General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



PB85-127173

Geometrically Nonlinear Anilysis of
Lamingated Elastic Structures

Virginia Polytechnic Inst. and State Univ,
Blacksbicg

Prepared for

National ‘leronautics and Space Administration
Clayeland, Ohio

Nov £4




BIBLIOGRAPHTC INFORMATION

PBB85-127173

Geometrically Nonlinear Analysis of Laminated Elastic
Structures.

Nov 84
by J. N. Reddy.

PERFORMER: Virginia Polytechnic Inst. and State Univ.,
Blacksburg. Dept. of Engineering Science and
Mechanics,
VPI-E-84-36
Grant NAG3-208

SPONSOR: National Aeronautics and Space Administration,
Cleveland, Ohio. Lewis Research Center.
Final rept.

The research Jdeals with the analysis of lamina*ed composite
plates and cshells that can be used to model automobile
bodies, aircraft wings and fuselages, and pressure vessels
among many cthers. The finite elemeni method, a numerical
technique for engineering analysis of structures, is used to
model the geometry and approximate the solution (i.e.,
displacements, stresses, and natural frequencies). Various
alternative formulations for analyzing laminated plates and
shells are developed and their finite element models are
tested for accuracy and economy in computation. These
include, the shear deformation laminate theory and
degenerated 3-D elasticity theory for leminates.

KEYWORDS: *Structural analysis, *Finite element analysis,
*Shells (Structural forms), *Plates(Structural
members}.

Available from the National Technical Information Service,
SPRINGFIELD, VA. 22161

PRICE CODE: PC AQ06/MF A0l

B et



v . . .

Y | ,

Sl LedG-1.7113
i

~,COLLEGE
~ ENGINEERING

—

= .
{
'J
’; ¥
i
i
3

g VIRGINIA
POLYTECHNIC
~ INSTITUTE _
~ STATE
UNIVERSITY

NATIONAL TECHNICAL . BLACKSBURE,
INFORMATION SERVICE VIRGINIA
1.5 DEPARTMEN' OF CQMMIRCF . ‘

SPRINGFIELD, VA 22161




NATIONAL AERONAJTICS AND SPACE ADMINISTRATION

GRADUATE RESEARCH PROJECTS IN NONLLNEAR
3-D STRUCTURAL ANALYSIS
(NASA Grant NAG-3-208)
Report No. VPI-E-84-36

Final Technical Report titled,

"GEOMETRICALLY NONLINEAR ANALYSIS OF
LAMINATED ELASTIC STRUCTURES"

Submitted to

Structures Branch
Structures and Mechanical Technologies Division
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, CH 44135

by

J. N. Reddy
Department of Engfneering Science and Mechanics
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061

REPRODUCED BY
NATIONAL TECHNICAL

INFORMATION SERVICE

1S, DEPARTIRENT OF GOMMERGE
SPRINGFIELD, VA. 22161

November 1984



]G

2.

3.

\a)

(b)
(c)

SUMMARY OF THE RESEARCH GRANT

Titte of Research Effort: Graduate Research Projects in
Nonlinear 3-D Structural Analysis

Grant No. NAG-3-208

Principal Investigator: ODr. J. [i. Reddy
ESM Department, 220 Norris Hall
Virginia Polytechnic Institute
Blacksburg, VA 24061
(703) 961-6744

Funding Information

(a)
(b)

Period: Aug. 28, 1981-Aug. 27, 1984
Amount Awarded: $89,933

Brief Description of the Research

(a)

(b)

(c)

Objectives:

1. To perform a finite-element analysis for nonlinear behavior
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fiber-reinforced, filamentary composite materiais.

2. To demonstrate the application of the elements to a number
of plate and shell structures.

Approach:

Two different finite element; were developed and assessed for
their accuracy in the analysis or laminater plate and shell
structures: 1.2-dimensional element based on a modified
Sandars shell theory that accounts for transverse shear
strains, and 2. 3-dimensional degenerated element based on the
updated Lagrangian formulation. Both elements account for
geometric nonlinearity and dynamics.

Significant Accomplishments:

The significant results of the research are:

1. Apn accurate stress and vibration analysis of Taminated
plates and shells, accounting for geometric and material
nonlinearities and transverse shear strains. The laminates
can be of arhitrary Tamipation scheme and subjected to
transverse loads.

2. Stress analysis of laminated composites using a nonlinear
constitutive model.
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GEOMETRICALLY NONLINEAR ANALYSIS OF
LAMINATED ELASTIC STRUCTURES

J. N. Reddy
Virginia Polytechnic Institute and Stae University
Blacksburg, VA 24061

(Final Technical Report on the NASA Grant NAG-3-208)

The research perfarmed under the present grant deals with the
analysis of laminated composite plates and shells that can beused to
model automobile bodies, aircraft wings and fuseiages, and pressure
vessels among many others. The finfte element method, a numerical
technique for engineering analysis of structures, is 4Ysed to model the
gometry and approximate the solution (i.e.. displacements, stresse¢ and
naturdal frequencies). Various alternative formulations for analyzing
laminated plates and shells are developed and their finite element
models are .ested for accuracy and economy in computation. These
include, the shear deformation laminate theory and degenerated 3-0
elasticity theory for laminates. The present results obtained for staic
transient and natural vibration ;f laminated plates and shells are very
accurate when compared to existing theories (e.g., classical lamination
theory). Many of the results obtained during this fnvestigation shouid
serve as references for future investigations by designers and
experimentatlists.

Preliminary investigations were ailso initiated during this research
program in two other related areas: the development of a refined shear
deformation theory, and nonlinear constitutive models for composite
plates. These investigations are currently progressing under other

sponsorships.



INTRODUCT ION

This fina) technical report contains three parts: Part 1 deals
with the 2-D shell theory and its finite element formulation and
applications. Part 2 deals with the 3-0 degenerated element. These two
parts constitute the two major tasks that were completed under the
grant. An other related topic that was initiated during the pq%ent
investigation ‘s the development of a nonlinear material model. This
topic is briefly discussed in Part 3. To make each part self-contained,
concTusions and references are included in each part. In the interest
of brevity, the discussions presented here are relatively brief. For
details and additional topics see the journal articles 1 and 10 for Part
11 for P

1, articles 2 and 6 for Part 2 and articl

D
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PART ]

GEOMETRICALLY NONLINEAR ANALYSIS OF LAMINATED SHELLS
INCLUDING TRANSVERSE SHEAR STRAINS

J. N. Reddy and K. Chandrashekhara

{A condensed version of this paper (s to appear (n AIAA Joumngl, 1964)

SUMMARY
The paper contains a description of a doubly curved shell finite element
for geometrically nonlinear {(in the von Karman sense) analysis oY laminated
(doubly-curved) composite sheils, The element is based on an extension of the
rains and transverse

Sanders shell theory and accounts for the von Karman st

shear strains. The numerical accuracy and convergence characteristics of the

element are further evaluated by comparing the present results for the bending ’

of isot opic and orthotropic plates and shells with those availaple in the
literature. The many numerical results presented here for tne geomertically
nonlinear analysis of laminated composite shells should serve as reference for

future investiyations.

INTRODUCT ON

Laminated shells are finding increased application in aerospace, automo-
bile and petrochemical industries. This is primarily due to the high stiff-
ness to weight ratio, high strength to weight ratio, and less machining and
maintenance costs associated with composite structures. However, the analysis
of composite structures is more complicated when compared tc meiallic struc-
tures, because laminated composite structures are anisotropic and character-
ized by bending-stretching coupling. Further, the classical shell theories,

which are based on the Kirchhoff-Love kinematic hyp-thesis {see Naghdi [1] and

_ ;
* Graduate research assistant
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Bert [2]) are known to yield defiections and stresses in laminated shells that
are as much as 30% in error. This error is due to the neglect of transverse
shear strains in the classical shell tneories,

Refinements of the classical shell theories (e.g., Love's first approxi-
mation theory [2]) for shells to include transverse shear deformation have
been presented by Reissner {4-6]. Sanders [7] presented modified first- and
second-approximation theories that removed an inconsistency (norwanishing of a
small riaid-body rotations of the shell) axisted in Love's first-approximation
theory.,

Yhe first thin she)] theory of lamynated orthotropic composite shells is
due to Ambartsumyan [3,3]. In “.ese works Ambartsumyan assumed that the indi-
vidual orthotropic layers were orientad such chat the principal axes of mate-
rial symmetry coincided with the orincipal coordinates of the shell reference
surface. Nony, Pister, and Taylor [10] presented ar extansion of Donnell's
shallow snell theory [11} to thin laminated shells. Using the asymptotic in-
tegration of the elasticity equations, Widera and Chung [12] derived a first-
approximation theory for the unsymmetric deforration of nonhomoygeneous, aniso-
tropic, cylindrical shells, This theory, when specialized to isotrgpic mate-
rials, reduces to Dannell's shell theory.

Tne effects of transverse shear deformation and thermal expansion through
the snell thickness were considered by Zukas and Vinson [13], Dong and Tso
[14] constructed a laminated arthotropic shell theory that includes transverse
shear deformation, This theory can be regarded as an extensicn of Love's
first-approximation theory [3] for homogeneous isotropic shells. OQther re-
fined theories, specialized to anisotropic cylindrical shells, were presented

oy Whitney and Sun [15]. and Widera and togan [16,17].
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The finite-element analysis of layered anisotropic shells, all of which
are voncerned with bending, stability, or vibration of shells, can be found in
the works of Schmit and Monforton [18], Panda and Natarajan [19], Shivakumar
and Krishna Murty "2u]}, Rao [21], Siede and Chang {22], Hsu, Reddy, and Bert
[23], Reddy [24], and Venkatesh and Rao [25,26]. Recently, Reddy [27] extend-
ed the Sanders theory to account for the transverse shear strains, and pre-
sentaed exact solutions for simply supported cross-ply Taminated shells. All
of thesae studies are Timited small displacement theories and static analyses,

In the present paper, an extension of the Sanders shell theory that ac-
counts for the shear deformation and the von Karman strains in laminated an-
isotropic shells is used to develop a displacement finite element model ftor
the bending analysis of laminated composite shells. The accuracy of the ele-
ment is evaluated by comparing the results obtained in the present study for
isotropic and orthotropic plate and shell problems with those available in the
literature, HNumerical results for bending analysis of cylindrical and doubly-
curved shells are presented, showing the effect of radius-to-thickness ratio,

loading, and boundary conaitions on the deflections and stresses.

