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We consider the discontinuous piecewise analytic initial value problem
for a wide class of conservation laws that includes the full three-dimensional
Euler equations., The initial interaction at an arbitrary curved surface is
resolved in time by a convergent series. Among other features the solution
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1. Introduction
We consider the initial value problem for a system of conservation laws

given by

(fi(u))x' = 0, u, £, € r®
(1.1)
u+(x0y'°°)xd)’ XO > S(Xl’...,xd)

u(O, XO’...’Xd> =
u_(xo)..‘,xd)’ XO < S(Xl,...)xd)

and satisfying

(1) fi, S are analytic, u,, u_ are analytic across S; however,
u(0, xO,'-',xd) may have a small jump discontinuity or a jump in

derivatives, not necessarily small, at S,

(2) Equation (1.1) is hyperbolic in the following sense: If we let

d .
E W, Efi., w € EHl _ {0}, then M has real eigen-

M(w,u) =
1=0 i du

values Al(m,u) S_Xz(w,u)'s yo o, S_An(w,u) and a basis of eigen-

vectors rl(w,u),'°',rn(w,u). We denote left eigenvectors by zi(w,u).

(3) Equation (l.1) has either genuinely nonlinear or linearly degenerate

fields, i.e.,

either V A, r, # 0
ui i

1
o

or Vuli-ri

for u in a neighborhood of u(O,x0,°°°,xd) and |w| =1,



(4) 1f M has multiple eigenvalues, then the corresponding field must be

linearly degenerate.

Our object 1s to obtain a power series representing a distribution

solution to (1l.1).

The conditions (2), (3), (4) are in part dictated by the properties
characterizing the Euler equations. For a polytropic three-dimensional gas

flow they are given by

p pu pv pw 0
2
pu pu + p puv puw 0
2
oV + puv + pv. + p + pvw = 0
2
oW puw pvw pw  + p 0
[ e_], [u(e + pz_x | v(e + p_)_ly | w(e + p)] . _0_

with p = (Y—l)(e—(p(uz + v2 + wz)/Z)) where p = density, u,v,w =
velocities, e = total energy, and p = pressure [2].

The eigenvalues of M, in this case, are

mou + wlv + wzw -c¢ < wou + mlv + wzw < mOu + wlv + mzw + ¢

where ¢ = ,/%% is the speed of sound in the medium. The first and third



fields are genuinely nonlinear and the corresponding eigenvalues simple. The
second field is 1linearly degenerate with the eigenvalue of multiplicity 3.
There is, however, a basis of eigenvectors so (2), (3), (4) are satisfied.

As a preliminary step we change variables to make the initial surface of

discontinuity flat, If

X =Xy - S(xl,°’°,xd)
yi =xi i = 1,2,"',d
t = t,
then from (l.1)
d
u, + (fo(u,y))X + .z (fi(u)Jy. =0
i=1 i
(1.2)
u, (x,y) x>0
u(0,x,y) =
u_(x,y) x < 0,

where by definition fo(u,y) =
i=0
The variables t and x will play the major role in our expansion

fi(u)vi(y), with v(y) normal to S.

| b~

with y; as parameters varying in the compact set |y| S-RO for some Ry
The first term in the expansion will be given by the solution to the Riemann

problem



u, + (fo(u,y))x =0
(1.3)

u (0,y), x>0

u(0,x,y) =
u_(0,y), x < 0.

If the system is strictly hyperbolic and the initial jump 1is small, the
solution to the Riemann problem, due to P. D. Lax, is given in [1]. His proof
involves the construction of the map U(y,el,---,sn): K + R, with y as a
parameter, U(y,0,+¢+,0) = u_(0,y). U(y,€1,°°',€n) represents the state
obtained by starting from u_(0,y) and travelling € time increments along
the appropriate shock, rarefaction, or contact curves. Lax obtains the
solution by showing that U is invertible near € = 0. The solution u can
be expressed as u(t,x,y) = h(%,y) with h(kl(u_),y) = u_ and

h(An(u+),y) =u,. The result immediately extends to the case with multiple

eigenvalues in linearly degenerate fields if there is a basis of eigenvectors.

Our result in this paper is

Theorer 1. Given u_(x,y), there exists €, > 0 small and c >0

large, depending only on u_, f;, such that if u+(0,y) = U(y,€1,°°°,€n),

U(y,0) = u_(0,y) satisfies
(a) ]ei(y)| < €,, i=1,2,***,n

(b) if p 1is a genuinely nonlinear field then

either

(D e (y) #0, for |y| <&,



(17) e, (y) 20, for |y| <Ry, and

12, (600,50 )+ Cu ), €0,3) = £ (9,€0,5))+Cu) (0,y)] > Cey,

then we can construct a convergent power series which is a distribution

solution to (1.2).

The solution consists of regions of analyticity separated by shock,
contact, and rarefaction waves corresponding to the ones in the Riemann
problem as well as sound waves corresponding to shocks of zero strength in the
Riemann problem (the case ep = 0). It therefore gives a precise description

of the singularities propagating from the initial discontinuity (see Figure

1 3 1 ) .
2nd field
rarefaction l1st field 2nd field 3rd field
shock rarefaction sound wave
1st field 3rd field
shock no wave /
/
/7
7
/
7~
7
Riemann problem full problem

3 x 3 gystenm

Figure 1.1



Condition (b) prevents shocks or rarefactions in the Riemann problem from
degenerating to waves of zero strength within the parameter domain ‘y|.$ R,
unless they are identically of zero strength. The difficulty with transitions
to sound waves is caused by the fact that the two flat characteristic surfaces
joining together in the Riemann problem will not necessarily ensure that the
two curved characteristic surfaces in the full problem will likewise overlap
one another,

One can distinguish between two types of regions, the ones in the “gaps”
between waves where the solution is analytic in x and t and the ones in
the rarefactions where it is analytic in the variable x/t. However, unlike
the rarefactions in the Riemann problem, this last region is not a simple
wave, 1in that characteristics are not flat and the solution is not constant
along them.

The regions are separated by unknown surfaces where we impose the
following boundary conditions: At rarefaction and sound surfaces we impose
continuity across and given the existence of the coefficients of the expansion
derive that the surfaces are characteristic as formal power series. Here we
need condition (b) (1°) to be able to determine the sound surface coefficients
uniquely. At shock surfaces we impose the Rankine-Hugoniot conditions. At
contacts we impose continuity of Riemann invariants and that the contact
surface is characteristic. If the contact has a multiple eigenvalue, there
will be less than n equations imposed. Nevertheless, it can be shown that
they imply all the Rankine-Hugoniot conditions across the contact.

The problem (l.1) with initial data restricted to ensure the formation of
only one shock has been previously studied by A. Majda in [5] where the first

existence result for such systems with discontinuous initial data is given.



Theorem 1 answers a conjecture of R. D. Richtmyer on existence of
solutions to hyperbolic systems of conservation laws with piecewise initial
data [6].

The proof consists of two parts. First, the coefficients are determined
and estimated and, last, the expansion is shown to converge. In the first
part we make appropriate changes of variables (Section 2) which in the end
only amount to rearrangements of power series. One could, just as easily,
determine the coefficients of the original variables uniquely, but he would
face enormous difficulties at the convergence step. To obtain the
coefficients, we must solve algebraic equations in the gaps, (n-1) 1linear
ordinary differential equations coupled with one algebraic equation in
rarefactions and coupling boundary equations at the shock, contact,
rarefaction, and sound surfaces. This is accomplished in Section 3. To show
convergence we use the estimates obtained in Section 3 to carry out the

majorization argument in Section 4.

2. Expansions

Differentiating in (1.2) we obtain

(2.1) u + A(y,u)ux + B(u)'uy =0
of of of
= 0 = l LN d 3 LK X 3
with A = -a—u— ) B = (W s N W), uy = (uyl, ,uyd)o

Let A have m distinct eigenvalues Al < AZ { o0 ( Am and let

Ap y 1 = 1,005 have multiplicity uy and correspond to the linearly
i



degenerate fields. We choose a basis of eigenvectors so that Vkp°rp =1 in

the genuinely nonlinear fields and |r = 1 in the linearly degenerate

Pil
fields. 1If My > 1 then there is a choice to be made in picking a basis for

that eigenspace. We will adopt the following convention: In a linearly

LR r

degenerate field, r will refer to any of the eigenvectors r ,
Py Pyl Pys Wy

o~ 8

that span the eigenspace. Similarly, in the expansion u = Oj rj,
n 3=t
1
= K? and ap will refer to any of the components

o r Y a r
Py Py k=1 Pyok Py i

LN )
b

a R V] .
Pl Py oMy

Consider a gap (Figure 2.1) bounded on the left and right by

$Ce,y) = A e+ Lo (T and w(e,y) = A e+ Loy (ne”
m=2 n=2

respectively. We change variables as follows:

x = ¢(E,y) + ¥(n,y)
t=E&+n
Yy =9,

where £, n, y are the new gap variables.
As shown in Figure 2.1 x = ¢, x = ¥ are mapped into n =0, £=20

respectively,



—— =
Figure 2.1
We obtain that
4’5 ll)n ¢y + wy
3(x,t,y) _
5CE,m,y) | ! 0 ’
0 0 I

with ESELELXl the Jacobian derivative, and therefore
3(g,n,y)

_A ¢00

det(géiﬁfiZl (0,0,5)) = A, - 1,

a(&,n,y)

Letting unew(E,n,y) = uold(x,t,y), from (2.1)

(2.2) (wnx - A+ (¢+¢)ye3)ug + (-¢€1 + A - (¢+¢)y-s)un + (wn-¢g)3~uy = 0.
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The end gaps, the first and the (m+1)St (Figure 2.2) are bounded by only

one unknown surface.

lS t gap

(m + l)St gap

Figure 2.2

Let A, be a fixed number depending on u_ and £y,

i=0,°*°°,d. We
will later specify how large 1A, 1is.

In the first gap we let

x = ¢(n,y) + >‘* £
t=n
y=y.

Similarly in the (m+1)S% gap
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x = P(E,y) + A;n

t =¢§

y =79.
We obtain from (2.1)
(2.3) u +-2(A-6_~- ¢ +Blu, + Beu_ =0

N, n y £ y
and
1 —

(2.4) W (A e - ¥y B)un + Bru = 0.

For a rarefaction bounded on the 1left and right by
respectively (Figure 2.3), we change variables as follows:
S=X—¢(t,Y)
b -y
t=+¢t
y =9
Remarks: The Riemann solution was an analytic function of

rarefactions. Expanding the formula for s above we get

¢ and ¢

x/t

in
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x/t - ¢/t 1 X Ao
s = = = - + 0(t)
)/t A, - A, t A, = A ’
(o-9)/ b v b "
so s behaves very much like x/t.
The transformation above maps X = ¢, x =19 to s = 0,
respectively.
t
¢
Y \\
0
Figure 2.3

In the new variables,

(b - ou + {a- (o +s(v-¢))
(2.5)

- (b + s - @) ) Blu  + (¥ - 9)Beu = 0.

