptive mesh refinement
based on these estimates. These techniques were investigated only in the
framework of two-dimensional linear elasticity.

As summarized above, no existing method was directly applicable to three-di-
mensional inelastic analyses of turbine engine hot section components. Exist-
ing numerical technologies, together with the development of new methodolo-
gies, would be essential ingredients for an efficient finite element proce-
dure. Due to the three-dimensional nature of the problems in the present
project, it was anticipated that some sort of iterative approach could sub-
stantially improve the efficiency of the computational procedures.

From a computational point of view, algorithmic aspects and coding strategies
form the most important ingredients for successful numerical simulation of the
present problem. Indeed, a number of papers addressing this aspect of finite
element technology were included in the summary. However, the wide variety of
hardware configurations currently available does not allow us to establish a
single coding strategy to exploit all of the computing power available. It was
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observed that a basically sound and transparent code could be modified to im-
prove its performance in a specific hardware environment, but if a code is de-
signed to maximize its performance in a specific hardware and software config-
uration, then it would become extremely difficult to effectively transplant
such a code to different systems.

3.3.2 Formulation Development
3.3.2.1 Introduction

A finite element solution strategy was designed with particular emphasis on
three-dimensional inelastic analyses of turbine engine hot section components.
Key ingredients employed in this strategy are mixed variational formulations
and their iterative implementations; linear isoparametric finite element in-
terpolations with sophisticated integration techniques; advanced techniques in
computational plasticity, in particular the integration of rate independent
constitutive equations; and a class of single step, second order time integra-
tors.

For the spatial discretization, a version of the Hellinger-Reissner variation-
al formulation for solid mechanics is utilized as the basic variational state-
ment of the problem, where the displacements and strain components are taken
as the field variables. A linear Lagrangian finite element basis is used for
the interpolation of these variables as well as for the stress-strain law. The
radial return concept plays a central role in the computational plasticity.
The incremental iterative solution algorithm is, however, cast in the frame-
work of mixed finite elements, which results in a different algebraic system
of equations and hence, different convergence properties, which are generally
better than those of traditional displacement finite element methods.

The transient algorithms are looked at in a weighted residual manner, i.e.,
the time-space field is split in a logical fashion with the implicit and un-
conditionally stable nature of embedded time finite element discretization
being maintained, but the evolutional nature of the original problem pre-
served. One of the major exercises in the formulation development is to con-
struct a reasonable engineering criteria to determine the optimal step size at
each time increment.

Thus, for the class of problems stated in the definition of the task, the spa-
tial discretization method and the iterative procedure for linear and nonlin-
ear problems have been firmly established. The current procedures still leave
open certain possibilities for further improvement of convergence properties,
if higher order solution schemes such as the conjugate gradient method are
utilized. The transient algorithm, as well as its theoretical background in
conjunction with present spatial discretization techniques, needs further in-
vestigation in order to fully utilize the advantages of the present mixed it-
erative techniques in the context of nonlinear dynamics.
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3.3.2.2 Mixed Forms and Iterative Solutions

It is convenient to discuss the framework of the finite element methodology
used here in the rather general context of a three-dimensional continuous
body. The deformation is assumed to be small. For clarity, the development is
presented in terms of classical elastic conditions. The generalization to in-
cremental inelastic analysis is straightforward and involves the use of an
appropriate constitutive relationship together with incremental forms of the
variational equations.

Consider a deformable body © in three-dimensional physical space, of which the
boundary 32 is sufficiently smooth. Motion and deformation of the body is as-
sumed small. The deformation and stress history of the body is characterized
by three field variables: the displacement u, the strain ¢, and the stress o.
Using lower case subscripts to denote rectangular Cartesian components of vec-
tors and tensors with respect to a fixed spatial reference frame, the govern-
ing differential equations are

O',ij,i = p a.j - fj (3.3“’1)
955 = Diske ke (3.3-2)

and
E_iJ- = 1/2 (Ui’j + uj,i) (3:.3"'3)

where p is the density of material, a is the acceleration of the body given as
a time derivative of the displacements, and D is a fourth order tensor which
describes the material response at a given stress and strain state. The vector
f is the loading function due to the body force.

For a given initial state, a set of boundary conditions;

b 4 (3)
us = gj on  a%y (3.3-4)

A (1)

o“’ij"j = t,i On 892 (303-5)
completes the classical statement of the problem. Following the derivation
given by Zienkiewicz and Nakazawa (Reference 2), the first variations of the
Hu-Washizu variational principle are obtained via the Galerkin method of
weighted residuals:

*

* % * N
. + . . . o = N . + . . R PG
S{puj a dv S{uw 055 ¥ S{uJ £5 dv 8{41) u; T, dS,  (3.3-6)

3.3-4



[ g dV e Jer Dii, s, dV (3.3-7)
aeig %13 9V = 2eig Digke ok s :

and

* *
172 Jor (u. . *tu... 3o
é}ij ey 4V = 172 AL1J (uy 5 *+uy ) dv, (3.3-8)

where * denotes a virtual quantity. In the above equation the virtual dis-
placement is assumed to satisfy the homogeneous displacement boundary condi-
tion.

The above statement can be used as a basis for construction of a finite ele-
ment procedure. One of the major advantages of this form over the conventional
displacement approach is the explicit presence of stress and strain in the
variational form and thus in the finite element equations.

This is the main theme of the present formulation development and will be dis-
cussed in the following sections.

Use will also be made of the classical virtual work statement

* * * A
éhi’j Disee Y 4 = éhj (f; - paj) dv + 5£§i) u; T, ds. (3.3-9)

Note here that equations (3.3-2) and (3.3-3) are embedded implicitly in the
variational statement.

Direct discretization of the Hu-Washizu principle leads to a finite element
equation of the form:

0 0 B {u} {F} :
0. D_ -Q . = 0 3.3-10)
BT T o o 0

with u, ¢ and ¢ being the vector of nodal variables associated with the dis-
placement, the strain and the stress respectively.

Eliminating the stress terms algebraically, a finite element form similar to
the Hellinger-Reissner principle is obtained as:
F
(3.3-11)
0

0 +8Q-1p {u}
+pT(Q-1)TgT ) e

from which an iterative procedure is constructed.
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Using the discretized form of virtual work statement, equation (3.3-9), the
above form is modified.

K +BQ;lD u F + Ku
{ } = { (3.3-12)
+pT(Q-1)TBT -D e 0

with K being the usual finite element stiffness matrix. The recursive form
used here is:

-1

ku™1 - F o+ ki - BQ lpe” (3.3-13)

AT SU P (3.3-14)

which is in principle identical to an iterative method proposed by Loubignac
(References 3 and 4) and investigated further by Cook (Reference 5). It should
be noted that this procedure is used extensively in optimization theory (Ref-
erence 6) for a class of minimization problems with more explicit equality and
inequality constraints. In finite element computations, solution of incom-
pressible problems has been attempted using this class of iterative tech-
niques, which results in an algorithm of Uzawa (Reference 7). A recent pub-
lication by Fortin and Glowinski (Reference 8) covers the theory of the it-
erative solution for a wide range of constrained problems in mechanics.
Nakazawa, et al (Reference 9) show that the high order methods discussed in
Reference 8 improve the convergence properties of this solution strategy sig-
nificantly. The first attempt to unify the concept of an iterative solution
for mixed finite element methods is reported in Reference 10 where another al-
ternative economical way for solving mixed finite element equations is dis-
cussed.

In the computational procedure, the algebraic form is treated in an incre-
mental way, i.e.,

T R I (ot A (3.3-15)

and

Mo (o hyTeTy!  (3.3-16)

The stress is recovered directly from the strain, and therefore varies in a
similar way as the strain, i.e.,

oMl _ pen*l (3.3-17)

This completes the discussion of discretization and solution procedures for a
general class of problems in solid mechanics.
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In the present algorithm, the solution is initialized by the conventional dis-
placement stiffness equations and this stiffness array is used as the pivot in
the subsequent iterative solution. Because all the necessary conditions for
existence, uniqueness and stability are satisfied, the quality of the con-
verged solution is dictated by the strain interpolation. The displacement
plays a rather insignificant role other than as a preconditioner to the iter-
ative approach. This has been noticed in the early papers by Cantin, Loubignac
and Touzot (Reference 4).

Using appropriate diagonalization techniques for the matrix Q, the recovery of
nodal strain components does not involve a matrix inversion operation, and no
significant additional effort is required to compute and iterate on this quan-
tity. '

Once the matrix Q is diagonalized, the procedure to recover the nodal stress
becomes extremely simple requiring the evaluation of the constitutive Taw at
nodes where the strain is calculated.

The iterative solution procedure is readily applicable to a class of nonlinear
material problems such as rate-independent plasticity and involves evaluating
the constitutive law at each iteration cycle. This approach results in a
scheme similar to the Newton-Raphson method as used in finite element dis-
placement analyses. The only difference occurs in the procedures to evaluate
the residuals. Compared with the conventional displacement method, the number
of operations required for formation of the residual vector at each iteration
is reduced somewhat because the number of nodal points is usually far less
than the number of integration points in a given finite element mesh. This
saves time in the constitutive calculation.

The iterative procedure developed here provides in principle a powerful ve-
hicle to study large scale inelastic analysis problems in three dimensions.
The largest array appearing in this calculation is the same as that in the
conventional displacement method; however, the strain and the stress here are
evaluated at the nodes, and hence a better approximation for these field vari-
ables is obtained. This property, in turn, reduces the necessity of exces-
sively refining the finite element mesh to obtain accurate stress and strain
fields.

Numerical instability is often encountered in stress and strain fields calcu-
lated from a finite element displacement solution; this is often seen as os-
cillatory behavior in the numerical approximations and may lead to inaccurate
inelastic response of the discretized model. The present approach, being sta-
bTe in terms of both displacement and strain, eliminates the possible occur-
rence of such numerical problems.
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3.3.2.3 Element Technology

A family of linear Lagrangian finite elements has been used in accomplishing
the present task (Reference 11), but the element librarv is independent of the
global solution strategy and higher order elements can be added.

In two-dimensional and axisymmetric cases, four-noded quadrilateral elements
with nodal points Tocated at corners are used, with the displacement and
strain components taken as the primary variables. The constitutive equation
(3.3-2) is evaluated at the same nodes, and parameters associated with it are
stored together with the stress components. Eight-noded isoparametric brick
elements are utilized in three dimensions, and the same mechanism of repre-
senting all the quantities at the nodes is used. For the analysis of plates
and shells, a four-noded Lagrangian element is used incorporating the trans-
verse shear terms into a modified variational formulation of Reissner-Mindlin
type.

In order to implement the analysis procedures established in the previous sec-
tion, a number of terms must be integrated to form coefficient matrices. As
discussed in the context of penalty finite elements for incompressible prob-
lems, due care must be exercised in order to obtain a stable finite element
approximation. The integration options for linear quadrilateral elements are
four-point and single-point Gaussian quadratures, as well as the four-point
trapezoidal rule, as shown in Figure 3.3-1. For the three-dimensional solid
elements, e1ght-p01nt integration rules that correspond to the two-dimensional
four-point schemes are employed.

Evaluation of the stiffness matrix K associated with the displacement formu-
lation for the two- and three-dimensional elements may be done using either a
standard or a selective reduced integration procedure. In the selective inte-
gration procedure, direct (or normal) strain components are evaluated at four/
eight Gaussian quadrature points, whereas the shear components are dealt with
at the centroid of the element. This simple "trick" greatly improves the be-
havior of the elements, particularly in bending. In order to account for the
isoparametric distortion of elements, the terms in the stiffness equations are
represented with respect to a local element Cartesian coordinate system, the
definition of which is given by Nagtegaal and Slater (Reference 12) and shown
in Figure 3.3-2.

The 1oad vector {including the surface traction term) is integrated using full
Gaussian quadrature. The residual vector which appears in Equation (3.3-15) is
also fully integrated.

In the strain recovery phase, the use of reduced (single-point Gaussian) quad-
rature has been found stable and accurate, but the quality of the displacement
solution often deteriorates after a few iterations for a given increment. The
use of the trapezoidal rule which naturally results in the lumped (diagonal)
form of the Q matrix is found to be optimal. For certain cases, the quality of
the displacement solution is preserved when this integration procedure is
used, without any loss of accuracy in stress and strain approximations.

3.3-8



—
—X
X

Nodal points and sampling points
] O for the trapezoidal integration

[0 sampling points for the 'full’
Gaussian quadrature

A Sampling point for the 'reduced'
Gaussian quadrature

Figure 3.3-1 The Four Noded Linear Lagrangian Element in Two Dimensions
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Figure 3.3-2 Coordinate Transformation for Two-Dimensional Elements With Iso-
parametric Distortion
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For the shell element, an adjustable form of the selectively reduced integra-
tion technique has been applied to the integration of displacement stiffness
terms, to avoid singularity and numerical locking. The same options are made
available for the strain recovery at nodal points. To recover the strain at
nodes, a local Cartesian coordinate system common to all the elements joined
to the node is required. Vector and tensor components, initially defined with
respect to the shell element coordinates, are transformed to the local Car-
tesian system using appropriate operations.

3.3.2.4 Inelastic Constitutive Models

Three inelastic constitutive models have been implemented into the MHOST pro-
gram. In order of increasing sophistication, these models are as follows:

Approximate Constitutive Model

This model approximates the global stress-strain behavior with a nonlinear
pseudo-elastic model. The model is described in detail in a report by
Cassenti (Reference 13). A secant modulus procedure is used for the gen-
eration of stress increments and constitutive equations. This simple model
does not allow for numerous important effects actually occurring in the
cyclic loading of hot section components. Nevertheless, it definitely has
some usefulness in obtaining some indication of the degree of nonlinearity
in simple load simulations.

State-of-the-Art Constitutive Model

This model includes the approaches most commonly used for inelastic analy-
sis of hot section components. It combines state-of-the-art time-indepen-
dent plasticity with isotropic (and in the near future, also kinematic and
combined) strain-hardening, a classical creep model in series with the
plasticity model and a thermal expansion capability. In addition, elastic
and inelastic properties can be made temperature-dependent. The material
may contain initial anisotropic behavior for the elastic properties, yield
surface definition and coefficient of thermal expansion.

In the plasticity model, the radial return method is used for stress re-
covery and the tangent modulus approach is used to generate the stress-
strain law. In the creep model, a simple explicit procedure is applied for
time integration of the creep strains. Both methods can also be regarded
as state-of-the-art methods for implementation of such models.

The state-of-the-art model includes most of the important effects occur-
ring in cyclic loading of hot section components. However, some weaknesses
exist in load reversal situations, in particular with respect to interac-
tion between plasticity and creep effects; if these effects are very im-
portant, the advanced model should be employed.
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Advanced Constitutive Model

The integrated creep-plasticity model orginally developed by Walker (Ref-
erence 14) and later modified by Cassenti (Reference 13) was implemented
into the HOST program. The model is described in detail in the report by
Cassenti (Reference 13). Although both time-independent plasticity and
creep effects can be distinguished in the model, definite interactions
have been included on the single-point level. In addition, reversed load-
ing effects are included more accurately in this model than in the state-
of-the-art model.

An explicit subincrement procedure with optimal time step selection is
used in the stress recovery procedure for this model. The elastic (but
temperature dependent) stress-strain law is used for the formulation of
the stiffness matrix; hence, the iterative algorithm for this model is, in
fact, the modified Newton method.

The advanced constitutive model allows accurate material modeling for hot
section components. It should be noted, however, that the complexity/
generality of the model is also its major drawback. Almost a dozen tem-
perature dependent material constants need to be determined experimentally
before the model can be applied.

3.3.2.5 Time Integration

For a class of nonlinear problems to be dealt with in the present task, dynam-
ic effects were taken into account. A recursive form is derived and implement-
ed here, which is conceptually based upon the embedded time (temporal) finite
element concept.

The solution of an evolution problem lies in a four-dimensional time-space.
Therefore, in the formulation it is necessary to take temporal as well as spa-
tial variations into account using a four-dimensional basis for the discreti-
zation. However, as demonstrated in Section 3.3.3.2, the differential opera-
tors governing the evolution of nonlinear structural mechanics can be split
apart and the dependency of the solution upon each independent variable can
now be treated separately. Such a separation of variables is of some impor-
tance in dynamic situations, because the differential equation consists of
different characteristics with respect to each independent variable, that is
hyperbolic in time and elliptic in all spatial dimensions.

To preserve the evolutional nature of the original problem and to take into
account the hyperbolic nature of temporal operator, the discretized system of
the embedded time finite elements is used recursively from one time level to
the next. Hence, the equivalent form is derived by integrating the spatially
discretized form of finite element equations in time. It is noted that a non-
symmetric weighting function is used in this procedure due to the well-known
conditional stability of finite element procedures for hyperbolic systems.
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Using the two-noded time element and an appropriate nonsymmetric weighting
function, the algebraic system becomes identical to the generalized Newmark-g
finite difference expressions.

In each time element, the displacement increment obtained by the integration
scheme is fed into the same discrete strain-displacement equation (3.3-14) to
obtain the first correction vector, and then the residual vector is updated to
produce the new displacement increment. The residual at the end of each time
increment is carried to the next time level so that the overall equilibrium is
satisfied globally in the sense of embedded time finite element methods.

The size of the time element is controlled adaptively with respect to an ener-
gy weighted average of the relative phase errors, based upon the contributions
of strain and kinematic energy in the deformation represented by a time ele-
ment.

3.3.2.6 FEigenvalue Extraction

Eigenvalue extraction is utilized in the MHOST program to obtain both the dy-
namic model frequencies and collapse load estimates. In addition to the eigen-
values, the eigenvectors are also obtained.

The subspace iteration technique has been implemented in the MHOST program.
Using this method, the global stiffness and mass matrices are transformed into
a subspace. A threshold Jacobi method has been used to obtain all of the
eigenvalues in the subspace. This method has been found to converge very
quickly. The program iterates forming new subspaces until convergence is ob-
tained.

This method has been developed for the extraction of a Targe number of modes
in a large system. This is typically what is required for modal dynamic use.
The method has not been applied as frequently to the calculation of buckling
modes, where only a few modes are required. It is anticipated that this is an
area where future work may be fruitful.

An important issue in the successful convergence of this method is in the
choice of the initial trial vectors. Currently, a simple scheme is being used,
where the degrees of freedom with smallest K/M ratio are given the greatest
weight.

Currently the lumped mass matrix is being utilized.

3.3.3 Program Development

3.3.3.1 Introduction

A finite element code (to be referred to as the MHOST program) has been de-
veloped by MARC incorporating the formulation and solution strategies pre-
viously described. The framework of the code is built on the well established

foundation of finite element displacement coding for nonlinear structural
analysis.
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The mixed interpolations and the iterative procedures are built into the MHOST
program as additional operations to the standard procedure, and no major
changes are required inside of the finite element computations. One of the ma-
jor differences, however, from the user's point of view is that all informa-
tion is available at the nodal points rather than at the element integration
points.

