
/I/45_¢"R-17,_-_5s7

NASA Contractor Report 172557
NASA-CR-172557

I_E REPORT NO. 85-15 19850013680

A CONVERGENT SERIES EXPANSION FOR

HYPERBOLIC SYSTEMS OF CONSERVATION LAWS

Eduard Harabetian

__:+ " _ 'i_5Contract No. NASI-17070 ,.. ., :,_

February 1985 LANGLEYRESEARCHCENTER
LIBRARY,NASA

I-_MF_TON_,.VIRGINIA

INSTITUTE FOR COb_UTER APPLICATIONS IN SCIENCE AND ENGINEERING

NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

National Aeronautics and
Space Admin=stration

Langley Research Center
Hampton.Virginia 23665





A CONVERGENT SERIES EXPANSION FOR

HYPERBOLIC SYSTEMS OF CONSERVATION LAWS

Eduard Harabetian

Courant Institute for Mathematical Sciences

and

Institute for Computer Applications in Science and Engineering

Abstract

We consider the discontinuous piecewise analytic initial value problem

for a wide class of conservation laws that includes the full three-dimensional

Euler equations. The initial interaction at an arbitrary curved surface is

resolved in time by a convergent series. Among other features the solution

exhibits shock, contact, and expansion waves as well as sound waves

propagating on characteristic surfaces. The expansion waves correspond to the

one-dimensional rarefactions but have a more complicated structure. The sound

waves are generated in place of zero strength shocks, and they are caused by

mismatches in derivatives.
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I. Introduction

We consider the initial value problem for a system of conservation laws

given by

d

ut + _ (fi(u))X. = 0, u, fie ]Rn
i=0 i

(1.1)

u_(x 0, ,Xd), x0 < S(xI,''',x d)

and satisfying

(I) fi, S are analytic, u+, u_ are analytic across S; however,

u(0, x0,..-,Xd) may have a small jump discontinuity or a jump in

derivatives, not necessarily small, at S.

(2) Equation (i.i) is hyperbolic in the following sense: If we let

d

M(_,u) = _ mi 8fi _+i8u ' m E - {0}, then M has real eigen-
i=0

values %l(m,u) < %2(m,u) < ,''-, < _ (m,u) and a basis of eigen--- -- -- n

vectors r1(m,u),.-.,rn(m,u ). We denote left eigenvectors by £i(m,u).

(3) Equation (I.I) has either genuinely nonlinear or linearly degenerate

fields, i.e.,

either V _.-r. € 0
ul i

or uVki'r'1 -=0

for u in a neighborhood of u(0,r.0,-..,Xd) and Iml = 1.



(4) If M has multiple eigenvalues, then the corresponding field must be

linearly degenerate.

Our object is to obtain a power series representing a distribution

solution to (I.I).

The conditions (2), (3), (4) are in part dictated by the properties

characterizing the Euler equations. For a polytropic three-dimensional gas

flow they are given by

m m m __ m -- m m

p pu pv pw -oJ'--I
/

i

pu pu 2 + p puv puw 0 J

2 I
pv + puv + pv + p + pvw = 0 I

pw puw pvw pw2 + p 0 J

!

e u(e + p) v(e + p) w(e + p) 0 J
-- - t -- --x -- --y -- --z

with p = (y-l)[e-(p(u2" + v2 + w2)/2)J" where p = density, u,v,w =

velocities, e = total energy, and p = pressure [2].

The eigenvalues of M, in this case, are

m0u + mlv + m2w - c < m0u + mlv + m2w < m0u + mlv + m2w + c

where c = is the speed of sound in the medium. The first and third



fields are genuinely nonlinear and the corresponding eigenvalues simple. The

second field is linearly degenerate with the eigenvalue of multiplicity 3.

There is, however, a basis of eigenvectors so (2), (3), (4) are satisfied.

As a preliminary step we change variables to make the initial surface of

discontinuity flat. If

-S( ... d)x = x0 xI, ,x

Yi = x.l i = 1,2,...,d

t = t,

then from (i.i)

d

ut + (f0(u'Y))x + i=ll (fi(U))yi"= 0

(1.2)

u(0,x,y) = I u+(x,y) x > 0u_(x,y) x < O,

d

where by definition f0(u,y) = [ fi(u)_i(y), with 9(y) normal to S.
i=0

The variables t and x will play the major role in our expansion

with Yi as parameters varying in the compact set IYl _< R0 for some

The first term in the expansion will be given by the solution to the Riemann

problem
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ut + If0(u'y))x = 0

(i .3)

I u+(0,y), x > 0u(0,x,y)

u_(0,y), x < 0.

If the system is strictly hyperbolic and the initial jump is small, the

solution to the Riemann problem, due to P. D. Lax, is given in [i]. His proof

involves the construction of the map U(Y,gl,...,gn) : _n + l_n, with y as a

parameter, U(y,0,...,0) = u_(0,y). U(Y,gl,.'',g n) represents the state

obtained by starting from u_(0,y) and travelling g. time increments along1

the appropriate shock, rarefaction, or contact curves. Lax obtains the

solution by showing that U is invertible near g = 0. The solution u can

be expressed as u(t,x,y) = h(_,y) with h(ll(U_),y ) = u_ and

h(In(U+),y ) = u+. The result immediately extends to the case with multiple

eigenvalues in linearly degenerate fields if there is a basis of eigenvectors.

Our result in this paper is

Theorem I. Given u_(x,y), there exists s, > 0 small and C > 0

large, depending only on u_, fi' such that if u+(0,y) = U(Y, gl,..',£n) ,

U(y,0) = u_(0,y) satisfies

(a) Ici(Y)l d g,, i = 1,2,...,n

(b) if p is a genuinely nonlinear field then

either

(I) gp(y) # 0, for IYl J R0

or



(I') _p(y) -0, for lYl < R0, and

l%p(U_(0,y)).(U_)x(0,y) - %p(U+(0,y))-(U+)x(0,y)I >__C_,,

then we can construct a convergent power series which is a distribution

solution to (1.2).

The solution consists of regions of analytlcity separated by shock,

contact, and rarefaction waves corresponding to the ones in the Riemann

problem as well as sound waves corresponding to shocks of zero strength in the

Riemann problem (the case _ _ 0). It therefore gives a precise description
P

of the singularities propagating from the initial discontinuity (see Figure

I.I).

2nd field

rarefaction ist field 2nd field 3rd field

shock rarefaction sound wave

ist field 3rd field

shock no wave _ //J //
f

f
/

Riemann problem full problem

3 × 3 system

Figure I.I



Condition (b) prevents shocks or rarefactions in the Riemann problem from

degenerating to waves of zero strength within the parameter domain IYl _ R0,

unless they are identically of zero strength. The difficulty with transitions

to sound waves is caused by the fact that the two flat characteristic surfaces

joining together in the Riemann problem will not necessarily ensure that the

two curved characteristic surfaces in the full problem will likewise overlap

one another.

One can distinguish between two types of regions, the ones in the "gaps"

between waves where the solution is analytic in x and t and the ones in

the rarefactions where it is analytic in the variable x/t. However, unlike

the rarefactions in the Riemann problem, this last region is not a simple

wave, in that characteristics are not flat and the solution is not constant

along them.

The regions are separated by unknown surfaces where we impose the

following boundary conditions: At rarefaction and sound surfaces we impose

continuity across and given the existence of the coefficients of the expansion

derive that the surfaces are characteristic as formal power series. Here we

need condition (b) (I') to be able to determine the sound surface coefficients

uniquely. At shock surfaces we impose the Rankine-Hugoniot conditions. At

contacts we impose continuity of Riemann invarlants and that the contact

surface is characteristic. If the contact has a multiple elgenvalue, there

will be less than n equations imposed. Nevertheless, it can be shown that

they imply all the Rankine-Hugonlot conditions across the contact.

The problem (I.I) with initial data restricted to ensure the formation of

only one shock has been previously studied by A. Majda in [5] where the first

existence result for such systems with discontinuous initial data is given.



Theorem 1 answers a conjecture of R. D. Richtmyer on existence of

solutions to hyperbolic systems of conservation laws with piecewise initial

data [6].

The proof consists of two parts. First, the coefficients are determined

and estimated and, last, the expansion is shown to converge. In the first

part we make appropriate changes of variables (Section 2) which in the end

only amount to rearrangements of power series. One could, just as easily,

determine the coefficients of the original variables uniquely, but he would

face enormous difficulties at the convergence step. To obtain the

coefficients, we must solve algebraic equations in the gaps, (n-I) linear

ordinary differential equations coupled with one algebraic equation in

rarefactions and coupling boundary equations at the shock, contact,

rarefaction, and sound surfaces. This is accomplished in Section 3. To show

convergence we use the estimates obtained in Section 3 to carry out the

majorization argument in Section 4.

2. Expansions

Differentiating in (1.2) we obtain

(2.1) ut + A(y,u)u x + B(u).Uy = 0

_f0 _fl _fd ( ,...,u _.with A - _u , B = (_-- ,.-., _-_), Uy = Uy I Yd]

Let A have m distinct eigenvalues _i < _2 < "'" < % and letm

i = l,...,s have multiplicity _i and correspond to the linearly
Pi'



degenerate fields. We choose a basis of eigenvectors so that V% .r = 1 in
P P

the genuinely nonlinear fields and ]rpi ] = i in the linearly degenerate

fields. If _i > 1 then there is a choice to be made in picking a basis for

that eigenspace. We will adopt the following convention: In a linearly

degenerate field, rpi will refer to any of the eigenvectors rpi 'l'''''rpi'_i

m

that span the eigenspace. Similarly, in the expansion u = _ a. rj j'

Bi j=l

a r = _ _Pi,k r and = will refer to any of the componentsPi Pi k=l Pi 'k' Pi

"",_pi,_ iPi,l,

Consider a gap (Figure 2.1) bounded on the left and right by

_(t,y) = X_(y)t + _ _m(Y)t m and _(t,y) = _(y)t + _ _n(Y)t nm=2 n=2

respectively. We change variables as follows:

x = ¢(_,y) + ¢(n,y)

t = $+ n

y =y,

where $, n, y are the new gap variables.

As shown in Figure 2.1 x = _, x = _ are mapped into n = 0, $ = 0

respectively.



t n

x --

x=¢

/
S

Figure 2.1

We obtain that

_(x,t,y)
_(_,n,y) -- 1 0 ,

0 I

with _(_,n,y)_(x't'Y)the Jacobian derivative, and therefore

d _r_(x,t,y)

e_(_,n,y ) (0,0,Y0)) = _ - _ # 0.

Letting Unew($,n,Y) = Uold(X,t,y) , from (2.1)

(2.2) (¢nl - A + (¢+_)y'B)u_ + (-_I + A - (_+_)y-B)u n + (¢n-_)B. u = 0.Y



i0

The end gaps, the first and the (m+l) st (Figure 2.2) are bounded by only

one unknown surface.

1st _ ___(m +_
l)st gap

Figure 2.2

Let k, be a fixed number depending on u_ and fi, i = O,...,d. We

will later specify how large k, is.

In the first gap we let

x = _(n,y) + %,

t = n

y = y.

Similarly in the (m+l) st gap
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x = _($,y) + k,n

t=_

y = y.