Remarks: As before unew(s,t,y) = uold(x,t,y). Also, in (2.5)

A = A(u,y).
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The solutions to (2.2), (2.5) are linked by boundary conditions. There
are four types of boundaries: rarefaction, shock, sound, and contact.

At a rarefaction surface we impose continuity,

uold(¢(r,y),r,y) = vold(¢(1,y),r,y). In the new variables we get

v(0,1,y)

u(0,1,y)
(2.6)

u(l,t,y) = w(t,0,y) (see Figure 2.4).

v(T,y)

Figure 2.4

At a shock surface we impose the Rankine~Hugoniot conditions. For v

and u on the left and right of a shock surface ¢, they are

(2.7) b0 = v = (£ (r,u) - £, + ¢ (E(w) - £(W) = 0
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with u = u(1,0,y), v = v(0,T,y).
At a sound surface we impose continuity. For u and v as above and ¢

a sound surface, we get

(2.7a) u(t,0,y) = v(0,1,y).

Consider now a contact surface ¢(t,y) = Xp.t + ¢¢¢ in the linearly
degenerate field Pi- To obtain weak solution;- we should impose (2.7);
however, if My > 1, we expect that not all of the n equations in (2.7) are
independent.

For each T, ¥ we form the normal flux —f0 + ¢y f and the
corresponding map U(el,'-',sm), analytic in e and built from rarefaction

and contact curves only, such that U(0,¢**,0) = u(71,0,y). Then v(0,t1,y) is

connected to u(T,0,y) through a p; contact if and only if v(0,t,y) =

U(O,e°,¢ 0,¢°,0 for some ¢ = € e ¢ « A Riemann invariant
( bd b pi, bl ] ) pi ( pi’l, ’ pi,ui)
for the pith field is a function R(u) such that VuR°rp =0 or
i

equivalently R(U(O,“',O,ep ,O,-'°,0)) = constant. There are exactly

i
n - ouy independent Riemann invariants. To obtain one such set we consider
Zl(u),-°',Zn(u) the coordinates of the inverse function of U and let Rj =
Zj, j# Py Furthermore, we see that VR.J.-rk = ij at u = U(0,0,°*+,0) and
j’k # pi'

Lemma 1: The n - ui + 1 conditions

1) ¢_ =

T lpi(u,y,¢y)

(2.7b)

(i1) Rj(u’}'9¢y) = Rj(V’y’¢y), j# pi
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imply that (u,y,¢y) =

Ap Ap (v,y,¢y) and that the Rankine-Hugoniot relations
i i

(2.7) hold.

Remarks: Xp (u,y,w) is the pith

i
Rj(u,y,m) is the j

eigenvalue of -A(y,u) + w*B(u).
th  piemann invariant for the flux —fo(y,u) + wef(u) and

hence analytic in all of its arguments.

Proof: Fix T,y and let v = v(0,7,y)e Then v = U(el,°°°,sm) for
some  £,,°**,€ 3 consequently, (2.7b) (ii) = ej =0 for j # Py~ This
means Vv 1s connected to u through a py contact. Therefore
(u,y,¢y) = Xp

(v,y,60) and A (u-v) = (-£o(y,u) + b £(u)) -

A
Py 1 1

(—fo(y,v) + ¢y f(v)). The result follows from (2.7b) (i).

The Euler equations have two well known Riemann invariants for the middle

field. They are the pressure p = (y - 1)(e - (p(u2 + v?

+ w2)/2)) and the
normal velocity u =& u+ Ey v+ E w with (Ex, Ey, Ez) the normal to the
surface. 1If, as before, the surface is given by x = é(t,y,z) we have the

following three conditions at the middle contact

-y + ¢y ) + ¢z Vo T Y + ¢y v + ¢z LA
(i1)

p(poa uos VO’ wo» eo) = p(pl’ ul’ Vl’ wl’ el)



16

with (po, Uy, Vs W, eo), (pl, Ups Vs Wp, el) the left and right states.

One easily verifies that (i) and (ii) above lead to the Rankine-Hugoniot

conditions for the Euler equations. A tedious computation gives the
eigenvectors
— | — — 1 -
u - EX c u + Ex c
r1 = v - Ey c , r3 = v + Ey c
w - Ez c w + Ez c
_H—Gc_ |8 +uc |

corresponding to Al = G - c, A3 = J + ¢, where the total enthalpy H = £ : P
and the sound speed c¢ = g%-. It can now be easily verified that

Va-rl Va-r3
Vper, Vpery

is invertible,

We seek power series solutions of the following form: In gaps

(2.8) u(g,n,y) = ) umn(y)En[l n
m,n>0



17

whereas in rarefactions

(2.9) u(sst,Y) = z uk(S’Y)tk'
>0

The first term in both series is obtained from the Riemann solution h(s,y).

In (2.8), uoo(y) = h(k¢,y) = h(lw,y) since h is constant in its first

variable in gaps. In (2.9), ug(s,y) 1is the solution to

(A(uo,y) - (A¢ + s()\lp - A¢)))(u0)s =0

which is the zero order relation obtained from substituting (2.9) into

(2.5). It follows that
ug = h(s(l¢ - Xw) + l¢, y) 0<{s<1
and that i1f we have a p rarefaction

Ap(uo,y) =\, + s(xlp - X,)

¢ ¢

(2.10)

(uo)S = (Aw - k¢)rp(u0,y)-

The various unknown surfaces have expansions of the form

BEY = A E+ T 4 (E"
K>2
(2.11)

W) = A n+ I Nt .
k>2



18

Substituting (2.8) and (2.11) into (2.2) and collecting terms for £ nn, we
obtain the following recursive relations
[A‘p - A(uoo)](m + l)um+l’n + [-x¢ + A(uoo)](n *Duy o = Foo
with
an = - [{(q;n - xw)I - (A(u) - A(uoo)) + (¢ + q>)y B}uE

(2.12) {( s — ) + (AG0) - ACuy)) - (¥ ¢)yB}un

Remarks: F_ . contains coefficients of u of order < mtn where by
definition the order of u,, is m+n,

m

If we let uoo = izl (ai)mn(y)ri(uoo,y), we obtain
(2.13) (m+1)[)\‘p - Xi](ai)m+l,n + (n+1)[-x¢ + *1](“1)m,n+1 = (F)_
where (Fi)mn = Zi-(F)mn, i=1,2,*¢*,m and li(uoo,y), ri(uoo,y), Ki(uoo,y)

are the left and right eigenvectors and eigenvalues of A(uoo,y). For the end

gaps (2.3) and (2.4) we obtain

(214 @+ DG+ D g [y =2 M) = )

+ *

mn

with

i/ mn

1
(F) = - 21[74?{ (g = 4 + (AW = Alugy)) - 4, B}ug ' Bumen
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1
(2.15) (m + 1>(ai)m+l,n + (n+ 1) 7; [Ai - kw](ai)m,n+l = (Fi)mn

with
A

(Fi)mn - —zi[l*

{(Aw - ¢g) + (ACu) - A(uoo)) - wy B;u + Buy]mn'

Remarks: The reader will note the omission, for simplicity, of an index
on the L“s and F”s signifying the gap we“re in.
To obtain the equations in rarefactions we substitute (2.9) in (2.5) and

k

collect the terms involving t* to get for k >1

(k‘p - l‘b)kuk + {A(uo) —(X¢ + s()\lp - X¢))} (uk)S + A’(uo)uk(uo)s

(2.16)
= D (0 + s(hyy = ) ()g =
with
Fo=- [%(w - Aw t) - (¢ - X¢ t) u + (ACu) - A(uo))(u - uo)S

+ (A(u) - A(uO) - A’(uo)(u - uo))(uo)S
(2.17)

- (¢t - )‘¢ + S((‘Pt - Aw) - (¢t - A‘b))(u - uO)S

+ (v - ¢)Buy - (¢y + s(y - ¢)y))BuS]k.

Remark: ¢k’ ¢k and Y., are the highest order coefficients occurring

in Fko



m
If we substitute u, (s,y) = Z (a,), (s,y)r,(u,,y) in (2.16) and use
k by Mk 1'%

(2.10), we obtain

(= Ak(a)y + (A Cug) - Ap(uo))(ais)k

(2.18) +

Il o~—8

. (A - Ap)£i°rjs + 210(A’(u0)rj u, ) (aj)k

j s

= e D0+ 5y = 4 DOy = A8 = (F

To simplify (2.18) we note that by differentiating Arp = Xp rp with

respect to u multiplying on the left by £,, on the right by r. and

r? J

i)

summing

2, (A (uo)rj uos) = (xw - x¢)(xp - A8 Jr Ty + (Aw - x¢)aip VA et

or
with er = Eﬁg s, the Jacobian derivative. Since

o
Ld

[
]

M .Q,i'Jrj(uo)S = (Aw - A¢)£i(Jrj)rp,
instead of (2.18), we now have

(Ai - xp)(ais)k + k(x¢ - x¢)(ai)k + (xw - x¢) jzp Bij(aj)k

(2.19)

= (F,) i# p.
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(k + 1)(xw - A¢)(ap)k + (A, =-2r) ) (Vkp'rj)(uj)k

v ¢

i*p
(2.20)
S G DO = A0 (0 * sy = 4 )) = F)y
where
Bij = (A, = A2, (@ -@ ).
J= Oy =AYy (¢ r)r = ( rp)rJ)
Remarks: Note that B = 0 which is why we let j # p in the sum in

ip
(2.19). Since ap doesn”t appear in (2.19) we have a partial decoupling

which will prove to be helpful.
We now turn to expansions at boundaries and use equations (2.6), (2.7),

(2.7a), (2.7b). For rarefactions, from (2.6)
v, (0,¥) = vy (¥)

For shocks we substitute series for u, v, ¢ into (2.7) and collect the

coefficient of * to obtain for k > 1
(2.21) (e + Dy, (v = Vo) + Ayluyg = vg) = (Aluggdug = Alvggdvg ) = g

with
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(2.22)

g =~ (g = 2 ([ - upp) - (v = vyp))

= [{gg ) = £5Cugy) = ACuggdu = uge)

(£9() = £5(vge) = Alvg)(v = v4))]
+ ¢y(f(u) - f(v))}k.
Remarks: The zero order coefficient of T 1is
A (g = Vo) — (Fglugg) = £4(vpe)) = 0

which is the Rankine-Hugoniot condition for the zero order Riemann solution.
To simplify (2.21) we recall that for a p shock

00 = UCEpsps”

U(€1,°°-,€p_1,0,0,°°',0) = rp(voo) [1]. As a result we have

Y00

d

de
p

= U(e ;00,8 ,0,000,0) and v ve,€, 150500,0) with

(1) zi(voo)-rj(uoo) O(ep), if 1 # j;
(ii) zi(voo)'ri(uoo) =1+ 0(ep)

_ 2
(iii) = ep + 0(ep)

25(¥00)* (ugg = Vo)

V) 2, (o) (ugy = Vo) = O(eg), if 1 # p.

By substituting

Yko T % (900 T3(ug0?