The current version of the MHOST program is essentially a vehicle to explore
the capability of the present strategyeand no attempt has been made to opti-
mize the computational efficiency at the coding Tevel. The program is written
in a clear manner in order to achieve high productivity in the formulation and
program development.

In this section, a technical note is provided on the overview and control
structure of the MHOST program, the element library and the nonlinear solution
capability of the system.

3.3.3.2 Overview and Control Structure

The MHOST program is written in FORTRAN IV with commonly accepted options, and
has been tested on the PRIME Primos 18.2 FTN compiler and on the IBM/CMS
FORTRAN H extended compiler with the optimization level 2. The advantages of a
virtual storage system are exploited by storing most of the information in the
core memory. and no special file input/output operations are utilized. Hence,
the code is portable to other virtual memory systems, with Tittle conversion
effort necessary. The code can be run either interactively or in a remote
batch mode.

The main functions of the MHOST code are illustrated in Figure 3.3-3, which
depicts a number of processors devoted to specific operations. In the follow-
ing paragraphs, the functions of these processors will be briefly discussed.

A user-friendly, free-format input processor is attached which reads in the
data from the main input channel. The input data consist of PARAMETER DATA,
MODEL DATA and INCREMENTAL DATA. The PARAMETER DATA specify the size of the
model and select the options for the integration and the types of loading. The
MODEL DATA provide the definition of the finite element model including the
boundary conditions and load data for the first increments. The INCREMENTAL
DATA section provides additional loading data and boundary conditions for each
load step of the incremental solution.

Data of different types within the three major data blocks are identified

using keywords. The keywords available for use in the PARAMETER, MODEL, and
INCREMENTAL data blocks are Tisted and defined in Section 3.3.5.
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Figure 3.3-3  The MHOST Program Main Control Flow
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The input processor passes information to the main finite element processor in
which the iterative solution for mixed finite element equations is carried
out. The flow chart of this section of the MHOST code ‘is given in Figure
3.3-4, which also includes additional operations to the conventional displace-
ment solution indicated by bold lines.

During an increment, the initial solution of the iteration for the mixed pro-
blem is carried out in exactly the same manner as the displacement method,
-with the converged stress and strain field of the previous increment taken as
the initial state to calculate the tangent array. The mixed interpolation then
takes over the process, and the tangent array becomes part of the strategy.
The nodal strain is recovered from the displacement solution, and then the
constitutive equation is integrated at the nodal point level to obtain the
nodal stress array. The new residual vector is formed using this new state of
stress. The jteration is repeated until the norm of the residual vector be-
comes less than the prescribed tolerance.

The size of the new incremental load is adaptively calculated when the auto-
matic incrementation routine is invoked. Otherwise, the input data for the
next increment are loaded and the above procedure is repeated until the stop
flag is set.

The output processor generates a report printout on the line printer channel
at the end of every increment. When the restart file and the plot file are
requested, this processor generates these files and catalogues them in the
system,

As dictated by the mixed formulation of the problem, all the information pro-
duced by the MHOST code is associated with nodal points. In the options to
generate the line printer file, however, the element integration point infor-
mation is made available using the values interpolated by the shape function
from the nodal values.
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Figure 3.3-4 Detailed Flow Chart for Iterative Solution for Mixed Problem
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3.3.3.3 Element Library

The control structure of the code is independent of the element type used in
the analysis described in the formulation development Section 3.3.2.2. The
operations associated with the element technology are coded in the element
1ibrary subroutines. This class of subroutines consists of the shape func-
tions, the derivatives of shape functions with respect to the global coordi-
nate system and the element Cartesian coordinate transformations. These in-
dividual components are merged into the macro subroutines which assemble ma-
trices used in the solution procedure. These macro subroutines are constructed
for every type of geometric feature of the model, i.e., plane stress, plane
strain, axisymmetric and, three-dimensional continuum. When the MHOST program
is executed, the upper level control routines select the appropriate macro
element library subroutines; and then each macro subroutine, in turn, selects
the lowest Tevel element Tibrary subroutines.

In the current version of the MHOST program, the bottom level element Tibrary
consists of only two element types, i.e., a four-noded two-dimensional element
and an eight-noded three-dimensional element. The structure of this code al-
Tows the user to enhance the element Tibrary without major difficulties.

The macro level subroutines consist of the lumped mass matrix routine to form
Q, and the displacement strain matrix routine to form B. No element Tlevel
operation is necessary for the stress recovery operations. For shells, the
geometrical features of the problem require some coordinate transformations
which are defined only at the element level.

3.3.3.4 Nonlinear Analysis Capabilities
The following geometric types are included in the MHOST program:

truss in three dimensions,
plane stress,

plane strain,

axisymmetric solid,
three-dimensional solid, and
shell in three-dimensions.

AT L WN
o s e e o

The nonlinear constitutive equations built in this code are evaluated once at
each iteration loop when the nodal stress is recovered after the strain-dis-
placement solution.

The material laws discussed in the formulation development Section 3.3.2.2 are

readily built into the present version of the MHOST code leaving the possi-
bility of major modification by means of user subroutines.
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3.3.4 Program Validation/Verification

The validation/verification of analysis capabilities is an important step in
the computer program development process. Validation/verification of the MHOST
finite element program is a joint MARC/Pratt & Whitney effort, and involves
comparing MHOST results with those obtained from closed form solutions, the
MARC General Purpose Structural Analysis program, and hardware tests.

The simplest validation cases involved subjecting several element types to
uniaxial loading. The finite element mesh and applied loads for a plane stress
block are depicted on Figure 3.3-5. After three increments of loading into the
plastic range, MHOST and MARC results agreed to three significant figures. The
mesh shown on Figure 3.3-5 was also analyzed using the four node plane strain
quadrilateral element and agreement between results from the two finite ele-
ment codes was also very good (three significant figures). In addition, a
similar mesh of axisymmetric elements was exercised for the case of uniaxial
tension. After three increments of loading, results from both codes agreed to
two significant figures, except for the plastic strains. Here, MHOST pre-
dictions were about 2% smaller than MARC values.

The three-dimensional block shown on Figure 3.3-6 was placed in uniaxial ten-
sion by prescribing displacements in the x-direction. The MHOST results exhib-
ited homogeneous uniaxial behavior in the plastic range after three increments
of prescribed displacement, and numerical values were in excellent agreement
with a closed form solution.

A simple linear temperature analysis case was created by constraining the ends
of the mesh shown on Figure 3.3-5 and subjecting it to a uniform increase in
temperature. MHOST results were identical to the closed form solution. '

The more complex case of the elastic response of a cantilever beam subjected
to a moment load was also analyzed using the MHOST program. The rectangular
finite element mesh and loading data are shown on Figure 3.3-7, Five Loubignac
iterations were performed and the results obtained using various numerical
integration procedures are presented in Table 3-I. Run A which employs selec-
tive stiffness integration and strain-displacement integration by the trape-
zoidal rule shows the best (essentially exact) results.

Highly irregular element shapes are often used in models of gas turbine com-
ponents in order to minimize problem size and, hence, control analysis costs.
Since the performance of most quadrilateral and hexahedron elements deterior-
ates with increasing departure from parallelepiped shapes, the shape sensiti-
vity of these elements must be quantified in order to evaluate the accepta-
bility of meshes proposed for practical applications. The effects of Loubignac
iteration on the shape sensitivity of the quadrilateral plane stress element
were examined using a cantilever beam modeled with skewed meshes and subjected
to a pure moment load as shown on Figure 3.3-8. Results were obtained for
three values of the mesh skewing parameter ©(0°, 22.5°, 45°) defined on the
figure.
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Table 3-I

Cantilever Beam: Loubignac Iteration Comparison

Exact Run A Run B Run C
Tip Displacement (in) 2.4 2.3988 3.4951 2.2699
Stress (psi) 6000 6005.1 4368.1 5710.7
Stiffness Strain-Displacement Residual Force
Integration Integration Integration
Run A Selective Trapezoidal Full Gaussian
Run B Full Gaussian Full Gaussian Full Gaussian
Run C* Full Gaussian _ Trapezoidal Full Gaussian

*The results are identical to the full Gauss stiffness matrix integration in .
conjunction with the reduced integration strain recovery integration.
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The behavior of the tip displacement and a typical extreme fiber bending
stress are plotted on Figure 3.3-9 as functions of the number of iterations.
Values for the cases of full and selective stiffness integration are shown on
the figure (strain-displacement integration was performed using the trape-
zoidal rule in both cases). Displacements and stresses approach exact values
as the number of iterations is increased and the improvement in these results
is dramatic in the first few iterations. Hence, Loubignac iteration is an ef-
fective technique for minimizing the deterioration in accuracy associated with
the use of irregular meshes. The positive effects of using selectively reduced
element stiffness integration are apparent; two to four fewer iterations are
required to obtain results equivalent to full element stiffness integration
values.

The MHOST four node shell element was used to analyze a simply supported
square plate under the action of a uniform pressure. The finite element model
including geometry, loads and boundary conditions is shown on Figure 3.3-10.
An elastic analysis with five iterations was performed. The thickness/length
ratio for the plate is very small (0.005) so comparisons of MHOST results with
the classical thin plate solution in Reference 15 are appropriate. The exact
and computed values for lateral displacement and My at the center of the
plate as well as the values for M, at the x = 1.0, y = 0.0 Tlocation are
shown 1in Table 3-II. The MHOST results at the center of the plate are excel-
lent (errors less than 2 percent) and an adequate representation of the zero
moment at mid-edge is also obtained.
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Table 3-I1

Simply Supported Plate: Uniform Pressure Load

ltem Exact
Center Displacement (in) -7.093
My at x = 1.0, y = 0.0 (in-1b/in) 0.00
My at Center (in-1b/in) -1.916
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The MHOST program has been used to determine the elastic-plastic response of a
thick cylinder under the action of a uniform internal pressure pj, Figure
3.3-11. The cylinder has internal radius r=a=1.0 and external radius r=b=2.0,
with an axial (i.e., z-direction) thickness of 1.0. The cylinder is modeled by
twenty plane strain axisymmetric elements, each with radial thickness 0.05,
Figure 3.3-11., Plastic behavior starts at the internal radius and propagates
radially outward as py increases. The material is elastic-perfectly plastic
with yield stress oy=45000. Other material properties are Young's modulus
E=30. x 109 and Poisson's ratio v = 0.3,

Results for this case are shown in Figure 3.3-12, where the axial stress oy
(normalized) in the elastic region is plotted as a function of the internal
pressure loading pj (also normalized). Here, k = oy/V3. For completely
elastic behavior, the axial stress is constant in the radial direction and
varies linearly with p5j along the straight line in Figure 3.3-12. For elas-
tic-plastic behavior, the axial stress o7 is constant only for the elastic
portion of the cylinder, but varies considerably in the surrounded elastic-
plastic region. The value of o7 plotted here is that associated with the
constant elastic region result. The MHOST program values clearly show very
good agreement with the theoretical results obtained by Prager and Hodge
(Reference 16).

In addition, a plate with a central hole was analyzed via MHOST and results
were compared with MARC values for identical geometry and loading. The finite
element mesh for this case is pictured in Figure 3.3-13, where both node and
element numbering are indicated. The hole of radius 1.0-inch Ties in a 6-inch
by 6-inch square region, with symmetry conditions existing along both the hor-
izontal and vertical axes, so that only one-quarter of the region need be con-
sidered. Appropriate displacement symmetry boundary conditions are imposed
along the left side (i.e., at nodes 28, 30, 25, 20, 22, 24, 35) and along the
bottom side (i.e., nodes 15, 18, 10, 3, 6, 9, 31) boundaries. Uniform pressure
loading is applied along the top boundary, i.e., along side 33-34 for element
23 and along side 34-35 for element 24. The elastic material properties used
are as follows: E = 30. x 105, v = 0.3, The yield stress is 30. x 103,
with a piecewise Tinear stress-plastic strain curve applying after yielding.

Comparisons of the results are presented in the next two figures. Figure
3.3-14 shows the normalized oy stress at the most critical internal radius
Tocation (i.e., node point 15) as a function of normalized oppap external
load. In addition, corresponding values are also presented for the integration
point in element 8 Tying closest to node point 15. The opngM stress is 10 x
103 and represents the theoretical external pressure load at which plastic-
ity is theoretically incipient at node point 15. The node point values associ-
ated with MARC were obtained from a simple isoparametric bilinear fit of the
integration point values of element 8. The straight line unconnected to any
data points represents the theoretical purely elastic response at the inner
radius. As can be seen from this figure, the oy values agree reasonably well
between MHOST and MARC; in fact, overall agreement between the two sets of re-
sults improves as the external pressure loading increases. In a similar man-
ner, Figure 3.3-15 shows the plastic strain component, -efL, varying with
normalized external load at the same node and integration "point Tlocations.
Again, agreement between MHOST and MARC is quite good, even as the external
pressure .1oad increases.
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Figure 3.3-13 Finite Element Mesh Node and Element Numbering for Plate With
a Hole
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Several structural problems for which test data is available have been select-
ed for analysis using the MHOST program. The first of these configurations is
the NASA benchmark notch fatigue test specimen (Reference 17).

Elastic analyses of the flat, double-notched uniaxially loaded specimen were
performed using the fine and coarse meshes shown on Figure 3.3-16. In this
case, the coarse mesh was defined with one-eighth the number of elements em-
ployed in the fine mesh. The elastic strain results from analyses using the
two meshes are plotted together with test results in Figure 3.3-17. The micro-
strain at the surface of the notch for the fine mesh increased from 1705 to
1818 when three Loubignac iterations were employed. The latter value compares
favorably with results reported in Reference 17 (1800-1900). Agreement between
fine mesh values and test results at other locations is also very good. The
microstrain at the surface of the notch produced by the coarse mesh with three
jterations (1813) is nearly the same as the iterated fine mesh value and is
superior to the standard (no iteration) fine mesh value. This result demon-
strates the effectiveness of the dteration procedure in conjunction with
coarse meshes and is especially significant because the coarse mesh with it-
erations used only one-tenth the computer time required to analyze the fine
mesh without iterations.

Elastic-plastic analyses of the benchmark notch specimen are now in progress
The advanced constitutive model is being employed in these analyses.

Another MHOST verification problem is related to a combustor application. Con-
ventional full hoop combustors are subjected to large thermal gradients in the
radial direction, as well as local streaking in the hoop direction. It is the
interaction of these effects that causes failure in the form of low cycle fa-
tigue (LCF) cracking and Tocal oxidation. With these failure mechanisms in
mind, advanced combustors have eliminated the radial thermal fight by segmen-
ting the hot wall. This leaves only the Tocal streak temperature variation as
a driving force for possible LCF failures. The development and optimization of
segmented configurations requires an understanding of the local material be-
havior in streak locations.

Several years ago, the Material Development Group at Pratt & Whitney institut-
ed an LCF test to rank current and proposed combustor materials. This test
thermalily cycled a flat disk specimen by periodically imposing a small Tocal
hot spot at the specimen's center. The nature of the test, with a small
through thickness thermal gradient, causes a bulging or blistering of the hot
spot toward the flame which is analogous to combustor streak behavior. Analyt-
ic evaluation (MARC) of both this test and combustor components under streak
loading confirmed this analogy. In each case, the material in the hot spot
showed identical deformations. Furthermore, each showed identical amounts of
damage in the form of creep and plastic strains. It has been concluded that
the hot spot blister test is a.valid simulation of combustor streak behavior.
Figure 3.3-18 shows a MHOST finite element solid model of a 1/4 segment of the
flat circular specimen. The model consists of 320 solid elements and 615
nodes. Validation/verification analyses are currently in process.
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Figure 3.3-18 Simulated Combustor Liner Specimen (One-Quarter Section)

A sophisticated MHOST finite element model of a low pressure turbine vane has
been developed to demonstrate the program's applicability to this type of pro-
blem. The initial model shown on Figure 3.3-19 contains 424 four-noded shell
elements which is consistent with models that would normally be employed in
NASTRAN or MARC analyses. However, the enhanced capability of the MHOST code
(Loubignac type iteration) should allow the ultimate use of a much coarser
model. The loading environment consists of both thermal and aerodynamic pres-
sure loads. Since actual vanes of this type are clustered in groups of three,
cyclicly symmetric boundary conditions are used at the inner vane platform to
simulate the presence of the additional vanes. Elastic stress/strain distribu-
tions predicted by the MHOST analysis will be compared directly to strain gage
measurements taken on actual vanes. In addition, a creep analysis will be per-
formed to simulate the 69 hours of hot time accumulated at takeoff power dur-
ing an in-house endurance test of this vane. The analytical creep predictions
will be compared to deflection data from the actual test.

&
Y ‘\\\ \\\llm -
N

Figure 3.3-19  Turbine Vane Finite Element Model
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3.3.5 Input Data Structure for the MHOST Program

The input data for the MHOST program is divided into three major blocks:
PARAMETER DATA, MODEL DATA, and INCREMENTAL DATA. Data of different types
within the data blocks are identified using keywords as discussed in Section
3.3.3.2. The keywords are Tisted and defined in this section to provide the
potential user of MHOST with an overview of the structure and content of pro-
gram input.

