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TNTRODUCT [ON

Large area yield forecasting for the United States and foreign
areas is an application of plant growth simulation models with great
potential. Forecasts from these models could be a powerful tool for
agricultural and economic policy makers in both government and industry.

Daily solar radiation data are required in most models., Until
recently, solar radiation had been measured at only a few locations
around the world. Because of the lack of available data, various surro-
gates for measured solar radiation are being developed and tested for
use in the models. Recently, satellite estimated solar radiation became
available for most of the Western Hemisphere on a “real-time" basis. If
satellite data can be used to produce accurate solar radiation estimates,
one obstacle to using simulation models for large areas or many loca-
tions would be removed,

Calibration of a particular crop growth simulation model would be
needed for area-specific factors: soil fertility, water holding capa-
city, varietal characteristics, fertilizer and pesticide applications,
planting practices, and other management practices. This calibration
also requires historical yield and meteorological data including solar
radiation data for that area. Because historical solar radiation data
are not generally available, a surrogate must be used. In this paper
five algorithms are compared for producing solar radiation surrogates
from commonly measured daily meteorological variables,

As used in this paper, a solar radiation "surrogate" will produce
solar radiation data which is similar to observed data in terms of

various statistical measures: similar daily mean, similar variability,

etc. These surrogates are not intended to accurately predict observed
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pata on any given day. The term “estimate" is reserved for accurate
gdaily predictions, and estimates of yearly yield.

3 SOLAR RADIATION ALGORITHMS

4 Five algorithms producing surrogate measures of solar radiation
sfre compared in this study. They are referred to as CE, SR, RO, Rl, and
¢R2. The CE algorithm (Cengiz et al, 1981) was developed using data from
7lColumbia, Missouri. It is composed of two types of functions. Location

glspecific functions require information on latitude. Daily functions

e R T T N T S A I Y VS .

glrequire the day of the year and daily maximum and minimum temperature
10{(Table la).
; 11 The SR, RO, R1l, and R2 algorithms are based on the Richardson
é 12/(1981) weather simulation model (Table 1b, c, d, e). The Richardson
§ 13/model uses a set of location specific constants to estimate daily rain-
§ 14/fall, solar radiation, and maximum and minimum temperature. These
z 15/constants would be available only for locations in the continental
% 16/United States. The solar radiation and temperature values are estimated
% 17/as daily deviations from annual curves. The annual curves consist of

18]long term average daily values., Separate curves are used for dry days
19{and for rainy days. Rainy days are defined as those days for which
20|rainfall has been estimated as being greater than zero. The algorithms
21fused in this study modified Richardson's model so that observed tempera-
22|tures and rainfall were used to estimate solar radiation,

23 The SR algorithm (Table 1b) was based only on Richardson's annual
24|curves for normal radiation, Separate curves were used for dry days and
25(for rainy days. There were no daily deviations from the annual curves,
26 To estimate daily deviations from the annual curve values for solar

27|radiation, temperature, and precipitation, the Richardson model uses
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10
11
12
13
14

16
17
18
19
20
21
22
23
24
25
26
27

correlations, one day lag correlations and a random component., The
correlations and one day lag correlations were reported to be approxi-
mately uniform for the continental U.S. (Richardson, 1981). It may be
acceptable to extend these correlations to other regions. In the RO
algorithm, the actual deviations of maximum and minimum temperatures and
the correlations were used to estimate the daily deviation of solar
radiation (Table lc).

The R1 and R2 algorithms also use Richardson's correlations among
daily deviations of temperature and solar radiation, These correlations
and the actual daily deviations of maximum and minimum temperatures are
used to produce daily deviations of solar radiation in the Rl algorithms
(Table 1d).

Because the daily variability of solar radiation estimated by Rl
was too small, the daily deviations of € were amplified for the R2
algorithm (Table le)., The amplification was moderate for deviations
above the annual curves but greater for deviations below the annual
curves, Measured data (DOE, 1979) from St. Cloud, MN; Rapid City, SD;
and Glasgow, MT were used to determine the degree of this amplification,
Richardson's annual mean values of solar radiation were changed by the
amplification. The new "annual mean values" were approximately 5%
greater than the actual values for dry days and 15% greater for rainy
days.

DATA
The SOLDAY (DOE, 1979) data set encompasses the period 1952-1974,
It consists of measured and rehabilitated (adjusted for known procedural
and instrumental’errors) daily solar radiation values and associated

maximum and minimum daily temperatures and rainfall for 27 U.S.
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12|R2 and the CE algorithms also occasionally estimated excessively high

13[values, the CE algorithm more so than R2,

14

1s|radiation at the top of the atmosphere and the percent possible

16|transmissivity of the atmosphere for each location.

