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CHAPTER 1

INTRODUCTION

Beam-~-like structures cantilevered to the Shuttle cargo bay will,
in general, experience axial loads as a result of attitude maneuvers.
In our previous vork (Reference 1), we developed dynamics models for
such a class of orbiter-payload systems with the effects of axial loads
ignored for reasons of simplicity and tractability. In this report, we
examine that approximation in a more simple setting which clearly ex-
poses the phenomena of interest. Presented are analyses of the planar
transverse bendirg behavior of a uniform cantilevered beam with rigid
tip body under the action of constant axial base acceleration. Exact
steady-state and free vibration solutions are obtained for various
forms of this problem with additional approximate solutions for selec-
ted cases. While the results of this study are of limited direct ap-
plicability to the problem of Reference 1, they are of general inter-
est, provide much useful insight, and serve as a basis from which to

address more complicated situations.

The beam i: taken to be long, slender, and inextensible with
uniform mass, stiffness, and cross section. Only small elastic trans-
verse bending deformations in a plane of symmetry of the cross section
are considered. The tip body is rigidly attached to the beam, with its
mass center having an arbitrary offset with respect to the attachment
point. In all cases, the base acceleration is constant in magnitude
and directed along the undeformed longitudinal axis of the beam. The

governing partial differential equation is shown to be linear with



variable coefficients, accompanied by nonhomogeneous boundary condi-
tions for the general problem of arbitrary mass center offset. The
steady-state response is examined for a number of beam end conditions.
For the cases of free-end, tip mass, and tip body with mass center
along the beam tip tangent line (henceforth referred to as restricted
mass center offset), the boundary value problems are homogeneous.

These classical Euler buckling problems are solved e:actly for the
critical buckling loads/accelerations. For the problem of arbitrary
tip body mass center offset, it is shown that a unique steady-state
solution exists, except for certain critical values cf the base accel-
eration for which no such solution exists. The treatment of transverse
vibration begins with the case of restricted mass ce.ter offset. The '
boundary value problem 1is homogeneous and admits the usual separation
of variables solution with harmonic time dependence. The ensuing vari-
able coefficient ordinary differential equation for the spatial func-
tions is solved exactly in terms of a power series. Application of the
boundary conditions yields the characteristic equatica and eigenfunc-
tions. For the case of arbitrary tip body mass center offset, the
vibration problem 1is nonhomogeneous. It is shown tha: the exact solu-
tion may be written as the sum of the steady-state solution obtained
previously, and a superposition of simple harmonic mczions which cor-
respond to the exact solution of the associated homogeneous problem.
This approach, which takes advantage of the steady-state solution,
yields a greatly simplified form of the final solution. An assumed
modes formulation 1s detailed for the restricted mass center offset
case. The approximate solutions to the free vibration and buckling
characteristics serve to check the exact analyses. A particularly
useful and general method for recovering the strain energy from the
governing partial differential equation and boundary conditions 1s set

forth, Selected FORTRAN programs and numerical results are provided.




CHAPTER 2

MOTION EQUATIONS

2.1 Derivation of the Partial Differential Equation
and Boundary Conditions

In this chapter, we derive the parti.l differential equation and
boundary conditions governing the planar transverse vibration of a beam
with tip body under the action of an axial force. Figure 2-1 depicts
the situation in the undeformed configuration. At one end of the beam,
(x = 0), an axial force is applied imparting a velocity, vg(t), along
the x axis. The beam is assumed inextensibl: and of length %. At the
other end of the beam, (x = L), a tip body is rigidly attached at point
P. The rigid tip body has mass m and moment of 1inertia about 1its mass
center I. The distance from P to the mass center of the k@p body 1s
c, and this directed line segment makes an aagle, Y, with the beam tip
tangent at P. Figure 2-2 shows the system in the deformed state. The
base O of the beam moves along the x direction while the deformation
u{x, t), occurs along the y direction. Note that the angle Yy is main-

tained constant.
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Figure 2-1.
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Figure 2-3 1s a free-body diagram of a beam element between X
and x + Ax. T(x, t) 1s the 1internal tension, S{(x, t) is the shear
force, and M(x, t) is the bending moment. Since the beam 1s assumed to
have no deformation along the x axis, the acceleration component along

X 1S ao(t) for any point in the beam, where ao(t) 1s the prescribed

base acceleration at 0.
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Figure 2-3.




Equilibrium of the beam element along the x direction gives

3T
5 = Pa(t) (2-1)

where p 1s the mass per unit length of the beam.

Similarly, equilibrium along the y-direction gives

9s du (2-2)

Applying rotational equilibrium to the beam element and neglecting

rotary 1nertia we obtain

oM du
a—x' + S(x,t) - T(x,t) '5; = 0 (2-3)

Differentiating Eq. (2-3) and using Eg. (2-2), we obtain

2 2
a™M 9 ) Ju
?“’—‘5;:['“’"” =l 70

u
3 at2
Assuming an Euler-Bernoulli beam

M(x, t) = EI(x) —

we arrive at the partial differential equation for the beam deflection

2 2 2
3 3 3 3 P
— [EI(x) —‘2‘] - [T(x,t) ——a:] +p —‘2‘ = 0 (2-4)
Ix 9% at



We also have the differential relations for the natural boundary condi-

tions

azu
M(x,t) = EI(x) — (2-5)
9x
du 3 32
S(x,t) = T(x,t) 3 = 3= [EI(x) ——3] (2-6)
9x

Kinematics of the Tip Body

> >
Let vp and mp denote the 1nertial velocity of P and the angular

velocity of the tip body, respectively

> > >

where i, j, k denote unit vectors along the directions of x, y, z, re-
spectively.
>

If we let c be the vector from P to the mass center of the tip body and

>
v, the velocity of the tip body mass center then

®
> _ > >
Ve = VP + UJP C
5 = [v.t) -esiny 28 o]l + [ @y + 2% 2,t)]3
o & Yo ¢ SR Y Jrax 7 e C COS Y Frax 1D

(2-9)




2
where we have dropped the nonlinear term %% (2,t) %E%k (L,t).

Differentiating Egs. (2-8) and (2-9), we have the acceleration expres-

sions
> 3
0w = 32“ (2,t) k (2-10)
P ot “9x
3 2 3
ag = la (& -csiny 32“ (2,0 )1 + [a—;(z,t) +ccos ¥ 32u (2,0]3
ot %ax it ot %ox
(2-11)

Natural Boundary Conditions at x = £

Figure 2-4 is a free body diagram of the tip body indicating the

force and moment exerted by the beam at P.

-Tie, t)

Figure 2-4.



The equation of motion of the tip body when resolved along the

directions of x and y yields the two scalar equations

3
-T(2,t) = ma _(t) - mc sin v (2,t) (2-12)
o 2
axot
Bzu 33u
-S(%4,t) = m ——3-(£,t) + mc cos Y 2 (2,t) (2-13)
ot axaot

Using Egqs. (2-6) and (2-12) allows us to write the first boundary

condition at x = ¢ as

3 3

mec cos Y 5 (2,%) - EI 9——‘3’ (L,£) - ma_(t) % (£,t)
dxot Ix
32u
m=— (L,8) =0 (2-14)
It

where we have assumed a uniform EI and have dropped the nonlinear term
33u

Sxatz

mc sin Y %% (2,t) (L,t).

It can be shown that the z component of the time rate of change

of the angular monentum of the tip body about its mass center is given

by

>
If M€B is the net moment about the mass center of the tip body

> > > > > >
Me = M(L,t)k + ¢ x S(&,t)] + ¢c x T(L,t)1




Using Egs. (2-5) and (2-6) and dropping nonlinear terms we obtain

2 3
= -[E 3—2-(2,t) + EI c cos v 3—3 (2,t) + c sin ¥y T(l,t)]ﬁ

8x2 Bx3

34

(5]

(2-15)

Using Eq. (2-12) for T(%,t) in Eg. (2-15), the second boundary condition
at x = 2 is

3 3 2

28 (4,6) +EIc cos Y 2% (2,8) + BT 22 (8,¢)
Ixdt 9x Ix

(It + mc2 sin2 Y)

- mc sin ¥ ao(t) 0 (2-16)

The partial differential equation governing u(x,t), Eq. (2-4),
requires a specification of the internal tension T(x,t) for 0 < x < %.
Integrating Eq. (2-1) and using Eg. (2-12) for a boundary condition we

obtain

3

T(x,t) = <=[p(L - x) + m]ao(t) + mc sin Y (£,t) (2=-17)

axat>

Assume we have a compressive load, Pg(t) > 0 applied at x = 0. Then

T(0, t) = - P, (Y)

Hence

33u

3x3t2

Pb(t) = (pl + m)ao(t) - mc sin Y (2,t) (2-18)

which relates the applied axial force to the base acceleration.



The governing equation of motion, Eg. (2-4), can be rewritten

with the aid of Egs. (2-17) and (2-18) as

84u 9 pxX Ju 32u
EI a—xi+ Po(t) % [(1 - p—2+_m) 5;] + p ? = 0 (2-19)

We assume the beam to be cantilevered at x = 0 so that
Ju
u(0,t) = 3;-(0, t) = 0 for all t (2-20)

The partial differential Eq. (2-19) ‘s to be solved subject to
the geometric boundary conditions of Eg. (2-20) and the natural boundary

conditions of Egs. (2-14) and (2-16).

In Reference 1, we studied the transverse vibration of a clamped
beam with tip body with no base acceleration. On page 10 of that report
1t was stated that y must be restricted to 2ero in order that no axial
loads be 1ntroduced into the problem. With the present analysis, one
can accommodate any axial loads that may be introduced by y # 0, and
w1ll discover, surprisingly, that the result.s given in Reference 1 can

be directly extended to the case of Y # 0.

10




CHAPTER 3

STEADY-S "ATE SOLUTIONS

3.1 Buckling of a Cantilevered-Free Beam {Inder Axial Thrust

In this section, the possibility of a cantilevered-free beam (no
tip body) buckling under axial thrust is investigated. The governing

equation is Eq. (2-19) with no time dependence and m = 0.

4
dvy d
Bl =4+ Por 3%

dvy = -
” [ - x/0) 321 = o0 (3-1)

where Poy denotes those values of thrust which lead to buckling.