We obtain from (2.1)

+ I (A - _ _y.B)u$ + B.u = 0(2.3) un -_, - Y

and

I (A - _$ - _y.B)u n + B.u = 0.(2.4) us + _, Y

For a rarefaction bounded on the left and right by _ and

respectively (Figure 2.3), we change variables as follows:

x - _(t,y)
S =

+-_

t-- t

y -_ yo

Remarks: The Riemann solution was an analytic function of x/t in

rarefactions. Expanding the formula for s above we get
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xlt- +It i x _+

s = (+-_)It= _+- _ t _+- _ + 0(t),

so s behaves very much like x/t.

The transformation above maps x = _, x = _ to s = 0, s = 1

respectively.

t

r

0 i s

Figure 2.3

In the new variables,

(_ - @)u t + {A - (@t + s(_ - @)t)

(2.5)

- (_y + s(, - _)y).B}u s + (_ - _)B.Uy = 0.

Remarks: As before Unew(S,t,Y) = Uold(X,t,y). Also, in (2.5)

A = A(u,y).
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The solutions to (2.2), (2.5) are linked by boundary conditions. There

are four types of boundaries: rarefaction, shock, sound, and contact.

At a rarefaction surface we impose continuity,

Uold(_(T,y),T,y].. = Vold(_(T,y),T,y]... In the new variables we get

u(0,T,y) = v(0,_,y)
(2.6)

u(l,_,y) = w(T,0,y) (see Figure 2.4).

_(T,y)
¢('_ ,y)IIIIII

Figure 2.4

At a shock surface we impose the Rankine-Hugoniot conditions. For v

and u on the left and right of a shock surface €, they are

(2.7) _T(u - v) - If0(Y,U ) - f0(Y,V)) + _y(f(u) - f(v)) = 0
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with u = u(T,0,y), v = v(0,r,y).

At a sound surface we impose continuity. For u and v as above and

a sound surface, we get

(2.7a) u(T,0,y) = v(0,T,y).

Consider now a contact surface _(t,y) = % t + ... in the linearly
Pi

degenerate field Pi" To obtain weak solutions we should impose (2.7);

however, if _i > I, we expect that not all of the n equations in (2.7) are

independent.

For each r, y we form the normal flux -f0 + _y f and the

corresponding map U(_l,-'-,Cm) , analytic in g and built from rarefaction

and contact curves only, such that U(0,.-.,0) = u(T,0,y). Then v(0,T,y) is

connected to u(T,0,y) through a Pi contact if and only if v(0,T,y) =

U(0,..-,Cpi,0,..-,0) for some _pi = I_Pi,l'''''€ ). A Riemann invariantPi'_i

for the pith field is a function R(u) such that V R-r _ 0 or
u Pi

equivalently R(UI0,...,0,m ,0,"',0)) = constant. There are exactly
Pi

n - _i independent Riemann invariants. To obtain one such set we consider

Zl(U),'--,Zn(U ) the coordinates of the inverse function of U and let Rj =

Zj, j _ Pi" Furthermore, we see that FRj'rk = 6jk at u = U(0,0,''',0) and

j,k _ Pi"

Lemma I: Th____en - _i + 1 conditions

(i) _T = % (u,y,_y)Pi

(2.7b)

(ii) Rj(u,y,_y) = Rj(v,y,_y), J _ Pi
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imply that %PI(u'y'_Y) = %pi(V,y,_y) and that the Ranklne-Hugonlot relations

(2.7) hold.

(u,y,_) is the pith elgenvalue of -A(y,u) + _.B(u).Remarks:

Pl

R.(u,y,_) is the jth Riemann Invarlant for the flux -f0(Y,U) + _.f(u) and3

hence analytic in all of its arguments.

Proof: Fix _, y and let v = v(0,_,y). Then v = U(€l,.'',_ m) for

some €l,-'',Cm," consequently, (2.7b) (il) _ €.3= 0 for J _ Pi" This

means v is connected to u through a Pi contact. Therefore

(u,y,_y) = % (v,y,_y) and % (u - v) = I-f0(Y,U) + _y f(u)) -Pi Pi Pi

I-f0(Y,V) + _y f(v)). The result follows from (2.75) (1).

The Euler equations have two well known Riemann invarlants for the middle

They are the pressure p = (y - l)le - Ip(u2 + v2 + w2)/2 )) and the
field.

A

normal velocity u = _x u + _y v + _z w with (_x' _y' _z) the normal to the

surface. If, as before, the surface is given by x = _(t,y,z) we have the

following three conditions at the middle contact

(i) St = - u0 + Sy v0 + Sz w0

- u0 + Sy v0 + Sz w0 = Ul + Sy Vl + Sz Wl

(li)

P(D 0, u0, vO, w0, e0) = p(Dl, uI, vI, wI, eI)
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with (P0' u0' v0' w0' e0)' (PI' Ul' Vl' Wl' el) the left and right states.

One easily verifies that (i) and (ii) above lead to the Rankine-Hugonlot

conditions for the Euler equations. A tedious computation gives the

eigenvectors

u m m m

I l

u - _x c u + _x c

rI r3 = c= v - _y c , v + _y

w - _z c w + _z c

^ ^

H - uc H + uc

^ A

e+p
corresponding to %1 = u - c, %3 = u + c, where the total enthalpy H -

P

and the sound speed c = . It can now be easily verified that

^ ^ 1
Vu -rI Vu .r3

Vp'r I VP'r3/

is invertible.

We seek power series solutions of the following form: In gaps

(2.8) u(_,n,y) = [ Umn(Y)$ m nn
m,n>O
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whereas in rarefactions

(2.9) u(s,t,y) = _ Uk(S,y)t k.
k>0

The first term in both series is obtained from the Riemann solution h(s,y).

In (2.8), u00(Y) = h(X_,y) = h(X_,y) since h is constant in its first

variable in gaps. In (2.9), u0(s,y ) is the solution to

(A(u0,Y) - (X_ + s(X_ - X_)))(u0) s = 0

which is the zero order relation obtained from substituting (2.9) into

(2.5). It follows that

u0 = h(s(X_ - X_) + X_, y) 0 _ s d 1

and that if we have a p rarefaction

Xp(U0,Y ) = X@ + s(X_ - X_)

(2.10)

(u0) s = (X_ - X@)rp(U0,Y ).

The various unknown surfaces have expansions of the form

_($,y) = X_(y)_ + _ _k(y)$ k
k>2

(2.11)

_(_,y) = X_(y)n + _ _k(y)n k •k>2
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Substituting (2.8) and (2.11) into (2.2) and collecting terms for _m nn we

obtain the following recursive relations

- + + A(u00)](n + = F[%_ A(u00)](m + l)Um+l, n [-I_ l)Um,n+l mn

with

Fmn = - [I(_ - X_)I - (A(u) - A(u00)) + (_ + _)y Blu _

(2.12) + I(_-- _) + IA(u) - A(u00)) - (_ + _)yBlU q

+ (_n - _)B'Uylmn"

Remarks: Fmn contains coefficients of u of order < m+n where by

definition the order of Umn is m + n.

m

= yIf we let Umn (_i)mn(Y)ri(u00,Y) , we obtain
i=l

- + (n+l) + %1] ( = (Fi)mn(2.13) (m+l)[%_ li](ai)m+l, n [-%_ =i)m,n+ 1

where (Fi)mn = £i'(F)mn, i = 1,2,...,m and £i(u00,Y), ri(u00,Y), %i(u00,Y)

are the left and right elgenvectors and elgenvalues of A(u00,Y). For the end

gaps (2.3) and (2.4) we obtain

i = (Fi)mn(2.14) (n + l)(=i)m,n+1 + (m + I) -_, [li - l@](ei)m+l,n

with

(Fi)mn = i (1@ - *q) + (A(u) - A(u00)) - ,y B u_ + Bu mn
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+ (n + I) 1 [ _ %_](_i)m,n+l = (Fi)mn(2.15) (m + l)(=i)m+l, n _, %i

with

= _ [_* I - (A(u) A(u00))- _y Blu + BUYlm n
(Fi)mn - i (k_ _) + - n "

Remarks: The reader will note the omission, for simplicity, of an index

on the L's and F's signifying the gap we're in.

To obtain the equations in rarefactions we substitute (2.9) in (2.5) and

collect the terms involving tk to get for k _ 1

0 u+i u0<+ )lu+u0
(2.16)

- (k+l)(_k+ I + S(_k+ I - _k+l) ) (u0)s = Fk

with

Fk = - [I(_ - %_ t) - (_ - %_ t)lut + (A(u) - A(u0)](u - u0) s

+ (A(u) - A(u0) - A'(u0)(u - Uo))(u0) s

(2.17)

- (_t - %1 + s((_t - %_) - (_t - %_))(u - u0) s

+ (_ - i)BUy -(_y + s(_- _)y])BUs]k.

Remark: _k' _k and Uk_ 1 are the highest order coefficients occurring

in Fk.
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m

If we substitute Uk(S,y) = _ (=i)k(s,y)ri(u0,Y) in (2.16) and use
i=l

(2.10), we obtain

(1_ - l_)k(ai)k + (li(u0) - lp(U0))(_i )s k

ml u0sl(2.18) + j=l_ (%i - %p)£i "r'3s+ £1"(A'(u0)r j (ej)k

- (k + l)(_k+ I + S(_k+ I - _k+l))(% _ - %_)_ip = (Fi)k"

To simplify (2.18) we note that by differentiating Ar = % r with
P P P

respect to Ur, multiplying on the left by £i' on the right by rj and

sumJning

£i(A'(u0)rj U0s ) = (%_ - %_)(%P - %i)£i Jrp rj + (%_ - %_)_ip V%p.rj

Dr

with Jr - P the Jacobian derivative. Since
p _u

dr.

£i "---!j= £i'Jrj )s = (%_ £i(Jrjds (u0 - %1) )rp,

instead of (2.18), we now have

(%i - %P)(=is)k + k(%_ - %!)(ei) k + (%_- %_) J#P_ Bij(ej) k
(2.19)

= (Fi)k, i # p.
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_ (VXp'rj) (=j)k
(k + I)(_¢- X_)(ap)k + (X¢- X_) jCp

(2.2o)

- (k + I)(X_- k_)(#k+ I + S(*k+l - _k+l)) = (Fp)k

where

Bi j = (ki _ Xp)_i.((jrj)rp- (Jrp)rj).

Remarks: Note that Bip = 0 which is why we let j # P in the sum in

42.19). Since =p doesn't appear in (2.19) we have a partial decoupling

which will prove to be helpful.

We now turn to expansions at boundaries and use equations (2.67, 42.7),

(2.7a), (2.7b). For rarefactions, from (2.6)

Uk(O,y) = V0k(Y)

uk(1,y)= wko(Y).

For shocks we substitute series for u, v, { into (2.7) and collect the

coefficient of Tk to obtain for k _ 1

(2.21) (k + l)¢k+l(uO0 - Vo0) + k¢(ukO - vOk) - (A(Uoo)UkO - A(Voo)Vok) = gk

with



22

(2.22) gk = - {(¢T - %¢)((u - u00) - (v - v00) )

- [(f0(u) - f0(u00) - A(u00)(u - u00) )

- (f0(v) - f0(v00) - A(v00)(v - v00))]

+ Cy(f(u) - f(v))}k.