The PARAMETER DATA serve to specify dynamic array allocations and to control
the MHOST module execution sequence. The keywords associated with this data
block are listed below:

KEYWORD SIGNAL TO MHOST PROGRAM

*ANISOTROPY Anisotropic material data will be input

*BOUNDARY Displacement boundary conditions will be input

*BUCKLE Perform a buckling analysis

*CONSTITUTIVE Use constitutive model (simplified, conventional,
or advanced) indicated by parameter value

*CREEP Perform a creep analysis

*DISTRIBUTEDLOAD Distributed Toads will be input

*DUPLICATENODE Duplicate nodes will be input

*DYNAMIC Perform a transient analysis

*ELEMENTS Use element type indicated by parameter value

*FORCES Nodal forces will be input

*LOUBIGNAC Use Loubignac iteration options indicated by pa-
rameter values

*MODAL Perform free vibrations analysis

*NODES Upper bound to number of nodes indicated by pa-
rameter value

*OPTIMIZE Optimize band-width of stiffness matrix

*PERIODICLOADING Periodic loads will be input

*PRINTSETS Upper bound to number of print sets given by pa-

rameter value
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KEYWORD
*REPORT
*RESTART
*SCHEME

*STRESS
*TANGENT

*TEMPERATURE
*THERMAL

*TRANSFORMATIONS
*TYING

*UCOEFF
*UDERIV
*UFORCE
*UHOOK

*UPRESS
*UTEMP

*UTHERM

SIGNAL TO MHOST PROGRAM

Print interval given by parameter value
A previous analysis is to be continued

Time integration operator identified by parameter
values

Upper bound to number of stress boundary condi-
tions given by parameter value

Perform modified Newton-Raphson iteration after
cycle given by parameter value

Nodal temperatures will be used in calculations

Temperature dependent material properties will be
used

Upper bound to number of coordinate transforma-
tions given by parameter value

Number and form of tying equations given by pa-
rameter values

User subroutine UCOEFF will be provided
User subroutine UDERIV will be provided
User subroutine UFORCE will be provided
User subroutine UHOOK will be provided
User subroutine UPRESS will be provided
User subroutine UTEMP will be provided

User subroutine UTHERM will be provided
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The finite element model is defined with the MODEL DATA. For example, the fi-
nite element topology and nodal coordinates, as well as boundary conditions
and loads, are specified in this data block. The MODEL DATA keywords are iden-
tified below:

KEYWORD DEFINITION

*BODYFORCE Body force data

*BOUNDARY Prescribed displacement data
*COORDINATES Nodal coordinate data
*DISTRIBUTEDLOAD Distributed load data
*DUPLICATENODE Duplicate node data

*ELEMENTS Element connectivity data

*END End of MODEL DATA

*FORCES Nodal force data

*INCREMENTS Maximum number of increments
*ITERATIONS Iteration control data
*POSTFILE Postprocessing file control data
*PRINTOPTION Output control data
*PROPERTIES Element properties data

*SAVE Restart control data

*STOP End of analysis

*STRESS Stress boundary condition data
*TEMPERATURES Nodal temperature data
*TRANSFORMATIONS Coordinate transformation data
*TYING Tying equation data

*WORKHARD Equivalent stress - equivalent plastic strain data
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The INCREMENTAL DATA are used to specify the loading history, modifications to
boundary conditions, and initial conditions for transient response calcula-
tions. Any number of INCREMENTAL DATA blocks may be included in an analysis.
The following MODEL DATA keywords may be used in an INCREMENTAL DATA block:

*BODYFORCE
*BOUNDARY
*DISTRIBUTEDLOAD
*END

*FORCES
*ITERATIONS
*POSTFILE
*PRINTOPTION
*SAVE

*STOP

*STRESS
*TEMPERATURES
*TYING

The additional keywords available for use in the INCREMENTAL DATA blocks are

defined below:
KEYWORD
*ACCELERATION

*AUTOINCREMENT
*DISPLACEMENT
*ENDINITIALCONDITION
*INITIALCONDITION

*PERIODICLOADING
*PROPORTIONAL
*TIME

*VELOCITY

DEFINITION

Initial node accelerations data block (transient
analysis)

Automatic load increment data
Initial nodal displacements (transient analysis)
End of initial condition data (transient analysis)

Start of initial condition data (transient analy-
sis)

Periodic loading data
Proportional loading data

Time increment data for creep and transient anal-
ysis

Initial nodal velocities (transient analysis)
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3.3.6 List of Symbols

Symbol

Eij

n,§

List of Symbols
Referenced Within Section 3.3

Description
Acceleration components
Matrix which relates nodal stresses to nodal forces
Stress-strain matrix
Stress-strain tensor
Elastic modulus
Body force components
Nodal force vector
Thickness of model
Conventional displacement method stiffness matrix
Moment
Direction cosines of normal to surface
Internal pressure
Shape function inner product matrix
Radius
Surface tractions
Displacement vector
Coordinates
Displacement component at a point
Nodal strain vector
Strain tensor

Isoparametric coordinates
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List of Symbols
Referenced Within Section 3.3 (continued)

Symbol Description Page
] Mesh skew angle 3.3-18
v Poisson's ratio 3.3-20
0 Density of material 3.3-4
o Nodal stress vector 3.3-4
oy Yield stress 3.3-4
94j §tress tensor 3.3-4
Q Denotes a deformable body 3.3-4
a2 Denotes surface with prescribed displacements 3.3-4
o) Denotes surface with prescribed tractions 3.3-4

Superscript Description Page
n Iteration number 3.3-6
PL . Denotes plastic quantity 3.3-29

T Denotes transpose of a matrix _ 3.3-5

1 Denotes element coordinates 3.3-9

A Denotes a prescribed quantity 3.3-4

* Denotes a virtual quantity 3.3-4
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3.4 BOUNDARY ELEMENT METHOD
3.4.1 Overview

It is the goal of the Advanced Formulation Development portion of this program
to develop a computational technique for the solution of linear, nonlinear and
transient problems in gas turbine engine hot section components. This tech-
nique is to be distinct from, and complementary to, the finite element method.
The existence of such a computational tool will enhance the ability to cali-
brate the other codes developed under this contract. In addition, it is to be
expected that different techniques will prove optimal, in terms of efficiency
or accuracy, for particular types of component analyses. Since almost all gen-
eral purpose structural analysis computer programs presently available employ
the displacement finite element method, the new program developed as part of
the Advanced Formulation Development effort can be expected to extend the
ability to perform realistic analyses of hot section components.

Pratt & Whitney and its subcontractor, the State University of New York at
Buffalo, have chosen, with the agreement of the NASA-Lewis program manager, to
develop the boundary element method to fulfill the requirements of Task IC,
and expect to continue its development throughout the remainder of the Inelas-
tic Analysis Methods program. Very significant progress has been achieved dur-
ing the first year of the contract effort. The analytical basis for a general
purpose structural analysis program employing the boundary element method has
been developed. Elastic, inelastic and both periodic and aperiodic dynamic ef-
fects have been considered. Numerical methods for the implementation of these
analyses have been selected or, in many cases, newly developed. A computer
program incorporating these techniques with sufficient generality to allow the
analysis of hot section components has been designed, developed and tested.

The first year development effort is discussed in more detail below. Section
3.4.2 reviews the results of a boundary element method literature survey con-
ducted early in the program. Section 3.4.3 summarizes the analytical and nu-
merical basis of the boundary element method for elastic, inelastic and dynam-
ic problems in three dimensions. The overall structure and development of the
boundary element method computer program is described in Section 3.4.4. Vali-
dation/verification of the resulting code is reviewed in Section 3.4.5.

3.4.2 Literature Survey

3.4.2.1 Introduction

This section contains a brief review of available literature on the boundary
element method, applied to problems of linear, nonlinear and dynamic stress

analysis. Attention is primarily focused here on the boundary element 1litera-
ture relevant to the present contract. ' ‘
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The earliest work based on the direct boundary element formulation was pre-
sented by Jaswon and Ponter (Reference 1) for the Saint-Venant torsion problem
of elastic bars, and by Rizzo (Reference 2) for elastostatic problems. In re-
cent years, Cruse, Rizzo, Lachat, Watson, Banerjee, Butterfield, Brebbia,
Wilson and others have all contributed to development of the direct boundary
element method. At present, higher-order elements, as in the finite element
method, have been employed and some standardization of solution procedures has
been achieved for linear problems in solid mechanics. A number of textbooks
(References 3 through 7) and advanced level monographs (References 8 through
10) provided not only a full description of these developments but also of de-
velopments in other fields. Reports by Cruse and Wilson (References 11, 13 and
14) on fracture mechanics, and Mendelson on plasticity (Reference 12) provide
very readable accounts of developments in these areas.

In the discussion below, the development of the boundary element method is
outlined for several different fields of continuum mechanics.

3.4.2.2 Linear Stress Analysis

The initial application of boundary element methods in elastostatics was to
torsion problems of elastic bars. The pioneering work in this area was done by
Jaswon and Ponter (Reference 1). Subsequent to their work, computational effi-
ciency and accuracy have both been much improved.

Extension of both direct and indirect integral equation methods to the static
stress analysis of three-dimensional bulky solids followed shortly after the
successful application of these methods to two-dimensional problems. Refer-
ences 4 and 11 through 23 describe the work of a number of researchers. In
particular, Lachat and Watson (Reference 16) and Watson (Reference 17) de-
scribe algorithms developed using the direct formulation applied to the stress
analysis of thick cylindrical pressure vessels with holes. Banerjee (Refer-
ences 18 and 19) and Banerjee and Butterfield (Reference 20) describe numeri-
cal solutions to problems involving pile foundations as well as buried foun-
dations of arbitrary shape.

Cruse, Wilson and others (References 23 through 30) show excellent applica-
tions of the boundary element method to two- and three-dimensional problems of
linear elastic solids. Alarcon, Brebbia and Dominquez (Reference 31) showed an
equivalence between the direct boundary element method and the method of re-
siduals, and solved some simple problems. A more general discretization was
presented by Lachat and Watson (References 16 and 17) by introducing higher-
order boundary elements, whereby the efficiency and accuracy of numerical cal-
culation were much improved. Anisotropic elastic problems were investigated by
Wilson and Cruse (Reference 32). Elastic stress analysis of axisymmetric
bodies was carried out by Cruse, Snow and Wilson (Reference 27), and also by
Mayer, Drexler and Kuhn (Reference 33), under centr1fuga1 body forces as well
as steady state temperature gradients.
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If the temperature distribution is known, the uncoupled thermoelastic problem
can be treated as an elastostatic problem loaded by a body force corresponding
to the temperature distribution. Rizzo and Shippy (Reference 34) used this
approach to solve three-dimensional thermoelastic problems for nuclear pres-
sure vessel components and for turbine airfoils. Chaudouet and Loubignac (Ref-
erence 35) performed a three-dimensional analysis of the thermoelastic behav-
ior of rollers.

Hansen (Reference 36) and Stern (Reference 37) proposed direct boundary ele-
ment methods for plate problems formulated in terms of variables having clear
physical meanings. Independently, Bezine (References 38 through 40) also pro-
posed similar methods of solution. Wu and Altiero (Reference 41) have recently
proposed a new solution procedure for the elastic bending of anisotropic
plates and solved some example problems.

Stress intensity factors in elastic fracture mechanics have been calculated
with considerable success using boundary element methods (References 23
through 30, and 42 through 47). Results have been obtained for various crack-
ing modes in both two and three dimensions. Recently, crack tip boundary ele-
ments have been introduced which take into account the singular behavior of
displacements and tractions at crack tips (References 14 through 47). A stress
intensity factor was also computed by Snyder and Cruse (Reference 28) for ani-
sotropic elastic plates. :

It is clear that solutions to problems in elastostatics based on boundary in-
tegral equations have reached such a state of development that it is now pos-
sible to undertake elastic and thermoelastic stress analyses of two- and
three-dimensional bodies in a routine manner. For instance, Reference 4 dis-
cusses the analysis, using an isoparametric boundary element representation,
of a disc rim-slot which retains blades in a gas turbine rotor assembly.

3.4.2.3 Dynamic Stress Analysis

As far as the solution of the general transient two-dimensional linear elasto-
dynamic (or viscoelastodynamic) problem is concerned, there are currently
three basic approaches available:

1. Determination of the steady-state solution by boundary element method
approaches followed by reconstitution of the transient response using
Fourier synthesis, as done by Banaugh and Goldsmith (Reference 48),
Kobayashi and Niwa, et al (References 49 and 50).

2. Solution of the problem in the Laplace transform domain by boundary
element method approaches followed by a numerical inverse transforma-
tion to obtain the response in the time domain, as done by Doyle
(Reference 51), Cruse and Rizzo (Reference 52), Cruse (Reference 53),
and Manolis and Beskos (Reference 54).
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3. Time domain formulation and solution of the problem by boundary ele-
ment method approaches in conjunction with step-by-step time integra-
tion schemes. This has been done by Cole, et al (Reference 56), for
the anti-plane strain case and by Niwa, et al (Reference 55) for the
two-dimensional case.

A comparison of the above three approaches on the basis of their accuracy and
efficiency was done by Manolis (Reference 57). It should be noted that in the
above papers some simple two-dimensional elastodynamic problems were solved
such as: 1) the case of an unlined or lined circular cylindrical cavity under
the passage of longitudinal or transverse waves (References 49 and 50), 2) the
cases of square or horseshoe shaped cylindrical cavities under Tlongitudinal
waves, and 3) the case of wave propagation in half-planes, etc.

In conclusion, it may be mentioned that although the static version of the
boundary element method is rather fully developed, this is not the case in
elastodynamics. Although in the earlier attempts the dynamic verson of the
boundary element method showed considerable promise, the development has not
been carried out to the stage where the method could be considered as an
established problem solving tool.

3.4.2.4 Nonlinear Stress Analysis

Since material nonlinearities may be introduced into an elastic analysis meth-
od as a set of initial strains, stresses or body forces in the same way that
thermal Toading or centrifugal effects can be introduced, it is hardly sur-
prising that such a successful analysis tool for elastostatics can also be de-
veloped for plasticity and creep analysis. However, for the boundary element
method, unlike the finite element method, it is possible to provide a brief
and yet quite comprehensive review of work published to date on nonlinear pro-
blems.

The earliest boundary element formulation for elastoplasticity was due to
Swedlow and Cruse (Reference 58). Rzasnicki, et al (Reference 59) proposed an
initial strain approach for the three-dimensional analysis of work hardening
materials, but only planar problems were solved.

Mendelson, Rzasnicki and Albers (Reference 59) also describe formulations for
elastoplastic analysis of torsion and planar problems. Both a biharmonic for-
mulation based on the Airy stress function and the displacement (direct) for-
mulation of Swedlow and Cruse were utilized in numerical solutions (generally

for V-notched beams). The elastoplastic solution was of an initial strain type
using the method of successive elastic solutions. Boundary and interior dis-
cretizations were of the simplest type - straight boundary segments with the
midpoint representing the boundary value on the element and an interior grid
of essentially rectangles with strains evaluated at midpoints using the (anal-
ytically evaluated) integral equations for strain. Recently, Telles (Refer-
ences 60 and 61) has adopted a similar but slightly more sophisticated ap-
proach for a variety of problems involving strain hardening and perfect plas-
ticity. In his solutions, a linear variation of boundary displacement and
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tractions is adopted, with interior triangular cells in which strains are com-
puted at the vertices. Thus, a linear variation of strain across an interior
cell is computed, with an associated improvement in the accuracy of modeling
the plastic strain distribution.

Mukherjee and coworkers (References 7, and 64 through 67) have utilized a rate
formulation of the inelastic equations and a scheme for integrating forward in
time. Material behavior was described either by the equations of power law
creep or by a state variable consitutive model which draws no distinction be-
tween classical time-independent plasticity and time-dependent creep. The an-
elastic strain rates at t=0 are obtained from the consitutive equations, and a
knowledge of these enables boundary displacement and traction rates and inter-
jor displacement and stress rates to be obtained. The values of these quanti-
ties at a new time t+at are then obtained by integrating forward in time using
an Euler-type strategy with automatic time step control. In Reference 67, a
comparison between boundary element and finite element solution times is made,
with the boundary element program giving a faster and more accurate solution.

Classical time-independent plasticity solutions have been successfully ob-
tained by Banerjee, et al (References 68 through 72) using an incremental ini-
tial stress procedure similar to that used for finite element analysis. Plane,
axisymmetric and three-dimensional problems have been solved. The initial
stress algorithm is described in some detail in the boundary element method
book by Banerjee and Butterfield (Reference 8). This work differs in one par-
ticular respect from that of other workers in that strains and stresses are
calculated from displacements at the interior cell nodes rather than using the
integral equation for strain. This introduces some 1loss in accuracy but is
considerably more efficient computationally. In later work, boundary geometry
and unknowns are represented by quadratic elements (References 71 and 75).
Cathie and Banerjee (Reference 72) described a generalized formulation to take
account of time-dependent inelastic deformation, conventional plasticity, vis-
coplasticity and creep with a single inelastic algorithm. Other conventional
elastoplasticity solutions have also been reported (References 73 and 74).

The boundary element method has recently been extended to the analysis of
large deformation problems {(References 76 and 77). Although these publications
essentially deal with very small test problems involving simple rectangular
two-dimensional regions and do not develop the necessary surface or interior
identities, feasibility has already been demonstrated.
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3.4.3 Formulation Development
3.4.3.1 Summary

Various boundary element formulations for linear, nonlinear and dynamic pro-
blems are outlined in this section. The major governing equations are defined
and the relevant integral formulations are presented.

An advanced formulation of the boundary element method has been developed for
three-dimensional problems of elastoplasticity and viscoplasticity and for dy-
namics. In this formulation both the surface geometry and unknowns have been
represented by isoparametric boundary elements. An efficient mapping scheme
has been devised such that the kernel-shape function-jacobian products can be
efficiently and accurately evaluated using the standard Gaussian integration
formulae. For nonlinear analysis, a fast and accurate solution algorithm has
been developed where the previous history of the development of initial
stresses and plastic strains is utilized. The dynamic analysis has been de-
veloped in such a manner that the steady state (periodic) dynamic as well as
transient forced vibration analysis can be carried out using the same imple-
mentation.

3.4.3.2 Linear and Nonlinear Stress Analysis

Basic Governing Equations

The governing differential equation for a solid in which the inelastic strain

rate éij (i.e., plastic + thermal), and body force excitation rate % is
present, can be éxpressed as:

2 2k .0 .0

vt ) s [ kL P o E g (3.4e1)
v ) XL X, ij Tox. H=ox, = .

aXj i°%j J J

where u 1is the displacement rate

0 _.p :
E_ij = Eij + Gij EGT

n

&P, plastic strain

—
L]

temperature

ah
]

body force per unit volume and

dots on quantities represent their time derivatives.
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The corresponding boundary integral formulation for the problem can be easily
shown to be (see Banerjee and Butterfield, Reference 4):

° . ]' . .
[Gij - Cij] ui(go) S [ti(X)Gij(x’go) - Fij(x’go)ui(x)] dS

+

/ .0
v T'ikj(x’§0) E,ik(X) dv (3.4-2)

+

f .
v Gij(x,éo) filx) v

where 50 is a point on the boundary

1 1 | . JiYi
Gij(x,f,) = mﬁ' T (3-4\))51-j —

r

2 . 3y.y. y n
11 yi A iV k"%
Fij(X,‘E) = T ;—2 (1—2\»)<n‘,j = - N _F> + {___2_ + (1-2\))61.:]} r

r

yi = (xi - gi) s ' = yiyi
and
. . y.y.y
_ 1 1 yJ Y k i7 i’k
Tigt%:8) = - gerIssy 2 <5ik F Sk F T 4 _r> (1-2v) + —"

For a linear stress analysis problem, the quantities within the volume
integral sign, i.e., é?k (= Gij EaT) and f are both known. If the body forces

%i are conservative, then the volume integral can, if desired, be converted
into a surface integral. For nonlinear analysis, é?k is also present, and must
be determined at every step of the solution process. The plastic strain is
usually a function of the state variables such as the stresses Tijs plastic
strains s?j and temperature T.