The two geometric boundary conditions at x = 0 are
y(0) = vy'(0) = 0O

The boundary conditions at x = g are obtained from Eqs. (2-14) and

(2-16) withm =¢c = 0
y'r(e) = y'"'"" () =0

Inteqrating Eq. (3-1) and setting the constant of integration to zero we

obtain

3 P
dyvy cr dy _
3 + — (1 x/2) = 0 (3-2)

dx

11



subject to the three boundary conditions

vy = y'(0) = y"(2) = 0

making the substitution

transforms Eq. (3-2) 1into

with boundary conditions

(Pcr22)1/3
w = 0 at z = EI

dw
d—z—Oatz—O

The general solution of the differential equation can be written

2 3/2)

w o= cl/; J _1/3(§-z

2 3/2
1/3('52/)+02/;J

where cq and cj are arbitrary constants and Jq1,3 denotes the Bes-

sel function of the first kind of order 1/3.

12




The boundary condition %% = 0 at z = 0 implies that c, = 0.
Let j, denote the roots of the Bessel function of the first kind of

order (-1/3), i.e.,

J_1/3(jn) =0

Applying the remaining boundary condition we find that the critaical

buckling loads are given by

9 .2 EI
Pcr’n = 3 Jn£—2_ n=1,2,3, ... (3-3)
The first three buckling loads are
EI
P = 7.8664 — P = 55,977 —« P = 148.51 —
crl 22 cr2 22 r3 22

3.2 Buckling of Cantilevered Beam with Tip Mass
Under Axial Thrust

The governing equation is Eq. (2-19) with no time dependence and
the boundary conditions are Egs. (2-20), (2-14), and (2-16), with It =0

and ¢ = 0.

d4 d pxX
EI'_:4'+PcrE£[(1-pl+m ] = 0 (3-4)
dx
mP
YO = y'(0) = 0:y''(4) = 0;EIY'() +opaoy () = 0

where we have used Eq. (2-18) to express a, in terms of P...

13



Integrating Eq. (3-4) and setting the constant of integration to

zero, we will satisfy the last boundary condition.

d3y + Pér (1 _ _px ) dy _ 0
dx3 1 pL + m’ dx
. dy
If we make the substitutions ax = w and
Pcr pl + my271/3 pX
z = g 51770 - 553)
this equation transforms to
2
¥ o 2w = 0 (3-5)
2
dz
with boundary conditions
w = 0 at z = 24
and
dw
az - 0 at z = 22
where
Pcr 1/3 (pl + my2/3
21 = (EI ) ( o) )
and
_ m Pcr }1/3
22 T 273 [
o] EI(pL + m)

14




A has already been shown

= 2 3/2 2 3/2
wo= vz le g (52 2) + ¢ Ty p55 2 )]
dw 2 ,3/2y _ 2 ,3/2
az - ° [°1 J-2/3(3 277) - o J2/3(3 2l

Applying the boundary conditions, we obtain a homogeneous system 1n 4

and Cye Setting the determinant to zero (we want y(x) # 0), we obtain

the following transcendental equation for the critical buckling loads,

*

J . (1 +m*)A) » g — 2
1/3 ) 2/3 (/1 + 1/m* )
( ) (—2 )
+ J (1 + m*)A) » J —_— )] = 0 (3-6)
173 ARy
where
n* = m/pg
and
2
L2 L
R EI

Note that the roots of Rq. (3-6) depend only upon the ratio of the tip

miss to the beam mass.

In the limit as m* » 0, the critical buckling loads in Eq. (3-5)

should approach those found previously for a cantilevered-free beam

(Fq. 3-3). This 1s readily established if we recall the facts

lim J_, (x) = 0
x+0 2/3

and

) =

lim J (x
x+0 -2/3

15



3.3 Buckling of Cantilevered Beam with Tip Body
Under Axial Thrust (y = 0)

The governing equation 1s Eq. (2-19) with no time dependence and

the boundary conditions are Eags. (2-14), (2-16), and (2-20) with vy = 0.

4
vy g —ex ) dvy
BL =4 + P ax [‘1 oL + m) dx] =0
dx
y(@) = y'(0) = 0; EIcy'''"(2) +EI y"(2) = 0 (3-6)
EI y''' () + _fer_ @) = 0 (3-7)
Y "o m?Y B

Inteqrating the differential equation and setting the constant of

integration to zero, we will satisfy the boundary condition Eq. (3-7).

dy cr (1 _ px ) dy
3 EI pl + m’ dx

If we make the same substitutions as in the previous section we obtain

Substituting Eg. (3-7) into Egq. (3-() allows us to write the second

boundary condition as

(pL + m) EI yv" (L) ~ mc Pcr v'(2) = 0 (3-8)

or 1n terms of w(z)

/3 1/3 dw _
(P _p) - (zz) + mc Pcrw(zz) = 0 (3-9)

(o2 + men®” (p__ o

16




Using the results from the previous section, Eq. (3-9) can be written as

*
Vi +m* J o A) + %-Vm* c* A

(—2—
=2/3 Ty 1/m*

m* Ale

I, 0 (———
V3 AT T mr !

3 m¥* m¥*
+ |=Vm* c* A J (—————————-A) -Y1 +m* J (—————————-A) c = 0
2 -1/3 1 + 1/m* 2/3 1 + 1/m* 2
(3-10)

where c* = ¢c/2.

The first boundary condition at z = z4y can be written as

(1+m)r)e, +3 _,((1 +m*)A)c, = 0O (3-11)

J1/3( 1 ¥ 943 2

The homogeneous system, Egs. (3-10) and (3-11), will have a nontrivial

solution 1f

3
J_1/3<ax)[/a I_p/3(B0 + 3 ym* c* A J1/3(sx)]
3 = -
+ J1/3(ax)[/a 3,/3(B0) - 3 /o o* ) J_1/3(8A)] = 0 (3-12)

—
where a = 1 + m* and B = m*Av 1 + %; . Note that the critical buckling

loads are independent of the tip body inertia.

3.4 Steady-State Solutions of a Cantilevered Beam
with Tip Body under Axial Thrust (y # 0)

In the previous section, we investigated the buckling of a uni-
form cantilevered beam with tip body. It will be recalled that in that
section, the mass center of the tip body was restricted to lie along the
beam tip tangent line. Presently, we wish to investigate the possi-

bility of bucklina for the case of nonzero Y.

17



As before, we wish to determine solutions of Eq. (2-19) which are

indevendent of time, u = y(x). The governing equation is

ay a_ - __Px ) dyy _ -
EI dx4 + Pcr dx [(1 pl + m) dx] 0 (3-13)

with geometric boundary conditions y(0) = g%-(O) = 0., The natural

boundary conditions at x = £ may be written

P
111 L} - —cr — - -
EI ccos Y Y () + EI y''(2) mc sin Y oL + 0 (3-14)

P
cr

e —_—
EI v (L) +m ol +m

y'()y = 0 (3~-15)

Integrating Eq. (3-13) and setting the constant of integration o zero,

we will satisfy the boundary condition Eq. (3-15).

d3y cr pxX dy
3 *Er (1 ST ¥ m) o =0 (3-16)
dax
If we make the change of variables
dy _
dx v
and
Pcr pLt + my271/3 pPx

18




the differential equation (3-16) transforms 1nto

d2w
W e zw = 0 (3-17)
2
dz
Pcr 1/3 (pf + m 2/3
X = 0 goes into z = z, = fﬁf—) ( o
P
_ _ - m cr 1/3
X = f qgoes into z = z, = p2/3 [EI(pZ + m)]

Substituting Eq. (3-15) into Eq. (3-14) and using the above transforma-

tion allows us to write the remaining natural boundar: condition as

2/3 1/3 dw
] ( ) (zz) + mc cos ¥ Pcrw(zz) = =mc Sin Yy P

[(pz + m)EI 3z

14

cr cr

(3-18)

we can write the genéral solution to Eq. (3-17) as

)+ e, g, (222

ny 2 3/2
= v <
w z [c J z 292173 '3

1 71/3 (3

where c; and ¢, are arbitrary constants.

applying the boundary conditions w(z1) = 0 and Eq. (3-18) we

obtain the following nonhomogeneous system on c, and c,

3(a)\) s c + J (ad) e c_. = 0

J
1/ 1 -1/3 2

é * * -
[/EJ_Z 3 (BN + 3 /m* c* cos y + A I 3(31)1c1

{ /

(8 ]cz = -MLE%I (%5)2/3
R

(3-19)

+ F% /m* c* cos y A I_, 3(Bk) - va a,

/ /

where the parameters m*, c*, ), o, B are as defined previously.

19



In general these equations will have a unique solution. If A
(axial load) assumes a value such that the coefficient matrix in
Egq. (3-19) 1s singular, it can be shown that the equations are inconsis-
tent. Note that the transcendental equation obtained by setting the
determinant of the system (3-19) to zero is exactly the same as
Eq. (3-12) except for the replacement c* *> c* cos Y. Hence the system

(3-19) can become singular for an infinite number of real values of A.

For those cases where a unique solution exists, we can integrate

once more and obtain (recall y = 0 at x = 0)

e

- 1 -
yx) = o S/ (e, 3y p38) +cy T a(e)) At (3-20)
where
2
. 19253
s = 2 (4 o )
and
z = ax(1 25)3/2

on the interval 0 < x < 2.

Fiqgure 3-1 illustrates the steady-state solutions given by
Eg. (3-20) at values of A lying between the first four consecutive cri-
tical values. Numerical experiments revealed that the overall shapes of
these curves are insensitive to m*, c*, £, and Yy within the respective

ranges of A.

We have shown that for the case vy # 0, a unique steady-state
solution to the vibration equation exists, except when the axial thrust
assumes certain critical values (such that the linear system (3-19)

becomes sinqular) for which no solution exists.
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CHAPTER 4

VIBRATION SOLUTIONS

4.1 Natural Frequencies and Mode Shapes (Y = 0)~-Power
Series Solution

In this chapter, we will formulate the eigenvalue problem for the
t ransverse vibration of a cantilevered beam with tip body under the ac-
tion of axial thrust. Since an eigenvalue problem requires the solution
of a homogeneous differential equation with homogeneous boundary condi-
tions, we need to restrict Y to zero (see boundary condition (2-16). The

a.’ial thrust P, 1s assumed constant.