Remarks: The zero order coefficient of • is

%@(u00 - v00 ) - (f0(u00) - f0(v00)) = 0

which is the Rankine-Hugoniot condition for the zero order Riemann solution.

To simplify (2.21) we recall that for a p shock

= _i "'''gp " = Sl €2 " " gp-i ""u00 U( , ,0,.. ,0) and v00 U( , , • , ,0, ",0) with

dgd U(Sl,...,Sp_l,0,0,...,0) = rp(V00) [I]. As a result we have
P

(i) £i(Voo).rj(Uo0)= O(Cp), if i # j;

(ii) £i(Voo).ri(Uo0)= 1 + 0(_ )P

(iii) £p(VOo)'(Uo0- Vo0) = _p + 0(_2)p

(iv) £i(Voo)-(Uo0- Vo0) = O(€_), if i _ p.

By substituting

= [ (_j)k0 rj(u00)Uk0 i

V0k = _ (Sj)0k rj(v00)
3
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in (2.21) and using (1), (ii), (iii), and (iv) above, we get

(k+ I)%+I O(C2p)+ (X+- Xi(Uoo))(=i)kO(1+ O(_p))

+ O(gp) _ (),€- %j(Uoo))(aj)kO
j_i

_ (kd_ - Xi(Voo))(_i)Ok = (gi)k, i _ p

and

(k + l)¢k+l(e + O( 2P _p)) + (X¢ Xp(UOo))(ap)kO(l + O(Cp))

+ 0 (_p) _ (_€ - _j(Uoo))(aj)kO
jCP

- [%€ - Xp(VOo))(Bp)Ok = (gp)k"

Since

Xp(UO0) = Xp(VO0) + O(Cp)

- € O(€_)k¢ Xp(UO0) = --_-P-+

E

x. - Xp(Voo): p + o(2p) [1]

we get

(k + l)_k+10(€_) + (_- _i(Voo))((ai)kO - (Bi)Ok)

+ O(_p)Si.(a)k 0 = (gi)k, i # p
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(k + l)_k+iI_p + 0(_)) + 0(Cp)Sp'(_p)kO

+ 0(Cp)T'(Bp)0k = (gplk

where S3.= (SjI,Sj2,'",Sjml, j=l,'",m, T = (TI,''',Tml are vectors bounded

independent of € near zero. S and T will change in the next equations,
P

but they will remain bounded. Solve for (k + l)_k+ I in the second equation

to get

" (gp)k"(2.23) (k + l)_k+ I = Sp (a)k0 + T'(B)0k + 1
P

Substitute in the first equation and divide by _ - ki(Vo0) to get

(2.24) (ai)k0 - (gl)0k + 0(_p)Si'(_)k0 + O(_pIT'(B10k = Pi'(g)k ' i _ p

where Pi are bounded independent of ap as well.

Let us now consider a sound surface _ = k_t + ,''', where

k_ = kp(UO0) = kp(V00) and X and _ are neighboring surfaces (see Fig.

2.51. Expanding (2.7a) we simply get

Uk0(Y) = V0k(Y)

which in coordinates, since u00 = v00, gives

(2.24a) (=i)k0 = (6i)0k"
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x

Figure 2.5

The surface coefficients _k can be recovered from the gap relations

(2.12). Focusing on the pth equation, if we first let m = n = 0 in

(2.12), (2.13) we get

(_ - X = -(l_ £p.B(u00 .p)(_p)10 - _) )(u00)y

Similarly, in the left gap

(_ - XX)( = -(_ £p'B(v00) •p 8p)Ol - XX) (VO0)y

Since u00(Y) = v00(Y) it follows that (ep)lO = (Sp)01 is satisfied as a

result of the gap equations. Next, letting m = k-i > O, n = O, note that

from (2.12)

Fk_l, 0 = k{k u01 + k_k B0 U00y + Fk_l, 0

where Fk_l, 0 contains only lower order coefficients of _. Hence, from

(2.13)
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k(X_ - %p)(_p)k0 = k_k %p'(uOl + B0 U00y) + %p _k-l,0"

Referring to the original variables, x and t, for a moment

p.UOl = _p.[Ut(0,0) + k_ Ux(0,0) ]

= £p.[-A(Uoo)Ux(0,O) + k_Ux(0,O) - B(u00)Uo0y]

= (%_- %p)%p.Ux - %p'Bo U00y

where we denote ux = Ux(O,O) in the gap. Hence,

(2.24b) (_- %p)(k(=p)kO- klk %p'Ux) = _k-l,0"

Similarly, in the left gap

(2.24c) (%p - %x)(k(Sp)0k - k_k %p'Vx) = _0,k-l"

Therefore if %p(Ux - Vx) _ 0 the boundary condition (=p)kO = (Bp)0k will

determine _k" To establish %p(U00)(Ux - Vx) _ 0 we let _ be a shock

surface, for example, and w the function in the gap to the right of u.

Expanding the shock relations

_t(w(i,t) - u(_,t)) - [fO]jump + _y[g]jump = 0

at _ at

and collecting first order terms we easily obtain
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£p(U00)u x = £p(W00)Wx + 0(_,).

Crossing a rarefaction will yield the same estimate by switching the sides and

therefore reducing it to the shock case. Crossing a sound surface

u(_,t) = v(_,t), again gives tile estimate above and, therefore, going through

all the boundaries

£p(U00)u x = £p (u+(0 ,0) )(u+)x + 0(E,)

£p(V00)v x = £plU_(0,0))(u_) x + 0(€,).

If C is large enough in (b)(l") of Theorem i, we obtain the desired

condition.

It remains to expand at contacts in (2.7b). Equation (2.7b) (ll) yields

V Rj(u00,Y,0).Uk0 - V R. = (Lj)ku v j(v00'Y'0)V0k

where

(

(Lj)k = - l(Rj(u,y,¢y) - Rj(u00,Y,0)

(2.25a) - FR.j(u00,Y,0)(u - u00)) - (Rj(v,y,@y)

- Rj(v00'Y'0) - VR'(v00'Y'0)(v - )I
j v00) k"

Here we used the fact that Rj(u00,Y,0) = Rj(v00,Y,0) , i.e., the initial data

are connected through a contact. If we let Uk0 = [ (ai)k0 ri(u00) ,
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V0 k = [ (_i)0k ri(v00 ) and use formulas (i), (ii), (iii), and (iv) derived

for the shock expansions we get

- ( )Sj(B)0k = (Lj)kVRj(u00).ri(u00)((_i)k0 (Bi)0k) + 0 SPi
i#P i

with Sj bounded independent of _ +0. Since (VRj(u00)'ri(u00)),Pi

i, j _ Pi is invertible

/ \

(2.25b) (ai)k0 - (Bi)0k + 0[g ]Si(_)0k
Pi'(L)k

Pi

with Si' Pi bounded matrices and

(L)k = ((Lj)k, J # pi).

From (2.7b) (i)

m ()(2.25c) (k + l)_k+ I = _ iVu %pi(U00,Y,0)'rj(u00))(_j)k0 + Lpi kj=l

for k > i.

At this point we should be able to show that all coefficients can be

uniquely determined from the formulas established so far. We will do it in

the next section. To conclude this section, we derive from the conditions

already imposed that the rarefaction and sound surfaces satisfy a

characteristic equation.
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We have

Lemma 2: Suppose there is a unique formal power series solution. If

is either a p-rarefaction surface or a p-sound surface, then

(2.26) (_t(t,Y))k = (%p(U,y,_y)) k = (%p(V,y,_y)) k

with u, v the solutions near _.

Proof: We give the argument for rarefactions, the one for sound surfaces

following the same lines.

Suppose u is the function in the rarefaction to the right of i and

v is in the gap on the left.

Let

Uold(X,t,y) = H(_,t,y)

Vold(X,t,y) = G(_,t,y).

--_t y) and H(o,t,y), G(o,t,y) satisfyThen Unew(S,t,y) = H(s( ) + t' '

(2.27a) tHt + (A - ol)H ° + tBHy = 0

(2.27b) tGt + (A - ol)Go + tBGy = 0

and
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Differentiating and multiplying by t

_Yi _Yi
+H -G +G

Hy i o t Yi o _ "

Using (2.27a) and (2.27b) with s = _ the first equation leads to

The second equation, after multiplying by tBi and adding, yields

BH + tBH = _ BG + tBG .
-y o y y o y

Hence we obtain

(_t - A + _y B)H o = (_t - A + _y B)G o.

Multiplying on the left by £p(H(_,t,y),y,_y) = £p(G(_,t,y),y,#y), we get

(_t - Xp(U'y'_y))£P'(Ho- Go) = 0.

Now (£p'(H o - Go))0 = £p(h(X¢,Y),Y)'ho(%_,Y) = I, where h(o,y) = H(X¢,0,y)

is the Riemann solution, and since G is in the gap (Go) 0 = Go(%_,O,Y) = O.

Also ho(%_,y) = rp(h(%_,y),y). Therefore, since

k-I

(_t - Xp(H'y'_y))k + y_ (_t - Xp)_(%p'(Ho- Go))k-_ = 0_=0
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and (_t - _p)0 = 0 ourp claim (2.26) follows by induction.

Remark: Note that HI_,t,y ) = u(0,t,y).

Expanding (2.26) we get

t2
%_ + 2_2 t + 3_3 + .-. + (k + l)_k+l tk + ...

= %p(U0,Y,0) + Vu % .(u- + _y)P u0) Lp(u,y,

where Lp(u0,Y,0) --0 and Lp is quadratic in (u - u0). Hence, for k _> I

we get
m

(2.28) (k + l)_k+l(y ) = _ (Vu _p(0,y).ri)(_i)k(0,y ) + (Lp)k.i=l

Remark: (Lp(u,y,_y))k contains Uk-l' _k as highest order

coefficients. In fact

(2.29) (Lp)k = I%p(U,y,_y) - %p(U00,Y,0 ) - Vu %p(U00,Y,0).(u - u00)) k.

Formulas (2.28), (2.29) are, in fact, expansions valid for rarefactions,

sound, as well as contact surfaces (see (2.25c)).

3. Linear Estimates

In this section we derive a priori estimate for the linear system of

equations satisfied by the kth order coefficients with inhomogeneous terms
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depending on lower order coefficients. These estimates will help in

determining the coefficients uniquely and subsequently in showing the series

converges.

In (2.13), to obtain coefficients of order k, we take m + n + I = k

(k >_ I). As (2.20), (2.23), (2.25c) suggest, we would expect to determine

_k+1 for shocks, contacts, and rarefactions at the same time we determine

ak'S. For sound surfaces we can only determine _k from the boundary

conditions, but (2.28) shows that, once determined, the coefficients #k can

be estimated at the previous step.

Consider the diagram in Figure 3.1 showing the m fields with the gaps

between them. We let dotted lines signify the various waves. For example, in

Figure 3.1 we collapse a p-rarefaction to a dotted line with arrows pointing

at corresponding faces.