A REVIEW OF THE GOVERNING EQUATIONS

Consider a laminated shell constructed of a finite number of uniform-
thickness orthotropic layers, oriented arbitrarily with respect to the shell
coordinates (gl,gz,c). The orthogonal curvilinear coordinate system
(gl,gz,g) is chosen such that the £1- and §,- curves are 1ines of curvature on
the midsurface z=0, and ¢-curves are straight lines perpendicular to the sur-
face £=0 (see Fig. 1). A line element of the shell is given by {see Reddy
{27]

(45)2 = [(i + ¢/R})aqdg ]2 + [(1 + ¢/R,}aydE, ]2 + (dg)2 (1)

P A & e A b b+ A e
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where @, and R; (i =1,2) afe the surface metrics and radii of curvature,
respectively. In general, a; and R; are functions of E; only. For the doubly
curved shells considered in the present theory, @y and R; are constant.

The strain-displacement equations of the shear deformable theory of

doubly-curved shells are given by

_ 0
g1 T8 Y g
_ 0
Ep % £ T Lxp
0
€q = &g
0
€5 T €5
£ =e°+Cr: (2)
6 6 "6
where
au u au., 3
el = _...-]_'.+_3.+_1..(_.._‘1)2,K=__u:.1.
1 Xq Rl 2 axl 1 axl
au u ou od
e R GYE ey
2 2 2 - 2
0 _ aul buz au3 au3 ) Efl‘+ a¢2 N au2 ) EEL

£ ” + sy Keg = PN P
6 a"z axl axl 3x, ) ax2 axl 0 ax1 ax2

ou u
E0=¢ —"—3_—3
4 2 ax2 R2
U U
Q 3 1
g = ¢y t - o
5 1 axl 1
1.1 1
¢ =5 (R~ ) (3)
o 2 R2 R1

Here u; denotes the displacements of the reference surface along 51(53 =C)
axes, and ¢; are the rotations of the transverse normals to the reference
surface. In Love's first-approximation theories the parameter Co is taken to

be zero, and it is introduced only in the Sanders theory,

AL L, gt e




The stress-strain relations, transformed to the shell coordinates, are of

the form
(o} = [Q)le} {4)
where QEE) are the matertial properties of k-th layer.

The principla of virtual work for the present problem is given by

Lz
0= 31 [ {cgk)ael * cék)éez * Uék)ées ¥ cik)ée4 + oék)ées
k=1 Loy ®
- Q8ujlaya,dg;dE,de (5)

- L T T T ¢ 0
- fQ [Nydey + Npse, + Hgeg + Mydey + Mydic, + Mobkg + Qpbeg
+ Qzésg - qéua]alazdgldgz (6)

where q is the distributed transverse load, N; and My are the stress and

moment resultants, and Q; is the shear force resultant:

L Sk _
(M) = TS o {1,0)de , 1= 1,2,6
k=l
L Sk
Q= )} k¥ o;dc , 1=4.5, (7)
k=1 Cemt

where K. (i = 1,2) are the shear correction factors (taken to be K% = K% =
5/6), and (ck_l,ck) are the r-coordinates of the k-th layer, ard | is the
total number of layers in the laminated shell.

It is informative to note that the equations of eguilibrium can be

derived from Eq. (6) by integrating the displacement gradients in s? by parts



and setting the coefficients of 6u, (i =1,2,3) and 5¢; (i=1,2) to zero
1 /1 1

separately. We obtain [with c = é'(ﬁ; -'ﬁ;) and dx; = qdg;]

aN Q

1 o 1
==t = (N = ¢ M.) + o= =0
ax1 ax2 5 0b 1

aN Q
3 2 2

=— (N + c M) +==+3==10
axl 6 6 ax2 R2
2Q aQ N N

i 2 1 2
==+ =5 . (==+=5.q)+ Nu)=0
axl axz R1 R2 3
g;l.+ %;g -9 =0

1 2
aM aM

6, 2 _

where
du du du au

‘ 3 3 3 3 3
Nug) = 3o (N) 555+ Ng =52) + 50 (Ng > + Ny =) (9)

3 axl 1 axl 6 axz ax2 6 axl 2 ax2

The resultants (Ni’ Mi' Qi) are related to (so

i Ki) (i,] = 1,2,6) by

= A..e2 + B, k.
l'\l1 1JEJ B‘!JKJ
M, = B..0 + D. .x.
P = Bigeg * Dyyk; (10)
_ 0 0
Qp = Aggeq ¥ Ayges (1)
Q

0
Qp = Aggeq * Aggeg

(8¢

Here A, B8

ijr "ij
extensional coupling, and flexural stiffnesses of the laminate:

aru Dij (1, = 1,2,6) denote the extensional, flexural-

A B D) = T (k) (1,c,e2)dg (i,5 =
( 1j: ) - E f Qij ( :C,C )dC (]rJ - 1|296)

(12)

¢ e eaman s < o e
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b Bk (k) (k) ¢20(k)
(Rggohysohgs) = I Jo  (Kiag' oK KalgssK30557 )

The boundary conditions, derived from the virtual work statement, involve
specifying either the essential boundary conditions (EBC) or the natural

boundary conditions (NBC):

EBC NBC
U1 or Ny + (N - cgMedny
Uy or N2n2 + (NG + cOMG)n2
(g 3220 + (v, 2,
6u3 6U3
u3 or + (Ns E;EJnl ¥ (N6 3;;)"2
+Qn, + 050y
9 or Mln1 + Mﬁn2
P or M2n2 + Moy (13)

where (”1’”2) denote the direction cosines of the unit normal on the beundary

of the midsurface of the shell,

The 2xact form of the spatial variation of the solution of Egqs. (8)-(13),
for the small-displacement theory, can be obtained under the following condi-

tions (see Reddy [27]):

(1) Symmetric or antisymmetric cross-ply laminates: i.e., laminates

with

Mg = Mg = Big = Byg = Dyg = Dpg = g5 = 0. (14)

{i1) Freely supported boundary conditions:

M. (a,x,) =0

1( *72
u3(a,x2) = uz(O,xz) = uz(a,xz) =0

]

N 0,x2) = Nl(a,xz) = Ml(o,xz)

1(
u3(0,x2)

T o MR i L b, i P St

i s v et
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Nz(xl,o) NE(xl'b) = Mz(xl.O) = Mz(xl,b) =0

u3(x1,0) = u3(x1,b) = ul(xl,o) = ul(xl,b) = 0

95(0,%,) = 0,(a,x,5) = ¢, (%10} = 9;{x;,b) =0 (15)
where a and b are the dimensions of the shell middle surface along
the X1 and X, axes, respectively. The time variation of the load

does not influence the spatial form of the solution.
Note that the exact solution can be obtained only for cross-ply laminated
shells with simply supported boundary conditions. For general lamination

schemes, exact solutions are not available to date.

FINITE-ELEMENT MODEL

A typical finite element is a doubly-curved shell element in the Xy%o=

(e)

surface. Over the typical shell element Q , the displacements

(ul,uz,u3,¢1,¢2) are interpolated by expressions of the form,

N .
- J .
¢']_ E ¢1¢J(xl:x2) [ 1 1,2 (16)

J

; and ¢g are the nodal values

where ¢j are the interpolation functions, and u
of uy and b5 respectively. For a linear isoparametric element (N = 4) this
interpolation results in a stiffness matrix of order 20 by 20. For a nine-
node quadratic element the element stiffness matrix is of order 45 by 45,
Substitution of Eg. (21) into the virtual work principle, Eq. (9) yields

an element equation of the form

A H (e A g T F1r Sl et M gt B At PR o8 R e e e
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(K(a)] ta} = (F} (17)

wnere {a} = {{u;}, {u,}, {ug}, {1}, {¢2}}T, [K] the elemert stiffness matrix,
and {F} is the force vector. In the interest of brevity, the coefficients of
the stiffness matrices are included in Appendix .

The element equations (17) can be assembled, boundary conditions can be
imposed, and the resulting equations can be solved at each load step. Note
that the stiffness matrix [K] is a function of the unknown solution vector
{a}; therefore, an iterative solution procedure is required for each load

step, In the present study, we used the direct iteration technigue, which can

be expressed as

(k({a}") {al ™t = (F) (18)

where {a}" denotes the solution vector obtained in the r-th iteration (at any
given load step). At the beginning of the first load step, we assume that
[a}9 = {0} anc obtain the linear solution at the end of the first iteration.
The solution ottained at the end of the r-th iteration is used to compute the
stiffness matrix for the (r+l)-th iteration. At the end of each iteration
(for any load step), the solutions obtained in two consecutive iterations are
compared to see if they are close enough to terminate the iteration and to
move on to the next load step. The following convergence criterion is used in

the prasent study:

N
T 1af123H2 < 0.0 (19)

N
r r+l
[ T 185 - 8 IZ/'l

i=1 i

where N is the total aumber of unknown generalized displacements in the finite

element mesh,
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To accelerate the convergence, a weighted average of the solution from

tast two iterations are used to compute the stiffness matrix:
- +
[K(rial™ o (1= ) {a})]{al™ = (7} (20)

where y is the acceleration parameter, 0 < y < 1. In the present study a val-

ue of 0.25 - 0.35 was used,

NUMERICAL RESULTS

Here we present numerical resuits for <ome sample problems. To illus-
trate the accuracy of the present element, first few examples are taken from
the literature on isotropic and orthotropic shells. Then results (i.., de-
flections and strsses) for several laminated shell problems are presented,

The results for laminated shelis should serve as references for future inves-
tigations,

A1l of the results reported here were obtained using the double-precision
arithmatic on an IBM 3081 processor. Most of the sampie problems were an-
alyzed using a 2 x 2 uniform mesh of the nine-node (quadratic) isoparametric

rectangular element.

1. Bending of a simply supported plate strip (or, equivalently, a beam) under

uniformly distributed load.

The problem is mathematically one-dimensional and a3 analytical solution
of the problem, based on the classical theory, can be found in Timoshenko and
Womowsky-Krieger [28]. The plate length 1long the y-coordinate is assumed to

be large compared to the width, and it is simply supported on edges parallel

o
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to the y-axis., The following simply supported boundary conditioi: are

assumed ;

w = ¢, =0 along edges x t 127mm (21)

All inplane displacement degrees of freedom are restrained. A 5 x ! mesh of
four-node rectangular elements in the half plate is used to analyze the proh-
lem. The data and results are presented in Fig. 2. The prasent result is in

good agreement with the analytical solution.