Although equation (3.4-2) is written for a surface point §,, it can also be
used for an interior point £ if the term C;; arising from the treatment of
the improper integral involving the function Fj; is assumed to be zero, i.e.,
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u(8) = LTt 006, 06,8) - Fyy(x, 8001 ds
(3.4-3)

* T R0 00V + oy (6, 0F, () av

By calculating the strains corresponding to equation (3.4-3) and substituting
in the stress-strain relations:

2uv 2uv

= To2v %3k G * gk - (T‘z‘- ¥ SskEmn 2“53k> (3.4-4)

we can obtain the following expressions for the stresses at an interior point:

85l6) = L8 0D 5 (x,8) - S5 (X, 8)uy(x)] ds
+ I7 .0
Mg BFaar +  Jow o 0 aa (3.4-5)

o [(l+5v) S5 o * (759) &0 K}

where D is a small sphere around the source point £ and the free term on the
right hand side is the result of an exact integration over the volume D.

=

M o0 = L 3(1-2 . . + 5, . - 15r .
ipjk Z}?If;;;g L (1-2v) (5Jkr’1r’p 1pr’Jr’k‘> SR

+ 0 o r + . . + Lr r .t o .
3”<61Jr,k R LS L SR PLNEANE R UE L

+ (1-2v) (Gijskp + 6ik6j;> (4v- 1)5 p]

If the strains are purely deviatoric, then é;m = 0 and equation (3.4-5) can be
simplified, resulting in a small saving in computation.

Equation (3.4-5) is not only invalid on the surface but aiso is difficult to
evaluate numerically at points close to it. For points on the surface, the
stresses can be calculated by constructing a local Cartesian coordinate system
with the axes 1 and 2 directed along the tangential directions and the axis 3
in the direction of the outward normal. The stresses referred to these local
axes (indicated by overbars) are then given by:
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22T B3t 2 (611 * €00) * 155 €22
(3.4-6)
939 = 9p3 = Ty
o931 =913 = Y

where E is the Young's modulus and &ij defines the components of the elastic
strains (i.e., total-inelastic) in the local axes system. This method of eval-
uating the stresses on the surface was originally devised by Cruse (Reference
25).

The development presented here has assumed that all of the integral equations
discussed are written over the entire structure to be analyzed. This restric-
tion is not essential. In fact, in practical analysis it is almost always de-
sirable to subdivide a complex structure into two or more subregions (referred
to in this program as Generic Modeling Regions, or GMRs). The integral equa-
tions are written separately on each GMR, and the overall structure is then
assembled by enforcing appropriate compatibility and equilibrium conditions on
the boundaries between GMRs. This tactic can improve the numerical stability
of the resulting equation system and also results in very considerable re-
ductions in computer time for both elastic and inelastic problems.

Solution Algorithm

If we discretize the boundary using n isoparametric quadratic surface elements
and the Tikely elastoplastic region using m isoparametric quadratic hexahedral
cells, then the complete state of the structure can be defined in terms of the
nodal values of displacement and traction. The surface and volume integrals of
equation (3.4-2) can then be expressed as a sum of integrals over surface ele-
ments and volume cells. Each of these integrals can be evaluated numerically.
We can thus derive an algebraic representation of equation (3.4-2) as:
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Ax=By+C (3.4-7)

1< .

where x and y are unknown and known boundary tractions and displacements,

respectively, and:

o

1o

=G

t~hoe

+ T

1 Mo

couples the effect of the volume cells to the boundary solution.

It should be emphasized that for a linear analysis, Q is completely prescribed
and equation (3.4-7) can be solved directly.

Similarly, the interior equations for displacements and stresses may be cast
in the form:

W= At x+ply ! (3.4-8)
st opl x+siy+nd (3.4-9)

where the superscript i is used to designate interior field point.

The solutions for a nonlinear analysis can be developed as an accelerated
elastoplastic algorithm or a viscoplastic algorithm depending on the nature of
the constitutive model involved. For conventional elastoplastic constitutive

relations, an initial stress (defined as 6?j = D?jk1ég1 where D€ is the elastic

constitutive matrix) algorithm would be as follows:

1. Obtain an elastic solution and scale to first yield. Hence, determine
X, u1,‘&1

£

2. Evaluate ;, &1, &' for a small load increment with an initially

estimated value of &° obtained from the extrapolation of the
previously generated history of initial stresses (if no prior plastic
history exists, assume % = 0)

o
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3. Accumulate all incremental quantities of stress, displacement

4. Calculate with the new stress history the current constitutive matr1x
and determine the initial stresses

5. Calculate new ;, u1, &' with y = 0 (i.e., no boundary loading change)

6. Return to step 3 if i is greater than an acceptable norm

7. Return to step 2, the next load increment.

During the early part of the loading, the algorithm will require a few itera-
tions for each load increment (since no history of generation of initial
stresses exists). From the second or third increment onwards the solution con-
verges after one or two iterations.

If a viscoplastic model, including thermally induced plastic creep strain be-
havior, is used the solution is best obtained using a current rather than an
incremental form of equations (3.4-7) through (3.4-9). These equations, if
written in non-rate form, are valid expressions of the elastic problem given
the boundary conditions and an initial strain field. Providing the developing
initial strain field in the plasticity and creep problem is integrated in a
sufficiently accurate manner, the solution to the nonlinear problem at any
time may be obtained using current values. Advantages are that the algorithm
is simplified, errors introduced through the accumulation of incremental quan-
tities are minimized and the equilibrium equations are satisfied at each stage
of the calculation.

The essentials of the viscoplastic solution algorithm are as follows:

+C

~

1. Evaluate x = A”

~

B

1<

Q
-
o
[N
X

S yt r

for the prescribed boundary loading with the vector y and initial
viscoplastic stra1n e? =0

2. Scale elastic solution to yield point for plasticity problem and
apply a small load increment Ay where ) is fraction of the total Tload

to be applied in an incremental analysis
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3. Evaluate ¢'P using the constitutive equation at the time t

4. Select at and compute ¢'P from a suitable integration of ¢VP at time
t + at

5. Resolve equations in step 1

6. Return to step 3 until VP is negligible or t > tmax’ the time up to
which the solution is required.

5. For plasticity applications return to step 2 for the next load
increment.

The algorithm outlined above would be successful if the chosen atcat
where at

critical

critical is obtained from the careful study of the governing stiff

differential equation:

VP 2 25 | Flo,eP) (3.4-10)

A good working rule often adopted in practice is that the creep strain rate
must not exceed a certain fraction of the total elastic strains at a critical
section of the structure, i.e.,

where C® is the elastic compliance matrix

is the stress state

t Q

a 1s a value between 0.1 to 0.5,
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3.4.3.3 Dynamic Stress Analysis

Governing Equations

The governing differential equations for the response of a three-dimensional
solid in the absence of body forces can be expressed as:

2 2 2 .
(c] - ¢5) Ui 35 * C2 U545 " u (3.4-12)

where uj{xj,t) are the components of the displacement vector, indices i
and j correspond to Cartesian coordinates xj, commas indicate differentiation
with respect to these coordinates, dots indicate differentiation with respect
to time t and summation over repeated indices is understood; ci; and cp are
the propagation velocities of dilatational (P-wave) and distorsional (S-wave)
waves, respectively, given in terms of the Lamé constants x» and p and the mass
density p of the material by

= +v20) /o cg - /o (3.4-13)

The constitutive equations are of the form

2 2 2 :

where ojj(xj,t) are components of the stress tensor and §ij 1is the
Kronecker delta.

The Laplace transform with respect to time of a function f(x;,t) is defined
as:

L(f) = f(xI,'s) ff(x ,t)e Stat (3.4-15)

where s is the transform parameter.

Application of the Laplace transform to equations (3.4-12), (3.4-13) and .
(3.4-14) under zero initial conditions yields

2 2\ - 2 - 2 -
(Fl - c2> ui,ij + ¢, uj,ii - uj =0 (3.4-16)
5y = P [<cf - zc§> iy 15 * 5 (ai 5 1)] (3.4-17)
o.:n. = £, (3.4-18)
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If a homogeneous, isotropic and linear elastic body is under the influence of
harmonic forcing functions of time prescribed through boundary conditions of
the form

t5(xst) = E5(x,,0) elot (3.4-19)

where w is the circular frequency and t; the amplitude of the forces, then
the displacement vector will be of the form -

t

uj(xk,t) = ﬁj(xk,u) elv (3.4-20)

where uj is its amplitude. Substitution of equation (3.4-20) in (3.4-12) and
(3.4-14) and cancellation of the common factor elwt yjelds

2 2\ - 2 - 2 - .
(Cl - Cz) ui’ij + C2 UJ-’,“o + [A] UJ. = 0 (3¢4-21)
- 2 2\ - 2 {- -
055 = [Gﬁ_- 2c2) ur,rsij + ¢y (ui,j + uj,i)J (3.4-22)
Gijnj = ti (3.4-23)

where Gij denotes the stress amplitude. A comparison of equations (3.4-16) -
(3.4-18) with equations (3.4-21) - (3.4-23) indicates that any method for
solving the Laplace transformed general transient problem can also be used to
solve the steady-state problem as a special case, if the complex Laplace
transform parameter s is replaced by -iw in the formulation. The solution uj
and G4j will be, of course, in terms of the frequency w so that no inversion
is required. The approach implies that the formulation corresponding to algo-
rithms of Laplace inversion working with complex data will be used.

The corresponding boundary element formulation in the transformed space
(s,xi)  follows from the above differential equation. Thus for a boundary
point Sy, we have

- ) T - )
[“ij - Cij(fo)]"i(‘f »8) = § Gij(x,f ,S)fi(x,s)-Fij(x,f ,S)ui(x,S) dS (3.4-24)

where s is either the transform parameter or -iw, and w is the circular fre-
quency
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= 1 - 1 ar
Gij(x,f ,S) = Top [wcij - ¢r,1r’j] Fij(x,§6,s) = I [“(Gij st r’i"j)

3c2 3c '5”/°2 c2 3c2 3c -sr/c
R ARRRIE g \zz e
Zr sr r c Zr ST

2
W g 26 2¢ 1 W  af 24
a:;—r-;-ﬁl;s B='F—s Y=-25— and 6=(—a—2-—2)<a—2-‘—a—r-7>
2 C2

Note that although the functions G and F become identical to their static
counterparts G and F as w tends to zero it is important to evaluate this Timit
carefully because of the presence of w in denominator. As w increases these

functions remain well behaved.

Equation (3.4-24) can also be written for an interior point & by simply assum-
ing Ci5 = 0 and £ = £,. This gives the required identity for calculating
the interior displacements. The interior stresses can be obtained from:

Ejk(f) = Sfﬁ'ijk(x,f,s,)"c.i(x,s) - Eijk(x,«f,S)ﬁi(x,S)] ds (3.4-25)

3.4-15



where:

2 2,2 Bim , 2 (Bqk , 2By
Tisk = [(ﬁ - Zcz)\“jk i (Ta T

J

ik = same as Tijk with G replaced by F

3G, .
ij _ 1 g
7S S [3? R A S T L L S "(",i‘”,a’k ' r,.ir,ik)}

oF. .
g__ 1 [ ar ar
%, - [ar r,k(sij T ",j"i) * “(“ij(an);k ¥ ",jk"i)

98 - SUCL i - ar ar
37 '”,k(",i"j 2r or; an) B(”,ik"j 2r k"3 5m - 2T 4T 5k Bn

- ar + 31 ar) . 3r . ar
2r 3r 3 (an),k) 2 r,k(r,ir,j an) Y(r,ikr,j an - ',i",jk 7n

ar 98
ra3(Em)) * 3 rlng) “(‘",ik“j)]

The corresponding equations for the stresses on the surface are identical with
those for the static case with dynamic elastic constants given by equation
(3.4-13),

+

Numerical Implementation

Since the basic governing equations for a dynamic analysis in the transformed
space (either in s or u space) are virtually identical to the corresponding
equations for the static analysis, the numerical implementation developed for
the static case can be used to extract solutions for the dynamic probiem for
one value of the transform parameter s or frequency parameter w. It should
also be noted that any internal viscous dissipation of energy (damping) can
easily be accounted for by replacing the elastic moduli A and u by their
complex counterparts A\* and p*:
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u(l + 2ig)

u
(3.4-26)

A*

A1 + 2ig)

fl

Teaving Poisson's ratio unaltered.

The parameter 28, by analogy with single degree ofj freedom systems may be
termed the damping ratio and is given by:

B = un/Zu (3.4-27)
where n is the coefficient of viscosity in the Kelvin-Voigt model.

For a general transient case the solution must be transformed back to real
time by a suitable inversion process. Let f(t) be a real function of t, with
f(t) = 0 for t < 0. The Laplace transform f(s) of f(t) is defined by equation
(3.4- 15) and its inversion formula is given by:

xtjeo -

F(t) = yor f f(s)eStds i =v-l (3.4-28)

where x(>0) is arb1trany, but greater than the real part of all the singular-
“ities of f(s), and s is a complex number with Re(s)s > O.

In the present applications f(s) is too complicated to be inverted analytic-
ally and is available in numerical form. In those cases a numerical inversion
of the Laplace transform is imperative.

The method of inversion used is that of Durbin (Reference 78) and is actually
an efficient dimprovement of the method of Dubner and Abate (Reference 79)
which is based on the finite Fourier cosine transform. Durbin (Reference 78)
combined both finite Fourier cosine and sine transforms to obtain the inver-
sion formula:

. - N-1 .
Ft;) = Z(eBJAt/T> - 3 Re[f(g)] + Re{ T (Aln) + iB(n))wJ"} (3.4-29)
n=0
where
s,=8+indl 4oy W= el2r/N
L z 2
A(n) = > Re {f(s + i{n + IN) —%)} (3.4-30)
=0
B(n) = E I {?(e +i(n + 2N) 2")}
1:0 E T
n=09 19 2, 39-'-3N L= 09 1’ 2’ 3s'~-9L
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and f(t) is computed for N equidistant points tj = jat = jT/N,j = 0, 1, 2,
...sN=1. It is suggested that for LxN ranging from 50 to 5000 one should se-
lect 8T = 5 to 10 for good results, where T is the total time interval of in-
terest. The computations involved in equation (3.4-29) are performed by em-
ploying the Fast Fourier algorithm of Cooley and Tukey (Reference &0). The al-
gorithm employed here was used with considerable success by Manolis and Beskos
(Reference 54). In the case of the Fourier transform (%3 = -iw), the above al-
gorithm is equivalent to a Fourier synthesis. In this work we have used L=1,
N=50 and 8T=6, although as mentioned above these values can be adjusted to im-
prove accuracy.

The only topic remaining for discussion is the direct transform, i.e., to find
the Laplace or Fourier transform of a given forcing function in time. If the
forcing function is piecewise linear in time, which is an excellent approxima-
tion for functions that are densely sampled, then the following exact formula
can be used: :

- N-1 -st, -st, -st,; -st,
f(s) = 1'231 E]'—SZ-{AF(e Toe "’1) + s At(F_ie Do Fage ”1)} (3.4-31)

where Fj is the value of f at time t; and aF = Fj+1 - Fjy.

It should be noted that the Laplace transform solution is essentially a super-
position of a series of steady state solutions and is therefore applicable
only to linear elasto-dynamic problems. For nonlinear problems the solution
must be obtained in the real time domain. The boundary integral formulation
for the time embedded elasto-dynamic analysis has already been developed. This
formulation can be extended to deal with nonlinear dynamic problems. ’

The present steady state dynamic algorithm can also be used to determine the
various vibration modes of a structural component. Unfortunately, the algo-
rithm is computationally inefficient. A new real variable version of the
eigenvalue analysis is currently being developed which is 1likely to prove
useful. The present steady state dynamic analysis is ideally suited for the
stress analysis of components at a given value of frequency parameter w.

For buckling analysis, the necessary boundary integral formulation has not yet
been developed. Although it is possible to construct an integral representa-
tion, it is doubtful if it can be made sufficiently computationally efficient
to be a viable alternative.
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3.4.4 Computer Program Development
3.4.4.1 Introduction

The mathematical goal of the computer program development is the ac?urate and
efficient implementation of the analysis described in Section 3.4.3. By it-
self, this is a significant task. While many of the capabilities requ1red have
been demonstrated in special purpose computer programs or discussed in the
open literature, no program (even for two-dimensional analysis) includes all
of the required capabilities. The construction of a three-dimensional code in-

cluding elastic, nonlinear and dynamic capabilities was a most challenging
task.

Of equal importance is the degree of generality required in the definition of
component geometry, loading and material properties. This is necessary if the
program is to be applicable to real problems in the aerospace industry. Since
no general purpose boundary element program existed as a starting point, or
even a model, it was necessary to develop, during a single year, a new general
purpose system for structural analysis.

During the past year, the computer program BEST (Boundary Element Stress Tech-
nology) has been developed. It is capable of carrying out elastic, inelastic
and dynamic analyses for real component geometries. The capabilities of the
program have been calibrated by comparison with analytical solutions, other
numerical stress analyses and data. In addition, the code was written with
sufficient generality to allow the incorporation of new technology, developed
during the remainder of this contract, without major recoding of the already
completed portions of the program.

The development of the computer program BEST is discussed in the following
sections.

3.4.4.2 Global Program Structure

BEST is designed to be a fully general structural analysis system employing
the boundary element method. The program is written using standard IBM FORTRAN
IV. Development has been carried out at Pratt & Whitney using an IBM 3081 in
both batch and interactive modes and at SUNY-B on an HP9000 minicomputer sys-
tem. In both cases the required code and workspace fit in core without re-
quirement for overlays. The nature of the method is such that, for any real-
istic problem, not all required data can reside simultaneously in core. For
this reason extensive use is made of both sequential and direct access scratch
files.

The overall structure of BEST is shown in Figure 3.4-1. The program first ex-
ecutes an input segment which is common to all types of analysis. After the
input has been processed, there are three major branches, corresponding to
elastic, inelastic and dynamic analysis.
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Figure 3.4-1 BEST - Overall Program Structure
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If only an elastic analysis is required, the necessary surface integrals are
calculated and assembled into the set of system equations using specified
boundary conditions. The system matrix is then decomposed and saved on disk,
followed by the calculation of the solution vector., The full displacement and
traction solution on each boundary element is then reconstructed from the so-
lution vector. In a time dependent problem the process of constructing the
load vector for the system equations is repeated at each time step, but the
integration, formation and decomposition of the system matrix are done only
once.

If a dynamic analysis is to be carried ouf, a branch is taken immediately
after the input processing. The main differences between the elastic and dy-
namic portions of the code are:

1. in the calculation of Laplace transforms of the boundary conditions
(in the aperiodic case), :

2. 1in the use of complex versions of the quasi-static elastic routines
connected with surface integration, system matrix assembly and system
matrix decomposition, and

3. in the use of the transform of the (complex) dynamic point load solu-
tion in place of the Kelvin solution.

In the case of inelastic analysis the elastic branch is followed through the
calculation of the surface integrals required for both system matrix creation
and the evaluation of elastic stresses at the points used to describe the vol-
ume distribution of inelastic strain. The system matrix is decomposed once,
for the initial elastic solution, and the decomposed form is saved for re-
peated use during the plasticity calculations. The main difference between the
elastic and inelastic analyses is the iterative process (carried out at each
load or time step) in which the inelastic strain distribution is evaluated and
employed in volume integrals which modify the system equation load vector.
This process is nested inside the time stepping procedure of the elastic code.