We now want to consider the coefficients in the gaps at the boundaries of

the gaps. From (2.8), _k0 are the coefficients of the expansion at n = 0,

the left boundary of the gap. Similarly, a0k are the coefficients at the

right boundary. In the first gap we only consider a0k , at the right boundary

and in the (m+l) st gap akO , the left boundary.

P

2 P I

I.. m\

\ "/ /
! /

Figure 3.1
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Since there are m boundaries, each with 2n components on both sides, we

get a total of 2mn unknown boundary components. They satisfy a linear

system of equations given by the gap equations (2.13), (2.14), (2.15) and by

boundary equations: rarefactions (2.20), shocks (2.24), sound (2.24a), and

contacts (2.25b). Note that the pth equation at each boundary determines

the surface coefficient. For example, at a sound surface, Ik is determined

from the pth equation at the boundary and, in view of (2.24b), (2.24c), it

can be solved in terms of lower order terms and hence substituted back into

the equations (2.12) for the neighboring gaps. (For k = 1 the pth

equation is satisfied automatically.) As a second example, the pth equation

at the boundary of a rarefaction region (the continuity condition) determines

(_p)k(0,y), (_p)k(l,y). They, in turn, determine _k+l and _k+l by

evaluating (2.20) at s = 0 and s = I. Fortunately, as we mentioned in the

remark after (2.20), we can solve (2.19) independent of (=p)k0" We may

therefore only consider the n - _p equations at the p boundary. If p is

a genuinely nonlinear field Bp = 1 and we have n - i equations. The total

number of equations for the 2mn unknowns is

m

( _ n - _i) + (m + l)n = 2mn.
i=l

The first term above gives the total number of equations from boundaries, the

second one gives the total number from gaps. To show the system has a unique

solution it suffices to prove the linear mapping is one to one. This will

follow from the estimates ahead.

We now divide the unknowns into two groups ak and bk. If we are at

the pth boundary (dotted line), we count (el,...,=p_l) in the gap on the
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. ->

left and (ap+ l,..-,am) in the gap on the right as part of a and a

consists of exactly these components. The rest forms _ (see Figure 3.2).

P
. . p+ i

(_l'''''ep) E b (_I'''''_p) E a

(_i''" '_p-i ) _ _(_D+l'''''am) E _ ((_ . / /

J P+I' """'_m)E_

((_P'"""'(_m)J _ //

Figure 3.2

.

It follows that a has n.(m - i) components and _ has n.(m + i)

components.

+

We will be able to estimate a from the boundary equations and _ from

the gap equations. In rarefactions a is the characteristic component
P

satisfying the algebraic relation in (2.20). Note that since the boundary

.

values of a belong to _ and not a, they will be estimated from the gapP

equations and not from (2.20).

A. Estimates from gaps

We consider the gap between the pth and (p+l) th fields bounded by

surfaces _ and _ on the left and right respectively. Lax's entropy

conditions give _p+l(U00) _ k_ > k_ _ kp(U00 ). We get equalities at the ends

for sound or rarefaction surfaces. From (2.13) we get
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fn + l_fX¢ - Xi I i i < p

(ai)m+l, n = _m---_)_X_ X.)(_i)m,n+l + m + 1 X_ - I. (Fi)m,n --i i

(m + I_ Xi - X$ i 1 i > p+l

(=i)_,n+1_-7-YJ(hi _)(=i)m+1,n_ hi- _+(Fi)m,_

Let ____$- hi i < p- xi

Pi =

%i - h_
i _ p+l

_ - hei

Then there exits P independent of _, near zero but depending on u (u),

fi such that 0 < Pi(U) _ P < I for lyil _ R0 where u+(y) =

U(gl,_2,...,_m) and l_il _ €,, with _, to be chosen• We claim we have

(=i)m+l,n p_+l(m + n + l)(_i)= n Ok

+ p_.(n + l)(n + 2)...(n + m) 1(m + l).m...2"l X$ - hi (Fi)0,m+n

(3 la) + p_-l.(n + l).-'(n + m - i) _ (Fi)l,m+n_ I + ...• (m + l).m.''2

(n + i) 1 (Fi)m I + i I
+ Pi (m + l)-m kS - Ii - ,n+l x$ - xi m + I (Fi)m,n

for i < p
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and

n + l]C=i)_On+icm +

(_i)m,n+ I = Pi k m

(3._b) + Pi _or t >.P+I"

i I (Fi)m, n

"" _i" _i

This can be provedinductivelyon m, say, by substitutingformulas(3.1a)for

into the recursiOn formula for ( i)m+l, n

(_i)m,n+l convenience we let (_i)m n be the sums involving the
For notatiOnal Hence (3.1a) and (3.1b)and (3.1b) •

Fi- s on the rlght-hand side of (3.1a)

can be writtenas
i<p

+ C_i)m,n
m+llm+n+1= Pi n

1=i)._+1,n
i > p+l

(3.1c) u+l[m + n + l_(_i)k, 0 + (Fi)m,U -

(_i)m,n+1 = Pi m

which gives
i<p

= pki(_i)O,k+ (Fi)k-l,O
13.2) (_i)k, 0

i > p+l.

+ (Fi)O,k-I
= _(_i)k ,0

(3.3) (_i)o,k

In the end gaps we have
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Ist gap Unew(0,_,y) = Uold(%,_,0,y) = u_(%,_,0,y),

(m+l) st gap Unew(q,0,y) = Uold(%,q,0,y) = u+(%,q,0,y).

/ \

Let (u+(%*_'0'Y))k = _ _±i_kri(u+00)_I with u+00 = u+(0,0,y). Then from

(2.14) and (2.15) we get the following relations for the end gaps, ist gap,

and (m + I)st gap respectively:

n+IIm + n + I)() + (Fi)m,n all i(3.4) (ai)m,n+l = Pi m a-i k

(3.5) (ei)m+l,n = P7 l(m + n + l)|a+i|_* /\n \ /k + (Fi)m'n all i.

x+ - xi
Here Pi - _, and it follows that if we pick _, large enough,

depending only on u_(y), fi' we have 0 < Ipil < p < i. Hence it follows

that

= (a) + (Fi)0,k_ 1 ISt Gap,(3.6) (ai)0, k pk -i k

k( ) + (Fi)k_l, 0 (m + l)St Gap.(3.7) (el)k,0 = Pi e+i k

Let F_k_l denote the vector containing all Fi's from all gaps (3.2), (3.3),

(3.6), (3.7). We note that the components on the left-hand side of (3.2),

+

(3.3), (3.6), (3.7) together form the whole of bk and the ones on the right-

hand side of (3.2), (3.3) next to the p_ form the whole of a+k.

Hence (3.2), (3.3), (3.6), (3.7) give us

+

(3.s) l_kl< 0klakI+ l(%)kl+ l(__)kl+ I__iI
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where l_kl = max{Ibikl} denotes the max norm.
i

Remarks: IF_k_ll = maxlFi's I and by Fi's we understand (Fi)k0 or
i

-l-(F')0kas the case may be.

B. Estimates from rarefactions

We consider (2.19) with 0 < s < I. Let

l_(y) - %_(y)

Ai(°'Y) = k (o,y) - ki(o,y) i ! p-iP

x¢ - x+

Ai(a'Y) = ki - k i _ p+l.P

Then if € = € (y) is such that u+(y) = U(Y,€l,''',gp,''',g m) we haveP P

Cp(y) = l_(y) - l_(y) and hence

(3.8a) 0 < to <_Ai < Co €,, lyil _<R

with gO = inf{Ai'[Yi[ ! R0} > 0 by (b) (I) of Theorem i, and CO dependent
i

k J Ai(a,y)do
s

on u_, fi only. For i ! p-I we use e as an integrating

s

k f Ai(o,y)d_
0 We obtain:factor. For i > p+l we use e

k Ai k Ai k Ai

I (Fi)k,
d Bi(_)k Ii - Ip e
_-_ (_i)k e - Ai e =

for i < p-I
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and

k Ai k I A. k I Ai
d 0 i I 0

d--s(ai)k e + Ai e Bi._k =-l__-_-_ e (Fi)kl p

for i > p+l.

Integrating, we get

I S"

-k f Ai I -k f Ai

(_i)k(s,y)= (ai)k(l,y).e s + f e s Ai Bi.ak ds"
s

p
S

1 -k f Ai

s i (Fi)k ds"
+ J" e X _ /tis p

(3.9) i < p-i

S S

-k f Ai s -k f Ai

(ai)k(s,y) = (ai)k(O,y)e 0 + f e s Ai Bi.ak ds"
0

S

s -k _.Ais I

+ f e _i - _ (Fi)k ds"o p

i > p+l.

It follows from (3.9) and (3.8a) that
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l(ai)k(s'Y)l ! l(_i)k(l'Y)l + CO €, sup IBi'_kl
o<s<l

+ sup l(Fi)kl i ! p-I
0<s<l

(3.10) ----

l(_ilk(s,yll J l(eilk(0,y) I + cO g, sup IBi-akl
0<s<l

+ sup l(Fi)kl i >__p+l
0<s<l

where

s

1 -k J Ai
s I

(Fi)k = J e _ - _i (FI)k ds" i d p-is p

s

-kfS .Ais 1
(Fi)k = _ e %. _ % (Fi)k ds" i > p+l

0 1 p

and since Bip = 0 by (2.20), ak = ((ml)k,-.-,(ap_l)k,(mp+l)k,---,(_m)k).

Now the boundary condition (2.6) gives us (see Figure 3.3)

P

p+l-

Y

Figure 3.3
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(ei)k(l,y) = (Yi)k0(Y) i _ p-I

(_i)k(0,y) = (_i)0k(Y) i _ p+l

with

w = _ (Yi)mnmn ri(w00)
i

Vmn = _ (_i)mn ri(v00)
i

where we have

WOO = u0(l,y)

v00 = u0(0,y )

by the continuity of the Riemann solution in rarefactions. Now

Yk0(Y) i J p-i, _0k(Y) i _ p+l

belong to our vector bk-

We will now adopt the convention that CO will denote a constant

depending only on u_, fi' but it will get larger from equation to equation.