Using Eqs. (2-18) through (2-20), (2-14) and (2-16), we have

EIa4—u+Pa—[(1 o= )3—u]+pﬁ- 0 (4=1)
ax4 o 9x pL + m’ 3x atz
Ju
u(o,t) = 3o (0,8) = 0: t>0 (4=2)
3 3 2
R R R L)
axat Ix 9x
3 3 P 2
me 0 u2 (£,£) - BI - 3 ; (£,£) - m —I—g—;-%g (2,t) +m 3_% (2,t) =0
x93t ax P ot

(4-4)
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lmt

Assuming a solution e é({x), we arrive at the eigenvalue

problem

4
a¢ a __px_y 44y _ 2 _
EI o + P o3 [(1 o8 + m] dx] pw ¢{x) = 0 (4-5)
BTN )
$(0) = = (0) = 0 (4-6)

o

2 2
EI ¢"''(2) + m(cu” + m)wu + mw () = 0 (4-7)

2 2y 2 P
mew”9(2) + [(1, + me®)w *=pvml R - EI () = 0 (4-8)

We wish to find those values of ¢ for which the differential equa-
tion (4-5), subject to the boundary conditions (4-6) through (4-8) has

nontrivial solutions,

Scaling of Eigenvalue Problem

Let £ = x/% and define vy(F%)

18]

#(%28). Also define the dimension-

less parameters

2
P 3 4
2 ) 4 pl 2
= b = -
a — e (4-9)
It + mc2
m* = m/pp"r c* = c/lr J* = 3

pL
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The elgenvalue problem will then transform into the convenient form

dy 24 ___¢& dyy _ .4 = -
"% a [(V - 755%) ggl ~pv&) = o (4-10)
g
yo) = y'(o) = 0 (4-11)
4 a2 4
Y+ mr(et” + 1)y (1) +mtbiy(l) = 0 (4-12)
m*C*b4y(1) + (J*b4 + TEEE%? az)y'(1) -y''"(y = 0 (4-13)

Here (') denotes differentiation with respect to §.

Let yi(&) and yJ(E) be two eigenfunctions corresponding to
distinct eigenvalues. It can be shown that the following orthogonality

condition holds
1
{yl(s)yj (B)YAE + Iy (Myl(1) +mby, (y (1)

+mrerly Myl +yiMy; ] = 0

cf. Eq. (2-16) of Reference ~.

The general solution of Eq. (4-10) can be written as a linear com-

bination of four linearly independent solutions.
Y(8) = c,¥,(B) + c,y,(8) +cyy,(8) + c,y,(8)

For convenience, we speclfy the initial values of these four functions

and their first three derivatives as
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¢V = s, i=1,2,3,4; j=1,23,4

(Gij - Rronecker delta)

Applying the geometric boundary conditions (4-11) we f£ind

Application of the natural boundary conditions (4-12) and (4-13) yields

the homogeneous system of equations on c3 and cy

ay a;, C, 0
as, a5, , 0
where
4 a2 4
- 111 ]
a,;; = ¥g (1) + m* (c*b + T—:fa;J y3(1) + m*b y3(l)
4 a2 4
= 11 * * L B ' *
a,, y,'t () +m (c*b *+ 3 +m*) y (1) + m*by, (1)
(4-14)
4 4 m*c* 2
= *ek * —— ' - v
a, m*c*b y3(1) + (J*p" + e )y3(1) Yy 1)
4 4 m*c* 2
= *ok * —— ' - L
a,, mtc*t Ty, (1) + (a*p” + Ty oF @ ]y4(1) Y,

In order for this system to have a nontrivial solution we require
A(mz) = =90 (4-15)

11322 T #2221

Equation (4~15) determines the natural frequencies wj.
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Power Series Expansion for Eigenfunctions

It still remains to find the functions y3 and ys4. A purely
numerical technique which 1s easy to apply consists of integrating two
initial value problems and iterating on w until values are found which
satisfy Eq. (4-15). The well-known natural frequencies of a canti-
levered-free beam serve to bracket the frequencies in the present case of
a cantilevered beam with a tip body on an accelerating base. We choose
to address the problem analytically by solving the differential
Eq. (4-10) 1in the form of a power series, thus obtaining the eigen-

functions in functional form.

Note that for P, = 0, the differential equation has constant
coefficients and can therefore be solved in closed form in terms of ele-
mentary functions (see Reference 1). For the more general case, Py #

0, the equation is linear with analytic coefficients and has a solution
which is reqular at £ = 0. The series representing the solution will

converge for all £ (see Ince., E.L., "Ordinary Differential Equations").

If we assume a solution of Eg. (4-10) 1in the form
= K
y = 2 AL
k=0

insert this expansion and 1its corresponding derivctives into Eq. (4-10),

then we obtain the following recursion formulas for the coefficients

A, = [b4A0 +a%/(1 + ) A, - 2a2A2]/24 (4-16)

*

4 2 2
L]
b A] + a“/(1 + m¥*) k + A 1

k+4 (k + 1) (k + 2)(k + 3)(k + 4)

2
-a(k+ 1)(k + 2)Ak+2

(4-17)
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These conditions determine A4, AS’ ... ONce we presribe values for
AO’ A1, A2, and A3.

To generate y3(E), we must have AO =

I
e
i
I
=
-
>
1

To generate y4(£), we must have A

1]
o
o

]
(=}
-
>

1]
o
>

w
1]
~
N

0

The eigenfunction Y;j (§) corresponding to the eigenvalue w; 1is

4 .4
2 2 a + b,

1,2 a 4 a 5 i _6

YE) = a,e)lzE -5p e+ 00 *m%) © T30 & ¢t .e]
4 4
2 2 a® + b,
1 .3 a 5 a 6 i .7
- a11(“i)h§ & -330% *ZaoaFmn ° Y s0a0 ° F -]

(4-18)

oo
Given the infinite series 2: A

k=0
converges (absolutely) for those values of £ for which

kEk, then by the ratio test the series

lim

koo

A1
IR

We noted above that the differential equation (4-10) has solu-
tions which are regular at § = 0 and that these series converge for
all £. Using the recurrence formula Eq. (4-17) we can verify this
fact. This more elementary procedure was used by Lamb ("Hydro-

dynamics", p. 335).

Write the recurrence formula in the form

Ata a2 Bes2  [a%/(1 +mF) 1k + 1) Pk#

+ -
Ak (k + 3)(k + 4) Ak (k + 2)(k + 3) (k + 4) Ak

b4

(k+1) (k + 2) (k + 3) (k + 4)
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If lim = L then laim = L° and lim =1, . Taking the
k4o k>0 ko0

Bes Pre2 2 Prea 4
A

limit 1n the above formula as k+o we obtain the condition L4 =0 or

Pt . .
lim ! = (0. Hence the series converges for all ¥ in agreement with
koo

the general theorvy.

4.2 Free Vibration of a Cantilevered Beam with Tip Body
under Constant Base Acceleration (y # 0)

In this section we 1nvestigate the vibrational response of the

accelerating beam waith vy # 0, It is important to note that in all
cases considered thus far, y = 0 or steady-state response, a constant
axial force implied a constant base acceleration. In the present
case this 1s no longer true (see Eq. (2-18). We will assume here that
a base force po(t) is applied such that the base acceleration a,

is constant.

Neglecting nonlinear terms in u(x,t), the equation of moton 1is

4 2
3 u 3 Ju 3 u
EI;;Z+ ao—a; [(p2,+m - px) ﬁ] + p? = 0 (4-19)

The boundary conditions are given by Eqs. (2-14), (2-16), and
(2-20) . The boundary condition (2~16) 1s inhomogeneous. In order to

solve the differential equation (4-19) we write

ulx,t) = v(x,t) + £(x) (4-20)

and choose f(x) so that the boundary conditions on v are rendered

homogeneous, We then have the following requirements on f(x)

£(0)

]
o]

£'(0) (4-21)

[]
o
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i
o

EI £'''(R) + maof'(l) (4-21)

c EI cos v £'''(2) + EI £''(2) mc sin Y a

0

The partial differential equation on v(x,t) can be written as

4 2
d 3 3 3
Bl gt a5 et em e gl w0 =5 -
b3 at
d4f d af
“lE g a g [ler e m - o) )

(4-22)

If, 1n addition to satisfying the conditions (4-21), we require that

f(x) satisfies

EI —+a — [(p2 +m -px) =] =0 (4-23)

then the differential equation on v(x,t), as well as the boundary

conditions, are rendered homogeneous.

The conditions on £(x), i.e., Eg. (4-23) with boundary con-
ditions (4-21), are precisely those governing the steady-state
solution of Eq. (4~19) with the boundary conditions (2-14), (2-16),
and (2-20). It was shown in Section 3.4 that f(x) exists for all
values of ap, except when the system (3-19) becomes singular. £(x)

1s given by (3-20) with

2
A
A = 3 BT (pL + m)a0
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It 1s seen that v(x,t) 1s governed by the system of Equations

(4-1) through (4-4) with the replacements

Cc > Cc cos v, I It + mc2 51n2 Y

P ' +
o-)a(‘ pL m)

thus

(-]
vix,t) = 2: (Ak cos mkt + B sin mkt)Yk(F)
k=1

where the frequencies g, are solutions of Eq. (4-15) with
c* » c* cos y, Po » ao(pg + m), and the functions Yk(g) are
given by Eq. (4-18).

All frequencies are positive for sufficiently small values of
age When a, assumes a critical value such that Eq. (3-12) 1s sat-
isfied (with c* +» c* cos 1), a frequency wy Joes to zero. This cpr-

responds to the situation where f(x) fails to exist.
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CHAPTER 5

NATURAL FREQUENCIES AND MODE SHAPES (y = 0)
ASSUMED MODES SOLUTION

In this chapter, approximate solutions to the natural
frequencies and mode shapes of a cantilevered beam with tip body
subject to constant axial base acceleration are determined via an
assumed modes fcrmulation. As indicated in Section 4.1, Y must be
restricted to zero. The mass per unit length, p, and bending

stiffness, EI, are assumed to be constant.

