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1. To perform a finite-element ana1y;is for nonlinear behavior 
of laminated plate and shell structures constructed of 
fiber-reinforced, filamentary composite materials. 

2. To demonstrate the application of the elements to a number 
of plate and shell structures. 

(b) Approach: 

Two different finite element.; were developed and assessed for 
thejr accuracy in the analysis of 1aminater' plate and shell 
structures: 1.2-dimensional element based on a modified 
Sandars shell theory that accounts for transverse shear 
strains, and 2. 3-dimensional degenerated element based on .he 
updated Lagrangian formulation. Both elements account for 
geometric nonlinearity and dynamics. 

(c) Significant Accomplishments: 

The significant result; of the research are: 

1. An accurate stress and vibration analysis of laminated 
plates and shells, accounting for geometric and material 
nonlinearitieo:; and transverse shear strains. The laminates 
can be of arbitrary lamination scheme and subjected to 
transverse loads. 

2. Stress analysis of laminated composites using a nonlinear 
constitutive model. 

i 



4. 

5. 

Students Supported and Degrees Awarded 

Name Date Degree 

w. C. Chao Aug. 81-March 83 Ph.D. 
(June 83) 

N. S. Putcha Aug. 82-March 84 Ph.D. 
(June 84) 

K. Chandrashekhara Sept. 93 Ph.D. 
(in progress) 

List of Publications and Presentations 

( a) Journal Articles: 

1. J. N. Reddy and W. C. Chao, "Non1inel'.r 
Oscillations of Laminated, Anisotropi:, 
Rectangular rlates," Journal of Applied Mechanics, 
Vol. 104, pp. 396-402, 1982. 

2. W. C. Chao and J. N. Reddy, "Geometri call y 
Nonlinear Analysis of Layered Composite Shells, 
Advances in Aerospace Structures and Materials, 
edited by R. M. Laurenson and U. Yuceog1u, .~D-03, 
The American Society of Mechanical Engineers, New 
York, pp. 25-28, 1982. 

3. N. S. Putcha and ,1. N. Reddy, "Three-DimE:,,~iona1 
Analysis of Layered Composite Plates," AdvancE'S in 
Aerospace Structures and Materials, edited by R. 
M. Laurenson and U. Yuceog1u, AD-03, The American 
Society of Mechanical Engineers, New York, pp. 29-
35, 1982. 

4. T. Kuppusamy and J. N. Reddy, "A Three-Dimensional 
Nonlinear Analysis of Cross-Ply Re~tangu1ar 
Compos i te P1 ates," Computers and Structures, Vo 1. 
18, No.2, pp. 263-272, 1984. 

5. J. N. Reddy and T. Kuppusamy, "Natural Vibrations 
of Lamina.ted Anisotropic Plates," Journal of Sound 
and Vibration, Vol. 94, pp. 63-69, 1984. 

6. W. C. Chao and J. N. Reddy, "Analysis of Laminated 
Shells Using a Degenerated 3-D Element," Int. J. 
Numer. MEth. Engng., to appear. 

7. N. S. Putcha and J. N. Reddy, "A Mixed Shear 
Flexible Finite Element for the Analysis of 
Laminated Plates," Computer Methods in App1. Mech. 
En9n9., to appear. 



8. P. R. Hey1inger and J. N. Reddy, "Prevention of 
Free-Edge Stress Concentration," J. Appl. Mech., 
to appe1!". 

9. J. N. Reddy, "A Review of the L1terature on 
finite-Element Modelling of Laminated Composite 
Plates," Shock and Vibration Diqest, to appear. 

10. J. N. Reddy and K. Chamlr.:1shek!1ara, "Nonlinear 
Analysis of Laminated Shells Including Tr~nsverse 
Shear Strains," AIAA Journal, to appear 

11. K. Chandrashekhara and J. N. R~ddy, "Materially 
~on1inear Analysis of Laminated Anisotropic Plates 
and Shells," in review. 

(b) Papers Presented at Technical Meetings 

1. W. C. Chao and J. N. Reddy, "Geometrically 
Non 1 i near tina 1 ys is of Layered Compos ite She 11 s, " 
Aerospace Division Conference, 1982 ASME-Winter 
Annu1!l Meeting, Phoenix, Arizona, ~lov. 10-14, 
1982. 

2. N. S. Putcha and J. N. Reddy, "Three-Dimensional 
Finite-Element Analysis of Layered Composite 
Plates," Aerospace Division Conference, 1982 ASME 
Winter Annual Meeting, Phoenix, Arizona, Nov. 10-
14, 1982. 

3. J. N. Reddy and N. S. Putcha. "Dynamic Response of 
Layered Composite Plates by a 3-0 Element," 1983 
ASCE EMD Specialty Conference, Purdue University, 
Lafayette, 23-25, May. 1983. 

4. J. N. Reddy and T. I<uppusamy. "Natural Vibrations 
of Laminated Anisotropic Plates Using 3-0 
Elasticity Theory," Ninth Biennial ASME Design 
Engineering Conferenc~ on Mechanical Vibration and 
Noise, Dearborn, Mi~hi~an, 12-14 September 1983. 

5. J. N • Reddy and W. C. Chao, "A Shear Deformable 
Shell El ement for Lami !'lated Composites," 
Proceedings of the NASA Lewis/University/Industry 
Workshop on Nonlinear Analyses for Engine 
Structures, NASA Lewis Research Cente~, April 19-
20, 1983. 

6. W. C. Chao and J. N. Reddy, "Large Deformation 
Analysis of Layered Composite Shells," Mechanics 
of Composite Materia1s-1983, AMD-Vol. 58, pp. 19-
31, and Structures, Winter Annual Meeting of ASME, 
November 15-18, 1983, Boston, MA. 

iii 



7. N. S. Putcha and J. N. Reddy, "A Mixed F 1 nite 
Element for the Analysis of laminated Plates," 
Advances 1n Aerospace Structures, Materials and 
Dynamics, AD-06, pp. 31-39, 1983 Winter Annual 
Meet i ng of ASt4E, November 15-18, 1983, 80S ton , MA. 

8. K. Chand;-ashekhara and J. N. Reddy, "Nonlinear 
Material Models for Laminated Composite Plates and 
She 11 s," 21 st Annual Meeting of the Society of 
Engineering Science, Virginia Polytechnic 
Institute, Blacksburg, VA, OCt. 15-17, 1984. 

9. P. R. Heylinger and J. N. Reddy, "Free Edge Stress 
Reduction in a Capped Laminate," 21st Annual 
Meeting of the Society of Engineering Science, 
Virginia Polytechnic Institute, Blacksburg, VA, 
Oct. 15-17, 1984. 

iv 

I 
I 
I 
i 



GEOMETRICALLY NONLINEAR ANALYSIS OF 
lAMINATED ELASTIC STRUCTURES 

J. N. Reddy 
Virginia Polytechnic Institute and Stae University 

Blacksburg, VA 24061 

(Final Te.::hnical Report on the NASA Grant NAG-3--208) 

SUMMARY 

The research performed under the present grant deals with the 

analysis of laminated composite plates and shells that can beused to 

model automobile bodies, aircraft wings and fuselages, and pressure 

vessels among many others. The finite element method, a numerical 

technique for englneer~ng analysis of structures, is ~sed to model the 

gometry and approximate the solution (i.~., displacements, stresses and 

naturdl frequencies). Various alternative formulations for analyzing 

laminated plates and shells are developed and their finite element 

models are ;e;ted for accuracy and economy in computation. These 

include. the shear deformation laminate theory and degenerated 3-D 

elasticity theory for laminates. The present results obtained for staic 
\ 

transient and natural vibration of laminated plates and shells are very 
\ 

accurate when compared to existing theories (e.g., classical lamination 

theory). Many of the results obtained during this investigation shou-Id 

serve as references for future investigations by designers and 

experimentatlists. 

Preliminary investigations were also initiated during this research 

program in two other related areas: the development of a refined shear 

deformation theory. and nonlinear constitutive models for composite 

plates. These investigations are currently progressing under other 

sponsorships. 
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INTRODUCTION 

This final technical report contains three parts: Part I deals 

with the 2-0 shell theory and its finite element formulation and 

applications. Part 2 deals with the 3-D degenerated element. These two 

parts constitute the two major tasks that were completed under the 

grant. • An other related topic that was initiated during the pr,sent 

investigation ·s the development of a nonlinear material model. This 

topic is briefly discussed in Part 3. To make each part self-contained, 

conclusions and references are included in each part. I~ the interest 

of brevity, the discussions presented here are relati.'ely brief. For 

details and additional topics see the journal articles 1 and 10 for Part 

I, articles 2 and 5 for Part 2 and article 11 F,....,.. o!)..... '1 
• ...,. ,......... .,J. 

Table of Contents 

Part 1: Geometrically Nonlinear Analysis of Laminated Shells Including 
Transverse Shear Strains by J. N. Reddy and K. Chandrasf.ekhara 

Summary; Introduction; A Review of Governing Equations; Finite 
Element Model; Numerical Results; Conclusions; References; 
Appendi x. 

Part 2: Analysis of Laminated Composite Shells Using a Degenerated 3-D 
Element by W. C. Chao and J. N. Reddy 

Summary; Introduction; Incremental, Total-Lagrangian 
Formulation of a Contiuous Medium; Finite Element ~odel; 
Discussion of the Numerical Results; References. 

Part 3: Nonlinear Material Models for Composite Plates a.:"Id Shells by K. 
Chandrashek.lara J.i1d J. N. Reddy 

Summary; Introduction; Material Model; Finite Element 
Formulation; Numerical Results; Conclusions; References. 
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PART I ---
GEOMETRICALLY NONLINEAR ANALYSIS OF LAMINATED SHELLS 

I~CLUDING TRANsvE~SE SHEAH STRAINS 

J. N. Reddy and K. Chandrashekhara· 

fA c.ondeiWed ve;w.tOrt 06 t~ paveJt L~ to appeal!. (II AIM Jol.J./li!a.t, 1984) 

SUMMARY 

The paper contains a description of a doubly curved shell finite element 

for geometrically nonlinear (in the von Karman sense) analysis of laminated 

(doubly-curved) composite she;ls. The element is based on an extension of the 

Sanders shell theory and aCCDunts fer the von Karman strains and transverse 

shear strains. The numerical accuracy and convergence characteristics of the 

element are further evaluated by comparing the preseot results for the bending 

of isotopic and orthotropic plates and shells wich those availaole in the 

literature. The many numerical results presented here fo~ tne geofllertically 

non~inear Jnaljsis of laminated composite shells should serve as reference for 

future investiyations. 

[NTRODUCTl ON 

Laminated shells are finding increased application in aerospace, automo-

bile anc petrochemical industries. Thi~ is primarily due to the high stiff-

ness to weight ratio, high strength to weight ratio, and less machining and 

maintenance costs associated with composite structures. However, the analysis 

of composite structures is more compl icated when compared to melall ic struc-

tures, because laminated composite structures are anisotropic and character-

ized by bending-stretching coupling. Further, the classical shell theories, 

which are based on the KirchhOff-Love kinematic hypsthesis (see Naghdi [lJ and 

. ------------ -----
. Graduate research assistant 
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Bert [2J) are known to yield deflections and stresses in laminated shells that 

are as much as 30% in error. Th i s error is due to the neg I ect of transverse 

shear strains in the classical shell tneories. 