Vok = E (B o T3(Vo0?
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in (2.21) and using (i), (ii), (iii), and (iv) above, we get

2
(et Dyyy 0Ce) + (A = A Cug ) )Cop) o (1 + 0Ce))

6"

+ O(SP) j;i (A¢ - xj(uoo))(aj)ko

- (X¢ - A (v, ))(Bi)Ok (g 1#0p

and
2
(k + 1)¢k+l(ep + O(ep)) + (A¢ - xp(uoo))(ap)ko(l + 0(sp))
+0 () ) (A - A (u ))(a )
P*ydp ¢ 00 k0
RO CR T REION
Since
Ap(uoo) = Xp(voo) + O(EP)
ep 2
x¢ - A (uoo) = -5+ O(EP)
€ 2
A = A, (vg) = -+ oCe) (1]
we get

2
(et Diyyy 002 + (0 = 4 Crgg))(Copyg = (B, )

*0(e)s; (o) = (8 )y s 1#p



24

2
(k + l)¢k+1(ep,+ O(ep)) + O(ep)sp-(ap)kO
+ O(EP)T'(BP)Ok = (gp)k

where Sj = (Sjl’SjZ’...’Sjm)’ j=l,¢**,m, T = (T1,°'°,Tm) are vectors bounded
independent of ep near zero. S and T will change in the next equations,
but they will remain bounded. Solve for (k + 1)¢k+1 in the second equation

to get

1
(2.23) (k + 1)¢ =S *(a), » + T*(B),, + ———— (g ), .
k+1 ] kO Ok ep + 0(€§) k

Substitute in the first equation and divide by A¢ - Ai(voo) to get

(2.26) () = (By)g + 0(e IS, (@) + 0(e IT+(B) = Py+(g)y, 1 # p

where P; are bounded independent of ep as well.
Let us now consider a sound surface ¢ = A¢t + ,***, where
A¢ = Ap(uoo) = AP(VOO) and x and V¥ are neighboring surfaces (see Fig.

2.5). Expanding (2.7a) we simply get
oy = v (y)
which in coordinates, since ugo = Voo gives

(2.24a) (ai)ko = (Bi)Ok.
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Figure 2.5
The surface coefficients ¢k can be recovered from the gap relations
(2.12). Focusing on the pth equation, if we first let m = n = 0 in

(2.12), (2.13) we get

(kw - Ap)(ap)lo = —(kw - A¢)2p°B(u00)(u00)y.
Similarly, in the left gap
O = A8 g1 = =(hy = A )L *Blyg0)(vgo). .

Since uoo(y) = voo(y) it follows that (ap)10 = (Bp)01 is satisfied as a
result of the gap equations. Next, let:'ting m = k~1 > 0, n = 0, note that
from (2.12)

+

Fre1,0 = %% Yo1 7 k& By ugoy * Fr10

where contains only lower order coefficients of ¢. Hence, from

F-1,0
(2.13)
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k(A + 2

v 72200 T RO A(ugy + Byug) KR E e

Referring to the original variables, x and t, for a moment

£tug) 2p°[ut(0,0) A, u_(0,0)]
= zp~[-A(u00)ux(o,0) + 2,4, (0,0) - B(uoo)uooy]
= (X¢ - Ap)zp.ux - zp'BO uoOy
where we denote u, = uX(O,O) in the gap. Hence,
(2.24b) A, - xp)(k(ap)ko - ko zp-ux) = f@—l,o‘

Similarly, in the left gap
(2.24¢) G - Ax)(k(BP)Ok - k¢ 2p°vx) = Fo 1t

Therefore 1if lp(ux - vx) # 0 the boundary condition will

. . _ +
determine ¢k To establish Zp(uoo)(ux Vx) 0 we let ¢ be a shock
surface, for example, and w the function in the gap to the right of u.
Expanding the shock relations

b (W00, 8) = u(o,0)) = [£5)y o+ ¢ lel, 0 =0

Jump jump
at ¢ at ¢

and collecting first order terms we easily obtain
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lp(uoo)ux = zp(woo)wX + 0(g,).

Crossing a rarefaction will yield the same estimate by switching the sides and
therefore reducing it to the shock case. Crossing a sound surface
u(é,t) = v(4,t), again gives the estimate above and, therefore, going through

all the boundaries
2 (uggdu, = 2p(u+(0,0))(u+)x + 0(e,)
2,(v0)vy = zp(u_(o,O))(u_)x + 0(ey).
If C 1is large enough in (b)(1°) of Theorem 1, we obtain the desired

condition.

It remains to expand at contacts in (2.7b). Equation (2.7b) (ii) yields

Vo RyCuggeys 0 ey = Vg Ry(vy,y,00v, = (Lo)y

where
(LJ )k == (Rj(u’Y)¢y) - Rj(uOO’y’O)
(2.25a) - VRJ.(uOO,y,O)(u - uoo)) - [Rj(v,y,¢y)
- Rj(voo,y,O) - VRj(voo,y,O)(v - voo)) K

Here we used the fact that Rj(uoo,y,O) = Rj(VOO’y’O)’ i.e., the initial data

are connected through a contact. If we let U = Z (ai)kO ri(uoo),
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Yok = 2 (Bi)Ok ri(vOO) and use formulas (i), (ii), (iii), and (iv) derived

for the shock expansions we get

i};p VR, (uoo) r, (uoo)((ai)ko (B i)Ok) + o(epi)sj(s)ok = (Lj )
i

with Sj bounded independent of epi + 0. Since (VRj(uOO)°ri(u00)),
i, j # Py is invertible

(2.25) @0 = Bg + 0[5, )51, = 20,

with Sy Py bounded matrices and

(L)k = ((Lj)k) j # pi)'

From (2.7b) (i)

(2.25¢) (k + 1)¢k+1 =

e
Il ~8

(9,2, Cagguy 00y g g + (Lpi)k

(Lpi)k = {Api(u,Ya¢y) - Api(0009Y)0) - VU Api(uoo,y,O)o(u - uoo)} K

At this point we should be able to show that all coefficients can be
uniquely determined from the formulas established so far. We will do it in
the next section. To conclude this section, we derive from the conditions
already imposed that the rarefaction and sound surfaces satisfy a

characteristic equation.
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We have

Lemma 2: Suppose there is a unique formal power series solution. If ¢

is either a p-rarefaction surface or a p-sound surface, then

1]

(2.26) (¢t(t’y))k (Ap(u’y’d)y))k = ()\p(V,y’d’y) )k.

with u, v the solutions near ¢.

Proof: We give the argument for rarefactions, the one for sound surfaces
following the same lines.

Suppose u 1s the function in the rarefaction to the right of ¢ and
v 1is in the gap on the left.

Let

uold(x’t’y) = H('}‘é‘)t’)')
Vold(x’t’Y) = G(%,t,}’)-

Then unew(syt’}') = H(S(¢—Zy) + %9tsY) and H(o,t,y), G(o,t,y) satisfy

(2.27a) t:Ht + (A - oI)Ho + tBHy =0
(2.27b) th + (A - OI)GO + tBGy =0
and
¢ _Ar?
H(F)t:}') = (F)t)Y)'
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Differentiating and multiplying by ¢t

_ 9 - _9
tH, + Ho(¢t t) tG, + Gc(¢t t)
¢y1 ¢yi
H +H ——=G +G —.
Y1 Yy

Using (2.27a) and (2.27b) with s = %- the first equation leads to
AN O 1C 55 23 i - -9 o (a-26 -
B (¢, - 3) - (A L tBH = G (¢, - 2) - (A -3, tBG .

The second equation, after multiplying by tBy and adding, yields

BH _ + tBH BG  + tBG .
¢y g y ¢Y o y

Hence we obtain

(¢t - A+ ¢y B)Ho (6. - A+ ¢y B)Go.

t

Multiplying on the left by zp(u(%,c,y),y,¢y) 2 (G(%,t,y),y,¢y), we get

P

(6, = A (uy,00)8 (B, = 6) = 0.

Now (2p'(Ho - 6)), = zp(h(k¢,y),y)'ho(l¢,y) = 1, where h(o,y) = H(},,0,y)
is the Riemann solution, and since G 1s in the gap (Go)O = GO(X¢,0,y) = 0.
Also ho(X¢,y) = rp(h(k¢,y),y). Therefore, since

k-1
(¢, = 2, (H,y,00), + uzo (6, = 2D, (2 (B - 6)), =0
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and (¢t - Ap)O =0 our claim (2.26) follows by induction.
Remark: Note that HL%,t,y) = u(0,t,y).
Expanding (2.26) we get
N 2 k

¢+2¢2t+3¢3t +---+(k+1)¢k+1t + oo

= Ap(uO9Y)0) + Vu xp‘(u - uo) + Lp(u’y,¢y)

where Lp(uo,y,O) = 0 and Lp is quadratic in (u - uo). Hence, for k > 1

we get
m
(2.28) (k + Doy () = 121 (v, A,€0,3) 01y )(0y ) (0,3) + (L)
Remark: (Lp(u,y,¢:y))k contains Up1s ¢k as highest order

coefficients. In fact

(2.29) (Lp)k = (Ap(u,Ys¢y) - AP(UOO,Y90) - Vu AP(UOO,Y,O).(U - uoo))k°

Formulas (2.28), (2.29) are, in fact, expansions valid for rarefactions,

sound, as well as contact surfaces (see (2.25¢)).

3. Linear Estimates
In this section we derive a priori estimate for the linear system of

equations satisfied by the kN order coefficients with inhomogeneous terms
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depending on lower order coefficients. These estimates will help in
determining the coefficients uniquely and subsequently in showing the series
converges.,

In (2.13), to obtain coefficients of order k, we take m+ n+ 1 =k
(k > 1). As (2.20), (2.23), (2.25c) suggest, we would expect to determine
¢k+1 for shocks, contacts, and rarefactions at the same time we determine
ak’s. For sound surfaces we can only determine ¢k from the boundary

conditions, but (2.28) shows that, once determined, the coefficients can

¥
be estimated at the previous step.

Consider the diagram in Figure 3.1 showing the m fields with the gaps
between them. We let dotted lines signify the various waves. For example, in
Figure 3.1 we collapse a p-rarefaction to a dotted line with arrows pointing
at corresponding faces.