2. Clamped square plate under uniform load.

Due to the hiaxial symmetry,., only one quadrant of the plate is modelled
with the 2 x 2 imesh of nine-ncde eiements (4 x 4 mesh of linear elements give
almost the same result). Pertinent data and results are presented in Fig. 3
for side to thickness ratios a/h = 10 and 500. The result for a/h = 500 is 1in
agreement with the resulis of Way [29]. The difference is attributed to the
fact that the present model includes the inplane disp'acement degrees of free-
dom and transverse shear deformation.

Figure 4 contains transverse deflection versus load for clamped ortho-

tropic, cross~-ply, and angle-ply plates. The lamina properties are

El = 26 x 10% N/mm2, E2 = 2 x 10% N/mm?, G12 = G13 = 10" N/mm2

e i 2 =
623 0.4 x 10% N/mm2, V2 0.25.

For the same total thickness the clamped orthotropic square plate is stiffer

than both two-layer angle-ply and cross-ply plates.
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Figure 2. Bending of an isotropic simply supported
plate strip under uniform load,
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Figure 3. Bending of clamped isotropic square plate uncar
uniform Joad.
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Figure 4. Bending of clamped orthotropic and laminated
square plates under uniform load.
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3. Simply supported, isotropic spherical shell under point load,

The pertinent aata of the snell is shown in Fig. 5. A uniform mesh of 2
by 2 quadratic elements is used in a guadrant, The effect of three types of
simply supported conditions on the center deflection and center normal stress

is investigated:

$S-1: u=w= 9,=0 at y = b; v=w= p,=1 at x = 2
$§-2: U=V == b = 0 aty=»Db; u=vs=w= 9,=0 atx=a (22)
$5$-3: v =w= ¢ =0 at y = 9; uU=w= $,=210 at x = a

Tabie 1 contains the results for the three boundary conditions. It is clear
from the results that all three boundary conditions give virtually the same
results for a/h = 180, and d fer significantly (especially S55-1 differs from
both 55-2 and SS$-3) for a/h = 16. Thus, the effect is more in thick shells

than in thin shells. The stress ¢, shown in Fig. 5 is evaluated at point x =

X

y = 1.691" in the top layer

4. Simply supportod isotropic cylindrical shell under point load,

The geometry and finite-element mesh of the sirell are shown in Fig. 6.
Once again, the effect of various simply supported boundary conditions (22) on
the deflections and stresses for the problem is investigatad using a uniform
mash of 2 x 2 quadratic elements. The rasults are uresentzd in Table 2. For
the geometry and loading used here (R = 2540, a = 254, n = 12.7}, -he boundary
conditiaons have very significant effect on the solution., Boundary conditions
§5-2 and 5%-3 give almost the same results whereas SS-1 gives about 2-1/2

times the deflection given by SS-2 or $5-3 boundary conditions.
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3 Table 1., Effcct of various simply supported boundary conditions an the center

3 deflections and normal stress in spherical shells under point load

; (E = 107 psi, v = 0.3).

i

) Load Solution Ss-1 §5-2

] P/h2 a/h=160 a/h=16 a/h=160 a/h=16 a/h=160 a/h=16

i 4,000 -w* U.0188 - 0.0152 - 0.0152 -

! -0, * 893 - 984 - 894 .

: 8,000 -w 0.0329 0.0349 0.0324 0.0255 0.0324 0.0258

; -0, 1,880 6,535 1,882 6,015 1,882 6,031

; 12,000 -w 0.0529 - 0.0522 - 0.0521 -

: -0, 2,980 - 2,985 - 2,986 -

: 16,000 -w 0.0760 0.0793 0.0752 0.0520 0.0751 0.0525

; -0, 4,220 13,730 4.228 12,200 4,229 12,240

2 20,000  -w" 0.1038 s 0.1028 - 0.1027 -

: -0, 5,657 : 5,671 - 5,872 -

‘ 24,000 -w 0.1364 0.1083 0.1354 0.0792 0.1353 0.0800

{ -0y 7,268 20,11C 7,289 18,500 7,291 18,550

: 28,000 -w 0.1761 - 0.1752 - 0.1751 -

-o, 9,128 - 9,160 - 9,162 -

: 32,000 -w 0.223 0.1472 G.2227 0.1072 G.2227 (.1083
-g 11,180 27,170 11,220 24,930 11,230 25,000

X

* w(0,0), UX(A,A); A= 1.691

Table 2, Effect of various types of simply supported boundary conditions on
the deflections and stresses of aniscotropic cylindrical shell under

point load.

Load,P 55T 55-2 55-3
_ - 2y - _ - -

(N) w(mm) ay(N/mm ) -w s, W oy
N 250 2.5804(2) 2 .868 0.6544(4) 1.706 0.6698(4) 1.706
: 500 5.1626(2) 5.713 1.3533(4) 3.478 1.3843(4) 2.477
: 750 7.7343(2) 8.506 2.1057(4) 5.327 2.1522(4) 5.321
: 1,000 10.278(2) 11.210 2.9234(4) 7 .265 2.9855(4) 7.242
¢ 1,250 12.733(2) 13.80 3.8241(3) 9,312 3.9017(4) 9,288

1,500 15.204(2} 16.25 4.8349(4) 11.50 4,9279(4) 11.46

1,750 17.560{2}) 18.560 6.0331(5) 13.91 6.1422(5) 13.85

2,000 19.843(2) 20.730 7.5316(6) 16 .66 7.5610(6) 16,57

AN e b
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5. Clamped isotropic cylindrica shell under uniform loading.

Figure 7 contains the pertinent data and results for a clamped cylindri-
cal shell (isotropic) subjected to uniform load. The results are compared

with those obtained by Dhatt [30]. The agreement is very good.

6. Clamped aorthotropic cylindrical shell subjected to fnternal pressure.

Figure 8 contains the geometry and plots of center deflection and center
stress versus the internal pressure for the problem. The orthotronic material
properties used in the present study are:

E

= 7.5 x 108 psi, E, = 2 x 10 psi, Gy = Gyy = Gpy = 1.25 x 105 psi

1 2

The .resent result, obtained using the 2 x 2 mesh of quadratic elements, is in

excellent ayreement with that obtained by Chang and Sawamiphakdi [31].

7. Nine-laver [0°/90°/0°..,/0°] cross-ply spherical shell subjected to

uniformly distributed load,

The following geometrical data fs used in the analysis (with $S-3 boundary
conditic )

R = R = 1,000 in., a =b =100 in,, h =1 in. (24)

17 %
Individual layers are assumed to be of equal thickness (h; = h/9), with the
zero-degree layers being the inner and outer layers. The followiny two sets
of grthotropic-material constants, typical high modulus graphite epoxy materi-

al (the ratjos are more pertinent here), for individual layers are used:
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Figure 7. Bending of a clamped, isotropic, cylindrical shell under

uniform load,

[



A eI [T R e T HR T - bt L AFMER e i TIE ¥ M A

R T

20.0

16.0

12.0

Load
qo(ksi)

(€]
<

4.0

0.0

24

L] L ] 1 T ' T 1 k] 1 1 1
" 4

o Ppresent
" W

— Reference [31] )
" o0 9, at x = y = 1.057
b
.
b ,’U’

I’D‘
- '40"
o~
R -
el

i L | 1 i i 1 1 L i [ L
0 4 8 12 16 20 24  w(in.)
0 50 100 150 200 250 300 olksi)

Figure 8. Bending of a clamped orthotropic cylindrical sheil
subjected to internal pressure.
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Mat.-1: E; = 25 x 106 psi, E, = 106 psi, G, = G5 =0.5x 106 psi
623 = (0,2 x 106 psi, vip = 0.25 (25)

Mat.-2: €, = 40 x 105 psi, E, = 106 psi, Gy, = G5 = 0.6 x 106 psi
Gys = 0.5 x 106 psi, vyp = 0.25 (26)

Figure 9 contains plots of center deflecton (w/h) versus the load parameter
(E = q,R¥/E,N2) for the two materials. Shell constructed of Material 1
deflects more, for a given load, than the shell laminated of Material 2
(because Material 2 is stiffer), and consequently experiences graater degree
of nonlinearity. Note that the difference between the nonlinear deflections
of the two shells increase nonlinearly, indicating that the shell made of
Material 2 can take much more (ultimate} load than apparent from the ratio of

moduli of the two materials, E%z)/Eil).

8. Effect of various simply-supported boundary conditions on the deflections

of two-layer cross-ply spherical shells under uniform load.

As pointed out in Problems 3 and 4, the transverse deflection is sensi-
tive to the boundary conditions on the inplane displacements of simply sup-
ported shells, To further illustrate this effect for laminated shells, a set
of four types of boundary conditions are used, and the results are presented

in Table 3. Here SS-4 has the follGwing meaning:

n
[aT]

W= ¢1 = { on X
S$5-4 (27)
dony

X
1]
-
H]
[[]
o

e I s
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0.0 n.2 0.4 0.6 0.8

Deflection, {-w/h)
Figure 9. Bending of nine-layer cross-ply

[0°/90°/0°/...]) spherical shell
subjected to uniformly distributed
Toad.




27

Table 3, Effect of various simply-supported boundary conditions on the trans-
verse deflections of cross-ply [0°/90°] spherical shells under

uniform load {Material 1; shell dimensions are the same as those in Fig.10)

a, -w (in.)

(psi) $5-1 55-2 5§-3 55-4
0.50 0.3344 0.04246 0.04257 0.4592
0.75 0.5757 0.06599 0.06617 0.8255
1.00 0.9485 0.09144 0.09171 1.3845
1.25 1.6529 0.11926 0.11966 1.9589
1.50 2.2826 0.15008 0.15063 2.3597
1.75 2.6421 0.18478 0.18556 2.5951
2.00 2.8499 0.22473 0.22584 2.8074
2.25 3.0764 0.27425 3.27593 3.0284
2.50 3.2432 0.33534 0.33795 3.1948
2.75 3.4214 0.42970 0.43487 3.3719

e A

A T

b AT b B e e s = 1

A e A e L
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Once again we note that S5S-2 and 55-3 give alwost the same defiections,
Boundary conditions S$S-1 and SS-4 give deflections an order of magnitude high-
er than those given by S5-2 and 55-3. Thus, boundary conditions 55-2 and 5§-3

make the shell quite stiffer,

9. Two-layer crass-ply [0°/90°] and angle-ply [-45°/45°1, simply-supporied

(585-3) spherical snells.