Refinements of the ~Iassi~al shell theorl!5 (e.g., Love's first approxi

mation theory [~J) for shells to include transverse shair deformation have 

been presented by Reissner i: A-6]. Sanders [7J orp.sented modified first- and 

second-approximation theories that removed an inconsistency (nor'.anish}ng of d 

small riuid-body rotations of the shell) existed in Love's first-approximation 

theory. 

The first thin shul I theory of lam;nated orthotropic composite shells is 

due to Ambartsumyan [8 ,9J. In ',,,ese works Amba,.tsumyan assumed that the indi-

vidual ortnotropic layers were oriented such chat the principal dxes of mate-

rtal symmetry coincided with the principal coordinates of the shell reference 

surface. I)ong, Pister, and Taylor [lOJ presented ar extension of 90nnell 's 

shallow snell theory [llJ to thin laminated shells. Using the asymptotic in-

teyration of the elastlcity equations, Wider. and Chung [12J derived a first-

approximation theory for the unsymmetric defor~ation of nonhomogeneous, ani so-

tropic, cyli~drical shells. ThlS theory, when specializea to isotropic mate-

rials, reduces to Oonnel I 's shel I theory. 

Tne effects of transverse shear deformation and thermal expansion through 

the snell thickness were considered by Zukas and Vinson [13J. Dong and Tso 

[14] constructed a lamlnated orthotropic shell theory that includes transverse 

shear aeformatiorJ. This theory can be regarded as an extension of Love's 

first-approximation theory [3J for homogeneous isotropic shells. Other re-

fined theories, specialized to anisotropic cylindrical Shells, were presented 

Dy Whitney and Sun [ISJ. and Widera and Logan [16,17J. 
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The finit~-element analysis of layered anisotropic shells, all of wh~ch 

ar~ concerned with bending, stability, or vibration of shells, can be found in 

the workf of Schmit and Monforton [18], Panda and Natarajan [19], ShivakJmar 

and Krishna Murty :2UJ, Rao [21J, Siede and Chang [22], Hsu, Reddy, and Bert 

[23], Reddy [24], and Venkatesh and Rao [25,26]. Recently, Reddy [27] extend-

ed the Sanders theory to account for the transverse shear strains, and pre

sented exact solutions for simply supported cross-ply laminated shells. All 

of these studies are limited small displacement theories and static analyses. 

In the present paper, an extension of the Sanders shell theory that ac-

counts for the shear deformation and the von Karman strains in laminated an-

isotropic shells is used to develop a displacement finite element model for 

the bending analysis of laminated composite shells. The accuracy of the ele-

ment is evaluated by comparing the results obtained in the present study for 

isotropic and orthotrooic plate and shell problems with those available in the 

literature. Numerical results for bending analysis of cyl~ndrical and doubly-

curved shells are presented, showing the effect of radius-to-thickness ratio, 

loading, and boundary conaitions on the deflections and stresses. 

A REVI~W OF THE GOVERNING EQUATIONS 

Consider a laminated shell constructed of a finite number of uniform-

thickness orthotropic layers, oriented arbitrarily with respect to the shell 

coordinates (~l'~2'C). The orthogonal curvilinear coordinate system 

(~I'~2'C) is chosen such that the ~1- and ~2- curves are lines of curvature on 

the rnidsurface C=Q, ~nJ c-curves are straight 1 ines perpendicular to the sur

race C=O (see Fig. 1). A line ~lement of the shell is given by (see Reddy 

[27] 
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where a i and Ri (i = 1,2) are the surface metrics and radii of curvature, 

respectively. In general. a i and Ri are functions of ~i only. For the dOJb1y 

curved shells considered in the present theory, a i and Ri are constant. 

The strain-displacement equations of the shear deformable theory of 

doubly-curved shells are given by 

0 
€4 = E4 

0 
E5 = E5 

0 
+ CK6 '6 = E6 (2 ) 

where 

E1 
oU l u3 1 cU_ 0{,1 

= -+ -+ - (-j)2 , K 1 = --
oX l Rl 2 oX1 oX· l 

QU 2 u3 AU O~2 
EO = -+-+ 1 (_3)2 

"'2 =-2 oX2 R2 2 oX2 oX2 

° 
OUI QU2 oU3 eU3 o¢l o~2 Oli2 oU 1 

'6 = -- + -+ ---- , K 6 :-.+--+ Co (ax - ax) 3>'\2 oXl OX l oX2 oX2 oX1 1 2 

EO = 4>2 + 
oU 3 u

2 ---4 oX2 R2 

0 
oU3 :1. E5 = 4>1 +--oX l Rl 

(3 ) 

Here ui denotes the displacements of the reference surface along ~i(~3 = C) 

axes, and 4>; are the rotations of the transverse normals to the reference 

surface. In Love's first-approximation theories the parameter Co is taken to 

be zero, and it is introduced only in the Sanders theory. 

I 
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The stress-strain relations, transformed to the shell coordinates, are of 

the form 

(4) 

where Qg) ;,,'e the material properties of k-th layer. 

The principle of virtual work for the present problem is given by 

L 
o = L 

k=l 

(5 ) 

(6) 

where q is the distributed transverse load, Ni and Mi are the stress and 

moment resultants, and Qi is th~ shear force resultant: 

L Ck 
(N i ,Mi ) = L f "i(l,C)dC 

k=l C k-l 
= 1,2,6 

L Ck 
Qi = L K? , 

"idC J 
k=l 1 

Ck=l 
= 4,5, (7) 

where Ki (i = 1,2) are the shear correction factors (taken to be Ki = K~ = 

5/6), and (Ck_1'C k) are the c-coordinates of the k-th layer, and L is the 

total number of layers in the laminated shell. 

It is informative to note that the equations of equilibrium can be 

derived from Eq. (6) by integrating the displacement gradients in E~ by parts 
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and settir.~ the coefficients of 6U i (i = 1,2,3) and 6$i (i=l,2) to zero 

separately. We obtain [with Co = 1 (L - L) and dX i = Clidl;,. J 
2 R2 R1 

(8) 

where 

(9 ) 

resu ltants (N; , M; , Q; ) are related 0 
K; ) ( i ,j 1 ,2,6) by The to ( E i ' = 

N; 
0 

Bi jK j = A;j E j + 

M. 0 
Di jK j (10) = B;jEj + , 

Q2 
0 0 

= A44 E4 + A45 E5 
(11 ) 

0 0 Q1 = A45 E4 + A55 E5 

Here Aij , Bij ar~ D;j (i,j = 1,2,6) denote the extensional, flexural

extensional coupling, and flexural st;ffnesses of the laminate: 

L 
= I 1,2,6 ) 

k=l 
( 12) 
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The bounr1ary conditions. derived from the virtual work statement, involve 

specifying either the essential boundary conditions (EBC) or the natural 

boundary c0nditions (NBC): 

NBC 

or N
1

n
1 

+ (N6 - coM
6

)n
2 

or 

or 

4>1 or 

or (13 ) 

where (nl,n 2) denote the di rection cosines of the unit normal on the bO'Jndary 

of the mi dsu rf ace of the she 11 • 

The ~xact form of the spatial variation of the solution of Eqs. (8)-(13), 

for the small-displacement theory, can be obtained under the followi,19 condi-

tions (see Reddy [27]): 

(i) Symmetric or anti symmetric cross-ply laminates: i.e •• laminates 

with 

A16 = A26 = B16 = B26 = 016 = 026 ~ A45 = O. (14 ) 

( i i ) Freely supported boundary conditions: 

N
1

(O,x
2

) = N1
(a,x

2
) = Ml (O,x

2
) = Ml ( a, x2 ) = ° 

u
3

(O,x
2

) = u3
(a,x

2
) = u2

(O,x
2

) = u
2

(a,x2 ) = 0 
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N2(X1,O) = N,(x1,b) = M2(x1·0) = M2(x 1,b) = a 

u3(x1'O) = u3(x 1,b) = u1(x1,O) = u1(x1,b) = a 

$2(O,x2) = 4>2(a,x2) = 4>1(x 1,O) = 4>1(x 1,b) = a (15) 

where a and b are the dimensions of the shell middle surface along 

the xl and x2 axes, respectively. The time variation of the load 

does not influence the spatial form of the solution. 

Note that the exact solution can be obtained only for cross-ply laminated 

shells with simply supported boundary conditions. For general lamination 

schemes, exact solutions are not available to date. 

FT.NITE-ELEMENT MODEL 

A typical finite element is a doubly-curved shell element in 

surface. Over the typical shell element R(e), the displacements 

(u 1,u 2,u3,4>1,4>2) are interpolated by expressions of the form, 

N 
L 

j=l 

N 
4> " = I 4>{ <VJ" ( xl' x2 ) 1 j=l 

= 1,2,3 

i = 1,2 ( 16) 

where <Vj are the interpolation functions, and U~ and 4>~ are the nodal values 

of ui and 4>i' respectively. For a linear isoparametric element (N = 4) this 

interpolation results in a stiffness matrix of order 20 by 20. For a nine

node quadratic element the element stiffness matrix is of order 45 by 45. 

Substitution of Eq. (21) into the virtual work principle, Eq. (9) yields 

an element equdtion of the form 

! ' 
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[K(t.) J [M ~ [F} (17) 

T where (t.! = ((u I ), (u Z)' (u 3), (~I)' (~2)) , [K] the e1emert stiffness matrix, 

and (F) is the force vector. In the interest of brevity, the coefficients of 

the stiffness matrices are included in Appendix I. 

The element equations (17) can be assembled, boundary conditions can be 

imposed, and the resulting equations can be solved at each load step. Note 

that the stiffness matrix [K] is a function of the unknown solution vector 

(t.); therefore, an iterative solution procedure is required for each load 

step. In the present study, we used the direct iteration technique, which can 

be exp res sed as 

(18) 

where (6}r denotes the solution vector obtained in the r-th iteration (at any 

given load step). At the beginning of the first load step, we assume that 

(t.}O = (o) ana obtain the linear solution at the end of the first iteration. 

The solution o~tained at the end of the r-th iteration is used to compute the 

stiffness matrix for the (r+I)-th iteration. At the end of each iteration 

(for any load step), the solutions obtained in two consecutive iterations are 

compared to see if they are close enough to terminate the iteration and to 

move on to the next load step. The following convergence criterion is used in 

the present study: 
N N 

[ I I (19 ) 
i=I i=I 

where N is the total number of unknown generalized displacements in the finite 

element mesh. 
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To accelerate the convergence, a weighted average of the solution from 

last two iterations are uSed to compute the stiffness matrix: 

where y is the acceleration parameter, 0 ( Y (1. In the present study a va1-

ue of 0.25 - 0.35 was used. 

NUMERICAL RESULTS 

Here we present numerical results for c.)me sample problems. To i1lus· 

trate the accuracy of the present element, first few examples are taken from 

the literature on isotropic and orthotropic shells. Then results (i •• , de

flections and strsses) for several laminated shell problems are presented. 