We now want to consider the coefficients in the gaps at the boundaries of
the gaps. From (2.8), %, are the coefficients of the expansion at n = 0,
the left boundary of the gap. Similarly, a

Ok
right boundary. 1In the first gap we only consider @ at the right boundary

are the coefficients at the

and in the (m+1)St gap & o, the left boundary.

v /
\\\\\.._. P L [7/¢/
o /

Figure 3.1
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Since there are m boundaries, each with 2n components on both sides, we
get a total of 2mn  unknown boundary components. They satisfy a linear
system of equations given by the gap equations (2.13), (2.14), (2.15) and by
boundary equations: rarefactions (2.20), shocks (2.24), sound (2.24a), and
contacts (2.25b). Note that the pth equation at each boundary determines

the surface coefficient. For example, at a sound surface, is determined

N
from the pth equation at the boundary and, in view of (2.24b), (2.24c), it

can be solved in terms of lower order terms and hence substituted back into

the equations (2.12) for the neighboring gaps. (For k =1 the pth

equation is satisfied automatically.) As a second example, the pth equation

at the boundary of a rarefaction region (the continuity condition) determines

and ¢k+1 by

(ap)k(O,y), (ap)k(l,y). They, 1in turn, determine ¢k+1

evaluating (2.20) at s = 0 and s = 1. Fortunately, as we mentioned in the

remark after (2.20), we can solve (2.19) independent of We may

(ap)kO'
therefore only consider the n - up equations at the p boundary. If p is
a genuinely nonlinear field up =1

number of equations for the 2mn unknowns is

and we have n - 1 equations. The total

m
( z n - ui) + (m + 1)n = 2mn.

i=1
The first term above gives the total number of equations from boundaries, the
second one gives the total number from gaps. To show the system has a unique
solution it suffices to prove the linear mapping is one to one. This will
follow from the estimates ahead.
We now divide the unknowns into two groups a_ and gk' If we are at

k
the pth boundary (dotted line), we count (a1,°°°,ap_l) in the gap on the
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left and ( ---,am) in the gap on the right as part of a and a

ap-*-l ’

consists of exactly these components. The rest forms b (see Figure 3.2).

’ b ( )ea Pl
Oy sesesl a
\ (al,...,ap)eb 1 >

> \ -~
(0‘1’°'°’°‘p-1)€y \(a yeees0 )E D CH R TS S
p+l m LN

(oap,...,am)eg\/ \ //
N\~

Figure 3.2

It follows that 2 has ne(m - 1) components and b has ne(m + 1)
components.,

We will be able to estimate a from the boundary equations and b from
the gap equations. In rarefactions ap is the characteristic component
satisfying the algebraic relation in (2.20). Note that since the boundary
values of ap belong to b and not ;, they will be estimated from the gap

equations and not from (2.20).

A. Estimates from gaps
We consider the gap between the pth and (p+1)th fields bounded by
surfaces ¢ and P on the left and right respectively. Lax”“s entropy

conditions give Ap+1(u00) Z'A¢ > A¢.Z Ap(uoo). We get equalities at the ends

for sound or rarefaction surfaces. From (2.13) we get
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A - A

—(pt 1o 1 1
(ai)m+1,n B (m + 1)(A¢ )(“i)m ntl m + 1 A¢ - Ai (Fi)m,n i<rp
A - A
_(m + 1 1 1
(ai)m,n+1 = (n Y 1)(X )(G )m+l At T EFT T (Fi)m,n i> ptl.
i ¢ i )
Let (
A, - A
x¢ = Ai igr
v
Py =< .
A, = A
Al - Aq) i Z p+1
\

Then there exits p independent of €, mnear zero but depending on u_(u),

£; such that 0 < pi(u)-s p <1 for lyi| <R, where u (y) =

U(el,82,°~°,€m) and |€i| < g, with ¢, to be chosen. We claim we have

(@) 1,n = pT+l(m i 2 i 1)("‘i)Ok
* °T°(n - 23(2 ;)%;:::§?1+ &2 % ! X, (F5)0 men
(3.12) * °T-l'(n +(;);.;§?mt'?2_ 2 % 2 X Fymtn-1 ¥ 00
+ ey (;n++l;2m % : X Fdpi,ne1 * X = X, @ i T Fnon
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and
ntlm+n + 1
(ai)m,n+1 =Py ( m )(ai)ko
n (m+ 1)(m+ 2)ess(m + n) 1
(3.1b) + Py (n + 1)ese2el Ai - A¢'(Fi)m+n,0
boeee 4L L (r)) for 1 > ptl
XL~y @+ D “i'mn 2 P

This can be proved inductively on m, say, by substituting formulas (3.la) for

(ai)m,n+1 into the recursion formula for (ai)m+1,n'
For notational convenience we let (Fi)mn be the sums involving the

Fi’s on the right-hand side of (3.la) and (3.1b). Hence (3.1a) and (3.lb)

can be written as

m+tl,m+ n + 1
(ai)m+1,n =Py ( n )(ai)O,k + (Fi)m,n i<p
(3.1c)
_ ntlm +n + 1
(ai)m,n+1 =Py ( m )(ai)k,O * (Fi)m,n 12 ptl
which gives
(3.2) (), o= p(a)g, + (F)) i<
: i’k,0 T P1'% 70,k i’k-1,0 =~ P
(3.3) (a,) = pk(a ) + (F,) i > pt+l
* i‘0,k i*71’k,0 i’0,k-1 -~ *

In the end gaps we have
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lst

gap unew(O,E,Y) = uold()‘*g’o’y) u_(X*E,O,y),

(m+1)St gap U (0,3 = u s (Am,0,y) = u, (An,0,y).

Let  (u, (A&,0,)), = ) (aii)k with w0

(2.14) and (2.15) we get the following relations for the end gaps, 1St gap,

ri(utOO) = ut(0,0,y). Then from

and (m + 1)St gap respectively:

ntl,m +n + 1 3
(3.4) @y ey = o1 (R )(a_i)k+(ri)m’n all i
mlm + n + 1
(3.5) (ai)m+1,n =0y ( n )(q+i)k + (Fi)m,n all 1.
A, - Ai
Here py = ‘jljf'—" and it follows that 1if we pick A, large enough,

depending only on u_(y), fi’ we have 0 < |pi|.5 p < 1. Hence it follows

that
_ k st
(3.6) (@) = o (a_i)k + (FDo e 1°% Gap,
k st
(3.7) (ai)k,O = pi(a+i)k + (Fi)k-l,O (m + 1) Gap.

Let fk—l denote the vector containing all Fi’s from all gaps (3.2), (3.3),
(3.6), (3.7). We note that the components on the left-hand side of (3.2),

(3.3), (3.6), (3.7) together form the whole of b, and the ones on the right-

k
hand side of (3.2), (3.3) next to the p? form the whole of ;k'
Hence (3.2), (3.3), (3.6), (3.7) give us
> k>
(3.8) Ibkl L |ak| + I(a+)k| + |(“_)k| + |fk—1|
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where |% I = max{lb |} denotes the max norm.
k i ik
: |F = F. - F,-
Remarks: l—k—ll mzx| i s| and by 1”8 we understand (Fi)kO or
(}1)0k as the case may be.

B. Estimates from rarefactions

We consider (2.19) with 0<s<1l. Let

Aw(y) - k¢(y)

Ai(O',Y) = XP(U,}’) — Aj_(a’y) i _S p-1
A, = A
-V $ .
Ai(a,y) _ﬁ- 12p+1.
i P

Then if Ep = ep(y) is such that u+(y) = U(y,el,--O,ep,°'°,em) we have

Ep(y) = Xw(y) - X¢(y) and hence

(3.8a) 0< ey <A <Gy gy ly;| <R

with e, = inf{Ai,Iin S.Ro} >0 by (b) (1) of Theorem 1, and C; dependent

1

k [ A (o,y)do

on u_, fi only. For 1 < p-l1 we use e s as an integrating

k J A (o,y)do
0

factor. For 1 > p+tl we use e . We obtain:

1 « a{ b
i v (Fy,

|
=
o
>
Pan
Q
N
=~
1

for 1 < p-1
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and

Integrating, we get

1 s”
-k i Ai 1 -k £ Ai
(@) (s,y) = (o), (1,y)ce ¥ i € Ay Byray ds
o
1 Tk £ Ay !
+] e o, Pl de
s P i
(3.9) <l
S S

-k [ A -k f’Ai

(ai)k(s,y) = (ai)k(O,Y)e 0 + g e ° Ay Bi'“k ds”

It follows from (3.9) and (3.8a) that
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+

[(@) (>3 < (@) (L] + ¢y e, sup B ea |

0 0<s<1
+ sup |(F)),| i< p-l
0¢s<l K
(3.10)
[Cap)p (550 < 1€oy), (0,39)] + Cy e, sup [Boay]
0<s<1
+ sup l(Fi)kI 1> p+l
0<s<1
where
o
1 K i Ay !
F=1 e - (Fyly ds 1<l
s i
]
s 7 i'Ai 1
Fe=1 e T Byl ds 12pH
0 i P

and since Bip = 0 by (2.20), ak = ((al)k,---,(ap_l)k,(ap+l)k,°°°,(am)k).

Now the boundary condition (2.6) gives us (see Figure 3.3)

p+l.

Figure 3.3
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(ai)k(l,y) = (Yi)ko(Y) i< p-l
(a;2,.€0,y) = (2,4, (¥) i> ptl

with

Yon g (Yi)mn ri(WOO)

Von © % (Ci)mn ri(VOO)
where we have
oo = Yp(lH¥)

by the continuity of the Riemann solution in rarefactions. Now

Yol 1<l g (y) 1> pHl

belong to our vector gk'
We will now adopt the convention that CO will denote a constant

depending only on wu_, fi’ but it will get larger from equation to equation.

With this, from (3.10) we obtain

(@ (el < B+ ¢ & sup [q | +sup [yl 1%

For €, < 7%— we get by absorption
0
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sup |ak| 5_2|g£| + 2 sup |(fk)l
s s

where as before fk = (Flk’FZk"..)' Using this in (3.10) we obtain

[Ca 0] < B | + ¢, e, (2]B, | + 2 sup |(F 1) + e |F 1< e,

| (a), (1,9)]

I

> >

[o | + Cy e, (2]B | + 2 s:p |[E 1) + s:p [(Fd i > p+l.
Now, by the boundary conditions

(), (1,5) = (v;)pq 12 ptl,

with CO K’ i < p-1 and Yy 0’ i > ptl belonging to a In fact, counting
’ ’ -

K
all rarefactions, they are the part of gk on the faces of rarefaction

boundaries. We call them ;R' Hence we get

(3.11) [GEp ] < 1+ 2¢y €,) B, ] + ¢ sup IFy

C. Estimates from shock, sound, and contact boundaries

>

The ak’s occurring on the faces of shocks

>

>
agys sound agps and contact

surfaces a, are handled by (2.24), (2.24a), (2.25b). From (2.24)

c

I(QSK)kI 5.|(38K)k| + 0(e,) |S(§SK)k| + 0(e,) IT(ESK)kI + |2, |
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which, for €, small depending on u_, f. implies that

i

|G < (1 +0Ce)) 1B | + ¢l o)y

Similarly from (2.25b)

|yl < (1+ 0€e) [BY, |+ colw,|

and from (2.24a)

l(;SD)k| B I(gsn)kl .

This together with (3.11) gives us

(3.12) |3 | < (1 +cye) [B |+ cy([€@), | + 1@ | + sup |F, ).
S

Combine this with (3.8) to get
> k >
|akl_§ (1 + Co €,)P Iakl + CO(I(q+)k| + |(a_)k|
+ Iik—ll + |(g)k| + |(L)k| + 5:1) |-Ek|)'

By choosing €, smaller, but depending only on u_, f;

i We can make

(1 + C0 e*)p S_Ub . Hence the above together with (3.8) yield our main linear
estimate

;k
(3.13) < c0(|<a+>k| |+ IF |+ lgl + 1@ | + sup Ifkl)

> 0<s<1
B, ASAS
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which holds for our choice of g, and for Co depending on wu_, f; only.