It should be noted that, in the present version of BEST, the inelastic volume
integration routines are used to deal with both thermal stresses (due to
either transient or steady state temperature fields) and inhomogeneous elastic
material properties. Effort during the second year of the program will be de-
voted to developing a more efficient treatment of these effects in purely
elastic problems,

Various aspects of the computer program are discussed below.
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3.4.4.3 Program Input

The input for BEST is free field. Meaningful keywords are used to identify
data types and to name particular data sets. The overall input structure is
shown in Figure 3.4-2. The input is divided into four major types:

1. Case Control Cards

The case control cards define global characteristics of the problem. In ad-
dition to the problem title, these input items define the ways in which the
problem departs from a static, homogeneous elastic analysis. The reading or
writing of restart data is also defined at this point. In all cases the ab-
sence of a case control card will cause the program to default to the simplest
case, a standard elastic analysis. .

2., Material Property Definition

The material property input allows the definition of elastic and, if required,
inelastic material properties for a variety of materials. For isotropic, homo-
geneous materials both Young's modulus and the coefficient of thermal expan-
sion can be prescribed in tabular form for a user-defined set of temperatures.
Temperature independent values of density and Poisson's ratio are defined.

If inelastic material properties are required, the particular constitutive
model to be used must first be chosen. The constants required to initialize
the model for a given material are then input, together with a material iden-
tifier,

For both elastic and inelastic properties, provision is made to 1ink BEST to
existing user material properties libraries. In this case the user is respon-
sible for providing code to access the local libraries.

3. Geometry Input

Geometry input is defined one GMR (generic modeling region, or subregion) at a
time. To initiate the input, a tag is provided to identify the GMR, a material
name and reference temperature are defined to allow initialization of material
properties and various flags are input (if required) to identify behavior
other than static elastic within the GMR.

The next block of geometry input consists of the Cartesian coordinates of the

user input points for surface and volume geometry definition, together with
jdentifiers (normally positive integers) for these geometric nodes.
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Following the definition of an initial set of nodal points, the surface con-
nectivity of the GMR is defined through the input of one or more named sur-
faces. Fach surface is made up of a number of elements, with each element de-
fined in terms of several geometric nodes. All surface element types presently
employed represent surface geometry using the quadratic isoparametric shape
functions (Figure 3.4-3). Three sided elements, defined using six rather than
eight geometric nodes, are used for mesh transition purposes. The terms quad-
rilateral and triangle are normally used to refer to the eight and six noded
elements, although the real geometry represented is, in general, a nonplanar
surface patch,

CASE
CONTROL
INPUT

MATERIAL
PROPERTY
INPUT

|

GEOMETRY
INPUT
(BY GMR)

[

BOUNDARY
CONODITION
INPUT

INTERFACE
INPUT

r—

BODY
FORCES?

80DY FORCE

INPUT

END

Figure 3.4-2 BEST - Input Structure

3.4-23



x| (El = MC(E, X(a a = 1,2."'-.3

MU (€) = L€, +1) (Eg01) (6 + €4 =1)

MP(€) = 12 (€ +1) (1= €,7)

e
®

Figure 3.4-3 Quadratic Isoparametric Shape Functions

Over each element the variation of displacement and traction can be defined
using either the linear or quadratic isoparametric shape functions. Linear and
quadratic elements can share a common side, which is then constrained to have
linear displacement and traction variation.

In addition to the element types mentioned above, elements which extend to in-
finity are provided. These elements are designed to allow modeling of struc-
tures connected to ground, and automatically incorporate appropriate decay
conditions. The characteristics of the various element types are summarized
below.

Element Type Geometry Nodes Displacement/Traction Nodes
Linear Quadrilateral 8 4
Linear Triangle 6 3
Quadratic Quadrilateral 8 8
Quadratic Triangle 6 6
Linear Infinite 8 2
Quadratic Infinite 8 3

.~ The geometry input includes the option to duplicate surfaces. Once a given
surface has been completely defined, a copy of it can be automatically cre-
ated, with arbitrary translation and rotation. In this case the program will
internally define and number any new nodes required, and will construct all
element definitions. The surface referenced can be from the current GMR, or
from any GMR previously defined.
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The final input for each GMR is the definition of volume cells (presently re-
stricted to twenty node isoparametric elements) for that portion of the GMR in
which volume effects (inelastic or thermal) are anticipated. The nodes of the
(partial) volume discretization lying on the surface of the GMR need not be
coincident with nodes of the surface discretization.

4, Boundary Condition Input

The final input section provides for the definition of boundary conditions, as
functions of both position and time. Data can be input for an entire surface,
or for a subset (elements or nodes) of a surface. Input can be in global coor-
dinates, or can define rollers or pressure in the local coordinate system. In-
put simplifications are available for the frequently occurring cases of bound-
ary data which is constant with respect to space and/or time variation. Each
boundary condition set can be defined at a different set of times.

Special types of boundary conditions which are available include interfaces
(fixed or sliding contact) between two GMRs, cyclic surfaces (to allow effi-
cient modeling of structures with periodic geometry and loading) and springs
to ground.

In addition to the boundary condition types defined above, two types of body
force loading (thermal and centrifugal) can be defined.

3.4.4.4 Surface Integral Calculation

Following the processing of the input data, the surface integrals occurring in
equations (3.4-2) and (3.4-3) are evaluated numerically. This is the most time
consuming portion of most elastic analyses, and contributes heavily to the
cost of inelastic analysis. In BEST the results of these integrations are
stored as they are calculated, rather than being assembled into the final
equation system immediately. Although this is somewhat more costly in terms of
storage and CPU (central processing unit) time, it has led to much greater
clarity in the writing of the initial version of BEST. In addition, it pro-
vides much greater flexibility in the implementation of various restart and
boundary condition options.

The basic outline of the surface integration process is shown in Figure 3.4-4,
The calculations proceed first by GMR (generic modeling region), then by
source point (the equation being constructed) and finally by surface element.
The results for each source point/surface element pair are written to disk.
A1l of the calculations are carried out and stored in the global (Cartesian)
coordinate system.

The calculations connected with the creation of the system equations are the
more complex. In this case either singular or nonsingular integrals can be en-
countered. The integrals are singular if the source point for the equations
being constructed lies on the element being integrated. Otherwise, the inte-
grals are nonsingular, although numerical evaluation is still difficult if the
source point and the element being integrated are close together.
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Figure 3.4-4 BEST - Surface Integral Calculations
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In both the singular and nonsingular cases Gaussian integration is used. The
basic technique is developed in Reference 4, and was first applied in the
three-dimensional boundary element method by Lachat and Watson (Reference 16).
In the nonsingular case an approximate error estimate for the integral was de-
veloped based on the work of Stroud and Secrest (Reference 81). This allows
the determination of element subdivisions and orders of Gaussian integration
which will retain a consistent level of error throughout the structure. Numer-
ical tests have shown that the use of 3x3, 4x4 and 5x5 Gauss rules provide the
best combination of accuracy and efficiency. In the present code the 4x4 rule
is used for nonsingular integration, and error is controlled through element
subdivision. The origin of the element subdivision is taken to be the closest
point to the source point on the element being integrated.

If the source point is very close to the element being integrated, the use of
a uniform subdivision of the element can lead to excessive computing time.
This frequently happens in the case of aerospace structures, due either to
mesh transitions or to the analysis of thin walled structures. In order to im-
prove efficiency, while retaining accuracy, a graded element subdivision was
employed. Based on one-dimensional tests, it was found that the subelement
divisions could be allowed to grow geometrically away from the origin of the
element subdivision. Numerical tests on a complex three-dimensional problem
have shown that a mesh expansion factor as high as 4.0 can be employed without
significant degradation of accuracy.

In the case of singular integration (source point on the element being inte-
grated) the element is first divided into triangular subelements. The integra-
tion over each subelement is carried out in a polar coordinate system with
origin at the source point. This coordinate transformation produces nonsin-
gular behavior in all except one of the required integrals. Normal Gauss rules
can then be employed. The remaining integral (that of the traction kernel
Tij times the isoparametric shape function which is 1.0 at the source point)
is still singular, and cannot be numerically evaluated with reasonable effi-
ciency and accuracy. Its calculation is carried out indirectly, using the fact
that the stresses due to a rigid body translation are zero (Reference 16). It
has been found that subdivision in the circumferential direction can be re-
quired to preserve accuracy in the singular integration. A maximum included
angle of 15 degrees is used. Subdivision in the radial direction has not been
required.

The modifications required in the surface integrals for the solution of dynam-
ic problems are primarily the replacement of a number of routines with complex
variable versions of the same code and the substitution of the transform of
the dynamic kernel function. Modification of the calculation of the singular T
term is also required, since the rigid body argument cannot be used directly.
It has been found, however, that the singular behavior of this term is en-
tirely due to the static kernel. The modifications required for the dynamic
solution can be calculated entirely in terms of nonsingular numerical inte-
grals.
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The surface integrals required for calculation of displacement and stress at
interior or surface points are of the same type as those involved in the gen-
eration of the system equations, except that only nonsingular integrals are
involved. If the source point involved is located on the surface of the body,
then numerical integration is not required. Instead, the required quantities
are calculated using the displacements and tractions on the element (or ele-
ments) containing the source point, as discussed in Section 3.4.3.2.

3.4.4.5 Volume Integral Calculations

The calculation of volume integrals is required in both the construction of
the system equations and the evaluation of interior stresses and displace-
ments. In a purely elastic context this requirement is due primarily to the
presence of body forces. In the case of inelastic analysis the inelastic
strain distribution must also be integrated for each source point/volume cell
pair.

The three volume integrals involved in the analysis: G, T and M, all exhibit
singular behavior as the load point and the source point _coincide. The order
of the singularities for G, T and M are (1/r), (1/r2) and (1/r°), re-
spectively.

The overall strategy used in the volume integration is very similar to that
described for the surface integration in the preceding section; i.e., based on
the consistent level of error throughout the volume, Gaussian integration has
been used to evaluate both the singular and nonsingular integrals.

Nonsingular integrals involving T and M have been evaluated using 3x3x3, 4x4x4
or 5x5x5 Gauss rules depending on the distance between the source point and
field point. If the source point lies in the neighboring cell, the cell is
subdivided into several sub-cells. The corresponding integrals involving the
weakly singular function G have been evaluated using Gaussian integration
rules of one order less than those mentioned above.

Singular integrals involving the functions G and T were evaluated using a
spherical polar mapping with the origin at the field point. The cell is sub-
divided into several tetrahedra through the field point and the resulting
sub-cell integrations are carried out by mapping each of these sub-cells into
a unit cube. The kernel-shape function products are thus made to behave 1ike a
regular integrand. Gauss rules of 3x3x3 (for G) and 4x4x4 (for T) are used for
evaluating these sub-cell integrals.

Singular integrals involving the functions M times the shape function N re-
quire some very special attention. For node at which the shape function is
zero, the behavior of these integrands is similar to the singular integrals
involving the function T as described previously; and accordingly they have
been treated in a similar manner. Those involving the shape function attaining
a value of 1.0 at the singular point (a situation which is equivalent to the
case of traction kernel F times the shape function 1.0 at a singular node at
the surface) cannot be evaluated accurately without a massive amount of com-
putational effort. Fortunately, the free term obtained by the exact integra-
tion over a spherical exclusion (see equation 3.4-5) accounts for 95% to 98%
of the contribution from this integral; accordingly, this integral has been
assumed to be zero.
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© 3.4.4,6 System Matrix Assembly

The assembly of the system equations is a multistep process, as shown in Fig-
ure 3.4-5, The process is the same for elastic, inelastic and dynamic pro-
blems. The assembly process is carried out differently in the present program
than in previous two- and three-dimensional codes. This is due to the fact
that the present program is aimed largely at the solution of nonlinear pro-
blems. Since the nonlinear effects are accounted for in the load terms of the
equation system, and since these effects depend both on the present load state
and on the past history of the system, it is not possible to calculate all of
the system load vectors prior to the beginning of the solution process. As a
result, the assembly process must be designed to facilitate the updating of
the load vector, based on material response as well as time dependent loads.

INITIALIZE LOAD VECTOR

j

FORM INITIAL SYSTEM MATRIX FROM Tj;

!

MODIFY LOAD VECTOR FOR BODY FORCES

&

TRANSFORM Tj;, Vj; TO FINAL
COORDINATE SYSTEMS

1

APPLY INTERFACE AND CYCLIC
RELATIONSHIPS

1

APPLY DISPLACEMENT AND TRACTION
BOUNDARY CONDITIONS

Figure 3.4-5 BEST - System Matrix Assembly
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The first step in the assembly process is the reduction of the rectangular ma-
trix of T integrals to a square matrix. This matrix is the prototype of the
system matrix. The columns of this matrix are transformed or replaced, as re-
quired by the boundary conditions, as the assembly process proceeds.

A key problem in the entire process is the proper definition of appropriate
coordinate systems, on a nodal basis. This is a problem common to any direct
boundary element method program which treats structures with nonsmooth sur-
faces. It arises because the tractions at a point are not uniquely determined
unless the normal direction to the surface varies continuously at the point in
question.

The original surface integral calculations are all done in global coordinates.
If a displacement boundary condition is specified at a given node, in global
coordinates, then no new coordinate system definition is required. It is only
necessary to keep track of the subset of elements, containing the given node,
on which the fixed displacement is to be reacted. However, if a displacement
is specified in a nonglobal direction at a given node, then a new nodal coor-
dinate system must be defined and, potentially, updated as further boundary
conditions are processed. The associated nonzero reactions must then be ex-
pressed in the new coordinate system.

After all required local coordinate systems have been defined, any modified
boundary conditions required by the presence of body forces are calculated.
There are a variety of methods of accounting for body force distributions. The
one employed in the multi-GMR version of BEST is a modification of the inte-
gral equations resulting from the representation of the solution as the sum of
a complementary solution and a particular integral. The boundary conditions
must be modified to reflect displacements or tractions due to the particular
integral. This results in changes to any explicitly specified boundary con-
ditions and in the introduction of potentially nonzero boundary conditions on
any surfaces previously defined implicitly as being traction free.

Following this preparatory work, the final assembly of the system equations is
carried out. It is performed in three major steps:

1. Transformation of the columns of the matrices to appropriate local
coordinate systems and incorporation of any boundary conditions in-
volving springs.

2. Incorporation of compatibility and equilibrium conditions on inter-
faces between GMRs and on cyclic surfaces. On interfaces either a
completely glued condition (full displacement compatibility) or a
sliding condition (only normal displacement compatibility) is avail-
able.

3. Application of specified displacements and tractions.
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Two particular features of the equation assembly deserve special comment.
First, in multi-GMR problems the system matrix is not full. Rather, it can be
thought of as consisting of an NxN array of submatrices, each of which is
either fully populated or completely zero. Only the nonzero portions of the
system equations are preserved during system matrix assembly. In order to im-
prove the numerical conditioning of the system matrix for the solution pro-
cess, the columns are reordered to number variables lying on the same inter-
face, but belonging to two different GMRs, as close together as possible. The
rows of the system matrix are placed in the same order as the columns.

Second, rather than simply assembling an explicit load vector at each time
point in the solution process, load vector coefficient matrices are assembled
and stored. These allow the updating of the load vector at any required time
point simply by interpolating the time dependent boundary conditions and per-
forming a matrix multiplication. This capability is particularly important in
inelastic analysis, since frequent updating of the load vector is required. A
similar process is used in the calculation of interior and boundary stresses.

3.4.4.7 System Equation Solution

A new solver was written for BEST. It operates at the submatrix level, using
software from the LINPACK package (Reference 82) to carry out all operations
on submatrices, The system matrix is stored, by submatrices, on a direct ac-
cess file. The decomposition process is a Gaussian reduction to upper triangu-
lar (submatrix) form. The row operations required during the decomposition are
stored in the space originally occupied by the lower triangle of the system
matrix. Pivoting of rows within diagonal submatrices is permitted.

The calculation of the solution vector is carried out by a separate subrou-
tine, using the decomposed form of the system matrix from the direct access
file. The process of repeated solution, required for problems with time de-
pendent and/or nonlinear behavior, is highly efficient.

3.4.4.8 Inelastic Solution Process

The inelastic solution algorithm starts with an elastic analysis of the pro-
blem for the first loading increment (complete with the specified boundary and
body force loading). At the end of the elastic increment the state variables
are calculated and the nonlinear consitutive equations are established. The
difference between the correct stresses or strains and the elastic stresses or
strains are estimated. These are used to compile a new boundary condition
vector (the right-hand side of the system equation). The process is essen-
tially repeated until the constitutive equations yield the stresses that are
negligibly different from the calculated stresses using equation (3.4-5). A
new loading increment is taken and the process is repeated for each subsequent
increment (see Section 3.4.3.2).
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During such an incremental solution process, a considerable saving in the com-
puting time has been achieved by introducing:

a, a solver which allows for resolution of the same system equations for
different right-hand sides so that the decomposition of the system
matrix is done only once.

b. a routine for the extrapolation of the plastic strains based on the
previous loading history and the generation history of the plastic
strains.

Although the extrapolation of the plastic strains does sometimes affect the
accuracy of the nonlinear solution, the savings could be very considerable
since usually one iteration may lead to 95% of the desired results,

The nonlinear solution algorithm and the associated routines are included
within the program BEST in such a manner that their presence will not affect
the efficiency of an elastic analysis.

Various levels of constitutive relations have been programmed within BEST.
These include a kinematic elastoplastic hardening model, and a viscoplastic
kinematic hardening model of Walker admitting thermally dependent hardening.
3.4.4.9 OQutput

The output from BEST is relatively straightforward. It consists of nine
sections, as follows:

1. Complete echo of the input data set.
2. Summary of case control and material property input.

3. Complete definition for each GMR, including all surface and volume
nodes, surface elements and volume cells.

4, Complete summary for each boundary cond1t1on set, including the ele-
ments and nodes affected.

5. Boundary solution (on an element basis), including displacements and
tractions at each node of each element. The resultant load on each
element and on the entire GMR is calculated and printed.

6. Displacement, stress and strain on a nodal basis, at all surface
nodes, for each GMR.

7. Displacements at all volume cell nodes.
8. Stresses at all volume cell nodes.

9, Strains at all volume cell nodes,
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Items 5 through 9 are printed at each user-requested time point. In the case

of a plastic analysis, an extra print of the elastic solution at first yield
is also provided.

Sample output pages are included in Section 3.4.7, following the input de-
scription.

3.4.5 Program Validation/Verification
3.4.5.1 Validation of Elastic Capabilities

The newly developed three-dimensional boundary element program (BEST) has a
great variety of input and analysis options. More will be added in the future.
It is clearly impossible to design and execute a test case examining every
possible combination of these options. BEST has, however, been subjected to an
extensive validation effort.