5.1 Kinetic and Strain Energies

Let Tb' Tt' and Ts denote the kinetic energy of the beam, tip

body and total system respectively. Using Egs. (2-7), (2-8), and

(2-9) we have in general

1 % 2
T, = 3 ! [ve + (r) lo ax
2 2
1 ] 2 1 . 9 2
T, = 3 It[a—x;-t (2,t) ] +om {lv, = e siny T;t' (%,t) ]
du 82u 2
+ [3; (L,t) + c cos Y I%3E (lrt)] }
1 2 1 2. 192 2 1 _du 2
T ooz LA m v g (1 ¢ G e ] v gl @]
azu du
+me o (2,t) [cos Y 3% (2,£) - sin Y Vo(t)]
1 % du 2
ty f e wn ] e ax =0
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For the case of Y = 0, this reduces to

% 2
_ 1 2 1 Jduy2 1 9 u 2
T, = 7 (L +m) vi(r) +3 J; Ge) e ax +3 1 [55- o]
1 du 32u 2
+g b (L8 + g (] (5-2)

In Appendix A it is shown that the strain energy expression for

the problem at hand is Eq. (A-11). Using Eq. (2-17) we obtain

N =

EI .;; <3_2u>2 dx + 1_ a pg j{' [’—‘- - (1 + .l*) ](_82)2 dx
2 2 “o L 9x
o \dx o

du 2
[_x (2,8 ] (5-3)

Discretization

Expressing the beam deformation as

u(x,t) ¢i (X)q1 (t)

1

n
i=

the energy exprerssions (5-2) and (5~-3) become

1 2 1+ v .
T, o= gz (eL+m) v (t) +5 Y ) M _g.a.

where

2
w-— 2 1 ]
Moo= b _£ 6, ()65 () ax + (T, +mcIBI ()47 (4) + mo, (26, ()

+mefo (o1 + o1 re ()] (5-4)
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v = 1 ii 3 K..q.q9
2 51 = B3
where
L ) <
Ry, = EI _!)'q,i'(xmj"(x) dx + a_pk _!3'[-’:- (1 +m*) ] b1 (X)) (x) dax
- a_me ¢i(2) ¢3(2) (5-5)
where

(') and (°*) denote differentiation with respect to x and t,

respectively

According to the assumed modes method, the spatial functions
¢i(x) may be any arbitrary functions which satisfy the geometric
boundary conditions of the problem and are two times differentiable on
the interval 0 < x < £. Two sets of functions immediately suggest
themselves as candidates: the fixed base eigenfunctions of a clamped-
free beam and those of a clamped becam with tip body. Whereas the
clamped-free eigenfunctions have the advantage that they can serve for
beams with any tip body, superior ronvergence will be realized with
use of the clamped-tip body eigenfunctions. Furthermore, the latter,
which were derived in Reference 1, diagonalize the mass matrix, (5-4),

as a result of their orthogonality property.

Either set of eigenfunctions satisfy differential equations of

the form

4
= Bi¢1(x) (5-6)

For distinct eigenvalues B: and B;, the following indefinite integral

holds

1 4

f¢i(x)¢3(x) ax = 180,00 - 41" 0T+ 41t 91t - B916.]

i'i%) jTit]
(5-7)
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This permits the analytical evaluation of the second integral in Eq. (5-5)

via integration by parts

2 L
JE-a+m]otmeim ax = f[F- 0 0] < [fo; 000 ax] ax
o (e}
= ’_.1— [_’i_ (1 +m*)][8‘¢.¢'. LI SN S L L LR B4¢l¢ ] *
I(B? _ B?) L L1717 i j i 7 sAERS b § S
1 J
4 4
2(8, + B8.)
1 I Bkl SR [ 4
- ¢! o1 = b1 HIT + ) ' - B ¢.]
L 4 4 4 4 j i i b i7j j37i
(8, - BJ)I (8, - Bj)

4 LI I 1 ] Tt 2
-2 850,05 = 81" 02 + 01 03]

o
for i # 3.
Appendix B demonstrates a useful means by which to specialize the

indefinite integral Eq. (5-7) to the case of 1 = j

2 2 1 2 1 3
Jlorm®ax = X [(61)% - 26,41 +?(¢;") ] - Lo errertt + 2000
i

LY
1
(5-8)
This permits the evaluation
L
2 2 1 2
J;[%- (1 + m*) Jo;]% ax = {[%- (a+ m*)](%[wi) - 28yt o gey’
i

%
1 [ I8} 111 _3_ 1 I
- 484 ¢1 ¢i + 4 ¢1¢i)‘
L o

2
1 X 1] 2_ [} _1_ [N ] 2
-;{E—[wl) 2008} + 3 440 ]

1

L
1 1n2 .3 2
- —7 &)Y +g (é)) ;
88,

o
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5.2 Eigenvalue Problem

The application of Lagrange's equations yields the free vibra-

tion motion equations

mi{q} + (xi{q} = {o}

Seeking harmonic solutions, {q} = {U}eiﬂt leads to the eigenvalue

problem

(k) - 22wy {u} = {o} (5-9)

The demand of nontrivial solutions of the assumed form yields the set

of natural frequencies {, and eigenfunctions

(r)
i

(r = 1,2, «cep n)

(x) ¢i(x) U

n
i=

1

The natural frequencies, @, and eigenfunctions, ¥(r) are the

sought approximations to those of Section 4.1. Note that the values
of base acceleration for which

det [K(ag)]l = 0

are approximations to tae critical accelerations of Section 3.3.
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CHAPTER 6

FORTRAN PROGRAMS

Two FORTRAN programs have been created to evaluate the free
vibration and buckling characteristics of a uniform cantilevered beam
with tip body under constant axial base acceleration. For each, the
tip body mass center is restricted to lie along the beam tip tangent
line. Complete listings of each program, accompanied by annotated

sample input/output data, are provided in Appendices C and D.

The program of Appendix C computes the natural frequencies and
mode shapes by implementing the assumed modes formulation of Chapter
5. The eigenfunctions of a clamped-free beam on a fixed base are used
as the admissible spatial functions. The eigenvalues of the clamped-
free beam, (B:), are obtained from the roots of the corresponding char-

teristic equation
cos Bi cosh 842 + 1 =0

The first fifty of these roots (valid for any beam), appear following
the sample NAMELIST input data in the appendix. The program functions
in one of two possible ways, depending upon the values of the param-
eters AI, AF, and AINC (which denote the 1initial, final, and incre-
mental values of the base acceleration, respectively). If AI = AF
(AINC arbitrary), the natural frequencies and mode shapes are computed
for the single value of base acceleration. If AI < AF, then (only) the
natural frequencies are computed for the values of base acceleration
starting with AI and terminating with AF in increments of AINC. The
general algebraic eigenvalue problem Eq. (5-9) is solved via IMSL
subroutine EIGZS.
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The program of Appendix D computes the first critical buckling
load and acceleration by finding the first root of the buckling char-
acteristic equation. Since available IMSL subroutines evaluate only
Bessel functions of positive order, the actual characteristic equation
implemented is not Eq. (3-12) but, rather, an equivalent form expressed

in terms of positive order Bessel functions

4 2o  Wm*
[?ﬁ J2/3(a)\) - 35, (M)][(m + == c*1) 3,380 = e J4/3(BA)]

* 3
+ J1/3(ax)[(6 - 2/m* g—) T,,5(80) + 5 /m¥ c*A 3, (BN)] = 0

/ 5/3

The IMSL subroutines, MMBSJR and ZBRENT, are used to evaluate the Bes-

sel functions and the first root of the above characteristic eguation,

respectively.
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APPENDIX A

WORK-ENERGY BALANCE

Starting with the general partial differential equation govern-
ing transverse beam vibration under axial loading, we derive an
er=rgy-balance relationship. We then apply the boundary conditions
ani identify the potential energy expression. This derivation
obviates the more common geometric arguments which lack a certain de-
gree of rigor, and reveal the influence of the boundary conditions on

the strain energy.

The starting point of our derivation 1is Eg. (2-4)

3%u 3

2 2
3 3 u u
— [EI(X) —2] < = [T(x,t) K] + p(xX) ? = f(x,t) (A-1)

9x 9x ]

where we have inserted the term £(x,t) on the right-hand side to ac-
commodate external loading/length on the beam perpendicular to the x
axis. The reader can verify that Eg. (A-1) can be written in the al-

te. nate form

2

%g—t [p(x) (%é—)z + EI(x) (3—3]2 + T(x,t) * (-g%)z]
Ix
2 2 .2
P Ju 9 3 u 9 9°u 9°u
* % boe o (BT )] - g (s 5 gl
X 9x
3 au Jdu 1 8T ,9u\2 Ju
- 3% [T el -5 (5007 = feew) g%

(A-2)
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This equation holds for 0 < x < £ and t > 0. We can then inte-

X . L .
grate over the region in the xt plane {g z i : t—:-obtal.mng

L 2 —_
1 duy2 3 2 duy 21t
L LA LY
() Ix
t 2 2 2
\ du 3 37u d°u 3 u du _ dujyl
+ [SE'ax (EI 2) EI 2 9xadt Ix Bt]x=0 dt
(6] ax
T 2 t 2
-1 (2 gx ar = £(x,t) 2 ax dt
2 .! .£ ot ‘ox .!: .!; ’ 3t (A=3)

The right-hand side of Eq. (A-~3) represents the work performed by the

external loading f£(x,t) on the beam between t = 0 and t = t.

The work performed by the axial force P,(t) at the base of

the beam between t = 0 and t = t is given by

t
1 2 t 3 u
P (E)v (E) dt = = (p% +m) v (t)| o - mc sin Y L’—————z (2,t)v dt

O%=yrt|

(A-4)

where we have used Eg. (2-18) (p assumed constant).