Now ;k’ gk satisfy a linear system

ak

where Hk comprises of all the inhomogeneous terms (a+)k, (q_)k, fk—l’ (L)k’
By fk' The estimate (3.13) shows that the 2mn x 2mn matrix A is
invertible. Formulas (3.1), (3.4), and (3.5) will give directly the rest of
the coefficients in the gaps. Given the initial values (ai)k(O,y) we can
solve the 0.D.E. (2.19) for 0<s <1, i1# p. We can finally recover the
rest of the unknowns, ap in rarefactions and the surface coefficients, from

the pth equation at each boundary.
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4, Convergence
In this section we prove the convergence of the power series constructed
in the previous sections by employing a variant of the technique of
majorization. To carry out this process we must consider our variables s,

y complex with

yea, = {y;e¢, dly;,[-Ry,Ry1) < 8, i=1,ee0,d}

SEN {s€¢,d@,w,n)< ﬂ.

Remarks: § 1is a small number less than 1 to be chosen later and
d(s,[0,1]) represents the distance from s to [0,1].

If we begin with complex analytic initial data u, and complex analytic
coefficients in our equation (1.2), it is clear that all our equations will

hold for y and x complex.

A. Auxiliary Lemmas

We define

c cyyk
H = {u(s,y) analytic in 2 x 9, si?g (d(s,QS)-d(y,Qy)) lu(s,y)| < =}.
S

€N
y y

It follows that Hy are Banach spaces with norm

|l

= sup (d(s,Qz)'d(s,Qc))k [u(s,y)

y .
}k sens

€Q
y y
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We will use the notation dS = d(s,ﬂg), d = d(y,Q;) and note that d

y s’

d <1 1if §< 1. Hence |u] < |uly -
y - - S

Lemma 1: (Hormander [3], p. 117)

u <e(k +1) |u
(4.1) +1
Iuyl <e(k + 1) |u|H .
H k
p H k+1
or u k*
Proof: It suffices to consider wu(s), seSE and show the first

inequality. Fix s(EQS and let € < ds' Then Cauchy”s inequality gives

Iu’(s)l 5'8_1 sup ]u(c)l S.E-I(ds - s:)—k |u|H Choosing € =d /(k + 1)
|z-s|<e k’ °

we obtain

k-1 -k-1 IUI

lum(s)| < (k + 1)1 + K DK a0 July < (k+ Ded_

e £

The lemma results by multiplying through by d§+1 and taking sup over
SEN .
s

Lemma 2 Let C > 0. Then there exists 6* = 6*(C) such that

erci-sf—r for 0<r<e, §<8§,.
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Proof: Let f£(r) = erC -3 f = Then £(0) = 0 and
£f°(r) = CerC - ___Ji—_Tf .
(8 - r)
We have
™ e’ < 1 s <= 8,0,
and since %—< '—_ji-—Tf » £7(r) <0 for 0<r<§, §< §,(C). Hence
(8§ - 1) -

f(r) <0 for 0<r <38,

Lemma 3: Given N > 0, there exists §,(N) such that

6* -r
zn(a*_p)S—N(r—p), 0<p< <8,
Proof: Let x=r -p and €= 6, - r. It suffices to show

*

1
QH(W)S—NX 0<X<6*,0<€<5*,

or x—1 in(l + x/¢) > N

There exists GO(N) such that

x 2n(l + (N + x) >N, 0 <x 5_60.
Take 6* = min(éo,l/(N + 1)). Then x-l (1l + x/e) > x_lzn(l + (N + l)x) 2 N

since 1/e > 1/6*.2 (N+ 1) and x < 8, 5_60.
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Lemma 4: Define

'

/ ]
|k i Ay (o,y)do
f e u(s”,y)ds”, i< p-1
s
Ti u = s
s k i,Ai(o,y)do
f e u(s”,y)ds”, i> ptl
0
\
for uEHk_l, k > 1.
Then there exists 6., depending only on wu_, fi’ such that
(4.2) 'Ti u, L Cy luly
Hk—l k-1
c
1 °0
(4.3) IT u| <= — |u]
i —k € H
Hk—l 0 k-1
for & < §,, with CO’ €y Aas in (3.8a).

Proof: (3.8a) will hold for s,yE?QS X Qy if 6 1is small depending only

on u_, fi' It suffices to consider the 1 > p+l case only. Fix sEst and

*

let s be the point on [0,1] closest to s. Let r = |s - s*. (See

Figure 4.1.)

(]
.
[ —

0 s* 1

Figure 4.1
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Then if s” € [O,S*]

* s
s s
-k [ A
- - *
k I,Ai k f, Ai x 1 k(s -s")e. krC_c
s s s 0 0%
(4.3a) e = le e Le e
by (3.8a).
Hence
s
* = * *
s k I,Ai krC, € |uIH s =-k(s -s7)e
s . . 0 * k~1 0 .
I1 = f e u(s”,y)ds”| < e ST e ds
0 (&d ) 0
y
- *
rC0 €, rC0 € k-1 ke s
= e . e _1_. 1 - e O Iul
dk—l 8 keo Hk 1
y
Applying Lemma 2, for & < 6*(00 €,) we get
§C. €
< S ° 1 1 1 - e—k€0 lu| since s* <1
=~ (s - r)k-l dk—l keo Hk—l —
y
Next, let s = s* + reie and s~ = s* + peie. Then
s
s & I,Ai r k(r-p)C, € IuIHk
s - - 0 * 1 -1
I, = f e u(s”,y)ds”| < f e . dpe
2 — k-1 k-1
* 0 (6 - p) d
s y
rC, € |u] 6-r
* - - o7r
e 0 H'k-l r (k 1)[[(1' D)CO € t 2n(5_p)
< k-1 k-1 2 °© do.
(6§ - 1) d 0

y
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If we let N=1+ C0 €4, the integral above equals

(k—l)[(r-p)N + zn(a — r)]

r
[ ek (r=p) § -

0

dp.

Using Lemma 3, for & < §,(N) we get

1 -(k-Dr
— (1 - e ) k> 1
T -(k=1)(r-p) oo

< do =

o

r , k =1

) for k> 1

since r < 1. Hence, for & < §, with §, depending on u_, f, only

|7, w(e)| < Iy + I, < ———— |e .

2 2

The inequality (4.3) follows immediately. The inequality (4.2) follows by

observing that x-l(l - e—xC) < C for x, C> 0.

B. The majorant

Ultimately, we want to show that

1
oo, <ot
1’k AS 7 k
H_, (k+1)
1 1 m + n
(4.4) (a,) < a
| i“"f‘|uk_1“(m+1)2 (n+ 12 D a
|Ce+ Doy, | S G
H , &+1)

for i = 1l,***m, m+n=%k, k> 1.

—
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Here ¢ denotes any boundary surface and

a(z)=alz+a2z2+---, a, >0,

will be a convergent power series. We are not yet ready to say

what a(z) 1is. The a,”s will satisfy a recursive relation which will be
determined during the course of majorization.

Remark: We define |(ai)mn‘ = sup (é&d )k—1 (ai)mn(y) , where

Hk—l y € Qy
(ai)mn(y) is regarded is a function of s and y with s = 0.

Let ag > 0 be an upper bound for all zero order coefficients
I(ai)o(s,y)l, |(ai)00(y)|, |¢1(y)| = |A¢(y)|, as well as their derivatives

We now state the Main Majorization Lemma, which will be proved in C, and

ay(ai)y

, |3y(ai)00|, |ay ¢1| with s, yeq_ x szy.

use it for the rest of B.

Main Majorization Lemma: Suppose we have ao,al,o-o,ak_l, k > 1 so that

(4.4) is satisfied up to and including the index k - 1. Then

Fy| <= (Qa@) + R @@),2),

Hk—l_ (k + 1)

(m +n+ 1)! 1 1
S m! n! 2
P (m+ 1) (n+ 1)

5 (Q2 + ZRZ)k’ m+n = k-1
(4.5)

~
0q
.
~
5
VAN

1
—— (Q, + zR,)
H —(k+1)2 3 3k

—— (Q, + zR)),
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with (Fi)k’ (Fi)mn’ (gi)k’ (Li)k from (2.17), (2.12), (2.22), (2.25a) and

(2.29) respectively.

In (4.5) Qj(a) = sz az + Qj3 a3 + o0, 3 =1,2,3,4 1is a convergent

power series beginning with quadratic terms and Rj(a,z) i1s analytic at

(0,0) bearing no relation to the Riemann invariants introduced before.

Remark: Qj’ R.j will, as expected, involve majorants of the coefficients
A,B,L,**+s of the original equation. We note that (Q1 + le) + (Q2 + ZRZ) =
(Ql + Q2) + z(R1 + R2). Hence sums of functions of this form have the same
form, and we will simply denote them all by Q + zR in spite of the fact that

they may differ from equation to equation.

Assuming the lemma we now prove (4.4) for the index k.

We consider (Fi)mn from (3.1a), (3.1b). For 1 < p, by (4.5)

jn+ 1)+ 2)eee(n + j) 1 7
i@+ Deme@=-3+1D %y - N

|(Fi)m-j,n+j|

By

3j c (n+ 1)eee(n + j) o _(m+n+ 1!
TP @Fr D3+ D @=- i+ P!

| A

1 1
. « (Q + zR)
(m—j+1)2(n+j+1)2 k

@+o+l 1 1 3 (q+ 2R
(m+ D2 @+ 12 5 k

. @+ %@ + 1)?
i ) . 2 . 2
(m-3j+ LD (+3j+1)
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. 2 2
The expression oJ (m + 1)"(n + 1)

*2 (m - j+ 1)2(n + 3+ 1)

2

j since we write it as

KT (m+ 1% + 1)2
) (G + 1)2(m -3+ 1)2(n + 3+ 1)2

2
and (m+ 1" is bounded by 4, by considering j <'% and

G+ D@ -3+ n?

i»> %-. This gives

c

0 m+n+1
(F.) < — )(Q + zR)
|1 m“'nk_l ~(m+ D% + 1)? n k
-(1+p.+pi+o--+p'})
1 1 1
CO m+n+ 1
(4.6) < 5 a S [ I SO
(m+ 1)7(n + 1)
for i < p.
Similarly
|(F ) ' < CO (m+n+l)(Q+zR)
tmlg T @+ D @+’ m k

(4.7)

for i Z p+10

Remark: In all of the above m+ n + 1 = k.

is bounded independent of m, n,
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We now estimate (Fi)k’s in rarefactions from their formulas given after

(3.10). Using the first estimate in (4.5) and (4.3) of Lemma &

C
0 1
(408) = 2 (Q + ZR)k'

|<Fi>lek_1 < % x+ D2

We are now ready to get an estimate on gk’ gk from (3.13).