A simplified tabulation of the elastic validation cases which have been used
is presented in Figure 3.4-6. Major program capabilities are shown along the
diagonal boundary. The box at the intersection of a row and column represents
a possible test case combining two capabilities. The presence of an L, Q or M
in such a box signifies that a test case has been successfully run using lin-
ear, quadratic or mixed variation of displacement and traction. In many cases
a single test problem involves several capabilities. This is indicated by mul-
tiple entries in Figure 3.4-6. In most cases the test problems have been run
repeatedly during the BEST development effort, in order to verify the con-

tinued correct operation of existing capabilities after the addition of code
enhancements.
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Figure 3.4-6 BEST - Elastic Validation Matrix
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A small subset of the validation cases, testing particularly important or
basic capabilities, is discussed below. Except as otherwise indicated, all
stresses are surface stresses, calculated using the displacements and trac-
tions on the boundary. Unless otherwise noted, displacements are given in
inches and stresses in 1b/iné. In many cases both full and hidden line plots
of the meshes are shown.

1. Cube in Tension (Figure 3.4-7)

A cube was modeled using five quadrilateral and two triangular elements.
The cube was subjected to a uniform displacement. Using a sufficiently
accurate numerical integration, it is possible to achieve five place
agreement with the exact solution.

Analytical BE$T
Uy 0.001 0.001
u 0.00035 0.00035
v 0.00035 0.00035
Ty 16126 16126
Ty 0 0
4 0 0

Figure 3.4-7 Cube in Tension
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2. Pressurized Thick Cylinder (Figure 3.4-8)

A 22.5 degree sector of a thick cylinder was modeled using six quadrilat-
eral surface patches. In this problem two of the elements (the cylinder
ID and OD) possess curvature. The problem was solved using both linear
and quadratic variation of displacement and traction. The displacements
from both analyses showed good agreement with analytical results. Quad-
ratic variation was, however, required to obtain good stress results at
the surface nodes. The use of more surface patches in the radial direc-
tion would further improve the agreement between the calculated and anal-
ytical values of the radial stress.

This problem also tests the use of local coordinate systems, since the
Toad is defined as a pressure (traction normal to the surface) on the ID
of the cylinder, and rollers (zero normal deflection) are imposed on the
0 and 22.5 degree planes.

P= 16126 psi ' Pressure
BEST
Analytical Linear Quadratic
0 Up . 5,90x10-3 5,79x10-3 5,91x10-3
% -16126 -9334 -14699
% 41928 38869 41839
0D Ug 4,80x10-3 4.70x10-3 4,81x10-3
% 0 -5023 991
% : 25802 24818 25812

Figure 3.4-8 Pressurized Thick Cylinder
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3. Rotating Thick Cylinder (Figure 3.4-9)

The geometry and mesh for this problem are identical to (2), above. Note
that for this problem the use of quadratic variation is required to ob-
tain acceptable results for either displacement or stress.

)

ws=

1000
rad/sec

p= ,0007 1bm/in3

BEST
Analytical Linear Quadratic
ID Ug 7.13x10-4 6.76x10-4 7.13x10-4
% 21 © 507 131
9 5752 - 5211 5732
0D Ur 6.29x10-4 5.94x10~4 6.29x10~4
%R ‘ 21 -370 94
% 3390 3132 3368

Figure 3.4-9 Rotating Thick Cylinder

4. Multi-GMR Cylinder (Figure 3.4-10)

In this problem a 22.5 degree sector of a thick cylinder was again anal-
yzed. In this case, however, several added features are present. First,
the mesh is larger (twelve elements rather than six). Second, the struc-
ture is broken into two GMRs along the 11.25 degree plane. Third, the
boundary conditions on the 0 and 22.5 degree planes are cyclic symmetry
between these two surfaces, rather than the roliler boundary conditions
used in (2) and (3). In this case only the results for quadratic varia-
tion of displacements and tractions are shown. Once again, good agreement
between the calculated and analytical results was obtained.
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INTERFACE
ELEMENT

cycuc
SYMMETRY

P = 16126 PS!

PRESSURE SPEED
ANALYTICAL BEST ANALYTICAL BEST
D Up | 5.90x103 | 501x1073 | 7.13x10~% |7.13x10"¢
o -16126 - 16126 21 0
g 41928 41997 5752 5751
op Ug 480x1073  |4.81x10-3] 6.29x10-4 |6.20x 10~
oq 0 0 21 0
ap 25602 25865 3390 3371

Figure 3.4-10 Thick Cylinder - Multi-GMR

5. Half-Space Loaded with a Circular Punch (Figure 3.4-11)

w = 1000 RAD/SEC

p = 0.0007 LBM/IN3

This problem was designed to test both the infinite elements incorporated
in BEST and the ability to calculate stress and displacement at points in

the interior of a region,

The problem is the classical one of a half-space loaded with a uniform
pressure over a circular region. In the figure the dashed outer Tines of
the mesh are boundaries at infinity. Use of the mesh shown, consisting of

twelve finite quadratic elements and four infinite elements,

gave good

agreement between calculated and analytical results for the displacement

and stress under the center of the punch.
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s aren e m—am BOUNDARY AT INFINITY

DISPLACEMENT STRESS

{BELOW CENTER OF PUNCH) | (BELOW CENTER OF PUNCH)
DEPTH | ANALYTICAL BEST ANALYTICAL BEST
SURFACE POINT (] 120x10°3 | 1.25x1073 16100 16100
0.1 1.23x1073 1.20x1073 16060 16550
0.4 102x10-3 | 971 x10™ 14180 14054
INTERIOR POINTS 16 4.49x1074 4.25x107% 3780 3547
6.4 1.21x10~4 1.19x1074 290 246

Figure 3.4-11 Half-Space Loaded With a Circular Punch

6. Long Beam on an Elastic Half-Space (Figure 3.4-12)

In this problem a long beam is attached to an elastic half-space and
loaded in tension. This problem is of interest primarily as a starting
point for later dynamic/transient analyses. Note that the correct solu-
tion for the tip deflection of the beam is essentially the sum of the ex-
tension of the beam in simple tension and the displacement of the half-
space under a patch load.

It is of particular interest to note that it was never possible to obtain
. an acceptable solution to this problem when it was run as a single re-
gion, using either linear or quadratic variation. This is due to the fact
that, when considered as a single region, much of the beam is effectively
located at infinity. To obtain accurate results would require a much more
extensive mesh on the surface of the half-space, losing all the advantage
gained by the use of infinite elements. Assigning the beam and the half-
space to separate GMRs eliminates this problem, Teading to reasonable re-
sults (-5% error) for linear variation and very good results (less than
1% error) for quadratic variation.
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----- BOUNDARY AT INFINITY

Displacement

at Tip of Beam
Analytical 1.13x10-2
One Region, Linear Variation 5.00x10-4
One Region, Quadratic Variation 6.91x10-4
Two Regions, Linear Variation 1.05x10"
Two Regions, Quadratic Variation 1.12x10~2

Figure 3.4-12 Beam on an Elastic Half-Space

3.4.5.2 Validation of Inelastic Algorithms

The main portions of the code which are unique to inelastic analysis are the
constitutive modules and the routines for calculating volume integrals of var-
ious kernel function/inelastic strain (or stress) products over twenty node
isoparametric cells. A1l of the other basic functions of the program are iden-
tical with the elastic version and do not, therefore, require separate valida-
tion. Several simple problems have been run to verify the unique features of
the inelastic code.

1. Cube under Uniform Thermal Expansion

An unconstrained unit cube was subjected to a uniform thermal expansion.
Since the cube is unconstrained, the final stress should be zero and the
final direct strains should be those due to the temperature change. To
obtain these results using the inelastic code requires that all of the
inelastic volume integrals be properly implemented. The problem was run
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twice. In the both cases the surface was modeled using six (quadratic)
elements. In the first analysis, a single volume cell was used. In the
second, the cube was divided into four cells, requiring calculations at
interior, as well as surface, points.

The results were excellent for both analyses.
2. Cube in Simple Tension (Figure 3.4-13)

A cube in simple tension, represented by six surface elements and one 20
noded cell was loaded in simple tension. The cube was modeled as an elas-
tic linearly strain hardening plastic body. The analysis was carried out
up to the fourth increment beyond the yield point. Excellent agreement
with analytical results were obtained. The same problem was also analyzed
with 12 surface elements and 4 volume cells (in order to test the volume
integration routines for neighboring cells); the results were found to be
essentially similar for both cases.

e & & ,,
t /7 &
of e (A
3 /,é% < /’/ ;u :
ﬁl ?}_._.__ f ERQUERY — : o= X
4 ’// ﬂg" ’/ 8’ ""/
/, // :
(e 7

@ NUMERICAL (1 CELL AND 4 CELLS)
B — ANALYTICAL

Figure 3.4-13 Elastic-Plastic Cube in Tension
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3. Pressurized Thick Cylinder (Figures 3.4-14 through 3.4-17)

An internally pressurized thick cylinder (inner radius a=1, outer radius
b=2.0) was modeled using six surface elements and one cell. Axial deflec-
tion on the front and back faces was constrained to simulate plane
strain. Three-dimensional 1load-defiection results are compared to plane
strain results in Figure 3.4-14, Even with this simple model, good ac-
curacy was achieved over a significant range of nonlinearity when com-
pared with the two-dimensional model.

2o @
05 = YIELD STRESS

20 |- s
$

4GU, /0,3
1.0

Q20 A 3DATYIELD
@ 20 A 3D ATPLASTIC FRONT r=1.5a
0 l |
1.0 15 2.0
ria
VARIATION OF RADIAL DISPLACEMENT
1.0 —
A
A O
A
plog 0.0 p— A o
@)
O 0
A 30
9, = YIELD STRESS
0 l | ]
0 1.0 2.0 3.0

4GUy /0,0
LOAD-DISPLACEMENT RESPONSE

Figure 3.4-14 Load Displacement Response for One Cell
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Figure 3.4-15 shows a similar comparison with the two-dimensional results
for a discretization using ten surface elements and two volume cells.,
Since the two-dimensional program is probably the most accurate boundary
element method program analysis to date, it serves to establish the cor-
rectness of the three-dimensional analysis.

3.0

o, = YIELD STRESS

$
2.0 - ‘
4GU,/ [ ] ‘

o b 8 A 5 s

Q 20 A 3DATYIELD
@® 20 A 3D ATPLASTIC FRONT r=1.5a

0 | |

i.0 1.5 2.0

7la
VARIATION OF RADIAL DISPLACEMENT

1.0
0o = YIELD STRESS
A o}
A
A‘O
plo,  0.05 }—
(o]
O
A 3o
0 | | J
0 1.0 2.0 3.0
4GUb/n 3

LOAD-DISPLACEMENT RESPONSE

Figure 3.4-15 Load Displacement Response for Two Cells
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Figure 3.4-16 shows the convergence of the radial displacement solution
when the plastic front has reached the middlie of the cylinder (r=1.5a)
for the three-dimensional solution, where it can be seen that even a two-
cell (10 boundary elements) representation provides a satisfactory solu-
tion. Similar convergence studies on the overall load-displacement re-
sponse are shown in Figure 3.4-17, where the two-cell results are almost
indistinguishable from the exact analytical solution.

3.0
o = YIELD STRESS
2.0 |
4GUr/an

1o == ANALYTICAL
' X 1CELL

QO 2ceus
0 |

1.0 1.5

2.0
t/3

Figure 3.4-16 Variation of Radial Displacement When the Plastic Front Is At
r=1.5a for a Three-Dimensional Analysis
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10 — THEORETICAL
COLLAPSE LOAD
ELASTIC ——, X
Plog  0.05 | p_4 0o = YIELD STRESS
== ANALYTICAL
X 1CELL
QO 2ceus
0 | | |
0 1.0 2.0 3.0
4GUb/aoa

Figure 3.4-17 Convergence of the Load Displacement Response for the Three-
Dimensional Analysis of a Thick Cylinder

4, Perforated Plate in Axial Tension (Figures 3.4-18 through 3.4-20)

Figure 3.4-18 shows the discretization for a perforated plate under
axial loading (the X-direction). Thirty boundary elements (8 noded)
and six cells (20 noded) have been used to define the problem. It is
important to note that the cells are defined only in the high stress
concentration region where yielding is 1ikely to occur.

Figure 3.4-19 shows the overall load-displacement behavior obtained
from the three-dimensional analysis compared with plane stress bound-
ary element method results. Figure 3.4-20 shows the same comparison
for the longitudinal stress distribution at the root of the plate.
The results of the analyses agree very well with each other, indi-
cating that the numerical implementation of nonlinear analysis within
BEST is at least as accurate as the existing two-dimensional boundary
element program,
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Figure 3.4-19  Stress-Strain at the Root of the Perforated Plate
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Figure 3.4-20 Perforated Plate - Stress Spread at oy = 1.6(op) at Yield
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3.4.5.3 Validation of Dynamic Analysis

The dynamic/transient capabilities of the present program are implemented
using transform techniques. The problem is recast in the Laplace or Fourier
transform domain., In the case of a time harmonic loading the boundary element
algorithm is exactly analagous to that for the static elastic case, except
carried out in complex arithmetic. In the case of a more complex loading func-
tion (either a discrete sum of harmonic terms or an aperiodic Toading), an ap-
propriate transform of the boundary condition is taken, and the system equa-
tions are created and solved for a set of values of the transform parameter.
The time domain solution must then be numerically reconstructed from the
transform solution.

Test cases have been developed to test the time harmonic solution, the numer-
ical transform inversion and the ability to solve problems with nonharmonic
loading.

1. Cantilever Subject to Harmonic End Shear (Figure 3.4-21)

A Tong cantilever was modeled using a total of eighteen quadratic surface
patches. A time harmonic shear load at a frequency of 314 radians/second
was applied to the free end of the beam. The excellent agreement between
the calculated three-dimensional response and analytical results (based on
beam theory) for the envelope of the vibrating beam is shown in the ref-
erenced figure.

%, 1
: I : ” ™1 =100 Psi
* | ' | ‘ E =1.61x107 PSI
H I : : #” com 318 RADISEC
! |

R da - aa
.
10
x
0.002 — ANALYTICAL

A COMPUTED

—-0.002

UySTEADY STATE
(in.)

~0.004

Figure 3.4-21 Cantilever Subject to Harmonic End Shear
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2. Cantilever Subject to Harmonic Transverse Load (Figure 3.4-22)
The same model discussed in (1) was subjected to a time harmonic patch

load. The agreement between the three-dimensional calculations and beam
theory was, once again, excellent.

f ‘. - A=1000 PSI ‘

. .
v/ | Al L, L
4 ~
| | ) | E =1.61x107 PSI
‘ t ? ¢ v =00
| | | | w=314.0 RAD/SEC
| | ' l |
/L_--_--.---i/, -+ — —oj:)— p o 7
3y L2 JP/ R
/ 5
X
0.001
r —= ANALYTICAL
O COMPUTED

-0.001

UySTEADY STATE
{in.)

-0.002 =

Figure 3.4-22 Cantilever Subject to Harmonic Transverse Load
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3. Test Problem for a Time Dependent Analysis (Figures 3.4-23 and 3.4-24)

In order to test the numerical accuracy of the inversion of the
transform domain solution, a problem of cantilever subjected to a
time dependent loading at the free end was analyzed.

Figure 3.4-23 shows the surface discretization used for the problem
as well as the calculated displacement response. The end displacement
agrees very well with the exact analytical solution. The difference
is mainly due to the way the applied loading was represented by the
direct transform algorithm for a piece-wise linear approximation, as
shown in Figure 3.4-24.

= 1.61 x 107
= 0.0
(t) = 1000 Sinwt

O NWMERICAL
—— ANALYTICAL

AXIAL DISPLACEMENT AT THE FREE END

Figure 3.4-23 Transient Analysis of a Cantilever Subjected to a Harmonic
Axial Loading
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Figure 3.4-24 Cantilever Loading - Actual vs. Simulated

3.4.5.4 Notched Specimen Verification

Verification of this initial version of BEST is being carried out using test
data and previous analytical results for notched specimens. The work done to
date relates to specimen loading within the elastic range. The inelastic and
creep analysis of one of these specimens is now being performed.

1. C-Notch Low Cycle Fatigue Specimen (Figure 3.4-25)

The C-notch Tow cycle fatigue specimen, as shown in the referenced figure,
is designed to place a Targe volume of material in a plane strain, high
stress condition. The specimen has, since its design several years ago,
been subjected to a variety of elastic and inelastic analysis as well as
to strain gage testing for specimen calibration.
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0.4616

Figure 3.4-25 Cross Section of C-Notch Low Cycle Fatigue Specimen

In the present verification program the specimen was analyzed using BEST.
The portion of the specimen which was analyzed is indicated in Figure
3.4-25. The mesh used is shown, in both full and hidden line views, in
Figure 3.4-26. The analysis was carried out using both linear and quad-
ratic variation of displacement and traction.

Key stress results are summarized in the table below. The plane strain
results were obtained from a variety of two-dimensional codes. The base-
T1ine results were obtained from a very detailed three-dimensional analy-
sis. The NASTRAN results cited were obtained using a mesh of twenty node
isoparametric elements. The surface mesh refinement in the NASTRAN analy-
sis was approximately equivalent to that in the BEST analysis.

Plane BEST BEST

Strain Baseline  NASTRAN Quadratic Linear
Oyx (midplane) 250 252 224 248 191
oyx (free surface) - 150 136 158 138
0,, (midplane) 76 75 67 70 _—

3.4-51



7
y \STRAIN GAGES
LOCATED ALONG

X
THIS LINE
z Y

Figure 3.4-26  BEST Model for Analysis of C-Notch Low Cycle Fatigue Specimen

It is clear from the results above that BEST (using quadratic variation)
is equivalent in accuracy to the previous baseline solution and to the
plane strain results, and is superior to three-dimensional finite element
analysis for an equivalent mesh.

It is also clear that the use of linear variation for the full model does
not provide sufficiently accurate results. The linear results could be
improved by mesh refinement, but the use of quadratic variation over the
same mesh is more efficient both in input preparation and analysis cost.

The results of the quadratic BEST analysis are compared to strain gage
data in Figure 3.4-27. The gages were located on the free surface of the
specimen along the line shown in Figure 3.4-26. Agreement between the
three-dimensional calculations and the data is generally good.

160 .
140
120
100 D
80
- 60
o D
g =
- ot
40 -
.  —
100
=120 0
0.0 0.2 o o
[ Stratn Gage NJXSWGE FROM NOTCH (4n.) <> st
Figure 3.4-27 Comparison of Strain Gage Data With BEST Results for C-Notch
Specimen
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2. Benchmark Notch Specimen (Figure 3.4-28)

The benchmark notch specimen is a double edge notch specimen developed by
General Electric/Louisiana State University (GE/LSU) under NASA-Lewis
Contract NAS3-22522 (Reference 83). A significant volume of well docu-
mented data was provided as part of the referenced contract. These data
have been used to verify the elastic capabilities of BEST. Verification
of the inelastic capabilities of BEST, using this same data base, is now
underway.