With this, from (3.10) we obtain

[(_i)k(s,y)] _< l_kl + CO g, sup I%[ + sup IFik] i # p.
s s

1
For g, < _-_-- we get by absorption

_0
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supI%I< 2[ kl+ 2supI( )I
S S

where as before F_k = (Flk, F2k,.-. ). Using this in (3.10) we obtain

l(ai)k(o,y)I < l_kl + CO g,(2[b+kI + 2 sup l(&)l) + sup I(Fi)kl i < p-l,
s s

l(=i)k(l,y)l < l_kl + CO g,(21_kl + 2 sup [(&)[) + sup [(Fi)kl i > p+l.
s s

Now, by the boundary conditions

(ei)k(0,y) = (_i)0k i _< p-I

(ai)k(l,y) = (Yi)k0 i > p+1,

+

with _0,k' i J p-i and Yk,0' i _ p+l belonging to ak. In fact, counting
+

all rarefactions, they are the part of ak on the faces of rarefaction

+

boundaries. We call them a R. Hence we get

(3.11) l(_R)k I <__(i + 2C0 g,) l_kl + CO sup l&l.
S

C. Estimate8 from shock, sound, and contact boundaries

"> i 4" +

The ak s occurring on the faces of shocks aSK , sound aSD , and contact
->

surfaces aC are handled by (2.24), (2.24a), (2.25b). From (2.2.4)

+ + . +

I(aSK)k I <_ l(bsK)k I + 0(g,) IS(asK)kl + 0(g,) IT(bsK)kl + IP(g)kl
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which, for £, small depending on u_, fi implies that

I(_SKSkIi 11+0(_,)]l(_sK)kI+c01(g)kl"

Similarly from (2.25b)

i(_c)k I <_ [I + 0(_,)) I(_C)k I + CoI(L)kl

and from (2.24a)

I(_SD)kI = I(_SD)kI"

This together with (3.117 gives us

+ Co[l(g)k I + I(L)kl + sup IFkl) •+ S

(3.12) lakl _ (I + CO _,) Ibk I +

Combine this with (3.85 to get

+

lak I ! (i + CO g,)pk lakl + Co[l(e+)kl + l(_-Skl

+I__iI+l(g)kl+l(L)kl+supI_IIS

By choosing _, smaller, but depending only on u_, fi we can make

(i + CO _,)P !_2 • Hence the above together with (3.85 yield our main linear

estimate

43.135 _ CO (=+)kl + l(_-)kl + IF-k-ll + Igkl + l(L)kl + 0<_1 1

_bkl
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which holds for our choice of _, and for CO depending on u_, fi only.

+ -_

Now ak, bk satisfy a linear system

\bk/

where Hk comprises of all the inhomogeneous terms (=+)k' (a-)k' F-k-i' (L)k'

gk' F-k" The estimate (3.13) shows that the 2mn x 2mn matrix A is

invertible. Formulas (3.1), (3.4), and (3.5) will give directly the rest of

the coefficients in the gaps. Given the initial values (_i)k(0,y) we can

solve the O.D.E. (2.19) for 0 < s < I, i # p. We can finally recover the

rest of the unknowns, _ in rarefactions and the surface coefficients, from
P

the pth equation at each boundary.
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4. Convergence

In this section we prove the convergence of the power series constructed

in the previous sections by employing a variant of the technique of

majorization. To carry out this process we must consider our variables s,

y complex with

yEfy = {yiE_, d(Yi,[-R0,R0] ) < 6, i=l,-..,d}

sEf s = (s€e, d(s,[0,1]) < 6}.

Remarks: 6 is a small number less than 1 to be chosen later and

d(s,[0,1]) represents the distance from s to [0,I].

If we begin with complex analytic initial data u± and complex analytic

coefficients in our equation (1.2), it is clear that all our equations will

hold for y and x complex.

A. Auxiliary Lemmas

We define

= {u(s,y) analytic in f x fly, sup (d(s fc fc )k _}, s)'d(Y, y) Iu(s,Y)l < •S
sEf

s

yEf
Y

It follows that Hk are Banach spaces with norm

= sup (d(s fc lu(s,y) i"
IUlHk sEf ' s)'d(S'fy))k

s

yff_
Y
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We will use the notation ds = dIs,_C), d = dly, ys y _c) and note that ds,

d < 1 if _ < I. Hence lul < lul
y -- _ Hk+ 1 -- Hk"

Le_mma I: (Hormander [3], p. 117)

lUsl +l_<e(k+1)lul
(4.1)

< e(k + i) lul

IUYl Hk+l Hk '
for u Hk.

Proof: It suffices to consider u(s), sCR and show the first
s

inequality. Fix s € _s and let E < ds. Then Cauchy's inequality gives

lu_(s)l < €-I sup lu(_)l < €-l(d s - €)-k lUlHk. Choosing € = d /(k + i)- s
we obtain

lu'(s)i < (k + i)(1 + k-l) k d-k-ls lull--< (k + l)eds k-I lUIHk.

The lemma results by multiplying through by dk+l and taking sup overs

sER .
s

Lemma 2 Let C > 0. Then there exists 5, = _,(C) such that

rC
e _<%_--_ for 0 _<r < €, _ _<_,.
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rC 6 . Then f(0) = 0 andProof: Let f(r) = e 6 - r

f'(r) = CerC 6
(6 - r)2 "

We have

I = 6,(c),cerC! CeSC_ if 6 <

1 6

and since _ < f'(r) < 0 for 0 < r < 8 6 < 6,(C). Hence
r)2 ' _ ,(8

f(r) < 0 for 0 < r < 6.

Lemma 3: Given N > 0, there exists 8,(N) such that

8, -- r

£n(_--_,_ p) <-N(r - p), 0 < p < r < 8,.

Proof: Let x = r - p and € = 6, - r. It suffices to show

£n(i +Ix/e) <_-Nx 0 < x < 6,, 0 < e < 6,,

-I
or x £n(l + x/e) > N.m

There exists 80(N) such that

-I (I + l)x) _ N, 0 < x ! 60"x £n (N +

-i
Take 8, = minI60,1/(N + i)). Then x £n(l + x/e) > x-l£nll + (N + l)x) > N

since I/e > 1/8, > (N + i) and x < 8, < 60.
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Lemma 4: Define

s

1 -k f Ai(o,y)do

e u(s',y)ds', i _ p-I

Ti u = s

-k f.Ai(o,y)do
S s

e u(s',y)ds', i _ p+l

fo____rUEHk_ I, k _ I.

Then there exists _,, depending only on u_, fi' such that

Hk_ 1 Hk-I

I CO

c4.3) uI !k lul
Hk_ 1 Hk-i

for 6 _ _,, with CO, cO as in (3.8a).

× _ if _ is small depending only
Proof: (3.8a) will hold for s,YE_s y

on u_, fi" It suffices to consider the i _ p+l case only. Fix s E _s and

* Is s* I (Seelet s be the point on [0,I] closest to s. Let r = - •

Figure 4.1.)

S*

s

Figure 4.1
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Then if s'E [O,s*]

s1s k 5 Ai -k(s -s )s 0 krCo_*s k 5 Ai *
k .Ai s" s <__e e

14.3a) = by (3.8a) •

Hence

s -k(s-s )s0s lul_k_l ds"

/, -_<S._,_. k'_o_, c_<,?_<__

• . • • f e

s u(s',y)ds" < e 0

ii= e

o., ( o<1_-o lul_-_
=o t_-J _odk-I

Y

Applying Lemma 2, for 6 < 6,(C0 s,) we get

(o) ,6C0 s, - since s < I.
e __ 1 I _e ks

<---7_-,,?<-__ _ lu/'-'k-_
, ie Then

, ie and s" = s + #e •
Next, let s = s + re

s lul_1
-k _ Ai r k(r-p)C 0 €, I --

s s" u(s',y)ds" < _ e (6- p)k-I dp" k-l-"- dy

12= _ e --0
s

=cos, lUl_k_1r (k-l)[(_-_)CO_*+ _n_6-PJlap.
e

<_6-=)k-__ fe
_ 0
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If we let N = 1 + CO s,, the integral above equals

6 - r

r -(k-l)(r-p) (k-I)[(r-p)N + £n(-_--_)]t dp.j e e
o

Using Lemma 3, for 6 < 6,(N) we get

I ! [I - e-(k-l)r) k > I

r -(k-l)(r-p) dp k 1< J e =
-- 0 r , k = i

e -kr) for k > i_(1 -e

since r < I. Hence, for 6 < _, with _, depending on u_, fi only

u leO 01e I]ITiu(s)l< 11+ 12 < Hk-i 1 (I- e + (i- e

-- dy)k-I " k_-_ k "- (ds

The inequality (4.3) follows immediately. The inequality (4.2) follows by

observing that x-l(l - e-xC) _ C for x, C > 0.

B. The majorant

Ultimately, we want to show that

l(al)kI < i a
Hk_ 1 -- (k + 1)2 k

(4.4) I I --< i 1 (m +nn)%

l(_i)mnlHk_l (m + I)2 (n + I)2

(k + l)_k+ll < i
Hk_I -- (k + 1)2 k

for i = l,''',m, m + n = k, k > I.
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Here _ denotes any boundary surface and

2
a(z) = _ z + a 2 z + ..., a. > 0,J

will be a convergent power series. We are not yet ready to say

what a(z) is. The ak's will satisfy a recursive relation which will be

determined during the course of majorization.

Remark: We define l(_i)mn I = sup (_dy) k-I
He_ I yC_ l(_i)mn(Y)l, whereY

(ai)mn(Y) is regarded is a function of s and y with s = 0.

Let a0 > 0 be an upper bound for all zero order coefficients

l(_i)0(s,y)l, l(_i)00(Y)], l_l(y) I = l_(y) l, as well as their derivatives

' ' '1 o
We now state the Main Majorizatlon Lemma, which will be proved in C, and

use it for the rest of B.

Main Majorizatlon Lemma: Suppose we have a0,_,...,ak_l, k_ 1 so that

(4.4) is satisfied up to and including the index k - I. Then

< k + 1 (Ql(a(z)) + ZRl(a(z),z)) k
l(Fi)klHk_l (k + I)2

l(Fi)mn < (m + n + I)! 1 I-- m! n' (Q2 + m+n = k-I
Hk_ I " (m + i)2 (n + 1)2 zR2)k'

(4.5)

l(gi)k < 1
Hk_ 1 -- (k + 1)2 (Q3 + zR3)k

< l

,,l(Li)klHk_l-(k + 1)2 (Q4 + zR4)k
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with (Fi)k, (Fi)mn, (gi)k , (Li)k from (2.17), (2.12), (2.22), (2.25a) and

(2.29) respectively.

a2 + a3 + "'', j = 1,2,3,4 is a convergent
In (4.5) Qj(_) = Qj2 Qj3

power series beginning with quadratic terms and Rj(a,z) is analytic at

(0,0) bearing no relation to the Riemann invariants introduced before.

Remark: Qj, Rj will, as expected, involve majorants of the coefficients

A,B,L,..- of the original equation. We note that (QI + ZRl) + (Q2 + zR2) =

(QI + Q2) + Z(Rl + R2)" Hence sums of functions of this form have the same

form, and we will simply denote them all by Q + zR in spite of the fact that

they may differ from equation to equation.

Assuming the lemma we now prove (4.4) for the index k.

We consider (Fi)mn from (3.1a), (3.1b). For i _ p, by (4.5)

pj (n + l)(n + 2)...(n + j) 1

(m + l).m...(m- j + i) IX_-_il l(Fi)m-j,n+JlHk_1

j (n + l)...(n + j) • (m + n + I)!--<P CO (m + l)...(m - j + i) (m - j)!(n + j)!

1 1

• . (Q + zR) k
(m - j + 1)2 (n + j + 1)2

= c0(m + n + I) 1 1 pj (Q + ZR)k
n (m + 1)2 (n + 1)2 il

• (m + l)2(n + 1)2J

Pi2 (m - j + l)2(n + j + I)2

where Pi "Pi2 and , < I.= Pil Pi I Pi2
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The expression pJ (m + l)2(n + i)2

i2 (m - j + l)2(n + j + 1)2 is bounded independent of m, n,

j since we write it as

pj (j + 1)2 (m + l)2(n + I)2

i2 (j + l)2(m - j + l)2(n + j + 1)2

and (m + I)2
m

is bounded by 4, by considering j < _ and
(j + l)2(m- j + i)2

m

j > _ . This gives

CO [m + n + I)(Q + ZR)k[(Fi)mn I < ---
Hk_ I (m + l)2(n + I)2 n

.(i + pi + 2 + + n )
i Pil """ Pil

CO (m + n + I,(Q2J(4.6) <__
(m + l)2(n + I)2 n zR2)k

+

for i < p.