Now the total work done on the system by the external forces f and
P, is equal to the change in kinetic plus potential energies. Using
Eq. (5-1) for the kinetic energy and Eq. (A-3) and (A-4), this work-energy

balance can be written as

39



1 ¢ [ (32u 2 duy2it A
= EI(—5)° + T(+) ] _n dx - mc sin (2,t)v dt
2.'; 2 ax t=0 .!; 8xat (o)

t 2 2 -

1 9T (9Ju,2 _ 1 257971 t
+Q(t)—5£‘£at(a) dx dt = Z(It+mc)[aat (Zt)]' 0
+-l m [au L,t ]2 t + azu (L,t)

2™ l3g 8 oo * ™ 3xee

. [cos Y 35 (2,£) = v_(t) sin Y] t

at ! o |t=0

t
+ V(t)|t=0 (A~5)
V(t) is the potential energy and Q(t) is given by
— t du 9 820 Bzu 32u du Jduis
o®) = [l g (B ) - Bl 55 - T selieo Ot
o ox 9x
(A-6)

(2-12) along with the clamped

Assuming a uniform EI and using Eq

boundary conditions at x = 0 we have

t
f I—(J’t)+ma(t)—(£t)
[o]

Q(t) =
33u 3
- mc sin Y 2(sat)a (2,0)] 52 (2,8)
axot
3 u 2u
- EI — (4,t) 3555, (4 vy} 4
Ix
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The natural boundary conditions (2-14) and (2-16) are eauivalent

to
3 83u
mc cos Y 2 (2£,t) - EI —3 (L,£) - ma (t) 3 (L,%t)
axot ax
Bzu
+m—2(2 ) =0 (A-8)
ot
2y 97u du azu
(I + mc ) (2. t) - mccos ya (t) =— (2,t) + mc cos Yy — (&£,¢t)
t [} ax 2
axat ot
aZu
+ EBI — (4,t) = mc siny °* a (t) (A-9)
8x2 o

With the aid of (A-8), (A-9), Eq. (A-7) further simplifies to

2 —-— —
— 1 Ju 2t
Q(t) = mc cosy at (2,€) a at (4 t)lt =0 2™ [35 2,0 ] l¢=0

2 —
1 2. (3
+g (I, +meh) [5ap (. Bk f £=0

t du 82u
- mC cos Y fao(t) = (L,t) IR0t (£,t) 4t
o)
t 82
- mc sin Y fao(t) Ix0t (2,t) dt
o
t .3
- mc sin y f—“2 (2,t) a (2,t) at (2, t) dt
O 0xdt
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Now
2 2 - T 3

t
d7u 37u t 3 u
S ameten a® 8t = Seen vo® | - [ v, e a

Using the above results, Eg. (A-5) can be put in the form

2 —_
V(t) - v(0) = % f [BI (3—‘;)2 + T(x,t) (g—:)z]lt_ ax
o]

2

Ju d u
- mC COS Y ao(t) E(l't) ‘m(z,t) dt

O rt|

t 83u Jdu Ju
- mc sin Y f———z(z,t) (% 0502, t) dt
o dxot
t %
1 9T ,duy2
- -2— ‘!; .‘/;_t (K) dx dt

(A-10)

Equation (A-10) gives the potential energy of a clamped beam with tip
body under axial acceleration ag(t); EI, and p are assumed con-
stant. Recall that potential energy is defined only up to an arbi-

trary additive cons*ant; hence we can set V(0) = 0.

For the special case Y = 0 and constant ag
1 . Bzu 2 duy 2 1 du 2
vit) = = j.[EI (——5) + T(x) (3;) ] dx - 5 mc ag [sg(i,t)]
o Ix

(A-11)

Admittedly, this derivation of the strain energy does not ap-
pear to be well motivated and indeed was developed with hindsight. A
more direct but mathematically sophisticated derivation can be found

in Reference 2.
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APPENDIX B

INDEFINITE INTEGRALS OF EIGENFUNCTIONS

In this appendix we shall present a method for evaluating the

indefinite integral

Jlo,]? ax

where ¢j(x) is the solution of the differential equation

d4

dx

-©-

= Y m) (B-1)

-9

corresponding to B = 8j. This technique is extremely useful in the
normalization of eigenfunctions and the evaluation of certain inte-
grals arising in vibration problems in general. One of the earliest
references to this method is S. Timoshenko ("Vibration Problems in

Engineering,"” 2nd edition, p. 335).

The solution of the differential equation (B-1) depends upcn
the value of B as well as x. We indicate this by the notation

¢ = ¢(x; B). Formally expanding ¢ in a Taylor series we have
3¢
d(x; B+ 8B) = ¢(x; B) + 77 8B + ...

Denote by ¢;(x)-the value of ¢ corresponding to B = B8; and by

¢j(x) the value corresponding to 8; + 68. Thus

- 3¢ -
bylx) = ¢, (x) + (as)siss +oeee (B-2)
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From Eq. (B-1) one can readily show
(84 _ 84) f¢ . dx = $.0''Y = .0"' + '’ — $lo'! (B-3)
i J i3 j'i i"y 173 j'1

where B8; and BJ are distinct (not necessarily eigenvalues).

Substituting Eq. (B-2) into Eq. (B-3)

-43253 f¢1(x) [¢i(x) + (2_2)8.58 + ...] dx = [¢i(x) + (-g%)s.as + ...]¢'i"
i 1
foyrr + £ (38 ]+ orlor + (2 )
- ¢ [err + 2— (22 SB + soe| + '[P + — | 8B + ...
it7i dx3 8 Bl 1'% dxz 9B Bl
ve [} i_ ﬂ’. -
- ¢! [¢i + 35 (3B)Bi68 + o) (B-4)

where we have used the binomial expansion
4 4 3
(Bi + §8) = Bi + 4Bi66 + e

We observe from Eq. (B-1) that the functions ¢ depend upon x and 8 only

through the argument Bx. Therefore

9

-©-

- _9¢ 3 (Bx)
B 3 (Bx) 9B

Qo

Similarly

9¢
9 (Bx)

™|
i
% o
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Hence

3¢ = X 4 -
(33)31 = Bj_ ¢i(X) (B-5)

Neglecting higher order terms in 68 and using Eg. (B-5), allows us to write
Eq. (B-4) as

3
3 2 - X [] 11 - _1_51__ 1
-8] fol ax = F-ep et -6 g Sy e
i i dx
2
1 4 1 4d
+ ¢! = —3 (X)) - ¢ 57— == (%))
1 Bi dxz i i Bi dx i

Expanding derivatives we obtain the final desired result

2 - _i_ 42_ ] Tt te 2
Jlo ]®ax = 2o [8362 - 201 01t + (9:19)7]
48
1
3 1
=30, 81 - —p by el (B~6)
464 i1 43: i1

Indeed, one can verify this result by direct differentiation.

Related integrals, e.g.

fren? ax

can be evaluated in the same fashion.
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ISN
ISN
ISN

ISN
ISN
ISN
ISN
ISN

ISN
ISN
ISN
ISN
ISN

0002
0003
0004

0005
0006
0007
0008
0009

0010
0011
0012
0013
0014

APPENDIX C

NATURAL FREQUENCIES AND MODE SHAPES
PROGRAM LISTING

ct“t‘#"tt‘lt*t‘t“‘tt##tlt!t*ttitttt‘ttttt##ttt“‘t!l't“ttt‘ttl“ttttooooo1oo

C THIS PROGRAM COMPUTES THE NATURAL FREQUENCIES AND MODE SHAPES OF A 00000200
C UNIFORM CANTILEVERED BEAM WITH TIP BODY SUBJECT TO CONSTANT AXIAL 00000300
C BASE ACCELERATION. AN ASSUMED MODES FORMULATION IS IMPLEMENTED USING 00000400
C THE EIGENFUNCTIONS OF A CLAMPED-FREE BEAM ON A FIXED BASE AS THE 00000500
C BASIS THE TIP BODY MASS CENTER IS RESTRICTED TO LIE ALONG THE BEAM 00000600
C TIP TANGENT LINE. ( WRITTEN BY JOEL STORCH & STEPHEN GATES BASED 00000700
C UPON CSDL R-1675 OCTOBER 1983 ). 00000800
cttttttt#‘ttt.tt"ttttttt'ttttttltttttt‘ttttttttt!‘tt‘ttlttl‘tttttttttttooooogoo
c 00001000
Ct#tttttt‘tlttttlt‘.tt!t INPUT/OUTPU]’ FILES ltﬁttttttttt“ttttttt#t#ttttoooo1100
c 00001200
C FILE#S. NAMELIST INPUT & "BETA * L" VALUES 00001300
C FILE¥6 OUTPUT ACCELERATIONS & NATURAL FREQUENCIES 00001400
C FILENT: OUTPUT EIGENFUNCTIONS EVALUATED AT DISCRETE LOCATIONS 00001500
c 00001600
Cresssesraxreassrs DESCRIPTION OF NAMELIST INPUT ITEMS *#*ssssssesassx2+4+00001700
c 00001800
C “EI" BEAM BENDING STIFFNESS 00001900
C "RHO" MASS PER UNIT LENGTH OF BEAM 00002000
C "L" BEAM LENGTH 00002100
C *"MT* TIP BODY MASS 00002200
C “IT" TIP BODY INERTIA ABOUT IT‘S MASS CENTER 00002300
C "CT" TIP BODY MASS CENTER OFFSET FROM BEAM ATTACHMENT POINT 00002400
C "AI" INITIAL VALUE OF BASE ACCELERATION 00002500
C *"AF* FINAL VALUE OF BASE ACCELERATION 00002600
C "AINC" INCREMENT OF BASE ACCELERATION FOR SWEEP 00002700
C "N" NUMBER OF CLAMPED-FREE EIGENFUNCTIONS USED 00002800
c 00002900
cttttttttttttt‘tttttttt‘tttttt!tttttttt‘ttttt#ttttttttttttttttttttttttttoooosooo
c 00003100
c NOTE ARRAYS DIMENSIONED FOR A MAXIMUM OF SO DEGREES OF FREEDOM 00003200
c 00003300
ct‘t!tttl‘tt‘tttttttt‘t‘.“tt“ttttttttttt#ttttttttl#ltttttttt#tttttt‘ttoooosdoo
c 00003500
IMPLICIT REAL*8 (A-H,0-2) 00003600
REAL*8 L,M,K,MT,IT,MSTAR 00003700
DIMENSION K{(50,50),M(50,50),BETAL(50),B(50),B4(50),FOL(50), 00003800
+F1L(50),F20(50),F30(50),GAMMA(50,50),AA(1275),BB(1275),D(50), 00003900
+2(50,50),WK(2600),PHI(51,50),Y(51,5) 00004000
NAMELIST /INPUT/ EI,L,RHO,N,MT,IT,CT,AI, AF,AINC 00004100
READ(S, INPUT) 00004200
RHOL=RHO*L 00004400
MSTAR=MT/RHOL 00004500
SRHOL=DSQRT (RHOL ) 00004600

c 00004700
C READ BETA*L VALUES 00004800
c 00004900
DO 1 I=1,N 00005000
READ(S5,2) BETAL(I) 00005100
B(I)=BETAL(I)/L 00005200