Figure 10 contains the pertinent data and results (with different scales)
for the cross-ply and angle-ply shells (of Material 2), It is interestino to
note that the type of nonlinearity exhibited by the two shells is quite dif-
ferent; the cross«ply shell gets softer whereas thc angle-ply shell gets
stiffer with an increase in the applied load. While both shells have bending-
stretching coupling due to the lamination scheme (822 = - By nonzero for the
cross-ply shell and Blﬁ and 826 are nonzero for the angle-ply shell), the
angle-piy experiences shear coupling that stiffens the spherical shell rela-
tively more than the normal ccupling {note that, in general, srells get softer
under externally applied inward load).

Figure 11 contains plots of center deflection, normal stress (—cy) and
shear stress (cyz] at x = y = 5,233" versus load for two-layer cross-ply
(0°/90°) spherical shell (Material 1) under point load at the center of the
shell. The nonlinearity exhibited by the stresses (especially Uyz) is less

compared to that exhibited by the transverse deflection,

10. Two-layer clamped cylindrical shells under uniform loads.

Figures 12 and 13 contain results (i.e., w, o, o__ versus load) for

y?* “xz
cross-ply [0°/90°] and angle-ply [-45°/45°] clamped cylindrizal shells under

uniform load. The lpad-deflection curve for the cros-ply shell resembles that

ey kR A+ Armar
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Deflection, -w (10'21n) ~—— angle-nly
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Figure 10. Bending of two-layer cross-ply and angle-ply,
simply supported (SS$-3) spherical shells under
uniform load.
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Fiyure 13. Bending of a clamped cross-ply [0°/90°] cylindrical
shell under uniform load (Material 1)
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of the tsotropic shell in Fig. 7, but exhibits greater degree of nonTinearity
(being stiffer). The angle-ply shell exhibits different type of nonlinearity

(softening type) for all loads.

11. Quasi-isotropic, clamped, cylindrical shell under uniform load.

Two types of quasi-isotropic rlamped cylindrical shells are analyzed:

Type 1: [0‘/45“/90°/~45°]5ym-

f - Q a
Type 2: [0°/+45 /gojsym.
Material 1 properties are assumed for each lamina (8 layers). The geometric
data and results are presented in Fig. 14. Compared to the results presented
in Figs. 12 and 13, tne quasi-isotropic shells have the ‘near-inflection’
point at higher loads; the Toad-deflection curve has essentially the same form

as that of the cross-ply shell (see Fig. 12),.

CONCLUSIONS

A shear-flaxible finite element based on the shear deformation version of
the Sanders' theory and the von Karman strains is developed, and its applica-
tion tc isotropic, ortnotropic, and laminated {cross-ply and angle-ply) shells
is iilustrated vias numerous sample problems. Many of the results, especially
those of laminated shells, are not available in the literature and therefore
should serve as references for futiuce investigations. Fron the numerical com-
putations it is observed that boundary conditions on the inplane displacements

have significant effect on the shell deflections and stresses, Also, it is

noted that the form of nonlinearities exhibited by different lamination schemes.

b ot
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APPENDIX I

Stiffness Coefficients:
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n

[Ksl]NL [21413]51_ , NL = Nonlinear portion of the matrix

32 23T
(k32T = LKy
337 = 12 14 22 21
[K33) = Agg[S12] + A [SHT + Ay, [572] + A [s2]
Il 2
+ 2[SHI(A) T + 2A54F Fo # AesfzJ

12 21 2 2
2([512] + [S21)[F3A  + (Ay + Agg)fyfy + FRAx]

+ 2[S22Y(A  F + 2A,0F F, + Apof3)

i 261 2
A Ay A
+ [500][1_ (_l_ -2y 1 ( le _..Z_Q”
Ry R T Ry TR R R

A A A A

+ ([SOL] + z[slo])[fl[_ll_+ _l&) + fz(_l§.+ _%Q)]
1 2 1 2

A A A A

+ ([502] + 2[520])[f1(~%%-+ —%%) + f2(~%%-+ -Zi)]

[K3“] = A55[510] + A45[520]

v 2f (8, [S11] + B o ([512] + [S2L]) + Bggel$22])

21 129 22 11
+ 2f2(812[5 1+ Bgelst2l + B,g[522] + B LS N
B B B B
G R WIS RS i wIE
1 2 1 2



o poyr

B R DTN e

B LR RN

SLEAGR S I St

41
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It should be noted that although f, and f2 are shown factored outside the
matricas, in the evaluation of the coefficients by the Gauss quadrature fl and

f, are considered as parts of the integrals. For example f1A11[511] is
evaluated by

N au3

21 All[(gzz)¢i¢ﬁ]x

W W detd0
1 J=

['J

[ 12

¢l
[ ihsi®a®e =7
Q

Z Z

I 175125274y

where N is the number of Gauss points, Wy and W, are the Gauss weights, Z and

Z, are the G(auss points, and J0 is the Jacobian of the transformation,

J

WP :JNRKC1



CRiE Lo

R e T T TE R e L

T BT A

TR e

iy

TIRATTS M s

PART 2

ANALYSIS OF LAMINATED COMPOSITE SHELLS |
USING A DEGENERATED 3-D ELEMENT

W. C. Chao™ and J. N. Reddy
Department of Engineering Science and Mechanics

(This paper is to appear in Int. Jowwnal o§ Numerical Methods {n Engng.)

SUMMARY

A special three-dimensional element based on the total Lagrangian
description of the motion of a layered anisotropic composite medium is
developed, validated, and employed to analyze laminated anisotropic
composite shells. The element contains the following features:
geometric nonlinearity, dynamic (transient) behavior, and arbitrary

Tamination scheme and lamina properties. Numerical results of noniinear

bending, natural vibration, and transient response are presented to

illustrate the capabilities of the element.

INTRCOUCTION

Composite materials and reinforced plastics are increasingly used
in automobiles, space vehicles, and pressure vessels. With the increased
use of fiber-reinforced composites as structural e]emenfs, studies
involving the thermomechanical behavior of shell components made of
composites are recejving considerable attention. Functional
requirements and economic considerations of design have forced designers
to use accurate but economical methods of determining stressaes, natural

frequencies, buckling loads etc.

Graduate Research Assistant; pre:ently at the University of Dayton
Research Institute

43



44

Majority of the research papers in the open literature on shells
is concerned with bending, vibration, and buckling of * “ropic
shells. As composites materials are making their way into many
engineering structures, analyses of shells made of such materials
becomes important. The application of advanced fiber composites in jet
engine fan or compressor blades and high performance aircraft require
studies involving transient response of composite shell structures to
essess the capability of these materials under dynamic loads.

Finite-element anaiysis of shell structures in the past have used
one of the three types of elements: 1. a 2-D element based on a two-
dimensional shell theory: 2. a 3-0 alement based on three-dimensional
elasticity theory of shells; and 3. a 3-D degenerated element derived
from the 3-D elasticity theory of shells, The 2-D shell theory is
derived form the three dimensional continuum field equations via
simplifying assumptions. The simplifications require the introduction
of the static and kinematic resultants, which are used to describe the
equations of motion. The unavailability of a convenient general
nonlinear 2-D shell theory makes the 2-D shell element restrictive in
its use. The degree of geometric nonlinearity included in the 2-0 shell
element is that of the von Karman plate theory. In contrast to the 2-D
shell theory, no specific shell theory is empioyed in the 3-D
degenerated element; instead, the geometry and the displacement fields
are directly discretized and interpclated as in the analysis of
continuum problems.

Finite-element analyses of the large-displacement theory of solids
dre based on the principie of virtual work or the associated principle

of stationary potential energy. Horrigmoe and Bergan [1] presented
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classical variational principles for nonlienar problems by considering
fncremental deformations of a continum. A survey of various principles
in {ncremental form is presented by Wunderlich [2]. Stricklin et al.
[3] presented & survey of various formulations and solution procedures
for nonlinear statfc and dynamic structural analysis. The formulations
include the pseudo force method, the total Lagrangian method, the
pdated Lagrangian method, ana the convected coordinate method.

The only large-deflection analyses of laminated composite shells
that can be found in the iiterature are the static analysis of Noor and
Hartley [4] and Chang and Sawamiphakdi [5]. Noor and Hartley employed
the shallow shell theory with transverse shear strains and geometric
nonlinearities tc develop triangular and quadrilzteral finite
elements. Chang and Sawamiphakdi presented a formulation of the 3-0
degenerated element tor geometrically nonlinear bending analysis of
laminated composite shells. The formulation is based on the updated
Lagrangian description aind it does not include any numerical results for
Taminated shells.

From the review of the literature it is clear that first, there
does not exist any fintte-element analysis of geometrically nonlinear
trunsient response of Taminated anisotropic shells, and second, the 3-D
degonerated elzment is not exploited for geometrically nonlinear
analysis of laminated anisotropic shelis. In view of these
observations, the present study was tundertaken to develop a finite-
element analysis capability for the static and dynamic aralysis of
geometrically nonlinear theory of laminated anisotropic shells. A 3-D
degenerated element with total Lagrangian description is deveioped and

used to analyze varicus shell problems.
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INCREMENTAL, TOTAL-LAGRANGIAN FORMULATION OF A CONTINUOUS MEDIUM

The primary objective of this section is to review the formulation
of equations governing geometrically nonlinear motfon of a continuous
medium. In the interest of brevity Jnly necessary equations are
presented. For additioial details the reader 1s referred to References
[6-10].

We describe the motion of a continuous body in a cartesian
coordinate system. The sinultanecus position of all material points
(1.e., the configuration) of the body at time t 1s denoted by Ce»

and C0 and C denote the configurations at reference time t = 0 and

t+at
time t + at, respectively (see Fig. 1). In the updated Lagrangian
description all kinetic and kinematic variables are referred to the
current configuration at each time and load step. In the total )
Lagrangian description all dependent variables are referred to the
reference configuration. The updated lagrangian is more suitable for
motions that involve very large distortions of the body {(e.g., high-
velocity impact). The total Lagrangian is more convenient for motions
that invoive only moderately large deformations. In the present study
the total Lagrangian formulation is adopted.