Similarly

< CO (m + n + I)(Q + ZR)k

l(Fi)mnlHk_l (m + l)2(n + I)2 m
(4.7)

for i > p+l.

Remark: In all of the above m + n + i = k.
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We now estimate (Fi)k'S in rarefactions from their formulas given after

(3.10). Using the first estimate in (4.5) and (4.3) of Lemma 4

CO 1
(4.8) I l

< E0 (Q + zR) k.

We are now ready to get an estimate on , bk from (3.13).

For k _ i, since =± is analytic

k-I
I CI

l(=+)k(Y)J _< A0 Ck-1 _< A0
(k + 1)2 (_d)k-I

Y

where A0, C, C1 are appropriately chosen and C < CI. Hence

< 1 (zR(z))k
l(_i)klHk_l -- (k + 1)2

for R(z) = A0 i0_ C_ zi analytic at z = 0. Also (4.8) implies

CO I

_k-1 dk-I sup IF-kI < co 2 (Q + ZR)k"Y 0<s<l -- (k + i)

This, together with (4.5), (4.6), (4.7), applied to the right-hand side of

(3.13) implies

)k Hk 1 .
(4.9) l(_i , l(ai)k I < C

_ Hk_ 1 -- (k + 1)2 (Q + zR)k

with C depending on u_, fi as well as _0"
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To estimate the remaining coefficients in the gaps we consider (3.1c). We

get, by using (4.9)

IAm+l I __<pm+l (m + l)2(n + 1)2 • C __ (Q + ZR)k-
Pi (_i)0k Hk_ I (m + n + 1)2 (m + l)2(n + 1)2

Letting C, which depends on CO, u_, fi' get larger from equation to

equation, as we did with CO, we get

C

< (Q + zR)k.
-- (m + l)2(n + I)2

Using (4.6) as well, we obtain from (3.1c)

l(=i)m+1,n I < C (m + n + I)(Q + ZR)k
Hk_ I -- (m + l)2(n + 1)2 n

(4.10)

for i < p.

Similarly

[(ei)m,n+l I < C (m + n + I)(Q + ZR)k
-- (m + l)2(n + 1)2 m

(4.11)

for i > p+l.

Remarks: Formula (4.10) holds for the (m+1) st gap too, and (4.11) holds

for the Ist gap (see (3.4) and (3.5)).

To get estimates for the rarefaction coefficients we consider (3.9) with

x _ . Letting n-I
(s,y)€_s y Hk-i = Hk-I x ... x Hk_l, (n - i) times, we

introduce the map T defined by
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1

-k f Ai

(ai)k(l,y)e s + ri(A i Bi.v ) + ri(l i (Fi)k) ' i < p-i
p i

(/V)i = S

-kf A
0 _- 1

(_i)k(0,y)e + Ti(A i B.-v) + Ti( 1 (Fi)k) , i > p+li - I. --
p l

n-i

for v E Hk_ I.

Remarks: Since in (2.20) B. = 0, in the formulas above
l_p

B. = (B ... B B ... B )_n-_.
l i,l' ' i,p-l' i,p+l' ' i,m

Ti's are the maps defined in Lemma 4. Note that (3.9) means T(e)k = (e)k"

n-i
We want to show that T is a contraction mapping some ball in Hk_ 1 to

itself. This will give us a fixed point in the ball.

Using (4.3a) with s" = O, and (4.9) we obtain

sI-k _ Ai C 1 (erCO g*(ei)k(O,y)e < (Q + ZR)k" )k-i rC0 €,
-- (k + i_2, dk_1 _ e .

Y

Applying Lemma 2 we obtain

sj-k _ Ai C

• <__ -- (Q + zR) k.
(4 12) ei(0'y)e IHk-I (k + i)2

Similarly



57

-ksfIAiI(4.13) ai(l,y)e Hk-I < C (Q + ZR)k--- (k + 1)2

Since

• < CO €, lakl n-I "
(4 IBa) [Ti(Ai B-ak)IHk_ I H -I

As always CO depends only on u_, fi" We choose €, small enough so that

CO _, < I. Using the first inequality in (4.5) and (4.3) we get

I I CoTi(k 1 (Fi)k) < (Q + ZR)k

- ki €0(k + 1)2 "P Hk_ 1

In conclusion, adding all the estimates above

IT'° kl
= max II --< C (Q + zR)k + CO €, l(=)kl n-In-I i '(Tak)i'Hk_ 1 (k + 1)2

Hk- 1 Hk_ I

Choose D so that C + CO g, D _ D, which is possible since CO €, < I. Thus
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if

-- 2 (Q + ZR)k-
n-I (k + I)

Hk- 1

Now

<Co Ivul

with CO €, < I as in (4.13a). Hence T is a contraction, which has a fixed

point (=)k satisfying

< D
(4.14) l_kl n-i (k + 1)2 (Q + zR)k"

Hk- 1

Remarks: D tends to infinity as cO tends to zero since C does, which

means that the radius of convergence of our series approaches zero as

rarefactions degenerate.

= I aI "'" (_p_l) (ap+ I) ,''' (_m) ) As a fixed pointIn (4.14) (e)k ( )k' ' k' k ' k "

of T, ak is the solution to the rarefaction O.D.E.'s (2.19). In Section 3

we could have obtained the existence of (e)k by solving the initial value

O.D.E. in the complex domain. However, in this chapter we were able to obtain

the estimate (4.14) in addition to the existence.

Although the rarefaction surface coefficients could be obtained from

(2.20), we cannot prove the desired estimate on them from the equation because

of the (k + I) factor in front of the (ap)k term. Formula (2.20) is not

adequate for bounding derivatives of _ or _. Fortunately, we have (2.25),

(2.28) which were derived as a consequence of _ being characteristic.
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From (2.28), using (4.9) and (4.5) we obtain

(4.15) i(k + l)_k+l I < C
Hk_ I -- (k + 1)2 (Q + zR)k

which holds for rarefaction and sound surfaces. By (2.25c), using (4.9) and

(4.5) again, it clearly holds for contact surfaces as well.

We now go back to (2.20) to obtain the estimate on ap(S,y). We use (4.5)

to bound (Fp)k and (4.14), (4.15) to obtain

(4.16) i(_P)k I < C
Hk_ I -- (k + 1)2 (Q + ZR)k"

Remarks: To get (4.16) we needed to estimate

ssupoo1 dsdy klI  k.1 i
S

y€_
Y

--<sSUpE_ (_dy)k-I l_k+l + S(_k+l - _k+l)l --< (k +C iJ2" (Q + ZR)k
s

yE_
Y

by (4.15).

Finally, the shock surfaces coefficients from (2.23) satisfy

(4.17) i(k + l)_k+l [ < C
He_ I -- (k + 1)2 (Q + ZR)k"

Remarks: To get (4.17) we used (4.5) to bound (gp)k and (4.9) to bound

(=)k0' (B)0k from (2.23).
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i Co
Also, _ _-- is incorporated into the constant C.

+ o(_)
o

P

Consider the sum of all C(Q + ZR)k'S from (4.10), (4.11), (4.14),

(4.15), (4.16), and (4.17) and call it Q + zR as agreed. Now set

(4.18) ak = (Q(a(z)) + zR(a(z),z))k, k Z i.

Remarks: (Q + zR)k in (4.18) contains coefficients of a of order less

than k. By the implicit function theorem the equations a (0) = 0, a = Q(a) +

zR(a,z) have a unique analytic solution _(z) whose coefficients satisfy

(4.18).

With this definition of ak, (4.10), (4.11), (4.14), (4.15), (4.16) imply

(4.4) for the index k.

Assuming the Main Majorization Lemma we have thus proved (4.4) for all

k > I.

Remarks: When k = I the Main Majorization Lemma implies (4.5) with

Qi m 0 and Ri depending on a0 only.

C. Proof of the Main Majorizatlon Lena

Lemma 5:

m K0
X 1 12 " 2 < 2 m>0

_=0 (m - _ + i) (_ + i) (m + i)

with K0 a fixed numerical constant.
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Proof: We let [x] be the integer part of x. Then

_=0 (m _ + 1)2 (_ + 1)2 < 2 _ (by symmetry)- -- _=0 (m- _ + I)2(_ + 1)2

2 1

<--(m [2] + i)2 _" 2- _=0 (_ + I)

< 8 _ 1 .
--(m + 1)2 B=0 (_ + 1)2

Lelma 6:

(ml)<(mlm2)nI n I + n2

Proof: Consider m I + m2 objects. Then the left-hand side represents

the number of ways we can choose nI objects out of the first mI and n2

out of the remaining m2. The right-hand side represents the number of ways

we can choose nI + n2 out of mI + m2 with no restrictions. Hence, the

inequality in Lemma 6 becomes evident.

Lemmas 5 and 6 are among the tools used for a proof of the Cauchy-

Kovalevsky Theorem in [4].
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Lemma 7: Let

u(_,n,y) = _ up,v(y)_P n_
_>0

O0

_(y)_Pv(_,n,y) = _ v n
p>0 _'

O0

w($,n,y) = _ _(y)$P n_
p>0 w,

O0

and suppose that for positive constants Ti, i = 0,...,2, we have

TOu I < 1 +
Hp+__ 1 -- (p + 1)2 (v + i)2 v +_, 1 <__p+_ <_m+n

T1

lw ,vl < 1 (P + _)bp+_ 1 < p+_ < m+n
Hp+__ 1 --(p + i)2 (v + i)2 _ ' -- --

T2

Iv I < (_ + _ + i)!
'_'H -- (p + i)2(_ + 1)2 p!_! ep+_, 0 <__p+v <__m+n

I

with

i

a(z)= [ ai z a i > 0i>l

i

b(z)= [ bi z bi> 0i>l

i

c(z)= [ ciz ci>_o.i>o
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If I I , lwlu00 H0 00 H0 are als° b°unded bY T0 a0' T1 b0 respectlvely' a0'

b0 >_ 0, then

2

_< K0 TO T1 (m + n)((a(z) + a0)(b(z) + b0) )
(4.19) l(u.W)mnlHm+n_l (m + l)2(n + 1)2 n m+n,

with m+n > I.

(4.19a) In case u00 = 0 = a0 or WOO = 0 = b0 then we get (4.19) under the

weaker hypothesis that w , u _, respectively, satisfy their estimates for

1J g+_ J m+n-I only..

2

<_ K0 TO TI (m + n + I)'
(4.20) l(u.V)mnlH (m + l)2(n + 1)2 m!n! " [(a(z)+ a0)C(Z)]m+n '

m+n

m+n>0.