The results for laminated shells should serve as references for future inves-

tigations. 

All of the results reported here were obtained using the double-precision 

arithmatic on an IBM 3081 processor. Most of the sample problems were an-

alyzed using a 2 x 2 uniform mesh of the nine-node (quadratic) isoparametric 

rectangular element. 

1. Bending of a simply supported plate strip (or, eguiva1ently, a beam) under 

uniformly distributed load. 

The problem is mathematically one-dimensional and a,l analytical solution 

of the problem, based on the classical theory, can be found in Timoshenko and 

Womowsky-Krieger [28]. The plate length 310ng the y-coordinate is assumed to 

be large compared to the width, and it is simply supported on edges parallel 
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to the y-axis. The following simply supported boundary conditiof.!, are 

assumed; 

~ ~ ~2 = a along edges x = ± 127mm (21) 

All inplane displacement degrees of freedom are restrained. A 5 x 1 mesh of 

four-node rActangular elements in the half plate is used to analyze the prob

lem. The data and results are presented in Fig. 2. The present result is in 

good agreement with the analytical solution. 

2. Clamped square plate under uniform load. 

Due to the hiaxial symmetry, only one quadrant of the plate is modelled 

with the 2 x 2 mesh of nine-n,:de elements (4 x 4 mesh of 1 inear elements give 

almost the same result). Pertinent data and results are presented in Fig. 3 

for side to thickness ratios a/h = 10 and 500. The result for a/h = 500 is in 

agreement with the rei~1~s of Way [29J. The difference is attributed to the 

fact that the present model includes the inplane disp 'acement degrees of free-

dom and transverse shear deformation. 

Figure 4 contains transver3e deflection versus load for clam~ed ortho-

tropic, cross-ply, and angle-ply plates. The lamina properties are 

El = 25 x 10 4 N/mm 2 , E2 = 2 x 104 N/mm 2, G12 = "13 = 104 N/mm2 

G23 = 0.4 x 10 4 N/mm2, v12 = 0.25. 

For the same total thickness the clamped orthotropic square plate is stiffer 

than both two-layer angle-ply and cross-ply plates. 
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3. 5imply supported, isotropic srherical shell under point load. 

The pertinent aata of the ,nell is shown in Fig. 5. A uniform mesh of 2 

by 2 quadratic elements is used in a qu~drant. The effect of three types of 

simply supported conditions on the center deflection and center normal stress 

is investigated: 

at y ~ b; at x = c 

55-2: u = v = w = ~ 1 = 0 at y = b; u = v = W = $2 = 0 at x = a 

55-3 : v = w = $ ~ 0 
1 

at y = J; u = W = at x = a 

Table 1 contains the results for the t~ree boundary conditions, [t is clear 

from the results that all three boundary conditions give virtually the same 

results for a/h = 160, and d fer significantly (especially S5-1 differs from 

both 55-2 and S5-3) for a/h = 16. Thus, the effect is more in thiCk Shells 

t,han in thin shells. The stress (Ix stlOwn in Fig. 5 is evaluated at point x = 

y • 1.691" in the top layer 

4. Simply support.::~disotropic cylindrical shell under point load. 

The geometry and finite-element mesh of the si'ell are shown in Fig. 6. 

(22) 

Once again, the effect of various simply supported boundary condit'lons (22) on 

the deflections and stresses for the p"oblem is investiqat~j using a uniform 

mesh of 2 x 2 quadratic elements. The results are ~rese"t2d in Table 2. For 

the geometry and loading used here (R = 2540, a· 254, h = 12.7). -~e bOl,'ldary 

conditions have very slgnificant effect on the solution. Bocndary condltil)'lS 

55-2 and 55-3 give almost the same results whereas 55-1 gives about 2-1/2 

times the deflection given by 55-2 or S5-3 boundary conditions. 
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Table 1. Effect of various simply supported boundary conditions ')n the center 
deflections and normal stress in spherical shells undpr point load 
(E = 107 psi, v = 0.3). 

Load Solution 55-1 55-2 55-3 
P/h2 a/h=160 a/h=16 a/h=160 a/h=16 a/h=160 a/h=16 

4,000 -w* '" "11:~ U.V.L __ 0.0152 0.0152 
-a * 893 984 894 

8,000 x 0.0329 0.0349 :l.Q324 0.0255 0.0324 0.0258 -w 
-a 1,880 6,535 1,882 6,015 1,882 6,031 

12,000 x 0.0529 0.0522 0.0521 -w 
-a 2,980 2,985 2,986 

16,000 x 0.0760 0.0793 0.0752 0.0520 0.0751 0.0525 -w 
-a 4,220 13 ,~30 4.228 12,200 4,229 1:,240 

20,000 Y. 0.1038 0.1028 0.1027 -w 
-a 5,657 5,671 5,672 

24,000 x 0.1364 0.1083 u.1354 0.0792 0.1353 0.0800 -w 
-ax 7,268 20,l1e 7,289 18,500 7,291 18,550 

28,000 -w 0.1761 0.1752 0.1751 
-a 9,128 9,160 9,162 

32,000 _wx 0.2234 0.1472 0.2227 0.1072 0.2227 0.1083 
-ax 11,180 27,170 11 ,220 24,930 11,210 25,000 

* w(O,O), ax(A,A); A = 1.691 

Table 2. Effect of various types of simply supported boundary conditions on 
the defl ect ions and stresses of anisotropic cy1 indrica1 ShEll Jnder 
point load. 

Load ,P $5-1 55-2 55-3 
( N) -w(mm) -ay ( N/mm2) -w -a y -w -a y 

250 2.5804(2) 2.868 0.6544(4) 1.706 0.6698(4) 1.706 
500 5.1626(2) 5.713 1.3533 (4) 3.478 1.3b43( 4) 3.477 
750 7.7343(2) 8.506 2.1057(4) 5.327 2.1522(4) 5.321 

1,000 10.278(2) 11.210 2.9234(4) 7.265 2.9855(4) 7.242 
1,250 12.733(2) 13.80 3.8241(4) 9.312 3.9017(4) 9.288 
1.500 15.204(2) 16.25 4.8349(4) 11.50 4.92 79(4) 11.46 
1,750 17.560(2) 18.560 6.0331(5) 13 .91 6.]'i23(5) 13 .85 
2,000 19.843(2) 20.730 7.5316(6) 16.66 7.5610(6) 16.57 
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Figure 6. Geometry of acyl indrical shell. 
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5. Clamped isotropic cylindrica shell under uniform loading. 

Figure 7 contains the pert~nent data and results for a clamped cylindri

cal shell (i~otropic) subjected to uniform load. The results are compared 

with those obtained by Ohatt [30]. 'he agreement is very good. 

6. Clamped orthotropic cylindrical shell subjected to internal pressure. 

Figure 8 contains the geometry and plots of center deflection and center 

stress versus the internal pressure for the problem. The orthotro~ic material 

properties used in the present study are: 

= 1 .25 x 106 psi 

= 0.25 (23) 

The "resent result, obtained using the 2 x 2 mesh of quadratic elements, 'is in 

excellent a9reement with that obtained by Chang and 5awamiphakdi [31]. 

7. Nine-layer [0°/90 % ° •• ,/0°] cross-ply spherical shell subjected to 

uniformly distributed load. 

Thr following geometrical data is used in the analysis (with 55-3 boundary 
conditi I '.' ): 

Rl = R2 = R = 1,000 in .. a = b = 100 in., ~ = 1 in. (24) 

Individual layers are assumed to be of equal thjckness (hi = h/9), witl1 the 

zero-degree layers being the inner ana outer layer's. The following two sets 

of orthotropic-material constants, typical high modulus graphite epoxy materi-

al (the ratios are more pertinent here), for individual layers are used: 
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Mat.-1 : E1 = 25 x 106 ps i , E2 = 106 ps i , G12 = G13 = 0.5 x 106 psi 

G23 = 0.2 X 106 ps i , v12 = 0.25 (25) 

Mat.-2: El = 40 x 106 psi, E2 = 106 psi, G12 = G13 = 0.6 x 106 psi 

G23 = 0.5 x 106 psi, vl2 = 0.25 (26 ) 

Figure 9 contains plots of center deflecton (w/h) versus the load parameter 

(P = qoR2/E2h2) for the two materials. Shell constructed of Material 1 

deflects more, for a given load, than the shell laminated of Material 2 

(because Material 2 is stiffer), and consequEntly experiences greater degree 

of nonlinearity. Note that the difference between the nonlinear deflections 

of the two shells increase nonlinearly, indicatin~ that the shell made of 

Material 2 can take much more (ultimate) load than apparent from the ratio of 

moduli of the two materials, E(2)/E(l) 
1 1 

8. Effect of various simply-supported boundary conditions on the deflections 

of two-layer cross-ply spherical shells under uniform load. 

As pointed out in Problems 3 and 4, the transverse deflection is sensi-

tive to the boundary conditions on the inplane displacements of simply sup

ported shells. To further illustrat.e this effect for laminated shells, a set 

of four types of boundary conditions are used, and the results are presented 

in Table 3. Here 55-4 has the follc#ing meaning: 

55-4 
w = $1 = a on x = a 

w = $ = a on y = b 
2 

(27 ) 

I 
; 
~, 

I 
I 

j 

I 
I 
! 



, 

I 
I 

I, , 

I 

Load 
_ q R2 
P _ 0 

- E2F 

7 

6 

5 

4 

3 

2 

1 

o 

26 

h = 1 in. 

R = 1000 in. 

a = b = 50 in. 

0.0 0.2 0.4 0.6 0.8 

Deflection. (-w/h) 

Figure 9. Bending of nine-layer cross-ply 
[00/900/Do/ ... J spherical shell 
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Table 3. Effect of various simply-supported boundary conditions on the trans-
verse deflections of cross-ply [0°/90°] spherical shells under 
uniform load (Material 1; shell dimensions dre the same as those in Fig.10) 

qo -w (i n. 1 
(psi) 55-1 55-2 55-3 55-4 

0.50 0.3344 0.04246 0.04257 0.4592 
0.75 0.5757 0.06599 0.06617 0.8255 
1.00 0.9485 0.09144 0.09171 1.3845 
1.25 1.6529 0.11926 0.11966 1.9589 
1.50 2.2826 0.15008 0.15063 2.3597 
1.75 2.6421 0.18478 0.18556 2.5951 
2.00 2.8499 0.22473 0.22584 2.8074 
2.25 3.0764 0.27425 Q.27593 3.0284 
2.50 3.2432 0.33534 0.33795 3.1948 
2.75 3.4214 0.42970 0.43487 3.3719 
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Once again we note that 55-2 and 55-3 give a1mo~t the same deflections. 

Boundary conditions 55-1 and 55-4 give deflections an order of magnitude hiyh-

er than those given by 55-2 and 55-3. Thus, boundary conditions 55-2 and 55-3 

make the shell quite stiffer. 

9. Two-layer cross-ply [0°/90°] and angle-ply [-45°/45°J, simply-supporced 

(55-3) spherical snells. 