Here we present a derivation of the equilibrium equations at
different time steps using the total Lagrangian approach. The

t t t
( X1 %o x3).

coordinates of & typical peint in C; 1s denoted by tg

The displacement of a particie at time t is given by

= tg - °§ or tu1 = tx1 —°x1 (M)

-

The inmcrement of displacement during time t to t + 4t is defined by

Jthat, ot (2)

v 17 W

i
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Figure 1

v

Motion of a continuous body in Cartesian coordinates



CRM R Tl e o e

s o Do TR N,

48

The principle of virtual displacements can be employed to write tae
equilibrium equations at any fixed time t. The principle, applied to
the large-displacements case, can be expressed mathematically as

t+at- t+at t+at
fv Pq ug buy dV + fv 51j &( e1j)dV°
0 0

= J‘ t+a tT
A

r t+at
j 8y dAO + ‘v F

Q 0

i Suy dvy {3)

where summation on repeated indices is imnlied; V,, A,, and ® denocte,
respectively, a volume element, area element, and density in the initial
configuration, 51j are the components of second Piola-Kirchhoff stress
tansor, Eij the comparents of Gresn-lLagrangian strain tensor, T; the
components of boundary stresses, and F1 are the components of the body
force vector; the supery: sed dots on us denotes differentiation with
respect to time, and § lenotes the variatianal symbol. In writing Egq.
(3) it is assumed that €53 is related to the displacement components by

the kinematic relaticns

t+at

13 g b, bty

t+at
IR m, i v

- % (t+Atui,j m,j) (3)

t+at

where uy g = auifaxj. The strain components £44 can be expressed in

+erms of current strain and incremental strain components as

t+at 21t t t t
13 77 (Vg * Y50 % Vngt Yn, g

1 t
+ 5 (u1 .+ + 'y

t 1
2] Jod m, i Um'j * umni umsj) ¥ 2 um,f um,j

z t€1j + (e1j + nij) (5)
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whers eij and "1j denote the linear and nonlinear incremental strains.

The stress components t+ﬂts

1] can be decomposed into two parts:
t+at - e ;
Si3° Syyt+ 3y (6) ?
where SiJ is the incremental stress tensor. The incremental stress
components Sjj are related to the incremental Green-Lagrange strain
components, gy ° 913 + UTE by the generalized Hooke's law:
315 = Cijkecier (7)
where ijkz are the components of the elasticity tensor. Using Eq. (4)-

{(7), Eq. {3) can be expressed in the alternate form

t+at " - A
I, ujouy dvy + Iv Ciaka (Bua®nig + mep88y309Y,
0 o}

t = r t
+ IV S1J Se .y dv, = 6N - ’ S1j 6744 av, (8)
0 0

where sW is the virtual work due to external loads.

FINITE-ELLEMENT MODEL

Gegmetry of the Flement

Consider the solid three-dimensional element shown in Fig, 2.

The coordinates of a typical point in the element cam be written as

n n .
- g d 1ot
X ji] 4i61052) 7 ()ggp * jiT v5(51052) 7 XPpotton

(9) g
where n is the number of nodes, wi(glgsz) are the finite-element
interpolation (or shape)} functions, which take in the element, the value
of unity at node i and zero 3t all other nodes, £y and £, are the
normalized curvilinear coordinates in the middle plane of the shell,

and ¢ is a linear coordinate in the thickness direction and x%, x;, and x;
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Figure 2 Geometry of the degenerated three-dimensional element
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are the global coordinates at node 1. Here Eys8ps and ¢ are assumed

to vary between -1 and +1. Now let (see Fig. 2)

i

o i
Vik = (xk)tcp - (xk)bottom (10)
~q i
e} = vy/lvil

where V;k is the k-th component of the vector y;. Then Eq. (3) becomes

X,]=

J

et 3

where hj is the thickness of the element at node j. For small
deformation, the displacement of every point in the element can be
written as

U, = I wjlug + (é{ieg - égieg)] (12)
where e; and 9; are the rotations about (loca!) unit vectors é] and éz,
respectively, uy, Uy, and ug are the disptacement components
corresponding to the global coordinates xy, xj;, X3 directions
respectively, and u;, u; and u; are the values of the displacements
(referred to x) at node i. In writing Eq. (12), we assumed that a Tine
that is straight and normal to the middle surface before deformation is
sti1l straight but not necessarily 'normal' to the middle surface after
deformatfon. The strain energy corresponding to stress perpendicular to
the middle surface is ignored to improve numerical conditioning when the

three dimensional elemant is employed. This constraint corresponds only



52

to a part of the usual assumptions of a two-dimensional shell theory.
The relaxation of the requirement that straight 1ines perpendicular to
the middle surface remain normal to the deformed middle surface permits
the shell to experience shear deformation - an important feature in

thick shell situations.

Displacement Field in the Element

t

In the present study the current coordinates Xy are interpolated

by the expression

tx1 = ji} wj(txg + % thy tégi) (13)
and the displacement by
t N t 1 t.J o,
4=z o5 '] + 3 any (P - %ed))) (14)
n -~ -
= o egtd 3 ehy (reted, - tedy (1)

Here tug and ug denote, respectively, the displacement and incremental
displacement components in the x;-direction at the j-th node. The unit

vectors é} and éz can be obtained from the relations

1 _ e, tai e L ES
gy = (Exx "e)/IEx “egl

3
a.' -~ -~
ey = fex Ce (16)
where EZ is the unit vector along the (global) xp-axis. If we assume

that the angles e} and 9; are very small, then we can write
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1 t

. 1.1 .
837 - HH Y 9% (17)

Substituting Eg. (17) into Eq. (15), we obtain

n
= J,.1 t2J od 4 tad g
u, Ji] aa:j[ui *+ 5 chj(- e5407 + "ey,83)1 (18a)
or
{u} = {T1{s} (18b)
where {u} is the column of ihree displacements at a point, {a} 1s the

J

cotumn of 5n (five per ncde) displacements: uys e{. sg, J=21,2,000,n5 i
= 1,2,3, and [T] is the transformation matrix defined by Egq. (18a).

Thus for each time step one can find the normal vectors from Eq. (16)
and (17), and the incremental displacements at each point from Eq. (18)

once the five generalized dispiacements at each node are known.

Element Stiffness Matrix

The strain-displacement equations (4) can be expressed in the

operator form
{e} = [Al{u,} (19)
where {e} = {e11 8,0 €33 2845 28,4 2e23}T, [A] is a function

of t

uoi,j’ and {uo} is the vector of the components of the displacement
gradient

{u} = {u]’] Uy Uy g3 Up g Uy 5 Uy 3 Uz g U3, u373}T (20)
The vectors {uo} and {e} are related to the displacement increments by
fug}b = [N}{ul = [NJ[TI{a] (21)
{e} = [AIIN([T]{a} = [B]{a} (22)

where [N] is the operator of differentials.

PR,

[
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Substitution of Eq. (22) into Eq. (8) yields

[ eglTItakdv, + (V1K 1+ Fry 1) {a} = 0t} - ToE}  (23)
Vo
where t[KL]. t{KNL], [R}, and {F} are the linear and nonlinear stiffness

matrices, force vector, and unhalanced force vectors:

Ik D=L FrerTie] Fislav, L Pl ] - I, t1817(s) Ersiav,
0 o

(F} =1 “81T(5)av, (24)

Yo

Here [S] and {§} denote the matrix and vector, respectively, of the
second Piola-Kirchhoff stress.

Since we are dealing with laminated composite structures, the
important thing is how to perform the integration through the
thickness. One way is to pick Gaussian points through the thickness
direction. This increases the computational time as the number of
layers is increased, because the integration should he performed
separately for each layer. An alternative way is to perform explicit
integration through the thickness and reduce the problem to a two
dimensicnal one. The Jacobian matrix, i1 general, is a function
of Eys Eos and ;. The terms in ¢ to the first power may be neglected,
provided the thickness to curvature ratios are small. This
approeximation implies that derivative of Xj with respect
ta 51, Eys and ¢ are substantially the same at either end of a mid-
surface-normal line. Thus the Jacobian {J] becomes independent of ¢ and

explicit integration can be employed. If ¢ terms are retained in [J],

e —— e A g
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Gaussian points through the thickness shouid be added. In the present

study, 1t is assumed that the Jacobian is fndependent of .

Time Integration

The Newmark integration scheme 1s used to convert the ordinary
differential equations in time, Eq. (23), to algebraic equations. In

the Newmark scheme, displacements and accelerations are approximated by
B0} = Ha) + at?{a) + 1 - 05} + 8T {ab1(at)"
Prab(a} = Fa) 1O - e}« T e (25)

where {a} is the generalized displacement vector of any paint
and 8 and v are the dimensionless parameters of the approximation. For
the constant average acceleration case, we have 8 = % and y = %, and for
the linear acceleration method 8 = % and vy = % (see [11}).

Substituting Eq. (25) into Eq. (23), and some algebraic

manipulation leads to
(a,fM] + Fkp) ()} < Botrp el 4 g )
s a )t} - 3ty St (28)
where

=L
=25 " 1 , and

. L
2 8t * X3

|

M) = § oy HITIT E(TT e
UO

i DAL b by e

e

BRTrr s TR [PE IR P
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[Py} =1, e (8} [TieY,
0

(g} = 1 o 01D TIay,
0

Py = 1o, “la}TIav,
0

(P} = 1. o ta} [T1dv, (27)
0

This completes the finite-element formulation of the 3.0 degenerated

element.

DISCUSSION OF THE MUMERICAL RESULTS

The results to be discussed are grouped into three major
categories: (1) static berding, (2) natural vibration, and (3)
transient response. A1l results, except for the vibrations, are
presented in a graphical form. A1l of the results presented here were

obtained on an IBM 370/308° computer with double precision arithmatic.

Static Analysis

Here we present a discussion of four example problems, all
involving shell structures.

1. Cylindrical Shell Subiected to Radial Pressure Consider a

circutar cylind-ical panel of the type shown in Fig. 3. The she’l is

clamped along all four edge: and subjected to uniform radial inward

A b e L S AT R

T T

pressure. The loading is nonconservative, that is, the direction of the
applied load is normal to the cylindrical surface at any time during the

deformation. The geometric and material properties are



supported
by a rigid

diaphram: u = w= 0

Figure 3  Geometry of the cylindrical shell used in Problem 1

of the static analysis.
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=50 mm, a=>b=25% mm, h = 3.175 mm,
6 = 0.1 rad, € = 3.10275 kN/mm%, v = 0.3
Due to the symmetry of the geometry and deformation, only one quarter of
the panel is analyzed. A load step of 0.5 KN/m2 was used in order to
get a close representation of the deformation path. Fig. 4 contains the
plot of central deflection versus the pressure. The solution agrees
very closely with that obtained by Dhatt [13].

2. Orthotropic Cylinder Subjected to Internal Pressure (onsider a

clamped orthotropic (E, = 20 x 100 psi, Ey/E, = 3.75, Gy,/E, =

0.625, v = 0.25) cylinder of radius R = 20" and length 20", and
subjected to internal pressure, p, = G.dT/n psi. A mesh of 2x2 nine-
node elements 1s used to analyze the problem, The linear center
deflecticns obtainea by the 2-D and 3-D elements are 0.0003764 in., and
0.0003739 in., respectively. These values compare favorably with
0.000366 in. of Rao [14] and 0.000367 in. of Timoshenko's analytical
solution [15]. The latter two solutions are based on the classical
shell theory.