(4.20a) In case u00 = 0 = a0 we get (4.20) with l(u.V)mn I as left-i i
Hm+n-1

hand side, m + n > I, under the weaker hypothesis that v satisfies the

estimate for 0 J _+v J m+n-I only. If, in addition, v00 = 0 = cO the

hypothesis on u could be weakened to 1 < B+v < m+n-l.
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Proof: We have

(4.21)

l(dy _)m+n- i _)m+n-i _)m+n-I(UW)mn I _< (dy lUmnl lw001 + (dy u001 lWmnI

m n

+ _ _ lu I (dy _)B+_-I _)m+n-(_+_)-I_=0 _=0 iWm__,n__i (dy (dy _)

_+_#0 ,m+n

w +T 1 b0 lUm,nl
TO a0 I m,nlH+n_l H+n_l

+ iul, lwm.ni
B+_-I Hm+n-(-_--_)-1

_+_# 0,m+n

TO TI (m + n)< [a0 bm+n + b0 am+ n ]
-- (m + l)2(n + 1)2 n

+ TO T1 i (B + _)1m + n - (_ + _)) 1 1
n- v )2_,_ (_ + 1 (m- _ + 1)2

_+_#0 ,m+n

• 1 • I a bm+n_ (
(_ + I)2 (n - _ + 1)2 _+_ _+_)"

The second term above is
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m+n- 1 m

--<T0 rl )J Im n+ n)a% bm+n-%I I I _ i 2)
%=1 _=0 (_ + 1)2 (m - _ + I)

n

1 1
_=0 (_ + 1)2 (n - v + I)2)

2

TO T1 K0 (m + n) m+n-i< --- _ a% bm+n_ %.
- (m + l)2(n + 1)2 n %=1

The estimate (4.19) follows. The result in (4.19a) follows from the fact that

the right-hand side of (4.21) will not have a Wmn or Umn term in case

u00 , respectively WOO , is zero.

In case m = n = 0 (4.20) follows immediately. Hence, we assume

m + n _> i. Since dy < I

(4.22)

l(dy _)m+n(u*V)m,nl <__(dy _)m+n-I lUm,nl iv0,0[ + (dy _)m+n [Vm,n[ lu001

_ T2 C0 + IVm,nl TO a0
< lUm'nlHm+n_l Hm+ n

+ iVm ni
,9 H+9_I Hm+n-(_+9)

_+9#0 ,m+n

TO T2

< 1 (m + n + i)! [cO am+n + Cm+n a0 ]
-- (m + 1)2 (n + 1)2 m!n!
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+ TO T2 _ (_ + _)(m + n - (_ + _) + l).(m _ _ + I)v n - _o
B,_

B+_#0 ,m+n

(_ + l)2(m - _ + I)2(_ + l)2(n - _ + 1)2 _+_Cm+n-(_-_)

Since

I_ + _)(m + n - (_ + _) + I)(m _ B + i) < (m + n + I)(m + I) (m + n + I)!n - _ -- n = m! n!

(4.20) follows. The result in (4.20a) follows since the right-hand side of

Vm, n u00 term in case a0 0.(4.22) will not have the (dy 6)m+n --

Therefore, (4.22) will be valid with l(dy _)m+n-l(u.V)mnl as left-hand

side. The rest of (4.20a) is immediate.

Corollary I: Le___ttui = _ (ul)_v(y)$ _ _, i = l,..-,n satisfy the

hypothesis of u in Lemma 7. Then, for = = (al,''',_n), a multi-lndex

(K0 T0) iaI (m + n)((a + a0) l_l)m+n"< 2 n
l(Ua)m'nlHm+n_l (m + l)2(n + i)

Proof: Follows from Lemma 7 (4.19) by induction on lal.

Corollary 2: Le___ttu = (ul,''',u n) as in Corollary i. Let

a(u,y) = _ a_(u00,Y)(U - u00) be analytic in the variables

u,yE {[u- Uo0 [ < _} x _ . Suppose, by letting m00(Y) = u(0,0,y), we haveY

I laa(U00(y),y)I<_ a£, yC_y, % > 0.
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(in this case we say a majorizes a). Then

< 1 I [m + n)ia(K0 TO a(z)))m+n,
][a(u(_'n'Y)'Y))mnlHm+n_1 --(m + i)2 (n + i)2 n

m+n>1.

Proof: By Corollary 1

(To Ko)lal [m + I=1-- 2 n n) [(a(z)) )m+n
- <

l[(u u00)a)mn[Hm+n_l (m + l)2(n + i)

since (u - u00)00 = 0. Hence

_dy,,o.nila_Uy,mnl<_o0_l°°_Ila°_u00Y'lI_uu00':nlHm+n1

(K0 T0) £

<__£i0 [m + n _ _ la (u00,Y) l= (m + l)2(n + I)2 n )(a )m+n let =£

< 1 [m+ n)[7(K0 TO a))m+n.
-- (m + l)2(n + 1)2 n

We are now ready to prove the second inequality of the Main Majorization Lemma

(see 4.5).

We consider the terms that enter in (Fi)mn from (2.12). By the remark

following (2.12) and by the hypothesis of the Main Majorization Lemma u,

and _ in these terms satisfy (4.4). In what follows m + n = k - 1 _ 0

and B < m, _ < n.
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First, we remark that

m m

u = i=l[(_i)_9ri(Uo0), uB(s,y)= i=l[(ei)_ ri(Uo)

so that

with TO = To(u_,fi). By (4.4)

_ = < 1 a ,
I(_ + I)_+iI H (B + i)2

for i < _ < m.

Since _ doesn't depend on _' (_n - 1_)_9 = 0 if 9 > O. Therefore

_ < i i -[_+_

(4.23a)

for i < B + _ < m + n.

Similarly

I(1* - *_)"91H (U + 1)2 (9 + 1)2 9 _+9,
(4.23b) _+9-i

for I < _ + 9 < m + n.
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Let ej be the jth unit vector in Rn. Let _ be a majorant to

£i(u00)IA(u,y) - A(u00,Y))e j for i = l,...,m, j = l,...,n in the sense of

Corollary 2. Then _ is analytic in some neighborhood of 0 and _(0) = 0.

By Corollary 2

(4.24)

_ < 1 1 (P + _)(a(K 0 TO a))_+_,
[(%i(A(u) A(u00))eJ)pVlH +__ 1 --(p + 1)2 (v + 1)2

for 1 < p + 9 < m + n.

From (4.4)

l i ! I I +
(p + v + I)(_ + _)_ HP+_-2 (_ + 1)2 (_ + i)2 _ _+_-I,

for 2 < p + _ < m + n,

since if both p > 0, _ > 0 the left-hand side is 0. By Lemma 1 and the

above

(_ + _)Y pv Hp+__I

< e (p+'_
(p + i)2(_ + 1)2 _ )%+_-i

= e (P + _)(za)
(p + l)2(v + 1)2 _ p+_'

for 2 < p + _ < m + n.
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Since I((_ + _)yi)B_ I _< a0 if p + _ =i we obtain

I < 2eB_ -- (_ + i)2(_ + 1)2 _ B+_'

Hp+_- 1
(4.25)

for 1 < p + _ < m + n.

Remark: If p + _ = I, say p = 1 and _ = 0, then (4.25) is simply

2e

l( y,)11<Ta0'
which holds by definition of a0. Let b be a majorant to %i(u00)Bq e.3 for

all i, j, q. By Corollary 2

1 (p + _)_(K 0 TO _)
< 2( 2 _ _+_'

[(%i Bq ej)B_IH +__ 1 _ (P + i) v + I)
(4.26)

for 1 < p + _ < m + n.

Also [(£i Bq ej)00 <- b--0" Next

l(uj$)p,_] H = (p + I)l(uj)_+l,_IH
_+_ _+_

< T0(P + I) I . 1 (p + _ + l)ap+v+ I
-- (p + 2)2 (_ + I)2

(4.27)

TO
<. 1 (1J + xJ+ 1)' 1

(P + 1)2 (_ + 1)2 _! _! " [_ a)p+_,

for 0 < p + v < m + n -I.
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Similarly

TO 1 (_+_+ I)' i

(uJn)_'v H (B + i) (_ + I)
(4.28) U+_

for 0 < _ + _ < m + n - i.

Finally

TO [_ + _a+_j
_< e(_ + _ + I) 2( 2(ll + 1) v + l)

(4.29)

eT0 (_ + _ + i)'

(_ + 1)2(v + 1) 2 _! _! lJ+_,

for I < _ + 9 < m + n,

I Iand _ (uj)0,0 <_ a0.

We now have

{[£iI(_ N -X_)- (A(u)- A(u00)) + (_ + @)yBlej)B9 H
_+_-I

< 1 [_ + _){sup ]£i ej{-- (_ + I)2(_ + 1)2 _ _+_Y

+ a(K 0 TO a)_+_ + 2ed.[(za + za0)_(K 0 TO a))_+_l ,

for 1 < _ + _ < m + n,
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where we used (4.23a), (4.24), (4.25), (4.26) and (4.19) and summed over

q = i to d. Also note the left-hand side term is 0 when B = v = 0.

Hence by (4.20a) applied to (4.27) and the above, summing over j, we obtain

C0 (m + n + I)'

l[£i-(first term in (2.12)))mni <__
Hm+ n (m + l)2(n + 1)2 m! nX

(4.29a) " I la2+z Iz a'_(K0 TO a) + lz a-(za+ a0 z).b(K 0 TO a)Im+ n

= i (m + n + I)!

(m + l)2(n + 1)2 m! n! " [Q(a) + zR(a,Z))m+n+l

where

Q(a) = c0 a2 + a-_(K 0 TO a)

R(a,z) = a'(a + a0).b(K 0 to a).

Similarly,

l£i.(second term in (2.12))mnlH

(4.29b) m+n

< 1 (m+n+ i)'

-- (m + l)2(n + I)2 m! n! " (Q + ZR)m+n+l"

It remains to bound the last term in (2.12). From (4.23a) and (4.23b)

I
_< 1 I [p+ vv

for 1 < _ + v < m + n,
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and I(_ - _)001 d 2a0" Hence by (4.19) and (4.26)

2

Ko

< (_ + _)((a + 2a0)_(K 0 r0 a))_+_,
-- (_ + i)2(_ + 1)2

for I < B + _ < m + n

and ''ll(_n-_$)_i B e )001< 2a0 b--0 .q J

Applying (4.20) to (4.29) and the above and summing, we obtain

[%i'(last term in (2.12))mn[Hm+ n

CO (m + n + I)'

(4.30) < m! ' " ((a + (a + 2a0)b(K 0 TO a))m+n
-- (m + l)2(n + 1)2 n. a0)

= 1 (m + n + i)'

(m + l)2(n + 1)2 m! n! " (zR(a(z)'Z))m+n+l

with R = c0(a + a0)(a+ 2a0)b. The estimate (4.30) holds for m + n = 0 as

well by the definition of a0. Now, (4.29a), (4.29b), and (4.30) together

yield the second estimate in (4.5).

Remarks: When m = n = 0 the last term in (2.12) is the only nonzero

term and (4.30) gives a bound for it.