Figur~ 10 contains the pertinent data and results (with different scales) 

for the cross-ply and angle-ply shells (of Material 2). It is interestin~ to 

note that the type of nonlinearity exhibiterl by the two shells is quite dif-

ferent; the cross-ply shell gets softer whereas th( angle-ply shell gets 

stiffer with an increase in the applied load. While both shells have bending-

stre~chiny cJup1ing due to the lamination scheme (822 = - 811 nonzero for the 

cros~-ply shell and 816 and 826 are nonzero for the angle-ply shell), the 

angle-ply experiences shear coupling that stiffens the spherical shell re1a-

t i ve 1y more than the normal coup 1 i ng (nCJte that, i n gener~ 1, sre 11 s get softer 

under externally applied inward 10~J). 

Figure 11 contains plots of center deflection, normal stress (-a ) and y 

shear stress (ayz ) at x = y = 5.233" versus load for two-layer cross-ply 

(0°/90") spherical shell (Material 1) under point load at the center of the 

shell. The nonlinearity exhibited by the stresses (especially a ) is less yz 
compared to that exhibited by the transverse deflection. 

10. Two-layer clamped cylindrical shells ~nder uniform loads. 

Figu1'es 12 and 13 contain results (i.e., w, ay , axz versus load) for 

cross-ply [00/900J and angle-ply [-45°/45°J clamped cy1indrlsa1 shells under 

uniform load. The load-deflection curve for the eros-ply shell resembles that 
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of the isotropic shell in Fig. 7, uut exhibits greatel" degree of nonlinearity 

(being stiffer). The angle-ply shell exhibits different type of nonlinearity 

(softening type) for all loads. 

11. Quasi-isotropic, clamped, cylindrical shell under uniform load. 

T~o types of quasi-isotropic ~lamped cylindrical shells are analyzed: 

Type 1: [0'/45°/90°/_45°] sym. 

Type 2: [00/t45°/90]sym. 

Material 1 properties are assumed for each lamina (8 layers). 

(28) 

The geometric 

data and results ar~ presented in Fig. 14. Compared to the results presented 

in Figs. 12 and 13, t,;q quasi-isotropic Shells have the 'n~ar-inflection' 

point at higher loads; the load-deflection curve has essentially the same form 

as tha~ of the cross-ply Shell (see Fig. 12). 

CONCLUS IONS 

A Shear-flexible finite element based on the shear deformation version of 

the Sanders' theory and the von Karman strains is developed, and its applica-

tion tG isotropic, orthotropic, and laminated (cross-ply and angle-ply) shells 

is illustrated Vi3 numerous s~mple problems. Many of the results, espeCially 

those of laminated shells, are not available in the literature and therefore 

should serve as references for fut",e investigations. Fro,n the numerical com-

putations it is observed that boundary conditions on the inplane displacements 

have significant effect on the shell deflections and stresses. Also, it is 

noted that the form of nonlinearities exl,ibited by different lamination schemes. 
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APPENDIX I 

Stiffness Coefficients: 

1 aU3 1 aU3 
Let f1 = -2 -ax ,f".) = -2 -a-

1 x2 

A 
• c

o
(B

16
([S12J + [S21J) + 2B

66
[S22J - C

o
D

66
[S22J) + R~5 [sooJ 

1 

A 
- c (B rs22J - B [Sl1J + c 0 [S21J) +...1L [SooJ 

o 26- 16 0 66 R1R2 

+ f (A [S12J + A [Sl1J + A [S22J + A [S21J) 
2 12 16 26 66 

+ __ 1 (A [51 OJ + A [S20J) + 1- (A [SI0J + A [S20J) 
R1 11 16 R2 12 26 

B B 
- c (--..l:i [S20J + ~ [S20J) 

o R1 R2 
___ 1 (A [S02J + A [SOIJ) 

R1 45 55 

_ c (0 [S21J + 0 [S22J) ___ 1 A [SooJ 
o 16 66 R1 55 



39 

_ c (0 [522 ] + 0 [521 ]) - LA [500 ] 
o 26 66 Rl 45 

+ c (8 ([512] + [521 ]) + C 0 [511 ]) o 26 0 66 

+ f (A [522 ] + A ([521 ] + [512]) + A [5J.IJ) 
2 22 26 66 

I 

+ L (A [S20] + A [510 ]) + __ 1 (A [520 ] + A [5 10 ]) 
R 1 12 16 R2 22 26 

___ 1 (A [502] + A [501 ]) 
R2 44 45 

, 
I 

I 
~ 

[K24] = B [5 21 ] + B [522 ] + B [511 ] + B [5 12 ] 
12 26 16 66 

i 
+ C (0 [511 ] + 0 [512 J) ___ 1 A [~OO] 

o 16 66 R2 45-

I [K25] = B [522 J + B (C521 ] + [512 ]) + B [5 11 ] 
22 26 66 

! 

+ C (0 [512] + 0 [511 ]) - __ 1 A [5 00 ] 
o 26 66· R2 44 
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[K31]NL = [2KI3]~L' NL = Nonlinear portion of t~e mdtr1x 

+ 2f (8 [5 21 ] + B [S121 + B [S22J + B [SIIJ) 
2 12 66" 26 16 

I 
! 
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[K45J = D [SI2J + D [SIIJ + D [S22J + D [S2IJ + A [SooJ 
12 16 26 66 45 

[ a~J - [ ~aJ T K Linear - K Linear 

where 

Qq" Qq,' 
S~~ = f _'.::..:J. dx dx 

, J Q x oX 0 1 2 
Qe a " 

, s~g 

I 
! 
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It should be noted that although fi and f2 are 5hown factored outside the 

matricJs, in the evaluation of the coefficients by the Gauss quadrature fi and 

f2 are considered as parts of the integrals. For example f1A11[Sll] is 

evaluated by 

J efIAll~i~jdXIdX2 
Q 

N N 
:, 1 r r 

2 I-I J=l 

where N Is the number of Gauss points, WI and WJ are the Gauss weights, ZI and 

ZJ are the Gauss points, and Jo is the Jacobian of the transformation. 

WP :JNRKCl 
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PART 2 

ANALYSIS OF LAMINATED COMPOSITE SHELLS 
USING A DEGENERATED 3-D ELEMENT 

W. C. Chao * and J. N. Reddy 
Department of Engineering Science and Mechanics 

{Th.U papeJr. ~ to appeaJt .i.n Int. ]OWtrta.C. 06 NumelL.i.c.a.C. Method.6 .i.n Ensng. I 

SUMMARY 

~ special three-dimensional element based on the total Lagrangian 

description of the motion of a layered anisotropic composite medium is 

developed, validated, and employed to analyze laminated anisotropic 

composite shells. The element contains the following features: 

geometric r1onlinearl~y, dynamic (transient) behavior, and arbitrary 

lamination scheme and lamina properties. Numerical results of nonlinear 

bending, natural vibration, and transient response are presented to 

illustrate the capabilities of the element. 

I NTRODUCTI ON 

Composite materials and reinforced plastics are increasingly used 

in automobiles, space vehicle., and pressure vessels. With the increased 

use of fiber-reinforced composites as structural elements, studies 

involving the thermomechanical behavior of shell components made of 

composites are receiving considerable attention. Functional 

requi rements and economi c considerati or:~ of desi gn have forced desi gners 

to use accurate but economical methods of determining stresses, natural 

frequencies, buckling loads etc. 

Graduate Research Assistant; pre:ently at the University of Dayton 
Research Institute 
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Majority of the research papers in the open literature on shells 

is concerned with bending, vibration, and buckling of' ~ropic 

shells. As composites materials are making their way into many 

engineering structures. analyses of shells made of such materials 

becomes important. The application of ~dvanced fiber composites in jet 

engiroc fan or compressor blades and high performance aircraft require 

studies involving transient response of composite shell structures to 

essess the capability of these materials under dynamic loads. 

Finite-element analysis of shell structures in the past have used 

one of the three types of elements: 1. a 2-D element based on a two-

dimensional shell theory; 2. a 3-D element based on three-dimensional 

elasticity theory of shells; and 3. a 3-D degenerated element derived 

from the 3-D elasticity theory of shells. The 2-D shell theory is 

derived form the three dimensional continuum field equations via 

simplifying assumptions. The simplifications require the introduction 

of the static and kinematic resultants, which are used to describe the 

equations of motion. The unavBilability of a convenient general 

nonlinear 2-D shell theory makes the 2-D shell element restrictive in 

its use. Th~ degree of geometric nonlinearity included in the 2-D shell 

element is that of the von Karman plate theory. In contrast to the 2-D 

shell theory. no specific shell theory is employed in the 3··0 

degenerated element; instead, the geometry and the displacement fields 

are directly discretized and interpolated as in the analysis of 

continuum problems. 

Finite-element analyses of the large-displacement theory of solids 

are based on the principle of virtual work or the associated principle 

of stationary potential energy. Horrigmoe and Bergan [1] presented 
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class1cal variat10nal pr1nciples for nonlienar problems by considering 

incremental deformations of a continum. A survey of various principles 

in incremental form is presented by Wunderlich [2J. Stricklin et al. 

(3) presented a survey of various formulations and solution procedures 

for nonlinear static and dynamic structural analysis. The formulations 

i nchlde the pseudo force method. the total Lagrangi an method, the 

,pdated Lagrangian method, ana the convected coordinate method. 

The only large-deflection analyses of laminated composite shells 

that can be found in the literature are the static analysis of Noor and 

Hartley [4J and Chang and Sawamiphakdi [5J. Noor and Hartley employed 

the shallow shell theory with transverse shear strains and geomet"ic 

nonlinearities tc develop triangular and quadrilcteral finite 

elements. Chang and Sawamiphakdi presented a formulation of the 3-0 

degenerated element t.::r geometrically nonlinear bending analysis of 

laminated composite shells. The formulation is based on the updated 

Lagrangian description aild it does not include any numerical results for 

laminated shells. 

From the review of the literature it is clear that first, there 

does not exist any finite-element analysis of geometrically nonlinear 

trims i ent response of 1 ami nated ani sotropi c she 11 s. and second, the 3-0 

deg~nerated el~ment is not exploited for geometrically nonlinear 

analysis of laminated anisotropic shells. In view of these 

observations, the present study was undertaken to develop a finite

element analysis capability for the static and dynamic a~alysis of 

geometrically nonlinear theory of laminated a~isotropic shells. A 3-D 

degenerated element with total Lagrangi an descri pt ion is deve'loped and 

used to analyze varivus shel'l problems. 
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INCREMENTAL, TOTAL-LAGRANGIAN FORMULATION OF A CONTINUOUS ~'EOIUM 

The primary objective of this section is to review the formulation 

of equations govern"Jng geometrically nonlinear motfon of a continuous 

medium. In the interest of brevity )nly necessary equations are 

presented. For additio"al details the reader is referred to References 

(6-101. 

We describe the motion of a continuous body in a cartesian 

coordinate system. The sjl':'"Jltanecus position of all material points 

(i.e., the configuration) of the body at time t is denoted by Ct , 

and Co and Ct +at denote the configurations at reference time t = 0 and 

time t + at, respectively (see Fig. 1). In the updated Lugrangian 

description all kinetic and kinematic variables are referred to the 

current configuration at each time and load step. In the total 

Lagrangian description all dependent varia~les are referred to the 

reference configuration. The updated l.agrangian is more suitable for 

motions that involve very large distortions of th~ body (e.g., high

velocity impact). The total Lagrangian is more convenient for motions 

that involve only moderately large deformations. In the present study 

the total Lagrangian formulation is adopted. 