The specimen geometry is defined in Figure 3.4-28. Stress analysis was
carried out for the gage section only, a procedure already known to be
satisfactory (Reference 83). Three different models were used, all ideal-
izing one-quarter of the specimen gage section. Detailed comparison of
results was carried out among the BEST analyses, GE/LSU finite element
results and Pratt & Whitney finite element results obtained using both
MARC and MARC-HOST. While these comparisons are not discussed here, it
should be noted that, with sufficient mesh refinement, equivalent results
were obtained with all analysis tools.

The discussion in this report is directed at the comparison of BEST re-
sults with the GE/LSU strain gage data. The major characteristics of all
of the BEST analyses are summarized in the table below. The maximum per-
ipheral strain in the notch (at the free surface) is given for each anal-
ysis. All analysis methods and the test data show that this value should
be between 1700 and 1800 (microstrain).

CPU Time
Model Elements Variation Equations GMRs (seconds) Max Strain
1 50 linear 156 1 64 1688
2 50 quadratic 456 1 234 1780
3 22 linear 78 2 20 1594
4 22 quadratic 210 2 60 1742
5 22 mixed 117 2 31 1729
6 10 linear 36 1 10 1186
7 10 quadratic 96 1 28 1605

It is clear from the table that models 2, 4 and 5 all yield results of
- accuracy entirely comparable with the strain gage data. The variation in
peak strain among these three is within +1.5%. It is also clear that the
most cost effective analysis is that which combines substructuring with
mixed linear and quadratic variation. As was the case for the C-notch
specimen, fully linear analysis cannot give acceptably accurate results
without unacceptable mesh refinement.
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Figure 3.4-28 Double Edge Notch Specimen Used in Contract NAS3-22522

The mixed model is shown in Figure 3.4-29, in both full and hidden 1ine
views. In this model eight of the twenty-two elements (those in and near
the notch) were quadratic, while the remaining fourteen were linear. The
visible elements in the hidden line plot are identified as linear or
quadratic. The fully linear and quadratic models (4 and 6) utilized an
identical surface discretization to that shown. The results of these
three analyses (4, 5 and 6) are plotted with the GE/LSU strain gage re-
sults in Figure 3.4-30. Both the fully quadratic and mixed analyses are
in excellent agreement with the strain gage data. The difference between
the two analyses is far less than the normal scatter in strain gage data.
The fully linear analysis, however, does not give either an accurate peak
strain or a correct representation of the strain distribution near the
notch.

Also shown in Figure 3.4-29 is a pattern of eight volume cells. These
cells are used for the representation of inelastic strain in the nonlin-
ear analysis of the specimen under various loadings. The cell pattern was
designed to include the portion of the specimen gage section which exper-
iences inelastic response during the tests described in Reference 83.
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Figure 3.4-29 Optimized Model for Analysis of Benchmark Notch Specimen
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Figure 3.4-30 Comparison of BEST Results With Strain Gage Data
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3.4.5.5 Hot Section Component Analysis

In order to evaluate the capabilities of the present version of BEST for the
analysis of real components, an analysis of a commercial cooled turbine blade
geometry was carried out. It is expected that the use of this analysis as a
benchmark problem will be continued throughout the Tife of the Inelastic Meth-
ods program. This report discusses preliminary results for the elastic analy-
sis of the blade.

The blade analyzed is a cooled high turbine blade presently in service. It is
subject to mechanical loads (primarily centrifugal) and thermal loads. Of par-
ticular interest for this blade is the location and magnitude of the peak
stress under the platform.

A BEST model was built for this problem. Both full and hidden line views of
the model are shown in Figure 3.4-31. The model consists of five GMRs. The
interfaces between GMRs are generally perpendicular to the radial direction.
The characteristics of the model are summarized below.

Linear Quadratic
GMR Elements Source Points Source Points
1 60 61 180
2 86 85 256
3 107 . 98 303
4 106 96 298
5 80 76 232

The system equations for a fully lTinear analysis contain 1248 equations.

To date only a fully linear analysis for centrifugal loads has been carried
out. Analysis of the results is still in a preliminary stage. The total cen-
trifugal load at various spanwise stations on the blade has been compared with
the design calculations for the blade.(Figure 3.4-32). The agreement between
the two totally independent calculations is excellent. The total centrifugal
load for the blade is within 2% of the design calculation. The larger local
error near the blade platform is believed to be due to the fact that the de-
sign calculation models the platform as a discontinuous addition of mass.

Extremely preliminary study of blade tip deflections, load distribution over
the base of the blade neck and concentrated stresses indicates reasonable
agreement with finite element results. Contour plots of principal stress con-
tours have verified that the peak stress occurs in the correct location. It is
clear, however, from the results of the verification problems that at least
some use of quadratic variation will be requ1red to achieve correct definition
of critical stresses and strains.

A fully quadratic analysis of this problem would lead to a system of over 3800
equations. Analysis time, on the IBM 3081, would be approximately one hour,
compared to about 16 minutes for the fully linear analysis. The results of the
benchmark notch analysis clearly indicate that it should be possible to
achieve acceptably accurate results at reasonable cost through the use of
mixed variation. Present efforts are directed at identifying those areas of
the model requiring quadratic variation and/or mesh modification.
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Figure 3.4-31  BEST Model of Cooled Turbine Blade
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3.4.6 Boundary Element Stress Technology (BEST) Program U911 - Input De-
scription

The input to U911 is divided into six sections as follows:

Case control (**CASE control)

Material properties (**MATErial property)
Generic modeling regions (**GMRegion)
Interfaces (**INTErface)

Boundary condition sets (**BCSEt)

Body forces (**BODY force).

O O LW~
« o o o o =

A detailed description of each of these sections is provided in the following
paragraphs. The interface and body force sections are optional; the other sec-
tions must be input at least once.

Input quantities may be either alphanumeric or numeric (integer, floating
point, E, or D format) as specified and may be up to 16 characters. Individual
entries on a card (both keyword and input) must be separated by at least one
blank space. Input for certain keywords (as noted) may be continued onto more
than one card by repeating the keyword on the new card(s).

Keywords may be input as shown; minimum input is the CAPITALIZED characters.
Those keywords which are underscored must always be input. Keywords shown be-
low are indented to indicate groups of cards to be input together. However, it
is not necessary to indent the input in this manner.

Consistent units must be used. Angles are in degrees, speed is in revolutions
per minute, and frequency is in radians per sound.

The current program limits include:

20 time points

10 generic modeling regions

15 surfaces per region

600 elements (416 quadratic elements in problems with body forces,

300 elements in problems having interior points)

- 11 infinite elements per region

- 2500 nodes (560 nodes per region)

- 1200 Sfurce points (600 source points in problems having interior
points

- 302 source points per region in a local coordinate system

99 interface and cyclic symmetry element pairs (total)

350 interface and cyclic symmetry node pairs (total)

20 boundary condition sets with cyclic symmetry

60 boundary condition sets with springs

maximum element number of 9999

maximum node number of 9999

maximum of 24 entries per input card.
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3.4.6.1 Case Control Input

The case control input section may be input only once.

Type of
Keyword Input ’ Input
**CASE control
TITLe Alphanumeric Case title
CENTri fugal
DYNAmic Numeric Frequency value, damping coefficient
INHOmogeneous
THERmal
PLASticity
RESTart Alphanumeric READ or WRITE
TIMEs Numeric Output time value(s)
TRANsient Numeric Number of time intervals, time

increment, damping coefficient

The analysis is assumed to be static, homogeneous, constant temperature,
elastic, and time independent unless the appropriate optional keyword is in-
put. The optional keywords need be included only if a particular option is to
be turned on.

The case title should have a maximum of 72 characters.

Input on the TIMEs card may be continued on more than one card.

3.4.6.2 Material Property Input

The material property input section must be repeated for each separate
material.

Type of
Keyword Input Input
**MATErial property

1D Alphanumeric Material name

TS0Tropic
TEMPerature Numeric Temperature value(s)
EMODulus Numeric Young's modulus value(s)
ALPHa Numeric ~Alpha value(s)
DENSity Numeric Mass density value
POISson Numeric Poisson's ratio value
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Type of

Keyword Input Input
ANISotropic
TEMPerature Numeric Temperature value
ALPHa Numeric Alpha value
CONStants Numeric Elastic constant values
DS
INELastic
MONOtonic
CYCLic
IS0Tropic
TIME Numeric Time point identifier(s) for slow
algorithm
YIELd Numeric Proportional limit value
CURVe Numeric Stress value, plastic strain value
TWO surface
TIME Numeric Time point identifier(s) for slow
algorithm
YIELd Numeric Inner proportional Tlimit value,
outer proportional limit value
HARD Numeric Inner hardening parameter, outer

hardening parameter
WALKER

If the material name is a material library designation, then the TEMPerature,
EMODulus, ALPHa, DENSity, and POISson cards may be omitted. However, any of
them may be included to override the material library data.

The Young's modulus and alpha values must be input in the same order as the
temperature values.

A DS card (indicating a directionally solidified material) must be included in
ANISotropic input. The constants to be input for a directionally solidified
material are Cy71, C13, C33, C44, and Cgg.

Either a MONOtonic card (indicating monotonic loading) or a CYCLic card (in-
dicating cyclic loading) must be included in INELastic input. Either the
ISOTropic model, or the TWO surface model, or the WALKer must be used in
INELastic input.

The value of stress at zero plastic strain (i.e., proportional 1imit) need not
be included in CURVe input. The stress and strain values input should start
with the first nonzero value of plastic strain, A HARDening parameter is cal-
culated and used if a single stress/strain pair is input. Otherwise, the mul-
tipoint stress/strain algorithm is used.

Input on the TEMPerature, EMODulus, ALPHa, CONStants, and YIELd cards may be
continued on more than one card.

3.4-61



3.4.6.3 Generic Modeling Region Input

The generic modeling region section must be repeated for each region.

Keyword

*GHR
1D

TNHOmogeneous

THERmal
PLASticity
MAT
TREFerence
POINts

SURFace

TYPE
ELEMents

TRANsTate
REF

DIR

ROT
NORMa
VOLUme

POINts

TYPE
CELLs

Type of
Input

Alphanumeric

Alphanumeric
Numeric
Numeric

Alphanumeric

Alphanumeric
Numeric

Numeric
Numeric

Numeric
Numeric
Alphanumeric
Numeric

Alphanumeric
Numeric

Input

Region name

Material name

Reference temperature value

Node number, coordinate values
(x,y,2)

Surface name, (reference surface
name)

LINI or QUAD

(I), "element number, node numbers,
(ref. node)

Translation values (x,y,z)

Axis of rotation reference point
(x,y,2)

Axis of rotation direction (x,y,z)
Axis of rotation angle (degrees)
Element number, + or -

Point number, coordinate values
(x,y,2)

LINI or QUAD

Cell number, node numbers (nodes 1
to 10)

Cell number, node numbers (nodes 11
to 20)

The SURFace input may be either of two forms:

- a TYPE card and an ELEMents card to define element connectivity

- a REF card, a DIR card, a ROT card, and/or a TRANslate card to define
one surface with reference to another surface (translations are per-

formed first, followed by rotations).

The TYPE designation in SURFace input specifies the traction or displacement
variation on the element. A surface may contain only one TYPE card. Therefore,
if mixed variation is required in a region, two surfaces must be defined.
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Elements must have either 6 (triangles) or 8 (quadrilaterals) nodes. Element
numbering is consecutive around the boundary.

Infinite elements are indicated by an I on the element card and may have 7
(triangles) or 9 (quadrilaterals) nodes, where the extra node is the reference
node. If the reference node is not input, it is assumed to be at the origin.

The sign associated with the defining element on the NORMal card should be
plus (+) if the element is numbered in a counterclockwise direction as seen
from the outside of the model or minus (-) if it is numbered in a clockwise
direction. Disjoint boundaries must have multiple element/sign pairs on the
NORMal card.

The points which are input in the VOLUme input (both points and cell nodes)
are treated as "interior" points. These points may be either nodal points,
other surface points, or true interior points. The TYPE designation in VOLUme
input specifies cell source points (i.e., 8 corner nodes or all 20 nodes).

Cells must have 20 nodes. Cell numbering is consecutive around the "front"
face boundary, followed by the four midplane nodes, followed by the "back"
face boundary.

3.4.6.4 Interface Input

The interface section must be repeated for each interface.

Type of
Keyword Input Input
**INTErface
GMR Alphanumeric Region name of first region
SURFace Alphanumeric Surface name in first region
ELEMents Numeric Element number(s) in first region
POINts Numeric Node number(s) in first region
GMR ' Alphanumeric Region name of second region
SURFace Alphanumeric Surface name in second region
ELEMents Numeric Element number(s) in second region
POINts Numeric Node number(s) in second region
SLIDing

The interface is assumed to have complete displacement compatibility unless a
SLIDing card is input, in which case only normal displacement compatibility is
assumed.

The ELEMents card and/or the POINts card are included in SURFace input only to
designate a subset of that surface.

Input on the ELEMents and POINts cards may be continued on more than one card.
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3.4.6.5 Boundary Condition Set Input

The boundary condition set section must be repeated for each new boundary con-
dition.

Type of
Keyword Input Input
**BCSEt
ID Alphanumeric Boundary condition set name
GMR Alphanumeric Region name
VALUe
RELAtion
SURFace Alphanumeric Surface name
ELEMents Numeric Element number(s)
POINts Numeric Node number(s)
TIMEs Numeric Input time value(s)
LOCA1
CYCLic
GMR Alphanumeric Region name
SURFace Alphanumeric Surface name
ELEMents Numeric Element number(s)
POINts Numeric Node number(s)
ANGLe Numeric Axis of rotation angle (degrees)
DIR Numeric Axis of rotation direction (x,y,z)
DISPlacement Numeric Component value
SPLIst Numeric Source point value(s) or ALL or SAME
T Numeric Time point identifier, displacement
- value(s)
RIGId Numeric Component value
SPRIng Numeric Component value, spring value
TRACtion
SPLIst ‘ Numeric Source point value(s) or ALL or SAME
T Numeric Time point identifier, traction

value(s)

The ELEMents card and/or the POINts card are included in SURFace input only to
designate a subset of that surface,

The TIMEs card must be omitted in a boundary condition set which contains a
RIGId card. If the value(s) on the TIMEs card differ from those values in the
case control input, the output is calculated by linear interpolation. In the
case of time independence (i.e., the TIMEs card is omitted) the time point
identifier on the T card must be 1 (one).

The LOCAl card designates input in the outward normal direction. The component
value on the CYCLic, DISPlacement, RIGId, SPRIng, or TRACtion card must be 1
(one). Care must be taken not to mix global and local coordinate systems on a
particular element. Care must also be taken not to input conflicting com-
ponents on a particular node in a particular element.
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The VALUe card should be included with the DISPlacement card, the RIGId card,
or the TRACtion card. The RELAtion card should be included with the CYCLic
card or the SPRIng card.

Either CYCLic input, or DISPlacement input, or RIGId input, or SPRIng input,
or TRACtion input must be included in a boundary condition sef. This input set
may be included up to three times (once for each component) in a boundary con-
‘dition set. However, different boundary condition types may not be mixed in a
boundary condition set.

The cyclic symmetry direction (DIR card) defaults to the z-axis (0,0,1).

The SPLIst card indicates the order in which the values are to be input on the
T cards. The input may be in either of three forms:

- nodal values
- ALL to indicate that a single constant value is to be input
- SAME to use the previous source point list within the current boundary
condition set (this option may not be used for the first source point
list in the current boundary condition set).
Input on the ELEMents, POINts, SPLIst, and TIMEs cards may be continued on
more than one card. Input on the T card may be continued on more than one
card, including the time point identifier on each card.
3.4.6.6 Body Force Input

The body force section is optional.

Type of
Keyword Input Input
**BODY force
CENTrifugal
DIR Numeric Axis of rotation direction (x,y,z)
PT Numeric ?xis ?f rotation reference point
X,¥sZ
SPEEd Numeric Speed value(s)
TIMEs Numeric Time value(s)
THERmal
TIMES Numeric Time value(s)
TEMPeratures Numeric Node number, temperature value(s)
at time(s)

The CENTrifugal card and the TIMEs card must be included in the case control
section in order to input centrifugal body forces.

The direction (DIR card) defaults to the z-axis (0,0,1). The reference point
(PT card) defaults to the origin (0,0,0).

Input on the SPEEd and TIMEs cards may be continued on more than one card.
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3.4.7 Sample OQutput from BEST

3.4.7.1 Input Echo

*%%% INPUT ECHO ¥

LINE INPUT

1 **CASE

2 TITLE U911 TEST CASE - CUBE IN SIMPLE TENSION WITH PLASTICITY
3 TIMES 1.00 2.00 3.00 4.00 5.00
4 PLASTICITY

5 *¥MATE

6 ID MAT1

7 TEMP 70.0000

8 EMOD 100.000

9 POIS .250000

10 DENS 1.00000

11 INELASTIC

12 YIELD 100.

13 TIMES 4

14 CURVE

15 150. 1.