17

1g8{values, the R2 algorithm values, and the CE algorithm values were
19/screened for values greater than maximum potential. This maximum was
20|defined to be the product of percent possible atmospheric transmissivity
21{(%T) and solar radiation at the top of the atmosphere (ETSR). Values

22| higher than this maximum were reduced to the maximum. This screening
23jalgorithm reduced the observed solar radiation values by an average of
24/0.7%, the R2 algorithm values by an average of 0.5%, and the CE algorithn
25(values by an average of 1,0%., Values from the RO, Rl, and SR algorithms

26/ were not affected by the screening,

27

glcompared over the seven stations, several things became apparent. Some
lobf the rehabilitated solar reiiation values were obviously too large

11{(greater than 85% of solar radiation at the top of the atmosphere). The

tations. The rehabilitated solar radiation data were viewed as

ground truth" for the purposes of this study, Seven stations (Table 2)
ere selected to compare the five algorithms producing solar radiation
urrogates for the rehabilitated solar radiation values. Three of the
even stations (St. Cloud, Rapid City, and Glasgow) had been used in the
evelopment of the RZ2 algorithm. Seven surrogate data sets, one for

ach station, were developed for comparison with ground truth (Table 2),

When the rehabilitated and simulated solar radiation values were

The SOLDAY (DOE, 1979) data also included daily values of solar

For use with the yield model, the rehabilitated solar radiation
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COMPARISON METHODOLOGY

The surrogates of solar radiation could themselves be compared to
the rehabilitated ground truth data to determine which was the best
estimate, These surrogates were developed solely for use in simylation
models, however. Because of this, it was felt that their impact on
yield prediction in the models would be the important criterion, The
best algorithm would not recessarily be the one which produces the best
estimates of ground truth but rather would be the one which produces
similar yield predictions when used in a simulation model.

The Ceres-wheat model (Ritchie and Godwin, 1983; Otter, Ritchie and
Godwin, 1983) was the model selected for comparison of the five solar
surrogates, This program requires initial parameter values for initial
soil water content, soil water retention characteristics, variety of

wheat (Triticum aestivum L.) planting density and depth, planting date,

and latitude.

Model estimates were derived using data from three of the SOLDAY
stations: St. Cloud, Minnesota; Rapid City, South Dakota; and Glasgow,
Montana. Both continuous cropping and summer fallowing practices were
used, Median planting dates for each year at each station were'estima-
ted using a spring small grains planting date model (Hodges and Artley,
1981). Daily values of rainfall and maximum and minimum temperature
were required for each station,

The solar radiation input was first supplied by the rehabilitated
ground truth data, Five additional mode) estimates were generated with
identical inputs for all variables except solar radiation, For each
of these, data estimated using one of the solar radiation algorithms

were used, The mode) was also run using unscreened values from the
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ground truth solar radiation and from the R2 and CE algorithms. On the
average, yields were reduced by less than 1% compared to model estimates
using screened data.

The resulting predicted yields using each of the solar surrogates
could then be compared to yields predicted using the ground truth data,
The algorithm which led to results most <imilar to that using ground
truth data could then be determined. The sensitivity of the model to
variations between the algorithms could also be studied.

For the algorithm comparison, the yearly difference (D) between
ground truth yield predictions (GTY) and predictions using each surro-
gate (EST) would be calculated:

D = GTY - EST.

The arithmetic mean of D would indicate the bias of the yield
estimates. Smaller bias measures would imply better surrogates. Bias
values would be calculated for each algorithm for each station for
contiruous cropping and for summer fallow, a total of thirty values.

It would also be important for the root mean square error, RMSE, to
be small to indicate that more estimates have a small D value than a
large one. This statistic is calculated by:

RMSE =\l02/n .

The standard deviation of the D values (SD) is also calculated.
This indicates what the RMSE would be if the bias were removed.

Maximum values of D (MAX D) and minimum values of D (MIN D) would
also be compared. As a final measure of the similarity between GTY and
EST, the Pearson correlation coefficient, CORR, would be determined.

COMPARISON RESULTS

Statistics used for comparison of yield predictions using each of

widgdy < ave o wroeoer

"

Fc Tty .