1 B4(I1)=B(I)**4 00005300
FORMAT(E1T 8) 00005400
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ISN
ISN
ISN
ISN

ISN
ISN

ISN
ISN

ISN
ISN

ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN

ISN
ISN
1SN

ISN
ISN
ISN

ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN

0015
0016
0017
0018

0019
0020

0021
0022

0023
0024

0025
0026
0027
0028
0029
0030
0031
0032
0033
0034

0035
0036
0037

0038
0039
0040

0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055

c

C ECHO PRINT INPUT DATA

c

c

7

WRITE(6,3)

FORMAT( 1H1,24X, 'DATA FROM NAMELIST INPUT’)

WRITE(6,4) EI,RHO,L

FORMAT({HO,’ EI = ’,4PE13.6,2X,’ RHO = ‘', 1PE13 6,2X,’
+1PE13 6)

WRITE(6.5) MT,IT.CT

FORMAT({HO,’ MT = ’/,{PE13 6,2X,’ IT = ’ 1PE13 6,2X,’
+1PE13.6)

WRITE(6,6) AI,AF,AINC

FORMAT(1HO,’ AI = /,1PE13.6,2X,’ AF = ’,1PE13.6,2X,’Al
+1PE13.6)

WRITE(6,7) N

FORMAT( 1HO, 'NO. OF CLAMPED-FREE MODES USED = ’/,12)

C EVALUATE CLAMPED-FREE EIGENFN & DERIVATIVES @ O AND L

c

10

DO 10 I={,N

BL=BETAL(I)

S=DSIN(BL)

C=DCOS(8BL)

SH=DSINH(BL)

CH=DCOSH(BL)

FOL(I)= -2.0DO/SRHOL
FI1L(I)=FOL(I)*B(I)*(S*CH + C*SH)/(S*SH)
F20(1)=FOL(I)*(B(1)**2)*(C+CH)}/(S*SH)
F30(1)=FOL(I)*(B(I)**3)*(S-SH}/(S*SH)

C
C ASSEMBLE MASS MATRIX

(o

20

21

00 20 I=1,N
00 20 J=I,N

M(I,J)= (IT+(MT*CT*CT))*FIL(I)*FIL(J) + MT*FOL(I)*FOL(Y)
++ MT*CT*(FOL(I)*FiL(J) + FIL(I)*FOL(Y))

M(J,I)=M(I,J)

DO 2% I=4,N

M(I,1)=M(I,I)+1 ODO -

c
C ASSEMBLE GAMMA MATRIX

c

30

40

DO 30 I=t,N

I1P1=141

00 30 J=IP1{,N

BMB=B4(1)-B4(V)

T1=(1 ODO+MSTAR)*(F20(I)*F30(J) - F30(1)*F20(J))
T2=MSTAR*(B4(1)*FOL(I)*FIL(J) - B4(J)*FIL(I)*FOL(J))
T3=2 0DO*(B4(1)+B4(J))*F20(1)*F20(v)/(L*BNMB)
T424,000*B4(1)*B4(J)*FOL(I)*FOL(J)/(L*BMB)
GAMMA(I,J)=(T1-T2-T3+74)/BMB

GAMMA(J, ) =GAMMA(I,J)

00 40 I=9,N

T1=MSTAR*(L*(F1L(I)**2) + 3 ODO*FOL(I)*F1iL(I))/4 0DO
T2=(1 ODO+MSTAR)*F20(I)*F30(I)/(4 000*B4(I))
T3=(L*FIL(I))**2 + 3 ODO*(FOL(1)**2) + (F20(1)**2)/B4(1)
GAMMA(I,1)=-T1-T2-T3/(8 ODO*L)
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L=,

CT =/,

NC = /,

00005500
00005600
00005700
00005800
00005900
00006000
00006 100
00006200
00006209
00006218
00006227
00006236
00006245
00006254
00006263
00006272
00006400
00006500
00006600
00006700
00006800
00006900
00007000
00007100
00007200
00007300
00007400
00007500
00007600
00007610
00007700
00007710
00007800
00007900
00008000
00008 100
00008200
00008300
00008400
00008410
00008500
00008510
00008600
00008700
00008800
00008900
00009000
00009100
00009200
00009300
00009400
00009500
00009600
00009700
00009800
00009900
00010000
00010010



ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN

ISN
ISN
ISN
ISN
ISN
ISN
ISN

ISN
ISN
ISN

ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN

ISN
ISN
ISN
ISN

ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN

0056
0057
0058
0059
0060
0061
0062
0063

0064
0065
0066
0067
0068
0069
0070

0071
0072
0073

0074
0075
0076
0077
0078
0079
0080
0081
0082

0083
0085
0087
0088

0089
0090
0091
0092
0093
0094
0095
0096
0097
0098

C ASSEMBLE STIFFNESS MATRIX

c

50

60

c

C LOAD K INTO AA & M INTO B8

c

70

80

aaon

000

aAOO

a0on

AX=A1

00 60 I=1,N
IPt1=I+1

D0 60 J=1P1,N

K(I,J)=AX RHOL*GAMMA(I,J)-MT*CT*AX*FIL(I)*FiL(J)

K(J,1)=K( ,J)
DO 70 I=1 N

K(I,I)=EI*B4(I)/RHO + AX*RHOL*GAMMA(I,I)-MT*CT*AX*(FIL(I1)**2)

1121

00 80 I=1,M
D0 80 J=1,I
AA(II)=K(I,J)
BB(I1)=M(1I,J)
II=I1+1
CONTINUE

COMPUTE EIGENVALUES & EIGENVECTORS

1J0B=2
12250
CALL EIGZS(AA,BB,N,1J0B,D,Z,1Z,WK,IER)

OUTPUT FIRST 5 EIGENVALUES & ACCELERATION

20
91
92

93
94

WRITE(6,90 AX

FORMAT( 1HO, ‘BASE ACCELERATION = ’,1PE13.6)
WRITE(6,91)

FORMAT( 1HO 4X,’NATURAL FREQUENCIES’)
WRITE(6,92,

FORMAT(1H ,1X,’N’,5X, OMEGA(N)**2 (SEC**-2)’)
00 93 I=1,5

WRITE(6,94) 1,0(I)

FORMAT(1H 12,5X,1PE13 6)

TEST FOR EIGENVECTOR COMPUTATION OR ACCEL SWEEP

IF( Al .EQ AF ) GO TO 100
IF( AX .GE. AF ) GO TO 1000
AX=AX+AINC

GO TO 50 .

EVALUATE CLAMPLJ-FREE EIGENFUNCTIONS AT 51 STATIONS

100 DX=L/S0 0DO

D0 110 I=1{,N
BL=BETAL(I)
$S=DSIN(BL)*DSINH(BL)
SMS=DSIN(BL) - DSINH(BL)
CPC=DCOS(BL) + DCOSH(BL)
X=0.000

DO 105 J=1,51

BX=8(I)*x

PHI(J,I)=SMS*(DSIN(BX)-DSINH(BX)) + CPC*(DCOS(BX)-DCOSH(BX))

48

BOTH SYMMETRIC STORAGE

00010100
00010110
00010200
00010300
00010400
00010500
00010600
00010700
00010800
00010900
00010910
00011000
00011010
00011100
00011200
00011300
00011400
00011500
00011600
00011700
00011710
00011800
00011810
00011900
00012000
00012100
00012101
00012200
00012210
00012300
00012400
00012500
00012600
00012610
00012620
00012630
00012640
00012650
00012700
00012800
00012810
00012900
00013000
00013100
00013200
00013210
00013300
00013310
00013400
00013500
00013600
00013700
00013800
00013900
00014000
00014100
00014200
00014300




ISN
ISN
ISN

ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN

ISN
ISN
ISN
ISN
ISN
ISN
ISN

0099
0100
0101

0102
0103
0104
0105
0106
0107
0108
0109

0110
0111
0112
0113
0114
0115
0116

PHI(J,1)=PHI(J,1)/(SRHOL*SS)
105  X=X+DX
110 CONTINUE
c
C COMPUTE FIRST § EIGENVECTORS
c
00 125 IP=1,5¢%
DO 120 IM=1,5
SUM=0 0DO
DO 115 J=1,N
PROD=PHI(1IP,U)*2(J,IM)
115 SUM=SUM+PROD
120 Y(IP,IM)=SUM
125 CONTINUE
c
C OUTPUT EIGENVECTORS FOR PLOTTING
c
X=0 0DO
DO 130 I=1,51
WRITE(7,131) X,(Y(I,J),u=1,5)
130 X=X+DX
131 FORMAT(6(1X,E12 5))
1000 STOP
END
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00014400
00014500
00014600
000146 10
00014700
00014710
00014800
00014900
00015000
00015100
00015200
00015300
00015400
00015500
00015510
00015600
00015610
00015700
00015800
00015900
00016000
00016100
00016200
00016300



BEAM PARAMETERS

El

625« 107 Ib-ft2

1340 ft
04172 slug/ft

EXAMPLE PROBLEM PARAMETERS

TP BODY PARAMETERS

3
t

155 28 slugs
I, =00 slug-ft2

00 ft

NAMELIST INPUT AND CLAMPED-FREE BEAM “EIGENVALUES"

&INPUT EI=6 25E7,L=134 O,RHO=.4172,N=20

MY=155.28,1T7=0 0,CT=0.0
Al=0 0,AF=60 O,AINC=20 O,&END

0 18751041E+01
0 46940911E+01
0 785475ST4E+01
0 1099554 1E+02
0 14137168E+02
0.17278760E+02
0 20420352E+02
0.23561945E+02
0.26703538E+02
0 29845130E+02
0 32986723E+02
0 36128316E+02
0.39269908E+02
0.42411501E+02
0 45553093E+02
0 48694686E+02
0 51836279E+02
0.54977871E+02
0 58119464E+02
0 61261057E+02
0 64402649E+02
0O 67544242E+02
0 70685835E+02
O 73827427E+02
0 76969020E+02
0 801106 13E+02
0 83252205E+02
0 86393798E+02
0 89535391E+02
0 92676983E+02
0 95818576E+02
0 98960169E+02
0 10210176E+03
0 10524335E+03
O 10838495E+03
0O 11152654E+03
0 11466813E+03
0 $1780972E+03
0 12095132€+03
0 12409291E+03
0 12723450E+03
0. 130376 10E+03
0.13351769€+03
0 13665928E+03
0 13980087E+03
0 14294247E+03
0 14608406E+03
0 14922565E+03
0 15236724E+03
O 15550884E+03