Also, we have not considered the terms in the end gaps (2.15) separately

since they have the same form as (2.12).
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Lemma 8: Let

u(s,t,y) = _ Um(S,y)t m i.e., u0 = 0
m>l

v(s,t,y) = _ Vm(S,y)tm
m>0

w(s,t,y) = _ Wm(S,y)t m.
m>0

Consider the following estimates

TO

II < a m>1
(i) Um Hm_ I (m + 1)2 m --

T1

II < b m>1
(ii) Wm Hm_ I (m + 1)2 m --

T2(m + I)

II< _ m>O(iii) Vm H (m + I)2 m --
m

>olwl-<_o._en
with am' bm' Cm-- ' 0 H0

(A) If (i) holds for I < m < k and (ii) holds for i < m < k - i then

2

TO T2 K0

Hk_ 1 -- (k + I)

If (i) holds for 1 < m < k - I then
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2 2

< TO K0 (a2(z))k"

(4.31a) l(U2)klHk_l (k + 1)2

(B) If Case I: (i) holds for 1 < m < k and (ill) holds for

0<m<k- 1 or

Case 2: (1) holds for 1 _m _ k - 1 and v0 = 0 = co and (iii)

holds for 1 < m < k - 1 then

TO T1 K2

(4.31b) l(UV)klHk_l < _ +- 1)2- (k + l)(a.c)k.

(C) If uI = 0 = al and (1) holds for 2 !m ! k and (ill) holds for

0 < m < k - 2 then

TO TI 2

(4.31c) [(UV)k[ < K0 (k + 1)[a(z).c(Z)]k.
Hk_ 1 (k + 1)2

Proof: The results in A and B follow from Lemma 7 (4.19a), (4.20a)

respectively by considering only one index, say B < m, m = k, 9 = n = 0.

Part (C) is almost immediate:

k TO TI K_(k + i) k

[(UV)k[ < _ [Um[m_l [Vk-m[k_m < _ a mHk_ 1 m=2 -- (k + 1) 2 m=2 Ck-m

TO TI K_(k + I)

(k + 1)2 (a-c)k, if aI 0.
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Corollary 3: Let u = (Ul,...,Un) with ui (s,t,y) = [ ui (s,y)tm and
m>0 m

ui satisfy (i) of Lemma 8 for i _ m _ p. Let a(u,y) = [ as(u0,Y)(U - u0)S
m s

be an analytic function in the variables (u,y) and suppose

is_=_ Ias(uo(s,y),y)I <_£, (s,y) E_ s x fly

where u0(s,y) = u(s,0,y). Then

<_ i ( CK2TO
lJ-1

Proof:

-- _ 2 £ £

[(a(u'Y))PlHp-I < I . £>O_a£ T0(K0) (a (z))p.
-- (p + 1)2

Corollary 3 follows.

Remarks: If Isl Z 2 it follows by (4.31a) that

< I-I{4g(z)).
p-I

under the weaker hypothesis that (ui)m satisfies (i) for 1 _ m _ p - i.

Therefore, if as = 0 for is[ < 2, Corollary 3 is valid under this weaker

hypothesis.

We now focus our attention on (2.17), the inhomogeneous term in

rarefactions. We let a(z) be as in the hypothesis of the Main Majorization

Lemma.
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We have from (4.4)

_it B H = (B + I) l(=i)_+llH_ 2)2

(4.32) J _ + I 1
(B + 1)2 (_ a(z))B

for 0 < B < k- 2.

for 2 < _ < k,

and (_ - k_ t)0 = (_ - _ t)I = 0.
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Similarly

_ _< 4 (za)g for 2 < _ < k.
(4.34) I(_ X_ t)_IH (_ + I)2 , _ _

B-I

Using (4.31c) on (4.32), (4.33), and (4.34) we obtain

C0(k + 1)

< (_2)k.

(4.35) l(((_ - X_ t) - (_ - X_ t))ait) Ik -- (k + 1)2

Hk- 1

From Corollary 3

_ < I a(C0 a)_,
u) A u0))ej).1

for I < _ < k - i

-- 2 TO in this case. Alsowith a a majorant for £iIA - A(uo))e j and CO = K0

I((uj - uj0) )IsB H --<e(_ + I)l(uj- uj0)_ IH --<C0 (#(_+I)+1"2_ a
_-i

for i < _ < k- I.

Using (4.31b) Case 2 in Lemma 8 applied to the above two estimates and summing

over j, we obtain

C0(k + I)
- < (_(C0 a) a)k

(4.36) l(%i(A(u) - A(uo))(u U0)s)klHk_ I --(k + i)2
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Note that _(0) may be taken to be zero.

Since

A(u) - A(u0) - A'(u0)(u - u0) = _ Aa(u0)(u - u0)a ,
I I>2

if we let aQ : _ a zj we then have that _Q is a majorant forj>2 j '

£i(A(u) - A(u0) - A'(u0)(u - u0))e j.

Hence, Corollary 3 and the remark following it imply

CO _

(4.37) l[£i(A- A(u0) - A'.(u - u0))U0s_ [ < a)k

k Hk_l (k + 1)2 aQ(C0

w ereC0 erelsalsoaboundorlu0sl
Since

_ = <__ I ap,
I(P + l)_p+ll H (p + 1)2

l(_t X_)PlH_-I p-I

for I < p < k - i

and since

CO(IJ+ 1)
- _< a for 1 < _ < k - I,

(4.37a) l(£i(u U0)s)_lH (_ + I)2 _ _ _
P

by Case 2 of (B) in Lemma 8 we obtain
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(4.38)

Co(k + i)

< )2 (a2)k"(k+ 1

Corollary 3 implies

(4.38a) I(%i Bq ej).l H < 1 _'b(C 0 a)). for 0 < , < k - 1
_-I (_ + I)2 -- --

with _ a majorant for hi Bq ej. Also

2 4
- < -_ a_ I < (z a)- <--I_* *_i. -_ _+ _

(4.38b)

for 2 < _ < k.

Since I(_ - %)1 [ d 2a0, we obtain

_ _< 4 [(za+ 2a0 z)]B for 1 < . < k
(4.38c) [(_ _),IH _i (_ + I)2 _ _

and (_ - i)0 = 0. Also, as in (4.29)

(4"38d) l_Tq I eT0
(uj)_ < (B + l)a_ for 1 < B < k - 1

H -- (_ + 1)2 -- -- '

J(uj(s,Y)) 0 <_ a0.
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Applying Case I of (B) in Lemma 8 to (4.38d) and (4.38c) we get

[ Co(_ + 1)((_ - _) _uj)_ < [(a + a0)(za + 2a0 z)]_,

_Yq HB_ I (_ + 1)2

for I < _ < k.

Applying Case 1 of (B) in Lemma 8 one more time to (4.38a) and the above, and

summing over q and j, we obtain

Co(k + I)
(4.39) - I _< [_(C0a).(a + a0)(za + 2a0 Z)]k.

Since using Lemma I and then (4.4),

[(£_yq + s(_b- _p)yq/B]Hp_l/ [ J e(lJ - 1)[_ + s(_- _P)lJ[Hp_2

Co(]J- i) 1 CO
_ " _ aij_l<
< _ _ (_ + 1)2 (za)_

for 2 < _ < k,m

and since [ I_yq _-s(_ m _)Yq)ll ! C 0 a 0 we obtain

Co

( + - ) J (za+a 0s(_ _)yq IHI _yq _ (_ + 1)2 z)_,
(4.40) B-I

for I < _ < k.
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Also

12 I TO e(B + I)(uj)_ __< (a + for 0 < _ < k - I.
H (_ + 1)2 a0)_ -- --

Applying Lemma 8, part (B), Case 1 to (4.40) and the above, we obtain

Co(_ + 1)

I[(¢Yq + s-(_2 €)yq)(Uj)s] I<_ HlJ-1 _ (_ + 1) 2 [(a + a0)(za+ a0 z)] _,

for 1 < _ < k.

Applying Lemma 8 one more time to (4.38a) and the above, and summing over q

and j we obtain

+s(¢-+)y)Us)kl _I
(4.41)

Co(k + 1)
< [(a + a0).(za+ a 0 z).b(C 0 a)]k.
-- (k + 1)2

Collecting the results from (4.35), (4.36), (4.37), (4.38), (4.39), (4.41), we

obtain the first estimate in (4.5).

We consider (2.22) next. From (4.4)

_ < I aB for I < V < k- i
l(_t %€)_I H (_ + I)2 -- _

_-I

2T0

- - - < (B + I)2 a_ for 1 < B < k - i.I u00
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Hence Lemma 8 (4.31a) implies

co

(4.42) l%i[(_t - %_)((u- u00) - (v- v00))]kl <__ )2 (a2)k"
Hk_ I (k + i

Next, using Corollary 3 we obtain

%i[If0(u,y) - f0(u00,Y) - A(u00)(u - u00) )

(4.43) - (f0(v'Y) - f0(v00'Y) - A(v00)(v - v00))]kll
Hk-I

i i
(k + 1)2 (ToQ(C0 a(z)))k

where f-0Q= _ Y0 z_ with T0 a majorant for _i.f0 at u00 and v00.4>2

Remarks: Since f6 = A the left-hand side of (4.43) is quadratic in

(u - u00).

Using Corollary 3 we also get

l(%i.(fq(U ) _ fq(V)))_iH < 2 (_(C0 a(z)))_
_-I -- (B + 1)2

for 0 < _ < k- 1

where f
is a majorant for _i'fq, q = l,...,d. Since
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Co
(4.43a) I i --< 2 (za + a0

'(_Y)_iH _1 (B + I)

z)_

for 1 < _ < k, (see 4.40)

by Lemma 8 (4.31)

Co

(4.44) I(£iIf(u) - f(v))'_y)k I <__ 2 _(C0 a(z))'(za+ a0 Z))k"
Hk_ I (k + I)

Putting (4.42), (4.43), and (4.44) together we obtain the third estimate in

(4.5).

The expressions for Lj, and Lp from (2.25a) and (2.29) respectively

are similar so it suffices to restrict our attention to L in (2.29). Let
P

%p(U,y,_y) = _ ( y,0)(u u00 )a j Then
=,j XP)_,J (u00' - _y.

- = -(u- )= Jy
= (Xp)_,0(u u00) + _ (%p)a,j u00 _ •

(4.45) Lp(u,y,_y) l a >_2 a

j=o j>1

Let -Xp(Z,W) be a majorant of kp, that is

I ](%P)_'j(u00(Y)'Y)] < (X%)£,j yE_ . SinceI= --% -- ' y

H_-I (_ + 1)2 ((za+ a0 z)j)_ for I _< _ <_ k,

(see (4.43a) and Lemma 8 (4.31a)) and by Lemma 8 (4.31a)
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c_°l
_ _< (al_l

II_uUoo_)_I_ _._)_ _

for 0_< B_< k- i, I_lzo,

we obtain by Lemma 8 (4.31)

<c_coallC_I=I(zO. + a0 z) j )k"_ )_ J
Ic(uUoo_y)_l (_+_)_Hk- I

Hence we may estimate the terms in (4.45) by

( _ (Xp)_,j(u- u00 )_ _J)k{j>l
-- 'Hk_I

< 1 _ (%)%,j Cg C_(a£(za+ a0 z)j)k
-- (k + 1)2 j>_l

_>0

(k + 1)2 zC0 (Xp)%,j+ 1 Cg c_(a%(za+ a0 z)j

L_.>_o k

_ 1 (zR(a,z) )k2
(k+ 1)

Finally, we estimate the first term in (4.45):

-- Hk_ I

The fourth and last estimate in (4.5) follows.
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