Here we present a derivation of the equilibrium equations at 

approach. The different time steps u~iNg the total Lagrangian 

~oordinates of a typical point in Ct is denoted t t t t by ~ = ( Xl' x2, x3). 

The displacement of a particle at time t is given by 

tu = tx _ Ox or tU
i 

= tXi 

The increment of displacement during time t to 
t+at t ui = ui - ui 

(1 ) 

is defined by 

(2) 

I 
I 
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v = Volume 
A = Area 

Motion of a continuous body in Cartesian coordi~ates 
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;he principle of °drtual displacements can be employed to write tole 

equilibrium equations at any fixed time t. The principle, applied to 

the large-displacements case, can be expressed mathematically as 

J t+~tu 6U dV + J t+AtS 6(t+At )dV 
Vo Po i i 0 Vo ij eij 0 

(3) 

where summation on repeated indices is imlllied; Vo' Ao. and Po denote, 

respectively, a volume element. area elemliilt, and density in the initial 

configuration, 5ij are the components of second Piola-Kirchhoff stress 

t~nsor, 'ij the compor.ents of Green-Lagrangian strffintensor, Tj the 

components of boundary stresses, and Fi are the components of the body 

Forct' vector; the supeq' ;ed dots on ui dEnotes differentiation with 

respect to t;me, and 6 ;enotes the variatiJnal symbol. In writing Eq. 

(3) it Is assumed that 'ij is related to the displacement components by 

the kinematic relations 

(4) 

where ui ,j = <luiiaXr The strain components t+dt'ij can be expressed in 

'::erms of current strail' and incremental strain components as 

(5) 
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where eij and nij denote the linear and nonlinear incremental strains. 

The stress co~ponents t+dtSij can be decomposed into two parts: 

t+6tSij ~ t Sfj + Sij (6) 

where $ij is the incremental stress tensor. The incremental stress 

components Sij a,e relat<!!d to thEi i nCl"E.nen tal Green-L~9 .. ange strain 

components, €ij ~ eij + nij' by the generalized Hooke's law: 

Sij ~ Ctjk~€k~' (7) 

where C1jk~ are the componfmts of the elastic~ty tensor. Using Eq. (4)

(7), Eq. (3) can be expressed in the ~lternate form 

I t+dt 
uiou j dVo + Iv Cljk~(ek~onij + nktoeij)dVo Po V 

0 0 

+ I t 
ot!~J dVo oW - f t onij dVo Sij ~ 5ij 

Vo V 
0 

where oW is t;,e vi rtua 1 work dup. to external loads. 

FINITE-EI.EMENT "10DEL 

Geometry of the ~lement 

Consider the sol id three-dimensional element shown in Fig. 2. 

The coordinates of a typical point in the element can be written as 

( ) h ( j) n 
$J' ~1'~2 2 Xi top + r 

j~l 
( ) l-~ ( j) 

$j ~1'~2 -Z- Xi bottom 

(8) 

(9) 

where n is the number of nodes, $i(~1'~2) are the finite-element 

interpolation (or shape) functions, which take 1n the element, the value 

of uni ty at node i and zero 3.t a 11 other nodes, ~ 1 and ~2 are the 

normalized curvilinear coordinates in the middle plane of the shel~, 

and, is a linear coordinate in the thickness direction and x~, x~, and xj 
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Figure 2 G~ometry of the degenerated three-dimensional element 
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are the global coordinates at node i. Here ~1'~2' and ~ are assumed 

to vary between -1 and +1. Now let (see Fig. 2) 

( 10) 

i i wnel'e v3k is the k-·th component of the vector ~3' Then Eq. (9) becomes 

where hj is the thickness of the element at node j. For small 

deformation. the displacement of every point in the element can be 

written as 

n 
u; = ); 

j=l 
( 12) 

i . . i . i 
where 91 and e~ are the rotations about (local) unit vectors ~1 and ~2' 

respectively, ul' u2' and u3 are the displacement components 

corresponding to the global coordinates xl' x2' x3 directions 

respectively. and ui. u~ and uj are the values of the displacements 

(referred to ~) at node i. In writing Eq. (12). we assumed that a 'fine 

that is straight and normal to the middle surface before deformation is 

still straight but not necessarily 'normal' to the middle surface after 

deformation. The strain energy corresponding to stress perpendicular to 

the middle surface is ignored to improve numerical conditioning when the 

threp dimensional e1err,ent is employed. This constraint cal-responds only 
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to a part ~f the usual assumptions of a two-dimensional shell theory. 

The relaxation of the requirement that straight lines perpendicular to 

the middle surface remain normal to the deformed middle surface permits 

the shell to experience shear deformation - an Important feature in 

th I ck she 11 s 1 tuat i 0115. 

Displacement Field in the Element 

In the present study the current coordinates tXi are Interpolated 

by the expression 

t n 
xi = E 

j=l 

and the displacement by 

tu 
n t j 1 (tej = E ~ [ ui + "2 I;h j i j=l j 3i 

n j 1 (t+et~j u1 = E I/Ij[u i + "2 I;h j j=l 31 

( 13) 

- °ej )J 3i ( 14) 

- t~~i)J (15) 

Here tU1 and u1 denote, respectively. the displacement and incremental 

dis~lacement components in the Xi-direction at the j-th node. The unit 

vectors ~1 and ~~ can be obtained from the relations 

(16) 

. 
where ~2 is the unit vector along the (global) x2-axis. If we assume 

that the angles ei and ei are very small. then we can write 1 2 

I , 
1 i , 
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( 17j 

Sub~tituting Eq. (17) into Eq. (15), we obtain 

or 

{u} = [T] {a} ( lab) 

where {u} is the column of .hree displacements at a point, I,,} is the 

column of 5n (five per n~de) displacements: u{. 61. 6~. j = 1.2 •.••• n; i 

= 1.2.3, a"d [T] is the transformation matrix defined by Eq. (laa). 

Thus for each time step one can find the normal vectors from Eq. (16) 

and (17). and the incremental displilcements at each point from Eq. (la) 

once the five generalized displacements at each node are known. 

Element Stiffness Matrix 

The strain-displacement equations (4) can be expressed in the 

operator form 

Ie} = IA] {uo} (19) 

where Ie} = {ell e22 e33 2e12 2e13 2eZ3 }T. [A] is a function 

of tUoi,j' and {uo} is the vector of the components of the displacement 

gradient 

{uo} = {u1•1 u1,2 u1•3 u2,1 u2,2 u2•3 u3,l u3,2 U3,3}T (20) 

The vectors {uo} and Ie} are related to the disrlacement increments by 

{uo} = [NJ{u) = [NllTJ{ll} 

(e) = [A][Nj[TJ{,,} " [BH,,} 

where IN] is the operator of differentials. 

(21) 

(22) 
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Substitution of Eq. (22) into Eq. (8) yields 

where t[KLJ. t[KNLJ. [R}, and [F} dr~ the linear and nonlinear stiffness 

matrices, force vector, and unbalanced force vectors: 

(24) 

Here [SI and iSi denote the matrix and ver.tor, respectively, of the 

sf-cond Piola-Kirchhoff stress. 

Since we are dealing with laminated composite structures, the 

important thi ng is how to perform the i n'cegrat i on through the 

thickness. One way is to pick Gaussian points through the thickness 

direction. This increases the computational time as the number of 

layers is increased, because the integration should be performed 

separately for each layer. An alternative way is to perform explicit 

integration through the thickness and reduce the problem to a two 

dimens10nal one. The Jacobian matrix, iii general, is a function 

of ~1' ~2' and~. The terms in ~ to the first power may be neglected, 

prov'lded the th'lckness to curvature ratios are small. This 

approximation implies that derivative of Xi with respect 

to ;1' ~2' and ~ are substantially the same at either end of a mid

surface-normal li~e. Thus the Jacobian [JJ becomes independent of , and 

explicit Integration can be employed. If ~ terms are retained in [JI, 

;, 
I 
1 

i 
i 
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Gaussian points through the thickness shou"id be added. In the present 

study. it is assumed that the Jacobian is independent of ~. 

Time Integration 

The Newmark integration scheme is used to convert the ordinary 

differential equations in time. Eq. (23). to algebraic equdtions. In 

the Newmark scheme. displacements and accelerations are approximated by 

(25) 

where {6} is the generalized displacement vector of any point 

and a and yare the dimensionless parameters of the approximation. For 

the constant avenge acceleration case, we have 8 = 1 and y = i. and for 

the linear acceleration method a = i and y = i (see [111). 

Substituting Eq. (25) into Eq. (23). and some algebraic 

manipulation leads to 

where 

a = 1 a _ 1 
o a(dt)2 • 2 - 8dt • 

(" I 
o 

• and 

I 
l 

j , 
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(27) 

This completes the finite··element formulation of the 3-D degenerated 

element. 

PISCUSSION OF THE NUMERICAL RESULTS 

The results to be discussed are grolJped into three major 

categories: (1) static ber,ding, (2) natural vibration, dnd (3) 

transient response. All results, except for the vibrations. are 

presented in a graphical form. All of the results presented here were 

obtained on an IBM 370/308~ computer with double precision arithmatic. 

Static Analysis 

Here we present a discussion of four example problems, all 

involving shell struct~res. 

1. Cylindrical Shell Sl2bjected to Radial Pressure Consider a 

circular cylind-ical panel of the type shown in Fig. 3. The she~l is 

clamped along all four edgez and subjected to uniform radial inward 

pressure. The loading is nonconservative, that is, the direction of the 

applied load is normal to the cylindrical surface at any time during the 

deformation. The geometric and material properties are 
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free edge 

Figure 3 Geometry of the cylindrical shell used in Problem 1 
of the static analysis. 
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'{ = £S40 nun, a = b = 2S4 nun, h = 3.17~ nun, 

s = 0.1 rad, E = 3.10275 kN/mm2, v = 0.3 

Due to the symmetry of the geometry and deformation, only one quarter of 

the panel is analyzed. A load step of O.S KN/m2 was used in order to 

get a close representation of the dp.formation path. Fig. 4 contains the 

plot of central de~lection versus, the pressure. The solution a,grees 

very closely with that obtained by Dhatt [13J. 

2. Orthutropic Cylinder Subjected to Internal Pressure ronsider a 

clamped orthotropic (EZ = ZO x 106 pSi, El/EZ = 3.75, G1Z/EZ = 

0.62S, v = 0.2S) cylinder of radius R = 20" and length ZO", and 

subjected to internal pressure, Po = 6.41/u psi, A mesh of 2x2 nine

node elements is used to analyze the problem. The linear center 

deflecticns obtaineu by the Z-D and 3-D elements are 0.0003764 in., and 

0.0003739 in., respectively. These values compare favorably with 

0.000366 in. of Rao [14J and 0.000367 in. of Timoshenko's analytical 

solution [ISJ. The latter two solutions are based on the classical 

she 11 theory. 