50

FIRST FIFTY ROOTS (ﬂ‘!l) OF
cos ﬁ.ll cosh ﬁ'SZ = -1




El =
MT

Al

NO OF

PROGRAM OUTPUT

ACCELERATION SWEEP RUN

6.250000E+07

1.552800E+02

0 000000E+00

CLAMPED-FREE

BASE ACCELERATION =

DATA FROM NAMELIST INPUT
RHC = 4 172000E-01 L = 1 340000E+02
IT = O 000000E+Q0 CT = 0O OOOOOOE+00
AF = 6 O00000E+01 AINC = 2 OOOQOOE+O1
MODES USED = 20

0 0000Q0E+00

NATURAL FREQUENCIES

UHE2WN-Z

OMEGA(N) **2
4.625102E-01
1 151594E+02
1 176526E+03
5 085561E+03
1 4B3397E+04

BASE ACCELERATION =

(SEC**-2)

2.000000E+01

NATURAL FREQUENCIES

AW+ Z

OMEGA(N)**2
2 785320€-01
1 094116E402
1 155686E+03
5 039933E+03
1 475390E+04

(SEC**-2)

BASE ACCELERATION = 4 OO0COOE+Ot

NATURAL FREQUENCIES

NEBWUN-Z

OMEGA(N)**2
9.289338E-02
1 036581E+02
1 134843E+03
4 994303E403
1 467382€+04

BASE ACCELERATION =

(SEC**-2)

6 O0COQOE+01

NATURAL FREQUENCIES

NEWUN-Z

OMEGA(N)**2
-9 466231E-02
9.789877E+01
1 113999E+03
4 948672E+03
1 459374E+04

(SEC**-2)
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El =
MT =

Al =

PROGRAM OQUTPUT
MODE SHAPES RUN

DATA FROM NAMELIST INPUT

6 250000€+07 RHO = 4 172000€-01 L
1 552800£+02 IT = 0 000000E+00 CT =
3 220000€E+01 AF = 3 220000E+01 AINC =

NO OF CLAMPED-FREE MODES USED = 20

BASE ACCELERATION =

3 220000€E+01

NATURAL FREQUENCIES

1 340000E+02

0 000C000E+00

0 000000E+00

52

N OMEGA(N)**2 (SEC**-2)

b} {1 655051E-01

2 1 0S9027€E+02

3 {1 142972E+03

4 5 012099E+403

) 1 4T0505E+04

EIGENFUNCTIONS (NON-NORMALIZED)
m {2) (3) (4) (5)
x Yix) Yix) Y(x) Yix) Yix)

QO OCOOOE+00( O O00QO0E+00 | O OOQOQE+00}F O OQQCOE+00| O OOQOOE+0Q| O QOOQQE+00
O 26800E+01| 0.41721E-04 ;-0 80237E-03}] O 25418E-02]-0 52092E-02| O B86654E-02
O 53600E+01} O.16641E-03 |-0 31241E-02] O 96775E-02|-0 19296E-O1| O JI1340E-0¢
O B0O400E+01] O 37331E-03 -0 6B3IBIE-02] O 20664E-01{-0 39984E-01| O 63036E-0f
0O 10720E+02 ] O 66154E-03 {-0 1181{9E-01]| O 3J4748E-01|-0 65064E-01| O 98B44E-Of
0 13400£+402] O 10302E-02 |0 17939€-01] O S{I80E-01|-0 92400€E-01| O 13415E+00
O f6080E+402 1 O 14782E-02 {-0.25072€-01] O 69230E-01|-0.11993E+00| O 16493E+00
O 18760€+02 | O 20047E-02 |-0 3I3086E-Q3] O 88199E-011-0 14S574E+00] O 18737E+00
O 21440€402 | O 26085E-02 |-O 41853E-01} O 10741E400|-0.16814E+00| O 20046E+00
0 24120E+02 | O 32885E-02 }-O 51248E-01] O 12620E+00{-0.18570E+00| O 20108E+00
0 26800E+02 { O 4043%E-02 |-O 61145E-01} O 14395E+400{-0 19733E+00] O 18908E+00
O 2948B0E+02 { O 48722€-02 |-O 71419€-01}] O 16012E+00 -0 20219E+00] O 16494E+00
O 32160E+02 {0 57733E-02 {-O 81947E-01] O 17422E+400)-0 {19980E+400] O 13012E+400
0O J4840E+02 | O 67456E-02 O 92607TE-Q01} O 18581E+00{-0 19001E+00| O 86888E-O1
Q J7520E+402 | O 77875E-02 |-0. 10328E+00] O 19452E+00|-0 17307E+00] O JIBOBSE-Of
O 40200E+02 O 88976E-02 [FO {1386E+*Q0§ O 20006E+00 |-0 14959€+400 -0 13019€-01
O 42880E+402 |0 100T4E-01 FO 12424E400| O 20222E400 (-0 12041E+00 -0 62886E-01
0 45560402 {0 11317E-0! FO 13430£+400| O 20088E+00 |-O 86620E-01|-0 10798E+00
O 48240€+402 |0 12622€E-01 +0 14394E+00) O 19600E+00 {-O 49540E-01 (-0 14514E+00
O S0920€+402 |O 13990E-01 O 15308E+00] O 18760E*00 {-0O 10676E-0O1 {-0 1T180E+00
0 S3600E+402 |0 15418E-01 [FO 16161E+00] O 17STI9E+QQ}§ O 2B371E-0O1}-0 18620E+00
O 56280€£+402 |0 1690SE-0f O 16947E+00| O 16076E+00 | O 66022E-01 -0 18T7JI0E+00
O S58960E+02 |O 18449E-01 FO 17656E+00| O 14279E+00| O 10078E+400{-0 17499E+00
O 61640£+402 |O 20048E-01 +O 18283E+00] O *2219E+00 | O 1312JE+001-0 15012E+00
O 64320E+02 |0 21700E-01 O 18819E+00| O 9v4SOE-O1 | O 1S610E+00 j-O 11453E+00
QO 67000E*02 {0 23404E-0¢ FO 19261E+00§ O TATOGE-O1 | O 17434E+00}-0 T0829E-01
O 69680€+02 |0 25158E-01 O 19602E+00{ O 48B708E-01 ]| O 18521E+00 -0 22121E-01
Q 72360E+02 | O 26960t-01 FO 19840E+00}] O 21882E-01 ] O 18832E+00| O 2821BE-01
O 75040E+402 {0 28808E-01 FO 19969E400}-0 S241BE-02 | O 18356E+00| O 76647E-01
O T7720£402 {0 J0700E-01 |FO 19989E+00 |-O0 J2143E-01 1 O 1714{E+00 ] O 11965E+00
O 80400E+02 | O J32634E-01 |FO 19897E+00{-0 S8310E-01 | O 15144E+00| O 1540SE+00
O B3080E+02 {0 J460BE-O1 [-O 19693E+00 (-0 83221€-01 | O 12541E+00| O 17745£+400
O 85760E402 |0 36620E-01 |-O 1937SE+Q0 [-O 10634E+00 | O 94224E-01 | O 18846E+00
O 88440E+02 | O 3I8669E-01 |-O 18945E+00 -0 12725E+00 ] O 59078E-01 | O 1B60SE+00
0O 91120€4+02 | O 40752E-01 |-O 1B405€+00 (-0 14555E+00 | O 21375E-01 | O 17023E+00
O 93B00E+02 | O 42868E-01% [-O 17756E+00 |-O 160B6E+QO |-O 17201E-01] O 14236E+00
O 964B0E+02 O 45014€-01 -0 17001E+00 |-0 17282E+Q0 |-O S54938E-01] O 10464E+00
O 99160E+02 | O 47188E-01 [-O 16144E+00 |-O 1B125E+00 |-O0 90385E-01| O 59478€-01
O 10184E+403 | O 49388BE-01 {-0 15190E400 |-O 1BGO4E+00 |-O 12225E+00 ] O 96639E-02
O 10452E403 [ O S1612E-0Q1 [-0 14143E4Q0 |-O 18701E+00 |-O 1489GE+00 |-O 407T1E-OH
0O 10720E+403 | O 53859£-01]-0 13009€+00 |-O 18410E+00 |-O 16925E+00 |-0 87855E-01
O 10988E+03 ] O 56126E-01]-0 11792€+400 |-0 {7739E+0Q0 |-O 18237E+00 |-O 12853E+00
O 11256E+03 | O SB841{E-01 -0 10502E+400 |-0 16705E+00 |-O $878B7E+00 |-O 16008E+00
O 11524E+03 {O 60712E-01 -0 91462E-01 |-O 15338E+00 |-O 185T9E+00Q [-O 1B0O8IE+00
O 11792€E+403 1 0 63026E-01 -0 T7I1SE-O1 |-O 13660E+00 |-O 17603E+00 }|-O 18911E+00
O 12060£+03 J O 6535JE-01]-0 62637E-01 |-0 11690E+00 }-O 1586SE+00 [-O 18335E+00
Q 12328E+03 1 O 67690E-01[-0 47501E-01 |-O 9461BE-0Ot |-O 13414E400 {-0 16359E+00
O 12596E403 | O 70036E-01]-0 32000E-01 1-0 70237E-01% |-O 10368E+00 [-QO 13153E+00
O 12864E403 | O 72387E-01}-0 16262E-01 §-0 44470E-0f }-O 69197€-01 |-O 90955E-01
O 131326403 [ O T4741E-01§-0 37928E-03 {-O 17859€-01 |[-O 32247E-01 |-O 44939E-01
O 13400E+03 | O 77096E-01| O 1554J3E-01] 0 89914E-02 ] O S54750E-02 ] O 26399E-02
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APPENDIX D

BUCKLING LOAD/ACCELERATION
PROGRAM LISTING

CHESEEE AR L L LR AR AL RALEERERR RN REERRERRARERRXRAXAREIRAEERRERRXRX2R242100000100

C THIS PROGRAM COMPUTES THE FIRST CRITICAL BUCKLING LOAD/ACCELERATION 00000200
C OF A UNIFORM CANTILEVERED BEAM WITH TIP BODY THE "BUCKLING LOAD" 00000300
C CORRESPONDS TO THE BEAM ROOT AXIAL FORCE AND IS DIRECTLY PROPOR- 00000400
C TIONAL TO THE "BUCKLING ACCELERATION". THE TIP BODY MASS CENTER IS 00000409
C RESTRICTED TO LIE ALONG THE BEAM TIP TANGENT LINE ( WRITTEN BY 00000418
c