In the large-deflection analysis the present results are compared
with those of Reference 5. A value of 2.5 ksi is used for the load
step, Figure 5 contains a comparison of the present deflection with
that of Reference 5, which used a 3-0 degenerated element based on the
updated Lagrangian approach. The agreement is very good.

3. Nine-Layer Cross-Ply (0°/90°/0°/...) Spherical Shell Subjected

to Uniform Loading Consider a spherical shell Taminated of nine Tayers

of graphite-epoxy muterial (E]/Ez = 40, GIZ/EZ = 0.6, G5 =Gy =
Go3s V12 =.25), subjected to uniformly distributed loading, and simply

supported on all 1ts edges (i.e., transverse deflection and tangential

S O STV
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@ 2-0 Element

o 2-0 Element

A Reference [13]
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Figure 4

Center defiection, w (in mm)

Load-defiection curve for the clamped cylindrical shell
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rotations are zerc!. A ccmparison of the load-deflection curves
obtained by the present elements with those obtained by Noor [4] is
presented (for the parameters h/a = 0.07 and R/a = 10) in Fig. 6. The
results agree very well withi each other, the present 2-D results being
closer to Noor's solution. This is expected because Noor's element is
based on a shell theory.

4. Two-Layer Cross-Ply and Angle-Ply {45°/-45°) Shells Under

Uniform ioading The geometry of the cylindrical shell used here is the

same as that shown in Fig. 3. The shell is assumed to be simply
supported on all edges. The matz2rial properties of individual lamina
are the same as those used in Problem 3. A mesh of 2%2 nine-node
elements in a q.a.ter shell is used to model the problem. The results
of the analysis are presented in the form of load-deflection curves in
Fig. 7. From the results, one can conclude that the angle-ply shell i=
more stiffer than the cross-ply shell.

The geometry and boun&ary conditions used for the spherical shells
are the same as those used in Probiem 3. The geometric parameters used
are: R/a = 10, a/h = 100. Thke load-deflection curves for the cross-ply
and angle-, 1y shells are shown in Fig. 8. From the plot it is appa-ent
that, for the load range considered, the angle-ply shell, being stiffer,
does not exhibit much geometric nonlinec.,ity. The load-deflection curve
o7 the cross-ply shell exhibits varying degree of nonlinearity with the
load. For load values between 100 and 150, the shell becomes ielatively

more flexible.

Natural Vibration of Cantilevered Twisted Plates

Here we discuss the results obtained for natural frequencies of

varfous twisted plates. This aralysis was motivated by their relevance
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layere cross-ply {0°/90°/0°/...) spherical
shell
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to natural vibrations of turbine blades. Consider an isotropic
cylindrical panel with a twist angle & at the free end. Table
contains the natural frequencies of a square plate for various values of
the twist angle 8 and ratios of side to thickness. A 2x2 mesh and 4x4
mesh of 9-node elements are employed to study the convergence trend.

The results of the refined mesh are included in the parentheses. The
results obtained by using the 4x4 mesh are lower than those predicted by
the 2x2 mesh, showing the convergence. The results agree with many
others published in a recent NASA report. Table 2 contains natural

frequencies of twisted plates for the aspect ratio of 3.

Transient Analysis

1. Spherical Cap Under Axisymmetric Pressure Loading Consider a

spherical cap, clamped on the boundary and subjected to axisymmetric
pressure loading, p,. The geometric and material properties are

R

H

22.27 in., h = 0.41 in., € = 10.5 x 108 psi, v = 0.3,

o = 0.095 Tb/ind, & = 26.67°, p, = 100 psi, ot = 1077 sec.

This problem has been analyzed by Stricklin, et al. [16] using an
axisymmetr-ic shell eiement. In the presant study the spherical cap is
discretizad into five nine-node 2-D and 3-D elements. Figure 9 contains
the plrt of center deflection versus time. The present solutions
obtained using the 3-D and 2-D elements are in excellent agreement in
most places with that of Stricklin et al [16]. The difference between

the solutions is mostly in the regions of Tocal minimum and maximun.

2. Two-Layer Cross-PTy Plate Under Uniform Load A cylindrical

shell witha=b=5", R=10" h = 0.1" is simpiy-supported on the four

edges, is analyzed. The she!l 1s laminated by 2 layers (0°/90°) and
n 4
exerted by a uniform step load P = 3P = §0. r yure 10 contains a plot

4
Ezh
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Table 1 Natural Frequencies of Twisted Square Plates

—_ 2 Eh3
w=usa/5570,0=—-—2- v = 0.3
12(1-v")
a Twist Mode

h Angle 1 2 3 4 5 6
g° *  3,4556 8.4110 272.0999 28.2089 31.9740 55.1625
t (3.4583)  (8.3353) (21.0238) (26.7465) (30.1454) (52.n0784,
15° 3.4359 10.2920 21,5199 27.2054 32.7430 44.5375
20 36° 3.3790 13,7014 19.9840 25,0943 34.3341 45,8987
(3.3694) (14.2222) (18.9795) (26.8104) (34.4591)  (45,7547)
45° 3.2908 18.1009 15.9097 23.5680 35.5332 45,7013
60° 6.1800  17.8319 15.5635 24,1842 36.1466 44,9152
g° *  3.33916 7.3948 10.8083 18.4930 23.7907 26,0552
**(3,3390) (7.3559) (10.883) (17.757) {22.769) (24.125)
15° 3.31713 7.4816 10,8053 18.4043 23.67h7 24,9474
{3.3170) (7.4504 (10.774) (17.771)  (22.694) (24.083)
5 30° 3.2538 7.7593 10.5248 18.409] 23.3734 24.6116
(3.2538) (7.7089)  (10.478)  (17.7¢5)  (22.471) (23.943)
45° 3.1570 8.1435 10.1270 18.3843 27,9126 24 .0566
(3.1569) (8.0728) (10.062) (17.79) (22.117) (23.651)
60° 3.0370 8.5855 9.67198 18.3089 22.3670 23.3533
(3.0366) (8.4814)  (8.5911) (17.730) (21.684) (23.160)

* 72%x2, 9-node mesh
**3x3, 9-node mesh
t 4x4, 9-node mesh

i A a9 B e £ AT R b b

et A

e ek bR e e
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Table 2  HNatural Frequencies of Twisted Rectangular Plates

{b/a = 3, 3x3 mesh of nine-node elements)

A

- W2 = -
W= WU , D ;EETT:Y? , v=20.3
a4 Twist Made
h Angle ! 2 3 4 5 6 7
T e 3.4150 20,8772  21.6i90 65,9706  66.2590 127.256
15° 3.4009 20,8798 22,1118 21,8032 68.0938 69.3253  130.284
20 3¢0° ?.3598  19.4048 25,3743 £0,2183  73.5180 77.4493  138.176
45° 3.2956 17.5289  29.8404 S5B8.2600 80.9488 88.5246  148,8375
60° 3.2136  15.743. 34.8827 55,892t 89.2028 100.7760 155.070
0° 3.3908 15.55] 19,124 21.065 59.924 61.949
15° 3.3161 TR.192 19.231 21.572 60.083 60.830
5 30° 3.3336 14.379 19.549 22.811 60.576 58,472
45° 3.2674 13.449 20.060 24 .404 41.360 55.874
60° 3.1833 12.548 20.741 26,139 62.416 53.381
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loading { load = 100 psi.)
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Figure 10 Center deflection versus time for two-layer

crcss-ply cylindrical shell subjected to
uniform step Joad
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of the center deflection versus time for 2-D and 3-D elements. The time
step used s 2t = 0.1 x 10'4 sac. The solutions obtained using the two
elements are in good agreement.

3. Two-Layer Angle-Ply (45°/-45°) Spherical Shell Under Uniform

Loading Consider a spherical shell with a =b = 10", R = 20" and h =
0.1", simply supported at four edges and is exerted by a uniform step
load. The shell consists of two layers, (45°/-45°). Figure 11 contains
the plot of center deflection versus time for P = 50 and P = 500 with
time step 0.2 x 10‘5 sec. For the small load the curve is relatively
smooth compared to that of the larger load. This is due to the fact
that the geometric nonlinearity exhibited at P =50 s smaller compared

~

to that at 7 = 500.
CONCLUSIONS

The present 3-D degenerated element has computational simplicity
over a fully three-dimensional element, such as those developed in [17],
and the element accounts for full gecmetric nonlinearities in contrast
tn 2-D elements based on shell theories. As demonstrated via numerical
examples, the deflections obtained by the 2-D shell element deviate from
those obtained by the 3-D element for deep shells. Further, the 3-0
element can be used to model general shells that are not necessarily
doubly-curved. For example, the vibration of twisted plates cannot be
studied using the 2-D shell element discussed in [12]. Of course, the
3-0) degenerated element s computaticnally more demanding than the 2-D
shell theory eilement for a given probiem. In summary, the present 3-D
element is an efficient element for the analysis of laminated composite
plates ard sheils undergoing large displacements and transient motion.

The 3-D element presented herein can be modified to include thermal

stress analysis capability and material nonlineariti. While the
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inclusion of thermal stresses is a simple exercise, the inclusion of
nonlinear material effects is a difficult task (see [18-20]). An
acceptable material model should be a generalization of Ramberg-0Osgood
relation to an anfsotropic medium. Another area that requires further
study is the inclusion of damping effects, which are more significant

than the shear deformation effects.
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PART 3

NONLINEAR MATERIAL MODELS FOR COMPOS:TE PLATES AND SHELLS

K. Chandrashekhara and J. N. Reddy
Uznartment of Engineering Science and Mechanics

SUMMARY
Nonlinear material models for laminated structures dre described
and their incorporation in the finite-element formulation of Taminated
plates and shells 1s presented. Numerical results for several sample
problems .. plates and shells are presented and validated by compariscn

with those available in the literature.

INTRODYCTION

Composite materials are known to exhibit significant non-
linearities in stress-strain behaviour even at Tow strains. Most of the
currently used matrix materials in composites have high strain
capahilities and the investigation of the bending of composite shells
undergoing Targe deformation, yielding is apt to occur and its effect
mu.t be accounted for in the analysis. The nonlinearity is not
tsotropic but varies with direction, as do the elastic properties.
Mocdels for such elastic-plastic behavior of orthutropic and anisotronic
materials are not well develop:d.