. _;&,.,4@;!’_ e

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

the five solar radiation surrogates are shown in Table 3, Mean and
standard deviations of yield predictions using the rehabilitated solar
radiation data (GT) were compared to predictions using each solar
surrogate.

In half of the cases, R2 produced yield estimates most similar to
those using ground truth data. SR was nearest in one third of the cases.
The CE algorithm had the highest bias generally. The SR algorithm had
3 standard deviation of the estimates nearest to ground truth, RO was
the poorest in terms of similar variation.

The RMSE values indicate that the R2 algorithm produced yield
estimates which had less variation around ground truth, followed by CE,
RO again was the poorest. If the bias were removed, the SD values show
that the CE algorithm would have been least variable. RO was, again,
the poorest. The bias, being a function of the model's sensitivity to
solar radiation, would be difficult to remove,

The range of the data, shown by MAX D and MIN D, indicates that for
St. Cloud, MN summer fallow, all of the algorithms except R2 produced
estimates which were too low in all of the years. For other areas, the
ranges are comparable,

The correlation values indicate the closest correspondence between

CE yield estimates and ground truth, RO and R2 did poorest using this

criterion,
Although “best" and “worst" surrogates could be detected, all were
very close, Each would be acceptable in terms of the correlation of

their predicted yields with those yields predicted using the
rehabilitated solar radiation data. Differences between indicators for

summer fallowed and continuous cropped were generally negligible,
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DISCUSSION

The magnitude of day to day variability of so =" radia 7n would be
more critical than day to day accuracy. This is due to the strong
effect of solar radiation on the modeled soil water balance. When ample
soil moisture is available, evaporation occurs at an "energy-limited"
rate proportional to the energy available from solar radiation. When
the modeled water content of the soil surface is depleted more than a
certain amount (U), direct evaporation of water from the profile
(excludi-g transpiration) occurs at a rate roughly proportional to the
square root of the number of days on which drying has occurred, This
"time-1imited" evaporation rate is generally much lower than the
energy~limited evaporation rate., On rainy days, 4/5 of the rainfall is
available for evaporation at the “"energy-limited" rate even if the sur-
face water depletion is greater than U, On the next dry day, moisture
that has entered the profile is evaporated at the "time-limited" rate if
the surface water depletion is greater than U, Consider that in a dry
situation when a small amount of rainfall occurs, moderate or high
solar radiation will cause near total evap: ~ation, However, low solar
radiation will allow most of the rain to enter the soil profile and be
subject to "time-limited" evaporation. Thus, on two days with small
amounts of rainfall, daily solar radiations of 700 and 100 langleys
respectively would allow considerably more water to enter the profile
than would two days of 400 langleys each,

In the Ceres-wheat model, carbon fixation is affected by solar
radiatior in a nonlinear fashion, For radiation amounts to 467
langleys/cay of intercepted light, carbon fixation is proportional to

light. At higher light intensities, no additional carbon is fixed.
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Uniformly moderate solar radiation (as opposed to highly variable solar
radiation) will result in more biomass accumulation, more leaf growth,
more water use, and under moist conditions, higher yield, However, with
dry conditions, more water stress and lower yield will result.
CONCLUSIONS

Although the differences between algorithms were small, the bias
and root mean square error indicated that the R2 algorithm would be
recommended as a solar radiation surrogate for use in simulatinn models.
When used in the Ceres-wheat yield model, the R2 solar radiation surro-
gate produced yield predictions closest to those using ground truth
solar radiation data, The CE algorithm also produced close estimates,
but had a larger bias which would be difficult to remove as it is a
function of the model's sensit vity to solar radigstior.

The R2 algorithm would also be recommended for v e - foreign areas.
The location specific coefficients for the R2 algorithm can be derived
from long term average monthly solar radiation values; these would be
available world-wide (de Jong, 1973). Only an assumption about the
average differernce between solar radiation on rainy days and on dry days
for a location would be needed for use ¢f this surrogate. Because of
this, the R2 algorithm would be recommended for use in areas for which
neither measured nor satellite estimated solar radiation values are
available. .
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Table 1, Equations for Solar Radiation Simulation Algorithms

a.

b.