For k > 1, since @, is analytic

-1
| (e ] < 4 ¢y ——
(e + D (8

0
where AO’ C, Cl are appropriately chosen and C < Cl' Hence

1
(o) < —= (zR(2)
| €2 lek_l Tk + 1)? ( )

for R(z) = A Z Cj zi analytic at z = 0. Also (4.8) implies
0 i>0 1

Bl S g (@ + ).

This, together with (4.5), (4.6), (4.7), applied to the right-hand side of

(3.13) implies

(4.9) |(%i)k|H B I(gi)k‘ﬂk-l S_E;Tf?zgi.(q + 2R),

with C depending on wu_, fi as well as ¢

0.
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To estimate the remaining coefficients in the gaps we consider (3.lc). We
get, by using (4.9)
2 2
m+1 mtl (m + 1)°(n + 1) . c

p, (a,) <p — — (Q + zR), .
1 Ok'ak_l — 1 @+an+ D @+ D@+ 12 k

Letting C, which depends on €p> U_» fi’ get larger from equation to

equation, as we did with Cy, we get

“(m+ D2 + 1)

Using (4.6) as well, we obtain from (3.lc)

C m+n+1
(a,) < ( )J(Q + zR)
i’mtl,n Hk_1 ~ (m + 1)2(n + 1)2 n k
(4.10)
for 1 < p.
Similarly
C m+n+ 1
(a,) < ( J(Q + zR)
i“m,n+l = (n + 1)2(n + 1)2 m k
(4.11)
for 1 > p+l.

Remarks: Formula (4.10) holds for the (m+1)St gap too, and (4.11) holds

for the 1lst gap (see (3.4) and (3.5)).

To get estimates for the rarefaction coefficients we consider (3.9) with
n—l = LN ] -—
(s,y)GIQS x Qy. Letting H | =H_; x H s (n -1) times, we

introduce the map T defined by
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1
/ -k £ Ay 1
(di)k(l,y)e + Ti(Ai Bi'V) + Ti(ﬁ (Fi)k), i _S p-1
(Tv)i = < s
-k [ A,
o * 1 )
(ai)k(O,y)e + Ti(Ai Bi.v) + Ti()‘_p——__A£ (Fi)k), i 2 ptl
n-
for ver_l.

Remarks: Since in (2.20) Bi p = 0, in the formulas above
b

B, = (B,

i 1,1’.“’B

. -1
i, p-17 81 pe1 t e By JERT

T;”s are the maps defined in Lemma 4. Note that (3.9) means 'T(a)k = (a)k.

We want to show that T is a contraction mapping some ball in HE:} to
itself. This will give us a fixed point in the ball.
Using (4.3a) with s~ = 0, and (4.9) we obtain
s
-k [ A, rC, €,
o 1 c 1 o 0 k=1 rCO €y
(a;), (0,y)e L———— Q+ R = (—F5—) e 5
(k + 1) d
y
Applying Lemma 2 we obtain
S
-k [ Ay
0 C
(4.12) ai(O,y)e H { —— (Q + zR)k.

k-1~ (k + 1)2

Similarly
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-k Ay
s ¢ —FC (Q + zR)
(4.13) a,(l,y)e —_—— .
1 Bl 7 + 1)? k
Since
| Ay Bi’“le LG e | o] ol
k-1 Hy |
by (4.2)
(4.132) lTi(Ai B-ak)l S.Co €, Iakl .
et H{::i

As always Cy depends only on wu_, f We choose ¢ small enough so that

i* *

C0 €, < 1. Using the first inequality in (4.5) and (4.3) we get

Co

1
T(ﬁ_ (F,). ) {———  _(Q + zR), .
i ) i 1%k Hk_1 _'so(k + 1)2 k

In conclusion, adding all the estimates above

_ C
|T(a)k| = max I(Tak)i| S——— @+ zR) +Cje, I(a)kl .
n~-1 i Hk—l (k + 1) n-1
k-1 e
Choose D so that C + C0 €, D { D, which is possible since CO e, < 1. Thus

|T(a)k| < —D—2 (Q + zR)
n—

1 (k+ 1)
-1
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if
D
(o) < (Q + zR), .
, "k |Hn~1 Tk + 12 k
k-1
Now
(Tv), = (Tu) l = |T (A, B, (v - u))| <C, € Iv - u,
i i b T R | H — 0 * n-1
Bl k-1 He-1

with C0 €, <1 as in (4.13a). Hence T 1is a contraction, which has a fixed

point (a), satisfying
k

Ay

(4.14) |°‘k| ——— (Q + zR), .

n-1 " (k + 1)
He

Remarks: D tends to infinity as eo tends to zero since C does, which
means that the radius of convergence of our series approaches zero as

rarefactions degenerate.

In (4.14) (a)k = ((al)k’...’(ap—l)k’(ap+1)k’...’(am)k)' As a fixed point
of T, o is the solution to the rarefaction 0.D.E.”s (2.19). In Section 3
we could have obtained the existence of (a)k by solving the initial value
O0.D.E. in the complex domain. However, in this chapter we were able to obtain
the estimate (4.14) in addition to the existence.

Although the rarefaction surface coefficients could be obtained from
(2.20), we cannot prove the desired estimate on them from the equation because
of the (k + 1) factor in front of the (a.p)k term. Formula (2.20) is not
adequate for bounding derivatives of ¢ or Y. Fortunately, we have (2.25),

(2.28) which were derived as a consequence of $ being characteristic.
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From (2.28), using (4.9) and (4.5) we obtain

(4.15) (k + 14, < —C—z (Q + zR),
H

k-1 (k + 1)
which holds for rarefaction and sound surfaces. By (2.25c¢), using (4.9) and
(4.5) again, it clearly holds for contact surfaces as well.
We now go back to (2.20) to obtain the estimate on ap(s,y). We use (4.5)
to bound (Fp)k and (4.14), (4.15) to obtain
C

(4.16) |(a ) | { ——— (Q + zR), .
p’k = 2 k
H_, (k+1)

Remarks: To get (4.16) we needed to estimate

k-1

sE‘QS
yeﬂy
S'si;SS (Gdy)k 1 |¢k+1 + sy - ¢k+l)| S_z;—f—zgi'(Q + zR)
yea,
by (4.15).

Finally, the shock surfaces coefficients from (2.23) satisfy

(4.17) (k + 1y, < ——9—2- (Q + zR), .
H

-1 T (k+ 1)

Remarks: To get (4.17) we used (4.5) to bound (gp)k and (4.9) to bound

(a)kO’ (B)Ok from (2.23).
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1 N

NI
ep + O(ep) 0
Consider the sum of all c(Q + zR)k’s from (4.10), (4.11), (4.14),

Also, is incorporated into the constant C.

(4.15), (4.16), and (4.17) and call it Q + zR as agreed. Now set
(4.18) 4, = (a(z2)) + zR(a(2),2)),, k> 1.

Remarks: (Q + zR)k in (4.18) contains coefficients of @ of order less
than k. By the implicit function theorem the equations a(0) = 0, a = Q(a) +
zR(a,z) have a unique analytic solution da(z) whose coefficients satisfy

(4.18).

With this definition of @y s (4.10), (4.11), (4.14), (4.15), (4.16) imply
(4.4) for the index k.

Assuming the Main Majorization Lemma we have thus proved (4.4) for all
k > 1.

Remarks: When k =1 the Main Majorization Lemma implies (4.5) with

Q;

i =0 and Ry depending on ag only.

C. Proof of the Main Majorization Lemma

‘f 1 1 X

7" <
u=0 (m - u + 1)

(n+ D" (m+ 1)

with K, a fixed numerical constant.
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Proof: We let [x] be the integer part of x. Then

(3]

m
Y 1 5 1 5 <2 ) L > > (by symmetry)
=0 (m - u + 1)° (u + 1) p=0 (m - u+ 1)"(u + 1)
< 2 v 1
T (m - [%‘] +1)% p=0 (u + 1?2
g ] ey
(m+ 1)7 u=0 (u + 1)
Lemma 6

I

Proof: Consider m; + my objects. Then the left-hand side represents
the number of ways we can choose n; objects out of the first m; and n,
out of the remaining Moy . The right-hand side represents the number of ways
we can choose n; + n, out of m; + mp with no restrictions. Hence, the

inequality in Lemma 6 becomes evident.

Lemmas 5 and 6 are among the tools used for a proof of the Cauchy-

Kovalevsky Theorem in [4].
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Lemma 7: Let

u(g,n,y) = } u, v(y)&“ n’
wo

v>0

It

TRERY)
u%p TuE

v>0

v(E,n,y)

go LN COLIh
u_ b

v>0

w(E,n,y)

and suppose that for positive constants Ty, 1= 0,***,2, we have

T
0 1 A+ v
|uu,v| 5'( 2 v+ Y )ah+v, P S
n+v-1 H
T
1 1 u+ v
’w“’“lﬁ 5'( s v+ 2 Y ) ppyr L LWV S min
u+v-1 M
9 0| ‘ Ty (b + v+ D)1 0 < 1wy < min
M,V - 2 2 u!vl ptv? - —
Hu+v (v + DD(v+1)
with
i
a(z)=Zaiz ai_>_0
1>1
i
b(z) = ) b, = b, >0
1>1
c(z) = ) c 21 ¢, >0
i i<="°
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If 'uOOIH , IWOOIH are also bounded by TO ag, T; b0 respectively, ag,
0

bO 2> 0, then
K2 T. T
0 01 m+ n
(4.19) |(uew) < ( J((@(z) + a )(b(z) + b,)
| mn,u T+ D+ n® D 0 0 )m+n,

m+n-1

with mtn > 1.

(4.19a) 1In case ugg = 0 =ag or wyy =0 = by then we get (4.19) under the

weaker hypothesis that w v? respectively, satisfy their estimates for

pv? Yy

1 < p+v < mtn-1 only.