The total stress-strain laws are mathematically more convenient
than incremental laws but are physically not sound. The criterion
approximately describing the yielding of isotropic material! is that of
von-Mises. The simplest vield criterion for anisotropic material is
therefore one which reduces to von-Mises law when the anisotrony is
vanishingly small, Hill's yield criteria assumes relatively siiple ease

of orthotropic anisotropy, that is, there are thiee mutually orthogonal
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planes of symmetry at every point and the intersection of these glanes
are contidered as the principal axes of anisotropy. Fiber reinforved
composite structures almost invariably possess this kind of symmetry.
In the present study a nonlinear matsrial model 1is developed for
composite plates and shells, and numerical results for bending are
presented using the finite element method as eoxact solutions are not

tractable for elastic-pliastic p. "blems involving complex geometries.

MATERIAL MODEL
In the present model, Hill's anisotropic yield criteria for
elsatic-perfectly -plastic matzrial i3 used. Hi1l's [1] yield function
18,
fa5) = Flo, - a3)% + Glog - 01)2 + H{ay - 02)2
+ 2oy + Mo, + zna§2 =1 (1)

where F, G, H, L, M, N are parameters characteristic of the curre~t

state o ani.otropy given by,

1 1 1 1
2F=—-—+——...-——.. - 2L=__
N R?
1 1 1 1
26 ==+ 55 ; M=
Z2 x2 Y2 S2
1 1 1 1
2H="5+5 -5 3 2N=-3
xz v2 22 TZ

and X, Y, Z are the tensile yield stresses in the principal direction of
anisotropy and R, S, T, are the yield stresses in shear with resnect to
the principal axes of anisotropy.

[t should be noted that Hill's criteria ic besed on the assumption
that the superposition of a hydrostatic stress does not influence

yielding and there is no Bauschinger effect. Also, the yield criterion
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has this form when the principal axes of anisotropy are the axes of
references.

For a plane stress state in the 1-2 planre with transverse shear,
equation (1) reduces to:

f=(6+H)al + (F+ H)ob - 2Haya,

§3 + 2No2, = T (2)

+ 2lol. + 2Mo 2 =

23
For an isotropic material:
X=Y=12-= L
the yield stress in uniaxial * *nsion and according to the vin-Mises

yi2'd criteriz (2]

a
RzS:T:—-—E
/3

Therefore, F = G = H = —Ls and 2L = 24 = 24 = ; and equation (2)
20 a
becomes, ° °

o2 2 2 2 2., _ 2
f = h + Iy = 319, + 3(023 + 13 + 012) 9

whica is the familiar von-Mises yield criteria.
If the principal axes of anisotropy 1,2 do not coincide withthe
reference axes x, ¥, but are rotated by an angle ¢, then the strasses in

equation (2) zre obtained using the transformation as:

2 2
= + i +
o o cos 6 cy sin~9 cxy sine cose

2
= g fnz + 0876 - ne ¢
oy = 0 3 8 cy cos e axy sine coss

- ng +
Ugq = “Ty, sine Uyz nle)Y:]

L, = 6sa +
913 = %, C sa ayz sine

- ; 2 2
91p ° "2°x sing Cos9 + Ecy sing cose + axy(cos g - sin"e)

Elastic--Plastic Constitutive Equations

In the incremental theory of plasticity, the total strain increment

is the sum of the eiastic and plastic components
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de = de® + deP (3)
The elastic strain increment is related to the stress increment by
Hooke's law as,
de® = iDe]-lda (4)
where [D®] 1s the elastic modulus matrix which for orthotropic material

takes the form,

& V1252 . ) :

Tevqav T-viav
1221 12V21

Vqak E

2L i 0 0 0

12¥21 vi12V21
[08] = (5)

0 0 Gp3 0 0
0 0 0 G1g 0
0 0 0 0 612 |

The normality rule for an associataed plastic flw. is,
P-4 2f
dE dr 3

where dx 1s the nositive proportionality constant, evaluated using the
condition that during the plastic deformation, the stresses remain on

the yield surface so that,

The stress-strain relation in the piastic range is given by [3],

do = [D%P]de
where
(08428} (2% T o8y
[Dep] - {De] lac}{ao} : (6)

- oqafy T af
T (0% 26
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Hence the modification called for in the elastic-plastic analysis
would be solely the renlacement of the elasticity matrix [DZ] by the
elastic-plastic matrix [D®P] for the ylelded elements at the successive
stages of calculation. It should be noted that the [DSP] matrix is
populated and accordingly the transformation of the stress-strain
relation from the material axes, {{o} = [DEp]IZ{E})- to the shell
coordinate axes, ({a} = [DED]xy[e}), will be modified as shown in

Appendix I.

FINITE ELEMENT FORMULATION

Consider a laminated shell constructed of a finite number of
uniform thickness orthctropic layers, oriented arbitrarily with respect
to the shell coordinates (gl,szgc). The orthogornal curvilinear
coordinate system (gl,gz,c) is chosen such that £:- and §,- curves are
Tines of curvature on the midsurface z=0, and g-curves are straight
lines perpendicular to the surface 5=0.

For the small displacement Sanders shell theory which accounts for
transverse shear deformation, the strain displacement relations are
given by [5],

t—:1 =g, + CKf

where
1 axy R1 1 axy
o _ M Y 2%
2 Xy R2 2 Ay
au au 3 ap au 3u
_0=....._.].'.+_._g a =.__l-l- 2-C (._._2____1_
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au u !
zg = ¢1 + 3?% - §% :
¢, =%. (nl— - %;) Loy o= egde, (12 1,2)
Here R, (1 = 1,2) are the principal radii of curvature, uj are the
displacements of the reference surface along 51(53 = ) axes, by and 49
are the rotations of the transverse normals about the £s and §q-axes
respectively.
The stress-strain relations, transformed to the shell coordinates,
are of the form
{o} = [Q]{e}
where Q§j are the material properties of kth-1ayer (see Appendf - 1).

The principle of virtual work for the present probiem is given by

(k)

[I U{k)éel + ng) 652 + oék) de 4 6:4

1 =n

(=)
|

+ 0

6

n e

i

Kk
+ cé ) 655 - q&u3}aluzdgld£2]dc (7a)

[ INjse] + Npsel + Nesed + Mysicy + Masi, + Mgdn s
Q

0 0 .
+ Nysey + Nose - q6U3}ulazd51d£2 (7h)

where g is the distributed transverse load, N; and M; are the strosses
and moment resuitants. ‘
L %k
(N, M) = & J. o;(1,z)dy (i =1,2,6,4,5)
L k=1 i
k-1
Here (Ckﬁl"k) are the r-coordinates of the kth layer, and L is the

total number of lavers in the laminated <hell.



AR ECHER

81

It should be noted that the equations of equilibrium can be derived
from Eq. (7b) by integrating the displacement gradicnts in e? by parts

and setting the coefficients of 8u to zero separately. We obtafn

3N N
1 3 5
===+ == (N, + c M.} + == =10
Wy 3% 6 06 Rl
aN N
2 2 ,.4_
ax; M6~ C'e) * 5z, * |, = °
aN5 aN4 N1 N2 )
T T, T R TR, W o0
M| 2 1 2
.a...lli].'.+.z..M._6_N5=0
3Xy Xo
am aM
6 + —2 N, =0

ax1 ax2 4

The resultants (Ny, Mi) are related to (E?,x1) by,

N

4]

Q
A, ex + B «
1 1537 ey 5 21,2,6,4,5 (8)

Ma 2,p = 1,2,6 (with 2=1 for 1 = 1,2,6)

I}
8555 * Dapp

Here Aij! Bij and Dij denote the axtensional, flexurai-extensional

coupling, and fiexural stiffnesses of the laminate:

L
k) 2
(30813204 9) = © Ick 1 ol (aracdee (9)

In the unabridgad notation equation (8) takes the form:



(M1 ] | A1 A2 As Alg Ars 311 Bra Big | (e
N2 Az A2z Azs haa Az5 By Byp Bog 3
Ng A6 P26 Pes A46 Ase B1g Bze Bgp g
JYal, | 214 Boa Bas Aas Pas Bra Baa Bag 4 4 o)
Ng Ais B25 Asg Ags Ags Bis Bps Bsg 5
My Bi1 B1z 816 Big Bis Dpp D12 Dy “]
M2 B2 B2z Bz EBug Bas Dy Dpp Dpg )
Ms) [ B B2s Bes Ba6 Bse D16 %26 Deg ) | %6 |

The underscored coefficients are due to material nonlinear stress-strain
relationship. It should be noted that the coefficients Ay, Azg and Agg
defined ir 2quation (5) has to be corrected for the parabolic variacion

of the transverse shear stress, as

L Sk
- qlk) (k) (k)
(Rggrhagotss) = 2 [ (k034" + kikpUs k5085 Ne (1)
“k-1
where k are the shear correction factor.

A typfcal finite element is a doubly-curved shell element whose
projection i1s an isoparametric rectangular element. Over the typical
shell m(e), the displacements (U,,U,,U,,¢,,0,) ™2 interpolated by

1°72°73*71°72

expressions of the form,

N
- J = 1.3
(12)

v
¢1 = ji]_ ¢.l¢'j(x11x2) ., 1 =1,2

where mj are the interpolation functions, and ug and ¢g are the riodal

Al SR
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vgiues of Uj and by respectively. For & nine node quadratic element
the element stiffness matrix is of order 45x45.

Substitution of equation (12) into the virtual work principle, Eq.
(7b) ylelds an element equation of the form

[Ki{a} = {F} (13)
where {aA} = {{ul}, {uz}, {US}’ {¢1}, {¢2}}T. [K] is the element
stiffness and {F} 1s the furca vactor. In the interest of brevity, the
coefficients of stiffness matrices are included ir Appendix II.

It should ve noted that the underscored coefficients in Eq. (10)
are also redefined 1ike the shear coefficients in Eg. (11) and reduced
integration is performed for the terms arising in the element stiffness
matricas due to the presence of these coeffi:fents to avoid the so-

called locking effect.