16 *#%GMR

17 ID GMR1

18 PLASTICITY

19 MAT MAT1

20 TREF 70.

21 POINTS

22 1 .0 .0 .0

23 2 .0 .0 500000

24 3 .0 .0 1.00200

47 11 .0 .560000 .0

26 13 .0 500000 1.00000

27 21 .0 1.00000 .0

28 22 .0 1.000600 .50008¢C

29 23 .0 1.00000 1.00000

30 101 .500000 .0 .0

31 103 .500000 .0 1.03000

32 121 .500000 1.00000 .0

33 123 .500000 1.00000 1.00000

34 201 1.00000 .0 .0

35 202 1,00000 .0 .500000

36 203 1.00000 .0 1.00000

37 211 1.00000 .500000 .0

38 213 1.00000 .500000 1.00000

39 221 1.00000 1.00000 .0
40 222 1.00000 1.00000 .500000

41 223 1.00000 1.00000 1.00000

42 SURFACE SURF11}

43 TYPE LINI
44 ELEMENTS
45 1 1 2 3 13 23 22 21 11
46 2 201 202 203 213 223 222 221 21l
47 3 1 2 3 103 203 202 201 101
48 4 21 22 23 ie3 223 222 221 121
49 5 1 11 21 121 221 21l 201 101
50 6 3 13 23 123 223 213 203 103
51 NORMAL 1+

52 VOLUME

53 TYPE QUAD

54 CELLS
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3.4.7.2 Case Control Summary

#%%% CASE CONTROL INPUT ¥sie#

JOB TITLE U911 TEST CASE - CUBE IN SIMPLE TENSION WITH PLASTICITY
TIMES FOR SOLUTION: 1.00 2.00 3.00 4.00 5.00
PLASTICITY FLAG 1 THERMAL FLAG [}
CENTRIFUGAL LOAD FLAG o] TRANSIENT FLAG 0
DYHNANIC FLAG 0 INTEGRATION EPSILON 0.0010
INTEGRATION GRADIMG FACTOR 1.4142 RESTART FLAG 0

*3#3% MATERIAL INPUT %%
MATERIAL NAME MAT!
INELASTIC
ISOTROPIC
YIELD STRESS: 100.00
STRESS STRAIN
0.10000E+03 0.0
0.15000E+03 0.10000E+01
DENSITY: 1.0000 POISSONS RATIO: 0.2500
TEMP ALPHA E
0.70000E+02 8.0 0.10C00E+03
3.4.7.3 Generic Modeling Region (GMR) Definition
#uHs GMR INPUT saxs
REGICN 1
HAME GMRI MATERIAL MATI REFERENCE TEMPERATURE 70.00
NODES 2¢ ELEMENTS 6 SURFACES 1
SOURCE POINYS 8 CELLS 1 INFINITE ELEMENTS 0
COORCINATE LIST
NODE X Y r4 NODE ¥ Y Z
1 0.0 0.0 0.0 2 0.0 c.0 8.5000
3 0.0 6.0 1.0000 11 0.0 G.5050C 0.0
13 0.0 0.5000 1.0000 21 9.0 1.0339 0.0
22 c.0 1.0000 0.5000 23 0.0 1.8800 l1.00¢C0

101 0.5000 0.0 0.0 103 0.50C0 0.0 1.0000

121 4.5000 1.0000 0.0 123 0.5000 1.6260 1.0000

201 1.0000 0.0 0.0 202 1.0000 c.0 6.5000

203 1.0000 0.0 1.0000 211 1.0%00 0.585¢% 0.0

213 1.0000 ¢.5000 1.0000 ezl 1.0000 1.0000 c.0

222 1.0000 1.0000 0.5000 223 1.0800 1,052 1.0000

SURFACE SURF1] LINEAR VARIATION
1 2 3 13 23 22 21 11
2 201 211 221 222 223 213 203 202
3 1 io1 20} 202 203 103 3 4
% 21 22 23 123 223 222 221 i21
5 1 11 21 121 221 211 201 101
[} 3 103 203 213 223 123 23 13

SOURCE POINT LIST

21 23 201 203 221} 223
CELL INPUT
1 3 2 1 11 21 22 23 13 103 101 1zl 123 203 202 201 211 221 222 223
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3.4.7.4 Boundary Condition Definition

*%%% BOUNDARY CONDITION INPUT 3%

BOUNDARY CONDITION SET NAME TRACI11
GMR GMR! SURFACE SURF11

ELEMENT LIST
2

SOURCE POINT LIST
201 203 223 221
LOCAL (NORMAL) COORDINATE SYSTEM

TIME VALUES:

TYPE: VALUE

1.0000 2.0000 3.0000 4.0000 5.0000

COMPONENT 1 TRACTION INPUT

TIME = 1.00 DATA VALUES:
0.10000E+03 0.10000E+03 0.10000E+03

TIME = 2.00 DATA VALUES:
0.10500E+03 0,.10500E+03 0,10500E+03

TIME = 3.00 DATA VALUES:
0.12000E+03 0.12000E+03 0.12000E+03

TIME = 4.00 DATA VALUES:
0.11250E+03 0.11250E+03 0.11250E+03

TIME = 5.00 DATA VALUES:
0.67500E+02 0.67500E+02 0.67500E+02

3.4.7.5 Boundary Solution (Element Basis)

ELEMENT

nwonue FR R ol G PO n e 0a s

L -

0.10000E+03

0.10500E+03

0.12000E+03

0.11250E+03

0.67500E+02

JOB TITLE: U911 TEST CASE = CUBE IN SIMPLE TENSION WITH PLASTICITY
BOUNDARY SOLUTION FOR TIME = 1.00

NODE NO. X DISPLACEMENT Y DISPLACEMENT  Z DISPLACEMENT X TRACTION

1
3
23
21

201
221
223
203

201
203

21

223
221

23
221
201

203
223
23

0.0 0.0 6.6
0.0 0.0 =-0.25001D+00
0.0 ~-0.25002D+00 ~0.25001D+00
9.0 ~0.250020+00 6.0
0.16000D+01 0.0 0.0
0.100000401 -0.25001D000 0.0
6.10000D+01 =0.250020400 «0.250020+400
0.100000+01 0.0 -0.25002D400
0.6 0.0 0.0
0.106000+01 0.0 0.0
0.10000D+02 0.0 ~0.250020+00
0.0 0.0 -0.250010¢200
6.0 -0.250020+00 0.0
0.0 =0,25002D0+00 -0.25001D¢200
0.100000¢01 =0.250020+00 ~0.250020+00
0.30000D+01 =0.25001D0+00 0.0
2.0 6.0 6.0
0.0 -0.25002D+00 6.0
8.100000+02 =0.250010+00 0.0
0.100000+01 0.0 0.0
0.0 0.0 ~0.25001D+00
0.10000D+01 0.0 ~0.25002D+00
0.100000+01% ~0.250020+00 -0.250020+00
0.0 -0.25002D+00 -0.25001D+00
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-0.100000+03
~0.10000D+03
=-0.100000¢03
=0,10000D403

0.30000D+03
0.10000D¢03
0.100000<¢03
0.10000D+03

[~ E-N-X-1
o9coco

L X-X-%-1
cooo - N-R- N1

-R-N-X-1
e o o o

cooco
[-N-N- -]

Y TRACTION

- R-R-N-1
CX-X-X-1

-E-X-¥-1
ER-R-¥-1

~0.429690-05
0.34693D-04
-8.11761D-04
0.63212D0-06

DO
cooo

o R-X-N-

oo

oocoo
cooo

Z TRACTION

-N-X-R-1
cocow

- R-X-]
oocoo - X-R-X-)

o0oo0co

ocoe
EY-X-T-1

~0.205750-04
-0.276970-04
0.218390-04
0.36241D-04

ocococo
ooco



3.4.7.6 Boundary Solution (Nodal Basis)

JOB TITLE:

NODE

i1

13

21

22

23

101

103

121

123

201

NODAL OUTPUT AT TIME = 1.00
DISPLACEMENT  ~ewmew-o-ee STRESS -==w--owue
X/Y/Z . RR/YY/ZZ XY/XZ/NZ

0.0 0.10000E+03 0.0

0.0 -0.11716E-02 0.0

0.0 -0.11579E-02 0.0

0.0 0.10000E+03 0.0

0.0 -0.10033E-02 -0.23842E-05
-0.12501E+00 -0.17395E-02 ~-0.23842E-05

0.0 0.10000E+03 0.0

0.0 -0.11691E-02 ~0.15895E-05
-0.25001E+00 -0,11698E-02 0.0

0.0 0.10000E+03 0.23842E-05
-0.12501E+00 ~0.17748E-02 0.0

0.0 -0.99501E-03 0.0

0.0 0.10000E+03 0.0
-0.12501E+00 ~-0.17519E-02 0.0
-0.25001E+00 ~0.99945E-03 0.23842E~05

6.0 0.10000E+03 0.3178%9E~-05
-0.25002E+00 =0.11924E~02 0.0

0.0 -0.11606E-02 0.15895E-05

0.0 . 0.10000E+03 0.0
~0.25002E+00 -0.10028E~02 -0.47684E~05
-0.12501E+00 ~0.17242E-02 0.23842E~05

0.0 0.10000E+03  -0.15895E-05
~0.25002E+00 -0.11628E-02 -0.63578E-05
~0.25001E+00 -0.11546E-02 0.31789E-05

0.50000E+00 0.10000E+03  -0.28610E-04

0.0 -0.75028E=03 0.0

0.0 -0.75923E-03 0.0

0.50000E+00 0.10000E+03  -0.95367E-05

0.0 -0.74690E~03  -0.47684E-05
-0.25002E+00 -0.74768E~03 0.0

0.50000E+00 0.100001:+03 0.11921E~-04
~0.25001E+00 -0.75531E~03 0.19073E-04

0.0 ~0.76147E-03 0.0

0.50000E+00 0.10000E+03 0.26226E-04
-0.25002E+00 -0.74005E-03 0.11921E-04
=~0.25002E+00 -0.74005E~-03 0.0

0.10000E+01 0.10000E+03  -0.50863E-04

0.0 -0.11649E~02 0.0

0.0 -0.11921E-02 0.0

3.4-69

--------- STRAIN --w--cw--
XX/YY/ZZ XY/ XZ/YZ
0.10000E+01 6.0
~0.25001E+00 0.0
~0.25001E+00 0.0
0.10000E+01 0.0
~0.25001E+00 -0.29802E-07
~0.25001E+00 -0.29802E-07
0.10000E+01 0.0
~0.25001E+00 -0.19868E-07
~0.25001E+00 0.0
0.10000E+01 0.29802E-07
-0.25001E+00 0.0
-0.25001E+00 0.0
0.10000E+01 0.0
~0.25001E+00 0.0
~0.25001E+00 0.29802E-07
0.10000E+01 0.39736E-07
=0.25001E+00 0.0
~0.25001E+00 0.19868E-07
0.10000E+01 - 0.0
-0.25001E+00 -0.59605E-07
~0.25001E+00 0.29802E~07
0.10900E+0] -0.19868E-07
~0,25001E+00 -0.79473E-07
~0.25001E+00 0.39736E-07
0.10000E+01 -0.35763E-06
-0.25001E+00 0.0
-0.25001E+00 0.0
0.10000E+01} ~-0.11921E-06
-0,25001E+00 -0.59605E-07
-0.25001E+00 0.0
0.10000E+01 0.14901E-06
-0.25001E+00 0.23842E-06

-0.25001E+00

0.10000E+01
-0.25001E+00
~-0.25001E+00

0.10000E+01
~0.25001E+00
-0.25001E+00G

U911 TEST CASE - CUBE IN SIMPLE TENSION WITH PLASTICITY

0.0

0.32783E-06
0.14901E-06
0.0

-0.63578E-06
0.0
0.0



3.4.7.7 Cell Node Displacements

JOB TITLE: U911 TEST CASE - CUBE IN SIMPLE TENSION WITH PLASTICITY

INTERIOR DISPLACEMENT AT TIME = 1.00 B
NODE X DISPLACEMENT Y DISPLACEMENT Z DISPLACEMENT
3 0.0 0.0 -0.2500150+00
2 0.298025D~07 -0.745103D-08 =0.125007D+00
1 0.0 0.0 0.0
11 6.298025D0-07 -0.125008D+00 -0.745102D-08
21 0.0 =0.250015D+00 0.0
22 0.298025D-07 =0.250015D+00 -0.1250070+00
23 0.0 -0.250015D+00 ~0.2500150+00
13 0.298025D0-07 -0.125008D+00 ~0.250015D+00
103 0.500002D+00 ~-0.745103D-08 -0.250015D+00
101 0.500002D+00 -0.745103D-08 ~0.745103D-08
121 0.500002D+00 -0.250015D+00 -0.7451030-08
123 0.500002D+00 -0.250015D+00 -0.2500150+00
203 0.100000D+01 0.0 -0.250015D+00
202 0.100000D+01 -0.745103D-08 -0.125008D+00
201 0.100000D+01 6.0 0.0
211 0.100000D+01 =0.125008D+00 -0.745104D-08
221 0.1000000+01 ~-0.250015D+00 0.0
222 0.100000D+01 ~0.250015D+00 ~0.125008D+00
223 6.1000000+01 -0.250015D+00 =0.250015D+00
213 0.100000D+01 =-0.125008D+00 -0.250015D+00

3.4.7.8 Cell Node Stresses

JOB TITLE: U911 TEST CASE ~ CUBE IN SIMPLE TENSION WITH PLASTICITY
INTERIOR STRESS AT TIME = 1.00
NODE SIGHAXX SIGMAYY SIGMAZZ TAUXY TAUXZ TAUYZ
3 0.1000000+03 =-0.1171130-02 -0.1162720-02 0.0 =0.369847D-05 0.1861500-07
2 0.100000D+03 ~0.1011650-02 -0.174628D0-02 0.0 «0.2773850-05 0.139612D-07
1 0.10000004+403 -0.117198D-02 -0.1162930-02 0.0 0.0 0.0
11 0.100000D+03 -0.175666D-02 =0.9981750-03 0.7072890-06 0.0 -0.455990D~-06 .
21 0.1000000+03 ~0,117293D-02 =0.116126D-02 0.9430530-06 0.0 =0.6079870=06
22 0.1000000+03 -0.1012690-02 ~0.174674D=-02 0.0 -0.221812D~05 ~0.8980190-06
23 0.100000D+03 -0.117098D-02 -0.116263D-02 -0.812824D-06 =0.2957490-05 -0.589372D~06
13 0.100000D+03 -0.175332D-02 ~0.1006150~-02 =-0.609618D-06 0.0 -0.423068D-06
103 0.100000D+03 -0.7452620-03 =0.7458010-03 0.1470830-06 =0,1792190-06 0.0
101 0,100000D0203 -0.7531630-03 ~0,758670D-03 =0.3913120-06 0.5368490-05 0.0
121 0.100000D+03 ~0.749292D0-03 -0,7513880-03 0.102327D-05 0.590688D-05 0.0
123 0.100000D+03 -0.747848D0-03 «-8,744976D~-03 =0.107215D-05 0.147064D-05 0.0
203 0.100000D+03 =-0.3172990-02 =0,1180800-02 0.196111D-06 0.345951D-05 0.759594D-06
292 0.10000004+03 -0.101920D0-02 =-0.177882D0-02 0.0 0.7963120-05 8.569695D-06
201 0.1000000403 -0.1177990-02 =8.1199010-02 ~0.521750D-06 0.715798D-05 0.0
211 0.100000D+03 -0.1761350-02 =-0.103718D0-02 =-0.753350D-07 0.0 -0.1772900-05
221 0.100000D+03 -0.117134D-02 -0.118688D-02 0.4213030-06 0.787584D-05 =0.236386D-05
222 0.1000000:03 ~0.101771D-02 -0.177266D-02 0.0 0.9595640-05 ~0.2976100-05
223 0.1000000+03 -0.1176270~02 ~0.1177920-02 =0.6167130-06 0.491835D0-05 =0.160427D-05
213 0.1000000+03 -0.1767900~-02 =0.102502D-02 -0.315451D-0% 0.0 =0.6335080-06

3.4-70



3.4.7.9

NODE

11

22
23

103
101
121
123
203
202
201
211
221
222
223
213

Cell Node Strains

JOB TITLE:

U911 TEST CASE -

INTERIOR STRAIN AT TIME =

EPS XX

8.1000010+01
0.1000010+01
0.100001D+01
0.1000010+01
0.100001D+01
0.100601D+01
0.100001D+01
6.160001D+01
6.100000D+01
0.1000000+01
0.100000D+01
0.100000D+01
0.100001D+01
0.100001D+01
0.100001D+01
0.1000010+01
0.1000010+01
0.100001D+01
0.100001D+01
0.100001D+01

EPS YY

-0.250009D+00
~0.250006D+00
~0.2500090+00
-0.2500150+00
~0.2500050+00
«~0.250006D+00
=0.2500090+00
«0.2500150+00
«0.250006D+00
=0.2500060+00
-0.250006D+00

© «0.2500060+00

«0.2500090+00
~0.250006D+00
=0.250009D+00
«0.2500150+00
-0.2500090+00
~0.2500060+00
=0.250009D+00
-0,250015D+00

CUBE IN SIMPLE TENSION WITH PLASTICITY

EPS 2Z

-0.2500090+00
-0.2500150+00
=0.2500090+00
~-0.250005D+00
«0.2500090+00
~0.2500150+00
-0.2500090+00
=0,2500060+00
-0.250006D+00
«0.250006D+00
=0.250006D+00
~0.2500060+00
=0.2500090¢00
=0.2500150+00
~0.2500090+00
-«0.2500060+00
~0.2500090+080
~0.250015D+00
~0.2500090+00
~0.2500060+00

FrexXy

84112D-08
117e820-07
0.0
=-0.1016630~07
-0.7620220-08
6.1838545D0-08
=0.4891400-08
0.127908D-07
-0.1340190-07
0.2451390-08
9.0
-0.6521870-08
-0.9416870-09
0.5266290-08
9.0
~0.770891D-08
=0.3943130-08

9.0
0.0
0.0
0.8
0.
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EPSXZ

-0.4623090-07
~0.3467310-07
0.0
0.0
0.0
-0.2772650-07
~0.369686D-07
0.0
~0.224023D-08
0.6710600-07
0.7383600-07
0.1838310-07
0.4324390~-07
0.9953900-07
0.894747D-07
e.0
0.9844800-07
0.1199460-06
0.6147930-07
0.0

EPSYZ

0.232687D0-09
0.1745150-09
0.0
-0.5699870-08
«0.7599830-08
=0.1122520-07
-0.7367150-08
-0.535085D-08
0.0

49492008
121180-08

-0.221612D-07
-0.2954830-07
«0.3720130-07
-0.200534D-07
-0.7918850-08



3.4.8 List of Symbols

Symbol

B

Asi

List of Symbols
Referenced Within Section 3.4

Description

Cartesian coordinates

Inelastic strain rate

Lamé constants

Displacement rate

Kronecker delta

Young's modulus

Coefficient of thermal expansion
Time derivative of temperature
Time’derivative of body forces
Boundary of body to be analyzed
Point on boundary S

Integration point

1 - &

lv]

Interior of body to be analyzed

Kelvin solution
Stresses derived from Gij

Tractions derived from Tjjk and
surface normal

1/2 s35 if S is smooth at &;;

otherwise depends on surface geometry at ¢ ‘
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List of Symbols
Referenced Within Section 3.4 (continued)

Symbol Description Page

nj Surface normal 3.4-7

ti Tractions 3.4-8

a3jk Stress rate 3.4.8

Dj jk Higher order kernels derived 3.4-8

Sijk from Gij by differentiation

Mijk and use of Hooke's Law

— Placed over symbol, denotes use of 3.4-8
a local axis system

X Vector of all unknown freedons 3.4-10
(displacements and tractions)

N Vector of all known freedoms 3.4-10
(displacements and tractions)

P Mass density 3.4-12

C Dilatational wave speed 3.4-12

Co Distortional wave speed 3.4-12

L() Laplace transform 3.4-12

—_— Denotes (in Section 3.4.3.3) the Laplace 3.4-12
transform of a function

S Transform parameter _ 3.4-12

W Frequency 3.4-14

Eij, ng Laplace transforms of the dynamic 3.4-14
kernel functions

B Damping ratio 3.4-17

n Coefficient of viscosity 3.4-17
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