In the large-deflection analysis the present results are compared 

with those of Reference 5. A value of Z.5 ksi is used for the load 

step. Figure 5 contains a comparison of the ore sent deflection with 

that of Reference 5, which used a 3-D degenerated element based on the 

updated Lagrangian approach. The agreement is very good. 

3. Nine-Layer Cross-PlY (0 0 /90 0 /0 0
/ ••• ) Spherical Shell Subjected 

to Uniform Loading Consider a spherical shell laminated of nine layers 

of graphite-epoxy m~terial (El/EZ = 40, GIZ/EZ = 0.6, G13 = G1Z = 

GZ3 ' VIZ = .Z5 ), subjected to uniformly distributed loading, and simply 

supported on all its edges {i.e., transverse deflection and tangential 
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Load-deflection curve for the clamped cylindrical shell 
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// - ---- Reference [ 5] 
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Li nea r solution 
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Vertical center deflection (in.) 

Figure 5 Center transverse deflection versus 
internal pressure 
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rotations are zerc). A comparison of the load-deflection curves 

obtained by the present elements with those obtained by Noor [4J is 

presented (for the parameters hla = 0.01 and Ria = 10) in Fig. 6. The 

results agree very well with each other, the present 2-D results being 

closer to Noor's solution. This is expected bec~use Noor's element is 

based on a shell theory. 

4. Two-Layer Cross-Ply and Angle-Ply (45'/-45') Shells Under 

Uniform ~oading The geometry of the cylindrical shell used here is the 

same as that Shown in Fig. 3. Th~ shell is assumed to be simply 

supported on all edges. The material properties of individual lamina 

are the samp. as those used in Problem 3. A mesh of 2x2 nine-node 

elements in a q"".·ter shell is used to model the problem. The results 

of the analysis are presented in the fnrm of load-deflection curves in 

Fig. 7. From the results, one Cdn conclude that the allgle-ply shell i". 

more stiffer than the cross-ply shell. 

lhe geometry and boundary conditions used for the spherical she'ls 

are the same as those used in Problem 3. The geometric parame:ers used 

are: Ria ~ 10, alh = 100. H.e load-deflection curves for the cross-ply 

and angle-,lv shells are shown in Fig. 8. From the plot it is appa,..ent 

that, for the load range conSidered, the angle-ply shell, being stiffer, 

does not exhibit much geometric non1ine",ity. The load-deflection curve 

o? the cross-ply shell exhibits varying degree of nonlinearity with the 

load. For load values between 100 and 150, the shell becomes ;'elatively 

more flexible. 

Naturil.l Vibration of Cantilevered Twisted Plates 

Here we discuss the results obtained for natural frequencies of 

various twisted plates. This ar,"lysis was motivated by their relevance 
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- 2-0 and 3-D Elements 
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i i 

468 10 

load, P =(pa4/E2h4) 

Deflection versus load parameter for a nine-
1ayere cross-ply (0°/90 % °/ ... ) spherical 
shell 
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Fi gure 7 
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450 

Deflection versus the load parameter for two-layer 
composite cylindrical shell 
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to natural vibrations of turbine blades. Consider an isotropic 

cylindrical panel with a twist angle e at the free end. Table ~ 

contains the natural frequencies of a square plate for various values of 

the twist angle e and ratios of side to thickness. A 2x2 mesh and 4x4 

mesh of 9-node elements are employed to study the convergence trend. 

The results of the refined mesh are included in the parentheses. The 

results obtained by using the 4x4 mesh are lower than those predicted by 

the 2x2 mesh, showing the convergence. The results agree with many 

others published in a recent NASA report. Table 2 contains natural 

frequencies of twisted plates for the aspect ratio of 3. 

Transient Analysis 

1. Spherical Cap Under Axisymmetric Pressure Loading Consider a 

spherical cap, clamped on the boundary and subjected to axisymmetric 

pressure loading, Po' The geometric and material properties are 

R = 22.27 in., h = 0.41 in., E = 10.5 x 106 psi. v = 0.3. 

p = 0.095 1b/in3 , e = 26.67'. Po = 100 pSi, 6t = 10-5 sec. 

This problem has been analyzed by Strid1in, et al. [161 using an 

axisymmetl"ic shell element. In the presant study the spherical cap is 

discretiz2d into five nine-node 2-D and 3-D elements. Flgure 9 contains 

the p1~t of center deflection versus time. The present solutions 

o~tained using the 3-D and 2-D elements are in excellent agreement in 

most places with that of Stricklin et a1 [161. The difference between 

the solutions is IT.ost1y in the regions of local minimum and maximum. 

2. TWO-Layer Cross-Ply Plate Under Uniform Load A cylindrical 

shell with a = b = 5", R = 10", h = 0.1" is simply-supported on the four 

edges, is analyzed. The shell is laminated by 2 layers (0'/90') and 
, a4p 

exerted by a uniform step load P = -----4 = 50. r·yure 10 contains a plot 
E2h 
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Tab 1 e 1 Natural Frequencies of Twist~d Square Plates 

w= waZ/MilO • 0 = Eh1 
v = 0.3 2 • 

1 2 (1 -v ) 

a Twi st M:Jde 
11 A~gl e Z 3 4 5 6 

0° * 3.4556 13.4110 22.0999 28.2089 31.9740 55.1625 
t (3.4583) (3.3353) (21.0Z38) (26.7465) (30.lJ54) (52.0784; 

15° 3.4359 10.2920 21.5199 27.2054 32.7430 44.5375 

20 30' 3.3790 13.7014 19.9840 25.0943 34.3341 45.8987 
(3.3694) (14.2222) (18.9795) (26.8104) (34.4591 ) (45.7547) 

45° 3.2908 18.1009 15.9097 23.5680 35.5332 45.7013 

60° 6.1800 '17.8319 15.5635 24.1842 36.1466 44.9152 

0° • 3.33916 7 .39~8 10.8083 18.4930 23.7907 26.0552 
** (3.3390) (7.3559) (10.883) (17.757) (22.769) (24.125) 

15° 3.31713 7.4816 10.8053 18.4043 c3.671j7 24.9474 
(3.3170) (7.4504 (10.774) (17.771) (22.694) (24.083) 

5 30° 3.2538 7.7593 10.5248 18.4091 23.3734 24.6116 
(3.2538) (7.7089) (10.478) (17.7,5) (22.471 ) (23.943) 

45° 3.1570 8.1435 10.1270 18.3843 22.9126 24.0566 
(3.1569) (8.0728) (10.062) (17.79) (22.117) (23.651 ) 

60° 3.0370 8.5855 9.67198 18.3089 22.3670 23.3S33 
(3.0366) (8.4814) (8.5911) (17.730) (21.684) (23.160) 

• zx2. 9-node mesh 
*'3x3. 9-node rnesh 
t 4x4. 9-node mesh 
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Tabl e 2 Natural Frequencies of Twisted Rectangular Plates 
(b/a = 3, 3x3 mesh of nine-node elements) 

I , 
t 

w = wb2.;pryu 0= Ehl v = 0.3 , 2 
, 

12(I-v) 

a T~i st MJde 
h Angl e 2 3 4 5 6 7 

---------

0° 3.4150 20.8772 21.6190 65.9706 66.2590 127.256 

15° 3.4009 20.8798 22.1118 21.5032 68.093fl 69.3258 130.284 

20 30° '.3598 19.4048 25.3743 60.2183 73.5180 77 .4493 138.176 

I 45° 3.2956 17.5289 29.8404 58.2600 80.9488 88.5246 148.8975 

60° 3.2136 15.7431 34.8827 55.892\ 89.2028 100.7760 155.070 
--~ 0° 3.3908 15.551 19.124 21.065 59.924 61.949 

15° 3.3161 ~o;.l92 19.231 21 .572 60.088 60.830 

5 30° 3.3336 14.379 19.549 22.S11 60.576 58.472 

45° 3.2674 13.449 20.060 24.404 61 .360 55.874 

60° 3.1833 12.548 20.741 26.139 62.416 53.381 
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of the center deflection versus time for 2-D and 3-D elements. The time 

step used is ~t '" 0.1 x 10-4 sec. The solutions obtained using the two 

elements are in good agreement. 

3. Two-Layer Angle-Ply (45°/_45°) Spherical Shell Under Uniform 

Loading Consider a spherical shell with a = b = 10", R '" 20" and h '" 

0.1", simply supported at four edges and is exerted by a uniform step 

load. The shell consists of two layers, (45°/_45°). Figure 11 contains 

the plot of center def1~ction versus time for P '" 50 and P = 500 with 

time step 0.2 x 10-5 sec. For the small load the curve is relatively 

smooth compared to that of the 1 arger load. Thi sis dUf, to the fact 

that the geometric nonlinearity exhibited at P = 50 is smal"ier compared 
A 

to that at ? = 500. 
CONCLUSIONS 

The present 3-D degenerated element has computational simplicity 

over 2 ful~y thr~e-dlmensiona1 element, such as these developed in [17J, 

and the element accounts for full geometric nonlinearities ill contrast 

to 2-D elements based on shell theories. As demonstrated via numerical 

examples, the deflections obtained by the 2-D shell element deviate from 

those obtained by the 3-D p1ement for deep shells. Further, the 3-0 

element can be used to model general shells that are not necessarily 

doubly-curved. For example, the vibration of twisted plates cannot be 

studied using the 2-0 shell el~ment discussed in [12J. Of course, the 

3-D degenerated element is computationally more demanding than the 2-0 

shell theory element for a given problem. In summary, the present 3-D 

element is an efficient element for the analysis of laminated composite 

plates and shells undergoing large dis,lacements and transient motion. 

The 3-D element presented herein can be modified to include thermal 

stress analysis capability and material nonlineariti, While the 
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incluSion of thermal stresses is a simple exercise. the inclusion of 

nonlinear material effects is a difficult task (see [18-201). An 

acceptable material model should be a generalization of Ramberg-Osgood 

relation to an anisotropic medium. Another area that requires further 

study is the inclusion of damping effects. which are more significant 

than the shear deformation effects. 
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PART 3 

NONLINEAR MATERIAL MODELS FOR COMPOSlTE PLATES AND SHELLS 

K. Chandrashekhara and J. ~. Reddy 
D~~artment of Engineering Science and Mechanics 

SUMMARY 

Nonlinear material models for laminated structures ijre described 

and their incorpo~ation in the finit9-element formulltion of laminated 

plates and shells is present@.d. Numerical results for several sample 

problems ~: plates and shells are presented and validated by comparison 

with those available in the literature. 

I NTRODUCTI ON 

Composite material; are known to exhibit significant non

linearities in stress-strain behaviour even at lpw strains. Most of the 

currently used matrix ~aterials in compositEs have high strain 

capabilities and the investigation of the bending of composite shells 

undergoin'l large deformation, yielding is apt to occur and its effect 

mlJ.t be a .. counted for in t~e analysis. The nonlinearity is not 

isotropic but varies with direction, as do the elastic properties. 

Models for suc~ elastic-plastic behavior of orthutr'opic and anisotropic 

materials are not well develup.\d. 