Kz T, T
. 0 0 1 (m +n + 1)!
(4.20) I(“ v)mn|H 5( s 12+ 2 mial [@(2) + aple)]
m+n n
m + n > 0.
(4.20a) In case ugy = 0 = ay we get (4.20) with I(u-v)mn| as left-
m+n-1

hand side, m + n > 1, under the weaker hypothesis that v v satisfies the

estimate for 0 < p+v < min-1 only. If, in addition, Voo = 0 = CO the

hypothesis on uu v could be weakened to 1 < u+v < min-1.

b]




64

Proof: We have

(4.21)

(dy G)m+n—1(uw)mn| S_(dy 5)m+n-1 |umnl ‘WO0| + (dy 6)m+n—1 |u00| Iwmnl

m n

- - +v-1 min-(p+v)-1
+ u | @ & w (d_ §) (d_ 8)
HEO \)EO | U\" y | m—u,n—\)| y y
p+v#0 ,m+n
< Ty 3 ,wm,n,H * 1) by Ium,n’ﬂ
m+n-1 m+n-1
* qu |uu,v|H lwm—u’n_\)l
b —_ - -
WHVEO, mn p+v-1 mtn—-( p—v)-1
T, T
0 "1 m+ n
< - Mag b, +bya . ]
(n + 1)2(n + 1)2 n 0 “m+n 0 "m+n
. p+ vym+n - (u+ v) 1 1
T Ty L 55 ) n-v 3 2
U,V v+ 1" (m-u+1)
p+v#0,m+n
. 1 L] 1

a b .
(v + 1)2 (n - v+ 1)2 u+v T m+n-(utv)

The second term above is
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mn-l 4 g T 1 1
<TA T, )Y Ja, b, ()
071 0=1 n £ mtn-2% 1=0 (u + 1)2 (m -y + 1)?.
(3 2 1
v=0 (v + 1)2 (n - v+ 1)2
T. T K2 +n-1
< 010 __(m+n i a b

The estimate (4.19) follows. The result in (4.19a) follows from the fact that

the right-hand side of (4.21) will not have a Won OF up, term in case

ugQ> respectively Woo» 1s zero.
In case m=1n =0 (4.20) follows immediately. Hence, we assume

m+n > 1., Since dy <1

(4.22)

(@, O™ v <@ O fup vy o+ @ O™ v | ug]

+ X Iu | (d 6)u+v—1 v I (d 6)m+n—(u+v)
U,V y m-u,n-Vv y
i,V
p+v#0,m+n
S-Ium,nIH TZ c0 + |vm,n|H T0 1)
m+n-1 m+n
N .
A L |¥aeu,n-)
H,V Hu+\)—1 m+n—-( p+v)
p+v#0,m+n
T, T
0 "2 1 (m+n + 1)!
< [ 0 “m+n + C'm+n aO]

T+ D @+ D? min!



66

srgr, L (MEVErr I D@ ue
u,v
p+v#0,m+n

1
(u+ D3 - p+ DI + D3 - v + 1)2

*

Since

[u + v)(m +n-(u+v)+ 1)(m -+ 1) 5.(m + n + 1)(m +1) = (m+n+

a c *
p+v min-( p—v)

1)!

v n-yv

m! n!

(4.20) follows. The result in (4.20a) follows since the right-hand side of

(4.22) will not have the (dy 6)m+n Von %00 term in case ag = 0.
b}
Therefore, (4.22) will be valid with |(dy 6)m+“‘1(u-v)mn as left-hand
side. The rest of (4.20a) is immediate.
Corollary 1: Let u, = E (ui)uv(y)Eu nv, i =1,¢¢e,n satisfy the

hypothesis of u in Lemma 7. Then, for a = (a1,°°°,an), a multi-index

(K. T )lal
00 (m : n)((a + a0)|a|)

l(ua)m,nl < mn

- 2 2
o @+ D+ 1)

Proof: Follows from Lemma 7 (4.19) by induction on |a|.

Corollary 2: Let u = (u

1,"',un) as in Corollary l. Let

. a
a(u,y) =} aa(uoo,y)(u - uOO) be analytic in the variables

u,yéi{lu - uOOI < e} x Qy. Suppose, by letting uoo(y) = u(0,0,y), we have

|°‘%=2’ lag(uo)sy)l <3y yea, 2>o0.
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(in this case we say a majorizes a). Then

AN\

(aCu(E,n,5),y)) 1 L (™ M@K, T, alz)), ,
mn 00 mtn

— 2 2 n
Hm+n—1 (m+ 1) (n+ 1)

m + niz 1.

Proof: By Corollary 1

(T K )I(1|
|((u - uOO)G)mnl < L (m ¥ n)((a(z))|a|)

—_ 2 2 n m+n
Hm+n-1 (m+ 1)"(n + 1)

since (u - uOO)OO = 0, Hence

(d 6)m+n_1 laCu,y)_ | < ) % a (unnsy)| |[(u - u 2
y m,nt — o2, lof=2 | a' 00 00 m,n| S
L

® (K, T,)

< 00 m+ ny, L :
< (G [ la (ugqs9)1
= 220 (m + 1)2(n + 1)2 n min I %= a* 00

1 m+ ny—

< n )(a(KO T0 a))m+n'

(m+ 1% + 1)°

We are now ready to prove the second inequality of the Main Majorization Lemma

(see 4.5).

We consider the terms that enter in (Fi)mn from (2.12). By the remark
following (2.12) and by the hypothesis of the Main Majorization Lemma wu, ¢
and ¢ 1in these terms satisfy (4.4). In what follows m+n=%k-1>0

and 4 {m v <{n.
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First, we remark that

u =

w T (@), TyCugg)s u (s,y) = ) (ay), t;(uy)

Il o~18

1
so that
lugol €70 oyl Tul <1yl

with T0 = To(u_,fi). By (4.4)

S T L e L T

n-1 u-1

Since ¢ doesn”t depend on &, (wn - Aw)uv =0 4if v > 0. Therefore
1 1 H+ v
(W - 1) < - ]
v —_ 2 +\),
( ) nooovu ooy i+ DZ v+ p2 - v o
4.23a
for 1 {pu+v<m+n,
Similarly
1 1 H+ v
(A, =-9,) < a
v —_ 2 2 v +v
bWy T DR e W,
(4.23b)
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Let ej be the jth unit vector in R™, Let a be a majorant to
Zi(uoo)(A(u,y) - A(uoo,y))ej for i = 1l,***,m, j = l,°**,n 1in the sense of
Corollary 2. Then a is analytic in some neighborhood of 0 and a(0) = O.

By Corollary 2

(4.24)

(2.(ACw) - ACuy))e.) ¢ —1 1 M V)EER, T, ),

| 1 007773 uvl ppv-p B F 2 (v+ 1?2 v 00 KV

for 1 < u+ v‘£ m + n.
From (4.4)
1 1 u+v
(u+ v+ 1+ $) < Ja
uv Hu+v-2 ~(u+ 1)2 (v + 1)2 v p+v-1,

for Z_S H+v S_m + n,

since if both u > 0, v > 0 the left-hand side is 0. By Lemma 1 and the

above

Lelw+v+D) [(b+o),

(b + ¢)
l( yi)uv

H
Hu+v—1 ut+v-2
e H+ v
< Ja
—-(u + l)z(v + 1)2 v utv-1
e H+v
= ( v )(za)u+v’

(u+ D3v+ 1)?

for 2 S_u + v S_m + n.
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S_ao if u+ v =1 we obtain

Since W+ ¢)
yi uv

< 2e U+ vJ

(b + ¢)
’( yi)uv " T+ DAv+ D2
(4.25) o=l

a1+
(za zaO)u+v’

for I.S H+ vV S_m + n.

Remark: If p+ v =1, say u=1 and v = 0, then (4.25) is simply

which holds by definition of ag- Let b be a majorant to 2i(u00)Bq ej for
all i, j, q. By Corollary 2
1 U+ Vy—
(2, B e.) < [ )b(K T. ) ,
i "q j'uv Hu+v—1 ~(u o+ 1)2(v + 1)2 v 0 0 Tutv

(4.26)

for 1 S_u + “.S m + n.

Also |(8y B, ej)00| <bye Next

‘(ujg)u,"lﬂ =+ D (uj)u'*‘l,\’ H
u+v H+V

1 1 H+ v+l

< To(u + 1) . Ja

0 (u + 2)2 (v + 1)2 v w1
(4.27)
T
< 0 1 (p+ v+ 1)! (l-a)
*'(u + 1)2 (v + 1)2 ut v! z u+v

for O Lu+v<m+n -1.
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Similarly
To 1 (L+ v+ D1
I(ujn)“’vln < (w+ D2 v+ p2 WV G a')u+\>’
u+v
(4.28)
for 0<u+ vim+mn -1,
Finally
)__3 (u.) <e(u+v+1) [(u)
ayq j uv H - ' j u,\)l
H+v utv-1
T
0 H+v
<e(u+ v+ 1) 5 5 (7§ )u+v
(p+ (v +1)
(4.29)
_ ey (u+ v+ DY,
1
(n + 1)2(v + 1)2 v! ! u+v,
for 1< u+v<m+n,
and _ (u,) < a
3y, 4°0,0[ = %"

We now have

|(ziz<¢n = Ay = (AGw) = ACug))) + (v + ¢>yB}ej)u\,|

u+v-1

1 + v ,
u i} ) {sup |li ejlau+v
y

<
T+ i+ D32

+ a(K0 TO a)u+v + 2ed°((za + zao)b(K0 TO a))u+V ,

for 1 {p+v<m+n,
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where we used (4.23a), (4.24), (4.25), (4.26) and (4.19) and summed over
q =1 to d. Also note the left-hand side term is 0O when u = v = 0.

Hence by (4.20a) applied to (4.27) and the above, summing over j, we obtain

c

1
(2.°(first term in (2.12))) < 0 (m+n+ 1)!
i mn H —'(m + 1)2( + 1)2 m! n!
n+n n
) 1 — 1 —
(4.29a) { E'a + E-a a(K0 TO a) + E'a (za+ ag z)-b(K0 T0 a) nn
1 (m+n+ 1)! (
= Q(a) + zR(a,z))
(m + 1)2(n + 1)2 m! n! m+n+1
where
- 2 =
Qa) = C0 a® +a a(K0 T0 a)
R(a,z) =a*(a + ao)'b(K0 t) al.
Similarly,
21°(second term in (2.12))mn .
(4.29b) wtn
1 (m + n + 1)!
5-(m T % Dz Al (Q+ 2R) ey

It remains to bound the last term in (2.12). From (4.23a) and (4.23b)

1 1 ].l+\))
v ut+v,

W -6 <
nooTEw Mooy (0 D2 (v + 1?2

for 1 {u+v<m+n,
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and I(‘Pn g OOI < 2a,. Hence by (4.19) and (4.26)
I((wn )zi Bq eJ)uv,H
u+v-1
2
< K0 u+v

Ny J((a + ZaO)F(Ko 0 a)) 1,

T+ D3+ 1)?

for 1 {u+v m+n

and l((¢n - ¢E)21 Bq ej)OOI 5_230 Eb.

Applying (4.20) to (4.29) and the above and summing, we obtain

2i°(last term in (2.12))mn

Hm+n
% (m+n+ 1)! -
(4.30) i( RETC— T (@ + 3@ + 2a))b(K, Ty a))_,
m n
= 1 m +ﬁ? :!1)! (ZR(a(z)’z))m+n+l

(m + l)z(n + 1)2

with R = Co(a + ao)(a,+ Zao)gl The estimate (4.30) holds for m + n =0 as
well by the definition of ag. Now, (4.29a), (4.29b), and (4.30) together

yield the second estimate in (4.5).

Remarks: When m = n = 0 the last term in (2.12) is the only nonzero
term and (4.30) gives a bound for it.
Also, we have not considered the terms in the end gaps (2.15) separately

since they have the same form as (2.12).