NUMERICAL RESULTS

The Parameters of Anisotroby

When considering the modeling of & material system, one must always
survey the availability of material property data. In the present
theory, to describe fully the state of anisotropy, the six independent
yleld stresses in Hill's c¢riteria are needed to be kiown from uniaxial
tests. For numerical results, two typical composite materials namely,
boran/epoxy and graphite/epoxy are considered with the following

material constants:

Boron/Epoxy
£, = 30.0 x 10°% pst £, = 3.2 x 108 psi
- 6 - o -
G, = 1.05 x 10° pst , vy, = 0.21 , G,y =Gy3=6),
X =195 x 10°%ps! 3 Y =Z = 12,5 x 10° psi

R=5=T=18.0 x 103 psi
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Graphite/Epoxy

£, =18.88 x 10° ps1 5 E, = 1.376 x 10° psi

1z = 0.343 5 Gy3 =Gy

X=222.7x103pst 3 Y~ 2Z=6.35x 107 psi

6;, = 0.688 x 100 psi 5 v =6y, = 6,

R=S=T=9.92 x 10 psi

Selution Procedure

The solution of the elastic plastic problem is reached by an
incremental and iterative procedure. The direct iteration technique is
followed in the present analysis.

For each load increment, the system of equations are established by
assembiying the element matrices and the displacement {a} is obtained
from Eq.(13). Consequently, the state of straess and the value
of F(Uij) are calculated for each element If f < 0, then the process
1s elastic and the material matrix is ohtained from equation (5). If f
> 0, then the total stresses are readjusted so as to make f = 0 and the
elastic-plastic matrix is calcutated from Eq. (8). Once the convergerce
is achieved, the next load increment is applied and the iteration
procedure {s repeated.

If the application of a small load increment causes very large
deflection, the calculation is stopped and the Timit Tcad is considered

to be found.

Sample Problems

The present elastic-perfectiy plastic formuiation is applied to a

variety of bending probiems using 2x2 mesh of a nine noded quadratic

element., The shear correction factors k% = kg were taken to be 5/6.
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A1l computations were made using an IEM 3081 processor with double
precision arithmetic.

The results of the sample problems are presented and compared, if
possible, with the existing solutions to evaluate the present
formulation,

1, Cylindrical Shell Roof A cylindrical shell subjected to

uniform vertical loading is considered. Oue to symmetry, only a
quadrant of the shell was analyzed. The geometry and modeling of the
sheli roof are shown in Fig, 1. The material behaviour is studied with
the properties:

£, =y = 2.1 x 107 il 5 v = 0.0;
= 1.05 x 109 mn/m?

G G,, =06

12 B3 = G137 bp2
X=Y=Z=481My/ne 3 R=S=T =2.367 MN/m°
The results obtained for the vertical displacement at the central
paint of the free edge A versus loading was shown in Fig, 1. The
solution obtained compares well with those reported in Ref. [6]. The
apparent discrepancy can possibly be due to a different boundary

condition on the curved edges and the type of material model used.

2. Simply-Supported Square Plate A uniformly loaded simply

supported scudre plate was studied in the second example. The geometry
of the plate is shown in Fig. 2. The following material properties were
considered:

E, = E, =10 x 108 psi 3 v =0.3

1 2

6y, = 3.846 x 100 psi : G, =Gy, =G

23 13 12
X=Y=7=144,000psi1 ; R=S=T = 83,138.4 psi
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3.0 -
—— Present sotution
2.5 A -~~~ Reference [6]

. 2
0, = o, = 4.1 M/m

2.0 4

Py (kN/m?)

1.5 4~

Free edge

0.5

0.0

0 .01

Vertical deflection at point A (in meters)

Figure 1. Load-deflention curves for a cylindrical panel
under uniform transverse load
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== Present solution
- --~ Reference [7] {:,’
,/
Fa
a_ = 14,400 psi
_ 0 //////”’
4
|
y$
1 2a - - X
—— 22 ——
a =2 in.
h = 0.052in.
M= (o h?/4)
' T T T =
0.0 02 .03 .04 .05 .06

Center deflection, wD/(4MOa2)

Figure 2. Load-deflection curves for a simply-supported

square plate under uniform transverse load
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A non-dimensionalized plot of the centre displacement of the plate
versus the load are shown in Fig. 2. The results are compared with
those presented in Ref. [7].

3. Two Layer Cross-Ply [0/90] and Angle-Ply [-45/45] Simply

Supported Spherical Shells Figure 3 contains the results for the cross-

ply shell made of two typical materials, namely, boron/epoxy and
graphite/epoxy under uniform load. For a given icad, the shell made of
graphite/epoxy deflects more than the shell made of horon/epoxy which is
stiffer, but experiences small degree of nonlinearity.

Figure 4 shows nonlinearity exhibited by the graphite/epoxy cross-
ply and angle-ply shells under uniform load. Clearly, the angle-ply
shows greater displacement and also nonlinearity than the cross-ply for
the same load.

Figure § shows thg material behaviour for the boron/epoxy cross-ply
shell under concentrated load.

4. Clamped Cylindrical Cross-Ply (0/90) Shell Under Uniform Load

The geometry of the sheil is shown in Fig. 6. The shell is made of
grpahite/epoxy and the piot of displacement versus load are shown in

Fig. 6.

CONCLYS [ONS
A finite element model based on Sander's shell theory, accounting
for the transverse shear strains 1s used for the elastic-plastic
analysis of lamianted composite shells. The parameters of anisotropy
reflect the plast.c material response by correcting the stress
components in the Hi11's yield function. Numerical results are
presented for isotropic and Taminated shell of cylindrical and ;pherical

geometry to demonstrate the validity and efficiency of the present
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Graphite-epoxy

89

Boron-epoxy

} (0°/90°)

Linear

b =
1000 in.
1 in.

L LI |

Figure 3.

' T T —
4 6 8
Center deflection, w (in.)

Load-deflection curves for a simply supported
spnerical shell under uniform transverse load
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100 -
— Graphite-epoxy (0°/90°)
=== Graphite-epoxy (-45°/457)
80
60 A

- s - / 4"
PFo (s} -
/'/‘
40 ~ ////,//////j/,//i:ji:j/
~
-
P
-~

V4

/ /
20 - //V e -
p, s
=
//'/f
Vel
0
T T T 1 T
4} 2 4 6 8 10

Center deflection, w (in.)

Fiqure 4, Load-deflection curves for a simply supported
spherical sheil (see Figure 3 for the geometry}
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3.2
] Linear
5 4 Boron-epoxy (0°/90°)
1.6 7
-6
p0x10 b
0.8 4
i
0.0 —_
T . T 1 \
0 2.5 5.0 7.5 10.0 12.5
Center deflection, w (in.)
Figure 5. Lload-deflection curves for a simply supported sphericai shell

under point load at the center (see Fiqure 3 for the qecmetry)
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approach. For the isotropic case, the present results are in good

agreement with those available in the literature.
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APPENDIX I

Transformation of the stress-strain matrix in Equation {(6)

Let the elastic matrix in the material axes (1,2) be [DePllz and in
2
the body axes be [D p]xy

1 %2 43 G4 Gs
b
@2 &3 Cpq Cp5

ey -] = h

o “as Cas

C5§‘

Q11 Q12 Q3 Oy Q5]
\022\023 %24 %5
[0%P],, = [0 = 3 %4 %5
sym Qs s

~

| S

then the transformation [4] is given as, (with m = cose, n = sins)

Q11 = mac11 + ZmZnZ(Clz + 2C33) - 4mn(m2C13 + n2C23) + n4C22
012 = m2n2(C11 + sz - 4C33) + Zmn(m2 - n2)(C13 - C23) + (m4 + nq)C12
013 = m2(m2 - 3n2)C13 + mn[m2C11 - .'1.2C‘,._\2 - (m2 - nz)(C12 + 2C66)]

+ nz(mz - nz)C26

_ 3 3
Qgq = MCqq - MA[(2034 - €M ~ (Cpy = 2C3In] + Cpen

P 3

4 2.2 2 2 4
n Cl1 + 2m°n (Clz + 2C33) + 4mn(m C23 +n C13) +m sz
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_ 2 2 2 e ? 2 2 2
ﬂ23 = m-(m° - 3n )C23 + mnin C11 -m sz + (m® - n )(C12 + 2C33)]
. + né(an? - n?)c,,
Q,, = mC,, + MA[(Coe + 2Co )M + (Cy, + 2Coc)n) + Cqpen’
24 24 25 34 14 35 15
Qe = MCpe - MN[(Cyy - 2Coc)M = (Cip = 2Co,0n] - Cygn°
25 25 24 25 15 ~ ““34 14"
_ 2.2 2 2. /- 2 2,2
033 =mn (C11 + sz - 2C12) - 2mn(m“ - n ’(“22 - C33) + (m° - n%) C33
Q34 = (mC34 + nC35)(m2 - nz) + mzn(C14 - C24) + mn‘?(C15 - C25)

2

?
Qgg = (Mg = NCap) (0% = n¥) + MPn(C o = Cpp) + M7 (Cpy = )

- 2
044 = qu + 2mnC45 +n C55
Q,c = (m2 - nz)C -mn{C,, - C.g)
45 45 44 85
_ .2 2
055 =m CSS - 2mnC45 +n C44

The underscored terms are due to material nonlinearity for an
orthotropic material. Also note that the zonstitutive matrix is ne

longer orthotropic.
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AFPENDIX II

Stift.ess Coefficients

A PR I s 3 am s o e e e e

(k! =
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= b 15101« a 1520 +

AL ST+ A (15121 o (s2L) 4 A (522
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L’ A
s#)) + 32 5%

1

. %I (ny 1510180 1) e (15201415P2))-c B (1520)+(502))

12 11 22 21
Alz[S ] + A16[S | + A26[5 | + AGS[S ]

+ € (B,g[5%2] - B glsh) -

o' 26 o 65

- (A IS0+ a g 1570) + € B,gl5%0))

'Z

$02) + ageIs? - ¢ Begis?h)

565 56!

1

1

7o (Al
Ry Ry V12
B

9'R

12 11y [8%9]
Apg[S™e] + AL(isH] - ; ) + AgglS

]

Q0

21 22
AgglS™ 1 + ColByglS™] + ByglS 25 R,

[521]) + 4 [SOO]
1 2

5101 + A 5{320])

B
c (~%§ 15200 + 8 15%0) - £ (Rgsls%21 + Aggls®h)

(K141 = By, M1+ By (15121 + 15%11) + Bgls%2) +

21 22 1 10
CoDglS 7T + Dggls™e)) - ﬁf A55[S ]

* AgglSOl + Aggls) - & (Byls7] + 85 [s%2))

redQ
+ EpBSGlS ]
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B,, B8
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where

f Y, v,dx dx

3@’ iy
38 - [ —-1 dx , dx 0 . v
e

1377 o ax, 12 v 4
Qe Q

and the underscored terms are due to material nonlinearity.
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