The total stress-strain laws are mdthematically more convenient 

than incremental laws but are phys i ca lly not sound. The criteri on 

appr~xiffiately describing t~e yielding of isotropic material is that of 

von-Mises. The simplest yield c:riteriun fo'" anisotropic material is 

therefore one which reduces to von-Mises law when the anisotrony is 

vanishinCj~y small. Hill's yield criteria assumes relatively sil,ple ease 

of onhotropi c ani sot ropy • that is, there are th,ee mutually orthogonal 

75 
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planes of symmetry at every pOint and the intersection of these p;~nes 

are con~idered as the principal axes of anisotropy. Fiber reinfor~ed 

composite structures almost invariably possess this kind of symmetry. 

In the present study a nonlinear material model is developed for 

composite plates and shells, and numQ~ical results for bending are 

presented using the finite element method as ~xact solutions are not 

tractable fOI' ela~tic-plastic p, 'blems involving complex geometries. 

MATERIAL MOQEL 

In the present mOdel, Hill's anisotropic yield criteria for 

elsatic-perfectly'plastic material i, used. Hill's [11 yield function 

is, 

f(oij} 
2 2 = F(02 - ~3} + G(03 - °1) + H(ol 

2 + 2L023 
2 2 + 2Mo 13 + 2No12 = 1 

"here F, G. H. L. M. N are parameters characteristic 

state of ani"otropy given by, 

2L = L 
R2 

2M = L 
52 

1 2N =-
T2 

- °2) 
2 

(1) 

of the curr"~t 

and X, Y, Z are the tensile yield stres~es in the principal direction of 

aroisotropy and R. S. T, ar~ the yield stresses ir. shear with re:;!lect to 

the princip~,l axes of anisotropy. 

It should be noted that Hill's criteria i~ based on the assumption 

that the superposition of a hydrostatic stress does not influence 

yielding and there is no Bauschinger effect. Also, the yie'ld crite-ion 
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has this form when the principal axes of anisotropy are the axes of 

references. 

For a plane stress state in the 1-2 plane with transverse shear, 

equation (J~ reduces to: 
2 2 f = (G + H)al + (f + H)a2 - 2Hal a2 

2 2 2 
+ 2La23 + 2Mc13 + 2Na12 = 1 

For an isotropic material; 

X=V=Z~a o' 
the yield stress in uniaxial . '~sion and according to the vJn-Mises 

yi~~d criteria IlJ 

R = S 
"0 

= T =-
13 

Therefore, F = r. = H = _1_ and 2L = 
2 2 

"0 

ZM = 2N 

becomes, 

whic;, is the 

f = oi + 

famil i ar 

2 2 2 2 
a2 - 01 0 2 + 3(a23 + 013 + alZ) 

von-Mises yield criteria. 

equation (2) 

(2) 

If the principal axes of anisotropy 1,2 do not coincide withthe 

reference axes x, y, bllt are rotated by an angle e, then the strp.sses in 

equation (2) ~re obtained using the transfClrmation as: 

01 = o~ cos2e + 0y sin2e + aXY sine cose 

02 - a sin2e +" co~2e - cr sine coss x y xy 

"23 = -"xz sino + ayz cose 

°13 = "xz cese + 0yz sine 

0l~ = -20x s;n9 cose + 20y sine cos~ + "Xy( cQs2e - 5in2e) 

Elastic .. Plastic Constitutive Eguations 

In the incrp.ment~l theory of p1astir.ity, t~e total strain increment 

is th~' sum of the e iastic and plilstic components 
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(3) 

The elastic strai~ increment is related to the stress i~crement by 

Hooke's law as, 

(4) 

where [Del Is the elast'Jc modulus matrh whir.h for orthotropic material 

takes the form, 

El "12E2 0 0 G 
1-"12"21 1-"12"21 

"12E2 E, 

1-"12"21 1-"12"2i 
0 0 0 

[Del = (5) 

I 0 0 G23 0 0 

l 0 0 0 10 13 0 

0 0 0 a G12 

The normality rule for an associated plastic fl.'I, is, 

where dA is the positive proportionality constant. evaluated using the 

condition that during th~ plastic deformation. the stresses remain on 

the yield surface so that. 

where 

af df = - do = 0 ao 

The stress-strain relation in the p,astiC range is given by [31. 

do = [Oep]d. 

(6) 
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Hence the modification called for in the elastic-plastic analysis 

wou~d be solely the re~lacement of the elasticity matrix [De) by the 

elastic-plastic matrix [Oep) for the yielded elements at the ~uccessive 

stages of calculation. It should be noted that the [Cep ) matrix is 

populated and accordingly the transformation of the stres~-straln 

relation from the matp.rial axes, ({a) = [OePIlZ{E}), to the shell 

coordinate axes, ({a) = [OePIXy{E}), will be modified as shown in 

Appendix 1. 

fINITE ELEMENT FORMULATION 

Conside!'" a lam'inated shell constructed of a finite number of 

uniform thickness orthctropic layers, oriented arbitrarily with respp.ct 

to the shell coordinates (;l'~2"). The orthogonal curvilinear 

coordinate systl? ... (~l'~Z") is chosen such that ~l- af'd ~Z- curves are 

lines of curvature on the midsurface .=0, and ,-curves are straight 

lines perpendicular to the surface r.=0. 

For the small displacement Sanders shell theory which accounts for 

transverse shear deformation, the strain displacement relations are 

given by [5 I , 

where 

a 
El 

o 
EZ 

o aU l au Z 
'6 = axZ + aXl 

aU l u3 =-+-aX l Rl 
aU2 u:l 

=-+-
aX l R2 

a<l>l 
; Kl = aX

l 
a<l>Z , K =-Z aX2 
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o 
e5 " <1>1 

aU3 u1 +---
aX l R1 

d~i "~id~i (i· 1,2) 
1 1 1 c ,,-(---) 

o 2 R:,c R2 

Here Ri (i = 1,2) are the principal radii of curvature, ui are the 

displacements of the reference surface along ~i(~3 = ~) axes, <1>1 and <1>2 

are the rotations of the transverse normals about the ~2 and ~1-axes 

respectively. 

The stress-strain relations, transformed to the shell coordinates, 

are of the form 

{a} = [Q] Ie} 

where Q~j are the material properties of kth-layer (see Append i ' I). 

The principle of virtual work for the pre~ent problem is given by 

(7a) 

(7b) 

where q ;s the distributed transverse load, N; and M; are the str2sses 

and moment resultants. 

L r;k 
= E J 0i(l,r;)dr; 

k=1 r;k_1 
(i = 1,2,5,4,5) 

Here (r;k_1,r;k' are the ,-coordinates of the kth layer, lind L is the 

total number of layers in the laminated shell. 
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It should be noted that the equations of equilibrium can be derived 

from Eq. (7b) by integrating the displacement gradionts in E~ by parts 

and setting the coefficients of 6U i to zero separately. I~e obtain 

aNI a NS 
aXI + axz (N6 + coM6) + Rl = 0 

a aNZ N4 
- (N6 - c M6) + - + -R = 0 
ax! 0 axz 2 

aN5 aH4 N! HZ 
- + - - (- + - - q) = 0 
3X! aX2 RI R2 

aM! aM6 
ax! + aX

2 
- N5 = 0 

aM6 aM2 
aX

1 
+ aX

2 
- N4 = 0 

The resultants (N i • Mi ) are related to (E~.K1) by, 

N -A 0+" i - 1jEj "1pK p i.J = 1,2,6,4,5 
1.P = 1,2,6 (with 1=1 for 1 = 1,2,5) 

Here Aij , B1j and D1j denote the ~xtens10na1, flex 1Jra",-extens10na1 

coup 11 ng. and f. exura 1 st 1 ffnesses of t:,p. 1 am1 nate: 

In the undhr1dged notation equation (8) takes the form~ 

(8) 

(9) 
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" 1 
All A12 A16 A ~15 811 B12 B,,; 0 

1 -14 .~ E1 

N2 A12 A22 A26 1124 A B12 Bl2 B26 
0 

·-25 "2 

N6 A16 A26 A66 1146 ~56 B16 626 666 
0 

E6 

N4 ~14 ~24 846 A44 A45 !!.14 ~24 ~46 
0 

E4 
( 10) = 

NS 815 825 8S6 A45 ASS ~15 ~2S ~S6 
0 

ES 

Ml 6U 612 616 ~14 ~IS 011 012 016 "I 

l :: J 
B12 B22 B26 §l4 ~25 011 D~2 026 "'2 

LBI6 B26 B66 ~46 ~S6 016 °21) °66 "'6 
The underscored coefficients are due to material ~on1inear stress-strain 

relationship. It should be noted that the coefficients A44 • A45 and ASS 

defined ir !quation (9) has to be corrected for the parabolic variacion 

of the transverse shear stress, as 

L 'k 
= E f 

k=1 ~k-l 

where k are the shear correction factor. 

(11 ) 

A typical finite element is a doubly-curved sh~11 element whose 

projGction is an isoparametric rectangular element. Over the typical 

shell o(e), the displacements (ul,u2.u3'¢l'~2) ,~e interpolated by 

expressions of the form, 

(12) 

where ~j are the interpolation functions, and U1 and ~i are the nodal 
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values of ui and ~i' respectively. For a nine node quadratic element 

the element stiffness matrix is of order 45x45. 

Substitution of equation (12) into the virt'Jal work principle, Eq. 

(7b) yields an element equation of the form 

[KI{A} = {F} (13) 

where {A} = {ful}, {u2}, {u3}. {4Il}' {4>2}} T, [K! is the element 

stiffness and {F} is the flJ'-;:~ "~ctor. In t~e interest of brevity, the 

coefficients of stiffness matrices arE! included ir; Appendix II. 

It should oe noted that the underscored coefficients in Eq. (10) 

are also redefined like the shear coefficients in Eq. (11) and reduced 

integration is performed for the terms ari,ing in the element stiffness 

matric~s due to the presence of these coeffi:ient.s to avoid the so

called locking effect. 

NUMERICAL RESULTS 

The Parameters of Anisotropy 

When considering the modeling of a material system, one must always 

survey the availability of material property cata. In the present 

theory, to describe fully the state of anisotropy, the six independent 

yield stresses in Hill's criteria are needed to be K"own from uniaxial 

tests. For numerical results, two typical composite materials namely, 

boron/epoxy and graphite/epoxy are considered with the following 

material constants: 

Boron/Epoxy 

E1 = 30.0 x 106 psi F.2 = 3.2 x 106 psi 

G12 = 1.05 x 106 psi , "12 = 0.21 , G23 = G13 = G12 
X = 195 x 1 03ps i ; Y = Z = 12.5 x 103 ps i 

R = S = T = 18.0 x 103 psi 
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Graphfte/Epoxy 

El ~ 18.88 x 106 psi 

GlZ ~ 0.688 x 106 psi 

X ~ ZZ2.7 x 103 psi 

Soluti~n Procedure 
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; E2 ~ 1.376 x 106 psi 

vlZ = 0.343 ; GZ3 Q G13 Q G1Z 
; Y M Z = 6.35 x 103 psi 

The solution of the elastic plastic problem is reached by an 

incremental and iterative procedure, The direct iteration technique ~s 

followed in the present analysis • 

For each load increment, the system of equations are established by 

assemblyir.g the element matrice~ and the displacement fA} is obtained 

from Eq.(13). Consequently, the state of stress and the value 

of f(aU ) are ca'lculated for each element If f < 0, then the process 

is elastic and the material matrix is obtained from equation (5). If f 

> 0, then the total stresses are readjusted so as to make f = a and the 

elastic-plastic matrix is calculated from Eq. (5). Once the convergence 

is achieved, the next load increment is applied and the iteration 

procedure is repeated. 