CE Algorithm (Cengiz et al, 1981)

Solar Radiation = 49,03 + .1 *FIS - 7,26 *DBR
+ .06 * FIS * DBR
Location specific functions:
S = Sin (Latitude * n/180.)
T = Tan (Latitude * 11/180.)
C = Cos (Latitude * 1/180.)
SLD = Arcsin ((.5 + .007895/C + .2168875 *T)¥2) * 180./
SN = Sin ( n* SLD/24.)
A= (S * (46,355 * SLD - 574.3885) + 816.41 * C * SN)
* (.29 * C + .52)
B = (S *(574,3885-1.509 * SLD) - 26.59 * (C*SN) * (.29 * C+.52))
Daily Functions:

SI = Sin (2 n/365. * (JULIAN DATE + 10.5) - 1.5708)

"

FIS=A + B * SI

DBR

(TX - TN)* 5/9
SR Algorithm (Richardson, 1981)

Solar Radiation = RM (I) + AR * cos (.0712 * (Julian Date - 172))
RM (1) = Annual mean solar radiation for dry days
RM (2) = Annual mean solar radiation for rainy days
AR = Amplitude of annual solar radiation curve

For dry days, I = 1; for rainy days, | = 2
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Table 1 (continued)

RO Algorithm (largely based on Richardson, 1981)

Solar Radiation = SRL * SRSD + SRBAR
If Solar Radiation < 0.0 then Solar Radiation = 0.0
If Solar Radiation > 770, then Solar Radiation = 770.

Location specific constants:

TXM (1) and TXM (2) = mean annual maximum daily temperatures for
dry days (1) and wet days (2).

ATX = Amplitude of annual curves (dry day and wet day) daily
maximum temperature

CVTX = coefficient of variation of daily deviations of maximum
temperature from annual curves

ACVTX = coefficients of variation of X

TNM = mean annual daily minimum temperature
ATN = Amplitude of annual curve of daily minimum temperature
CVIN = coefficient of variation of daily deviations of minirum

temperature from annual curve

ACVTN = coefficient of variation of ATN

RM (1) and (2) = mean annual daily solar radiation for dry days
(1) and rainy days (2)

AR = amplitude of annual curves of daily solar radiation

CVR (1) and (2) = coefficients of variation of daily deviations
of solar radiation from annual curves for dry days (1) and
for rainy days ACVR (1) and (2) = coefficients of variation

of AR for dry days (1) and for wet days (2)
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1 Table 1 (continued)
Daily functions:
2 SRSD = ABS (SRBAR * (CVR (1) + ACVR (1) * DR))
3 SRBAR = RM (I) + AR * DR
4 A and b are matrices (3 x 3) derived by Richardson to describe the
5 intercorrelations between daily maximum and minimum temperatures
6 and solar radiation in the continental lUnited States,
7 I =1 for dry days or 1 = 2 for rainy days
8 ASRL = A (3,1) * PTXL + A (3,2) * PTNL + A (3,3) * PSRL
9 where PTXL, PTNL, and PSRL are TXL, TNL, and SRL values from
10 the previous day
1 DT = Cos (.0172 * (Julian date - 200))
12 DR = Cos (.0172 * (Julian date - 172))
13 TXBAR = TXM (I) + ATX * PT
14 TXSD = ABS (TSBAR * (CVTX + ACVTX * DT))
15 The above equations are from the Richardson (1981) weather simulation,
16 The following five equations were developed to adapt the weather

17| Simulator to estimate only solar radiation:

18 SRL = ASRL + B (3,1) ™ TXL + B (3,2) * ™™
19 TXL = (TX - TXBAR)/TXSD
20 If TXL > 1.5 or TXL < -1.5 then TXL = 0.0
21 TNL = (TN - TNBAR)/TNSD
29 If TNL > 1.5 or TNL < -1.5 then TNL = 0.0

23/d. Rl Algorithm
Same as RO algorithm except:

2 SRSD = .25 * SRBAR
2 TXSD = 9,
2
6 TNSD = 9,
27
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Table 1 (continued)

R2 Algorithm

Same as RO algorithm except:

Solar Radiation = Noise * SRL * SRSD + SRBAR

SRSD = .1 * SRBAR
TXSD = 14.
TNSD = 14,

where Noise = 4.4 for SRL > 0,0 on dry days

11.44 for SRL > 0.0 on rainy days

13.2 for SRL < 0.0 on dry days

34,32 for SRL < 0.0 on rainy days

If Solar Radiation > 770.1 y/day then Solar Radiation = 770,

RM (1) and RM (2) should be approximately 5% and 15% greater than
the actual annual mean daily solar radiation for dry days and

rainy days respectively,
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Oklahoma
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Midland,