JOEL STORCH & STEPHEN GATES BASED UPON CSDL R-1675 OCTOBER 1983 ) 00000427
CHASBARRRERRRIRRARRRKARARERRARRRRIRARRARERERA SRR SR RRARR XA R L2222 2200000436

c 00000445
C‘lttttttttttttttttll#' INPUT/OUTPUT FILES ttttt!tttt”‘ttttlt’ttt'ttlttooooo454
c 00000463
C FILE#S: INPUT NAMELIST INPUT DATA 00000472
C FILE#6: QUTPUT CRITICAL BUCKLING LOAD/ACCELERATION 00000481
c 00000490
Creersssssssssss DESCRIPTION OF NAMELIST INPUT ITEMS *s*s#sssarasss42222350000500
c 00000509
C "EI" BEAM BENDING STIFFNESS 00000518
C "RHO“ MASS PER UNIT LENGTH OF BEAM 00000527
C "L" BEAM LENGTH 00000536
C "MT"™ MASS OF TIP BODY 00000545
C "“CT" TIP BODY MASS CENTER OFFSET FROM BEAM ATTACHMENT POINT 00000554
c 00000563
Ctttttt‘ttttt#tt‘ttttttttttttttt#tttttttttttttttttt‘tlttltit'tt!tt#ttt#t(oooos72
c € 0001000
IMPLICIT REAL*8(A-H,0-2) 00001100
REAL*8 L,LAMS ,MSTAR MT €0001200
DIMENSION LAMS(2) ©0001300

DATA LAMS/1 0OD-8,1% 87D0/ 00001400
COMMON ALPHA,BETA,C4,C2,C3,01,D2 00001500
EXTERNAL F 00001600
NAMELIST /INPUT/ EI,L,RHO,MT,CT (0001610
READ(S, INPUT) 00001620
MSTAR=MT/(RHO*L) 00001630
CSTAR=CT/L 00001640

c 00001650
C ECHO PRINT INPUT DATA 00001653
c 00001656
WRITE(6,1) EI,RHO,L 00001660

1 FORMAT(1H1,24X,'DATA FROM NAMELIST INPUT’,//.’ EI = ‘ 1PE{3.6,2X 00001670
+,” RHO = ', 1PE13.6,2X,’ L = ’,1PE13.6) € 001680
WRITE(6,2) MT,CT 00001690

2 FORMAT(1HO,’ MT = ‘_ 4PE13 6,2X,’ CT = ’,1PE13.6,) 00001700

c 00001710
C COMPUTE CONSTANTS 00001720
c 00001730
ALPHA=1 ODO+MSTAR 00002000
BETA=MSTAR/DSQRT(1 0ODO+1 ODO/MSTAR) 00002100

C1=4 0ODO/(3 ODO*ALPHA) 00002200
C2=DSORT(ALPHA) 00002300
€3=2,000*C2/(3 ODO*BETA) 00002400

C4=1 SDO*DSQRT(MSTAR) 00002500

C522 ODO*DSQRT({MSTAR)/BETA 00002600
D1=C4*CSTAR 00002900
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0024
0025
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0027
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0029

0030
0031

D2=C2-C5*CSTAR 00003000

A=LAMS( 1) 00003200
B=LAMS(2) 00003300
MAXFN=80 00003400

C 00003410
C COMPUTE FIRST ROOT OF BUCKLING CHARACTERISTIC EQUATION 00003420
c 00003430
CALL ZBRENT(F,1 0OD-8,5,A,B,MAXFN,IER) 00003500
IF(IER EQ. O) GO TO 4 00003600
WRITE(6,3) IER 00003700

3 FORMAT( 1HO, ‘¢ RROR IN ZBRENT ALGORITHM IER = ’,I3) 00003800
sTopP 00004000

4 PCR=(2.25DO*E /L**2)*B**2 00004100
ACR=PCR/(RHO* + MT) 00004200
WRITE(6,5)PCR,ACR 00004300

5 FORMAT( 1HO, 'FIRST CRITICAL BUCKLING LOAD = ‘,1PE13.6,/, 00004400
+’FIRST CRITICAL BUCKLING ACCELERATION = ’,{PE{3 6) 00004500

sTQP 00005400

- END 00005500

CHrERs 222242t 4 XL RAR XXX XXX ERRXRXX TR RATRE RN B R AT RARR L LR RAR AR R RR22+0)0005510

C THIS FUNCTION SURBPROGRAM EVALUATES THE BUCKLING CHARACTERISTIC 00005520
C EQUATION, EQ (3-12) EXPRESSED IN TERMS OF BESSEL FUNCTIONS OF 00005530
C POSITIVE ORDER. 00005540
Ctttl‘tttttttttt##ttttttttt‘ﬂttttttt#ttttttlttttttttt!tt‘ttt‘tttt!ttttttoooossso
FUNCTION F(LAM) 00005600
IMPLICIT REAL*8(A-H,0-Z) 00005700
REAL*8 LAM 00005800
COMMON ALPHA,BETA,C1,C2,C3,D01,D2 00005900
DIMENSION T(8),RJ(2),WK(4) 00006000
A1=ALPHA*LAM 00006 100
A2=BETASLAM 00006200

c- 00006300
C COMPUTE BESSEL F.INCTIONS OF ORDERS 1/3,2/3,4/3,5/3 00006400
C AT ARGUEMENTS A1 AND A2 00006500
[+ 00006600
15=0 00006700

DO 40 1=1,2 00006800
OR=DFLOAT(1)/3.000 00006900

DO 30 NA=1,2 00007000

IF(NA EQ 1) ARG=A1 00007 100

IF(NA EQ 2) ARG=A2 00007200

CALL MMBSUR(ARG,OR,2,RJ,WK,IER) 00007300

IF( IER EQ 0) GO TO 20 00007400
WRITE(6,10) IER,ARG,OR 00007500

10  FORMAT(1HO,SX,‘ERROR IN EVALUATING BESSEL FUNCTION’,3X,’IER=’, 00007600
+ I3,2X,’ARGUEMLNT=’ ,E13.5,2X, ‘ORDER=" F7 §) 00007700

sTOP 00007800

20  IS=1S+1 00007900
T(IS)=RJ(1) 00008000
IS=1I5+1 00008 100
T(1S)=RuU(2) 00008200

30 CONTINUE 00008300
40  CONTINUE 00008400
c 00008500
C COMPUTE FUNCTION *F*® 00008600
c 00008700
F=(C1/LAM*T(5)-T(6))*(CI/LAM*T(3)-C2*T(4)+D1*LAM*T(3) )+ 00008800

1 T(1)+(D2+T(7)+D1*LAM*T(8)) 00008900
RETURN 00009000

END 00009100
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SAMPLE INPUT/QUTPUT FOR BUCKLING PROGRAM

BEAM PARAMETERS TIP BODY PARAMETERS
2

El = 625+ 107 Ib-ft m = 155 28 slugs

L = 1340 ft c=00ft

p = 04172slug/ft
NAMELIST INPUT

&INPUT EI=6.25E7,RHO= 4172,L=134 0,MT=155.28,CT=00.0,&END

PROGRAM QUTPUT
DATA FROM NAMELIST INPUT
€I = 6 250000E+07 RHO = 4 172000E-01 L = 1 340000£+02
MT = { 552800E+02 CT = 0.000000E+00
FIRST CRITICAL BUCKLING LOAD = 1 054506E+04 |b

2
FIRST CRITICAL BUCKLING ACCELERATION = 4 993284E+01 ft/s

BEAM PARAMETERS TiP BODY PARAMETERS
SAME AS ABOVE m = 155 28 slugs
c=670ft
PROGRAM OUTPUT

DATA FROM NAMELIST INPUT
EI = 6 250000E+07 RHO = 4 172000E-01 L = 1.340000E+02
MT = 1 552800E+02 CT = 6.700C00E+0t
FIRST CRITICAL BUCKLING LOAD = 5 261190E+03 Ib

FIRST CTITICAL BUCKLING ACCELERATION = 2.491273E+01 ft/s2
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APPENDIX E

COMPARISON OF SELECTED NUMERICAL R SULTS

In this appendix we compare the numerical values for the funda-
mental natural frequencies obtained from four distinct numerical
procedures. The results are for the case of a tig body with mass
center along the beam tip tangent line and the particular parameters

listed below.

Beam Parameters Tip Body Parameters
EI = 6.25 ¢ 107 slug-ft2 m = 155.24 slug
L = 134.0 ft I¢ = 5.0 105 slug-ft2
P = 0.4172 slug/ft c = 67.0 tt

The first two columns of natural frequencies are based upon the
assumed modes formulation of Chapter 5, using the first 10 fixed base
eigenfunctiors of a clamped-free beam and clamped beam with tip body,
respectively. The spline based Galerkin method used to generate the
results of the third column, 1s described in Referecace 2. The results
of the fourth column are based upon the power series solution of Sec—

tion 4.1, using si1xX terms 1in each series.
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LS

Fundamental Natural Frequencies (s'z)

Constant
Axial Base |Assumed-Modes Method|Assumed-Modes Method| Spline-Based Power-~Series
Acceleration 10 Clamped--Free 10 Clamped--Tip Body|Galerkin Method Solution
(ft/sz) Eirgenfunctions Eigenfunctions 10-cubic Splines|6-Terms in Each Series
0.0 0.1329 0.1312 0.1312 0.1312
2.4913 0.1198 0.1181 0.1181 0.1181
4.9825 0.1067 0.1050 0.1050 0.1050
7.4738 0.0936 0.0919 0.0919 0.0919
9.9651 0.0805 0.0788 0.0788 0.0788
12,4564 0.0674 0.0657 0.0657 0.0657
14.9476 0.0543 0.0526 0.0526 0.0526
17.4389 0.0411 0.0395 0.0395 0.0395
19.9302 0.0280 0.0263 0.0263 0.0263
22,4215 0.0148 0.0132 0.0132 0.0132
24.9127 0.0017 0 0 0
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