If the application of a small load increment causes very large 

deflection, the calculation is stopped and the limit lead is considered 

to be found. 

Sample Problems 

The present elastic-perfectly plastic formulation is applied to a 

variety of bending problems using 2x2 mesh of a nine noded quadratic 

element. The shear correction factors k2 = k2 were taken to be 5/5. 1 2 

I 
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All computations were made using an IBM 3081 processor with ,double 

precision arithmetic. 

The results of the sample problems are presented and compared. if 

possible, with the existing solutions to evaluate the present 

formulation. 

1. Cylindrical Shell Roof A cylindrical shell subjected to 

uniform vertical loading is considered. Due to symmetry, only a 

quadrant of the shell was analyzed. The geometry and modeling of the 

shel, roof are shown in Fig. 1. The material behaviour is studied with 

the properties: 

EI = E2 = 2.1 x 104 MN/m2 ; v = 0.0; 

G12 = 1.05 x 104 MN/m2 ; G23 = G13 = G12 
X = Y = Z = 4.1 Mil/m2 ; R = S "T = 2.367 MN/m2 

The results obtai ned for the vert1ca 1 di sp 1 acement at the central 

point of the free edge A versus loading was shown in Fig. 1. The 

solution obtained compares well with those reported in Ref. [6]. The 

apparent discrepancy can possibly be due to a different boundary 

condition on the curved edges and the type of material model used. 

2. Simply-Supported Square Plate A uniformly loaded simply 

supportt'1 s~Jtlre plate was studied in tl:e second example. The geometry 

of the plate is shown in Fig. 2. The following material properties were 

cons i dered: 

E 1 = E2 = 10 x 10
6 

G12 = 3.846 x 106 psi 

X = V = Z = 144,000 psi 

psi \1 = 0.3 

; G23 = G13 = G12 
R ~ S = T = 83,138.4 psi 
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Reference [6] 
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.03 
I 

Free edge 

x 

R=7.6m 
L=7.6m 
h=0.076m 

.04 .05 

Vertical deflection at point A (in meters) 

Figure 1. Load-def1e~tion curves for a cylindrical panel 
under unifol'm transverse load 
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0.8 
Present solution 

0.7 Reference [7] / ". .-
". , .-.-

0 ; 14,400 psi y 0.6 0 

P 
0.5 

Po a
2 

.Y 
6110 0 4 

T 
0.3 2a x 

0.2 1 , r 2a ., 
I 
I 
[\ 

0.1 2 In. , a ; 

h ; 0.05 i" . 
M ; (0 h2 /4) 0 0 

0.0 I 
0.0 .02 .03 .04 .05 .06 

Center defl ect I on, wD/ (4~lo/) 

Figure 2. Load-deflection curves for a simply-supported 
square plate under uniform transverse load 
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A non-dimensiona1ized plot of the centre displacement of the plate 

versus the load are shown in Fig. 2. The results are compared with 

those presented in Ref. [71. 

3. Two Layer Cross-Ply [0/90) al,d Angle-Ply [-45/45) Simply 

Supported Spherical Shells F'gure] contains the results for the cross

ply shell made of two t,ypica1 materiah, namely. boron/epoxy and 

graphite/epoxy under uniform load. For a given lead. the shell made of 

graphite/epoxy deflects more than the shell mnde of boron/epoxy which is 

stiffer. but experiences small degree of nonlinearity. 

Figure 4 shows nonlinearity exhibited by the graphite/epoxy cross

ply and angle-ply shells under uniform load. Clearly, the angle-ply 

shows greater displacement and also nonlinearity than the cross-ply for 

th~ same load. 

Figure 5 Shows the material behaviour for the boron/epoxy cross-ply 

shell under concentrated load. 

4. Clamped Cy1 indrica1 Cross-Ply (0/90) Shell Under Uniform Load 

The geometry of the shell is shown in Fig. 6. The shell is mad~ of 

grpahite/epoxy and the plot of displacement versus load are shown in 

Fig. 6. 

CONCLUS iONS 

A finite element model based on Sander's shell theory. accounting 

for the transverse shear strains is used for the elastic-plastic 

analysis of 1amianted composite shells. The paralT'eters of anisotropy 

reflect the p1ast·;c material response by correcting the stress 

components in the Hill's yield function. Numerical results are 

presented for i satrap; c and 1 ami nated she 11 of cy1 i ndrica 1 and ;pheri ca 1 

qeometry to demonstrate the validity and efficiency of the p,esent 
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Figure 4. Load-deflection curves for a simply supported 
spherical sheil (see Figure 3 for the geometry) 
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Center deflection, w (in.) 
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10.0 12.5 

Figure 5. Load-deflection curves for a simply supported spllerical shell 
under point load at the center (see Fi~ure 3 for the qeometry) 
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approach. For the isotropic case, the present results are in good 

agreement with those available 1:1 the literature. 
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APPENOIX I 

Transformation of the stress-strain matrix in Equation (6) 

Let the elastic matrix in the material axes (1,2) be [OeP]12 and 

the body axes be [Oep] xy 

Cll C12 C13 C14 Cl~ , 
C:!2 "23 C24 C25 

[Oep]12 = [C] = 
,,-

C33 C34 C35 ,-
sym C44 C45 , 

C55 

QU Q12 Q13 Q14 Q15 
"-

Q22 Q23 Q24 Q25 , 
[DePJ = [QJ = Q33 Q34 Q35 xy , 

sym Q44 Q45 , 
Q55 

then the transformation [4] is given as, (with m = cose, n = sine) 

4 22 2 2 4 Qll = m Cll + 2m n (C12 + 2C33 ) - 4mn(m C13 + n C23 ) + n C22 

Q12 = m2
n
2(C u + C22 - 4C 33) + <:mn(i - n2) (C13 - C23 ) + (m4 + n4)C 12 

22 2 r2 2 2 2 Q13 = m (m - 3n )C13 + mn,m Cl1 - n C?2 - (m - n )(C12 + 2C66 )] 

+ n2(m2 - n2)C26 

Q14 = m3c14 - mn[(2C34 - C15 )m - (C24 - 2C35 )n] + C25n3 

Q15 = m3c15 - mn[(C14 + 2C35 )m - (C25 + 2C34)n] - C24n3 

4 22 2 2 4 Q22 = n Cll + 2m n (C12 + 2C33) + 4mn(m C23 + n C13) + m C22 

in 
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2( 2 2 . ? 2 2 2 ( )] "23 = m m - 3n )C23 + mntn"C11 - m C22 + (m - n ) C12 + 2C33 

+ "2(3m2 - n2)C 13 

3 3 024 = m C24 + mn[(C2S + 2c34 )m + (C 14 + 2C3S )n] + C15n 

3 3 025 = m C25 - mn[(C24 - 2C3S )m - (CIS - 2C34 )n] - C14n 

° 
2 2(C C 2C) 2 (2 2, (- C) + (m2 _ n2)2C

33 33 = m n 11 + 22 - 12 - mn m - n I ~22 - 33 

Q35 = (mC35 - nc34 )(m2 - n2) + m2n(C15 - C25 ) + mn?(C24 - C14 ) 

2 2 044 = m C44 + 2mnC45 + n C55 

045 = (m2 - n2)C45 - mn(C44 - C55 ) 

2 2 0S5 = m C55 - 2mnC4S + n C44 

The underscored terms are due to material nonlinearity for an 

orthotropic material. Also note that the :'Jnstitutive matrix is no 

longer orthotropic. 
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Af'PEND IX II 

Stlft,~ss Coefflcle"~s 

[KII) = AI1[Sll) + AI6{[S12] + [S21) + A66[S22) 

+ C (B [S12) + [S2I) + 2B [S22) + C D [S22) + ASS [Soo) ° 16 66 i 66 R2 
I 

. ~ {A {[SlO]+[SOI])+A ([S20)+[S02)_C B ([S20)+[S02) 
RI 15· 56 0 56 

[KI4] = B
11

[SI1] + BI6{[SI2] + [S21]) + 8/i6 [S22] + 

C (D [S21) + 0 [S22]) _ LA [Soo) 
o 16 66 RI 55 

+ A [SlO) + A [S20) _ L (B [SOl) + B [S02) 
15 56 RI 15 5& 

+ C B 'S20) 
...2 56 t 
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[K 15 j ~ B1:r~121 + 8
16

[S11. + 826 [S22 1 + B66[S21 1 

+ Co(0.>6IS22] + 0661S21 l) - ~l A4S ISO
O

] 

+ A ISID} + A [520] 1- (6 [S02) + B [5°11) 
14 46 - R1 25 56 

[K221 = ~22[S22} + A26({S12] + [521 }) + A66[St1] - 2C
0
666 [S11] 

_ r (~ ([S121 + {S2I.,} _ C 0 [5 11 ]1 _ A44 [500] 
"0 \ 26 I ° 66 . R2 

2 
_ 1- (A ([S20] + [502 ]) + A ([SID] + (SOlJ + t [S l0 1) 

R2 24 . 46 0 

- C0646[5101) 

IK24} = 6
IZ

IS2l } + B26{S22] + B16[S11 1 + 866[S12 1 

_ C (D IS111 + 0 [SI21) _ L A [Sool 
o 15 66 R2 45 

+ AZ5[S20] + A
S6

(SlO] - 1- 18 [SOL] + B {S02]) 
R2 ' 14 46 
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[K25 ] c B [S22J + B ([521 ] + IS12 J) + d [SI1] 
22 26 66 

_ C (0 1512 ] + 0 (5 11 1) _ 1 A [SOD] 
o 26 66 R2 44 

+ A [S20] + A [5 10 ] _ L (B 1,02] + B 1501 ]) 
24 46 R2 24 - 46 

- C B 15 10 ] o 46 
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+ 8 [S!2 J 25 
+ B [Sl1J 56 

[K41 J = [K 14 JT 

[K42) = [K24 JT 

[K43 ) = [K34 )T 

[K44) = 0 [Sill + 0 ([Si2] + [SZi]) + 0 [Szz] + A [500 ) 
11 16 66 55 

+ 815([51°) + [Sal) + 856([52°] + [5° 2 ) 

[K45 ) = 0 IS121 + 0 15
11 ] + C [522 1 + 0 [521 1 + A [500 1 12 16' 26 66 45 

+ 8 [5 10 ] -20 02 + 8 [5011 
14 T B46[~ ] + 825 [5 I 56 

[K51 1 = [K 15 ]T 

[K52 ) = [K?5 IT 

[K53 1 = [K35 1T 

[K541 = [K45 1T 
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where 

SQ6 
1j 

and the underscor~d terms are due to material nonlinearity. 
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