TX

Spokane,

WA

Tabl("?. Statistics for comparison of solar radiation estimates to ground
measured solar radiation (GT)
2 .
Dry Days Wet Days
3 —EY—T_T_T_—LKTLTR'EC R R AR G7 CE RO Rl R SRBAR
421, 376. 413, 412. 423. 412, 258, 294, 241. 242, 257, L46.
mg: 801, 801. 727. 769, 801, 663, 801, 801. 637. 584, 792, 514,
397. 405. 402, 400, 398, 401. 309. 347, 304, 302. 309. B01.
md> 803, 815. 724, 763, 783. 660. 801, 817. 680, 629. 816, h35.
8
mesr 404, 383. 402. 398, 402. 399. 295, 301. 270. 267. 296. P68,
mié 805. 814, 738. 755, 772. 668, 806, 814, 734, 635, 813. b44,
mdd] 449, 401. 443. 443, 452, 439, 274, 325, 250. 255, 217.  p6O.
md£ 767. 766. 687. 707. 761l. 625. 744, 745, 537, 497, 642, k40.
13
Ciéa‘ 453, 418 442, 442, 446. 440, 288, 341, 282, 284, 291. P83,
m
mig 784, 790. 716, 735. 782. 648, 778. 789. 615. 545, 779. p78.
mdfi 502, 492. 507. S507. 531, 494, 360. 407, 365. 361. 402.  PS2.
mJ] 804, 804, 788, 790. 804. 693, 804. 804, 702. 621, 804, b33,
18
meay 449, 420, 448, 446, 450. 446. 231, 246. 215, 215. 210. P11,
max, 815. 816. 772. 815, 814, 695. 751, 8l6. 672. 640. 795. 555,
21
22
23
24
25
26
27
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Summer
6T
RC
R1
R2
Ct
SR

Table 3., Statistical Comparison of Yield Estimates
from the CERES-Wheat Model Using the
"Ground Truth" Data (GT) and Estimates
Using Each of the Algorithms for Solar
Radiation Surrogates in the Model

St. Cloud, MN
n =20
MEAN BIAS STD RMSE SO MAX D MIND

Fallow
3193 -- 601  -- -- -- -
3574 -381 625 445 237 -5 -1051
3591 -398 630 461 238 -40 -1084
3078 115 672 263 242 690 -250
3607 -253 629 288 142 -15 -615
3446 -414 587 480 248  -45 -1121

Continuous Crop

GT
RO
R1
R2
CE
SR

3150 -- % SO -
3508  -358 704 439 262 157 -1031
3530 -379 708 455 258 138 -1065
3060 90 669 277 268 690 -372
3356  -206 665 293 214 358 -596
3532 -382 722 474 288 229 -1098

CORR

1.000
.926
.926
<934
919
972

1.000
.929
932
917
947
918
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Summer Fallow
6T
RO
R1
R2
CE
SR

Continuous Crop

GT
RO
R1
R2
CE
SR

MEAN

2509
2441
2455
2451
2472
2306

1420
1329
1308
1386
1242
1319

Table 3 (continued)
Rapid City, SO
n =20

BIAS STD RMSE SD

- 108 - -
68 1483 596 606
54 1429 546 556
58 1336 484 492

203 1419 582 558
37 1437 525 536

- 1239 - -
90 1240 668 677
111 1240 676 682
3 1195 495 505
177 1186 646 635
101 1238 679 687

MAX D

1532
1347
1303
1340
1344

1653
1639
1030
1763
1590

MIN D

-706

-714
-708
-581
-716

-1732
-1764
-1670
-1547
-1779

CORR

1.000
931
.935H
.936
.939|
.936|
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1 Table 3 (continued)

2 Glasgow, MT

3 n=22

4

5 MEAN BIAS STD RMSE SD MAX D MIN D CORR

6 Summer Fallow

7 GT 1474 -- 1200 -- -- -- -- 1.000
8 RO 1410 64 1330 416 421 1652 - 330 +950
9 R1 1422 53 1338 404 410 1645 - 457 954
10 R2 1618 -143 1207 467 455 970 -1480 .92%
11 CE 1403 99 1323 420 418 1358 - 749 951
12 SR 1375 72 1247 410 414 1688 - 332 942

13/Continuous Crop

1a| 6T 780  -- 951 = o= . -- 1.000
15| RO 805 -25 1038 275 280 591  -707 .964
16| Rl 799 -20 984 253 258 756 -608  .965
17| R2 881  -101 1038 357 350 1083 -735  .942
18| cE 799 -20 1030 238 243 505 -648 973
19| SR 767 13 960 223 227 679  -351 .972
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