Lemma 8: Let
u(s,t,y) =
m>1
v(s,t,y) =
mzp
W(S’t9Y) =

m>0

Consider the following estimates
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I ou (s,y)e"
) Vm(s,y)tm

I v (s,y)t".

i.e., u

and (ii) holds for

0:

To
(1) Iu | < a
m — 2 m
Hm_1 (m + 1)
T1 b
(i1) W I <
m - 2 m
Hm—l (m+ 1)
T2(m + 1)
(114) |%| < ¢
H (m + 1)
m
with a, b,c >0, |w0|H < T, by. Then
0
(A) If (1) holds for 1 <m<k
2
T. T, K
(4.31) I(uw)kl < 0 2 g
H (k + 1
If (i) holds for 1 {m<k -1

1<m<k-1

[@(2))(b(z) + b],.

then



75

2 2
To %o

2
(4.31a) |(u )kl (k . 1)2 (a (z))k.

(B) 1If Case l: (i) holds for 1 < m < k and (iii) holds for

Case 2: (1) holds for 1 <m< k-1 and Vg = 0 = o and (iii)

holds for 1 {m <k -1 then

2
TO TlK

(4.31b) l(uv)k' (k D

> (k + 1)(a-c)k.

(¢c) 1If uy = 0= ay and (1) holds for 2 <m<k and (iii) holds for

OSmS_k-Z then

2
To T, X

(k + 1) [a(z)ec(2)],.
(k + 1)2 k

(4.31c) I(uv)kl

Proof: The results in A and B follow from Lemma 7 (4.19a), (4.20a)
respectively by considering only one index, say u {mm=%k, v=mn-= 0,

Part (C) 1is almost immediate:

2
TO T1 Ko(k+ 1) k .

IA

v_| ¢,
ml |kmk__m k-m

(k + 1)2 m=2

k
I(uv)klﬂk- SmZZ lu

T, T, Kg(k + 1)
= (a-c)k, if a, = 0.

(k + 1)%
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Corollary 3: Let u = (u1,°°',un) with uy (s,t,y) = Z uy (s,y)tm and
m>0 m

u, satisfy (i) of Lemma 8 for 1 < m £ He Let a(u,y) = z aa(uo,y)(u - uo)a
m a

be an analytic function in the variables (u,y) and suppose

IG%=2 |aa(u0(s,y)’)')| .<_ az’ (SsY)GQS X S'Zy

where ug(s,y) = u(s,0,y). Then

1 — (2
I(a(u(s,t,Y),Y))u|H S_E:r:fzgi'(a(Ko Ty a(z)))u.
u-1
Proof:
1 - 20,2480 2
(aCu,y)) < a, T-(k)"(a(2)). .

Corollary 3 follows.

Remarks: If |a| > 2 it follows by (4.31a) that

TQ(KZ)I.—I

I((u - uo)a)ul < _El_ll___f (ag'(z))u

L (w+ 1)

under the weaker hypothesis that (“i)m satisfies (1) for 1 {m< u~- 1.

Therefore, if a, = 0 for |a| < 2, Corollary 3 is valid under this weaker

hypothesis.

We now focus our attention on (2.17), the inhomogeneous term in

rarefactions. We let a(z) be as in the hypothesis of the Main Majorization

Lemma.
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We have from (4.4)

("4,

(4.32) ¢-2*r1l (Lo
ST ( ),

1
2 ah+1

= (u+ 1) |(a1)u+1|H < (u+ 1) E:r:—;;—

H
i

(4.33) W -2, t)“‘n < ‘(w - A, 8,
-1 u-2

and (P - A t)0 = (p - Aw t)1 = 0.

b
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Similarly

(4.34) SRR N < "‘jL“TZ (za) , for 2 < u<k.

- M
By (u+ D

Using (4.31c) on (4.32), (4.33), and (4.34) we obtain

0 2
(4.35) (=2, t)=-(d=-1, t))a < (a®), .
‘( v ¢ ic)k T (k + 1)2 k
B
From Corollary 3
1 —
| (24 (ACw) - Alup))e, )u‘H Sz X% P

— . 2
with a a majorant for zi(A - A(uo))ej and C0 = KO To in this case. Also

(uw + 1) a

< C
BERECE B0

Using (4.31b) Case 2 in Lemma 8 applied to the above two estimates and summing

over j, we obtain

Co(k +1)
(4.36) |(£i(A(u) - ACug))(u - uo)s)k| < ——— (alcy a)d), .

H (k + 1)
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Note that a(0) may be taken to be zero.

Since
ACu) - Alug) - A7(u)(u = ug) = T A (udu - up?,
|22

if we let a_ = Z Z& zJ, we then have that 36 is a majorant for
2

zi(A(u) - A(uo) - A (uo)(u - uo))ej.
Hence, Corollary 3 and the remark following it imply

(4.37) (zi(A - Alug) - A7 (u - uo))uos)
k

where C0 here is also a bound for uo .
s
Since
@ =2, = e Dol (——a,
Hu_1 Hu_1 (u + 1)
for 1 S_u S_k -1
and since
Co(u + 1)

(4.37a) |(zi(u - uo)

)

s "|Hu'— (w+ 12 ¥

by Case 2 of (B) in Lemma 8 we obtain



80

l[(«»t R (ARSI OIS W NN “o>s] k‘

B
(4.38)
Co(k + 1) 9
< @,
(k + 1)
Corollary 3 implies
(4.38a) (2, B e,) < —— (6(c, @) for 0<u<k~1
-1
with b a majorant for 2.1 B e.. Also
q J
jG-o) <je-n) e —t o
H Ho_, ® (v + D)
(4.38b)
for 2 _<_ u i k.
Since (¢ - ¢)1| £ 2a,, we obtain
(4.38¢c) |(1b—¢) ' <———4———[(za+ 2a, z)] for 1 <u<k
Mg T+ n? 0w i
n-1
and (¢ - 4))0 = 0. Also, as in (4.29)
3 Ty
(4.384d) la— (u.)u‘ _<_—-—————f(u+ l)a_u for 1 <{u<k-1,
Yo THH T+

o
with ‘—a—y—q— (uj(s,y))ol < ay.
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Applying Case 1 of (B) in Lemma 8 to (4.38d) and (4.38c) we get

( 5 ) Colu + 1)
-6 -, 2
Pg IMu T e n?

[(a,+ aO)(za.+ 2a0 z)]u,

Applying Case 1 of (B) in Lemma 8 one more time to (4.38a) and the above, and

summing over q and j, we obtain

Co(k +1)
(4.39) |(ziB(¢ - ¢)uy)k| [b(Cotl)-(a + ay)(za + 2a, z)]k.

Hk—l— (k + 1)

Since using Lemma 1 and then (4.4),

6 + s(y - ¢) ' <e(w-1f¢+ sy -4¢)
2 bl y

u-1

and since |(¢yq + s(y - ¢)yq)1, S-CO ag we obtain

%

o+ s(¥ - ¢) { ———— (za + a, z)_,
( ’q yq)u‘H (u+ 1? 0w
(4.40) u-1
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Also

T0 e(u + 1)

u| = 2
H + 1
y (u )

]
5;'(Uj)

(@+ap), for 0&m<k=- 1.

Applying Lemma 8, part (B), Case 1 to (4.40) and the above, we obtain

Coln + 1) ( , |
{ ——— (@ + a)(za + a, z)| ,
. =~ (u+ 1)2 0 0 H

b, + s(¥ - §) )(u )
’[( 7q Yq) S]u
p-1

Applying Lemma 8 one more time to (4.38a) and the above, and summing over ¢

and j we obtain

(2 Be(o, + sC¥ - ¢ Ju)
y y’ s’k
| e

(4.41)
Co(k + 1)

{ —————— [(a + ay)*(za+ a, 2)*b(C, a)], .
(k + 1)2 0 0 0 k
Collecting the results from (4.35), (4.36), (4.37), (4.38), (4.39), (4.41), we
obtain the first estimate in (4.5).
We consider (2.22) next. From (4.4)

1
|(¢t-x¢)u' {——5a for 1 <u<k-1

—_ 2
B, +D

I((u-uoo)—(v—voo))ul {——za, for 1<u<k-1l.
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Hence Lemma 8 (4.31a) implies

0 2
(4.42) |zi[(¢t - )\¢)((u - ugg) = (v - VOO))]k|H < Y. (@), -
k-1
Next, using Corollary 3 we obtain
gi[(fo(u’Y) - fo(uOO,Y) - A(uoo)(u - uoo))
(4.43) = (£o0v,3) = £4(vo0sy) = Alvg)(v = vo0>)]k
-1
1 —
{ ——— (E,.(C, a(z)))
=+ D2 1 0Q0 k
where be = z§2 fb 2* with ?b a majorant for 8 +f, at wuyy and vy.

Remarks: Since f6 = A the left-hand side of (4.43) is quadratic in

(u - uOo) .

Using Corollary 3 we also get

|y (@ = £ | - < —2—5 (F(Cq alzn),

H_, (u+ D)

where f 1is a majorant for zi°fq, q=1,**+,d. Since
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c

0
(4.43a) (¢.) { ————— (za+ a, z)
|54 L+ n? 0w
for 1 < u <k, (see 4.40)
by Lemma 8 (4.31)
C
(4.44) I(zi(f(u) - £(v))*d )kl < —————-2- (£(cy acz))+(za + ay z) ), -
A RN (R

Putting (4.42), (4.43), and (4.44) together we obtain the third estimate in
(4-5).
The expressions for Lj’ and Lp from (2.25a) and (2.29) respectively

are similar so it suffices to restrict our attention to Lp in (2.29). Let

= -— a j
A, (U356 azJ (Ap)q, 3905750 (u = ug)® ¢, Then

(4.45) Lp(u,y,¢y) = |a%>2 (Ap)a,o(u - uOO) + Z (lp)a,J

3=0 JZI

*(u - uoo)a ¢io

Let i;(z,w) be a majorant of Xp, that is

I } . I(lp)a,j(uoo(Y),Y)l 5'(ib)£ 3 yEny. Since
al= ’

. cl ,
,(¢;)u‘ < ————ll—jz ((za + a z)J)u for 1< u <k,

H, u+D

(see (4.43a) and Lemma 8 (4.31a)) and by Lemma 8 (4.3la)
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bl
|((u-u )“)I < (@l
00 U u
By + D
for 0<u<k-1, |af >0,
we obtain by Lemma 8 (4.31)
j clal
C. C
0 0 1 j
(Cu ) ¢J) < ( (za + a, z)’) .
l 00 k|Hk_ Y k
Hence we may estimate the terms in (4.45) by
- a 4]
(ng (lp)a,J(u uyg) @ )
H
k-1
9, h|
<——-—Z() (a(za_+a z))
Tk + 1)2 >l P°2,] 0 ‘o k
2>0
1 k| 2 J
=——_ _ 2C 2()\) . C (a(za+a z))
(k + 1)2 0 ij £,j+1 70 0 0
20
=t (2R(a,2)), .
(k + 1)
Finally, we estimate the first term in (4.45):
1
) o u=u ) < ——— (X (cy @), -
l(lo}zz pras0 00 )k T+ n? P k

M1

The fourth and last estimate in (4.5) follows.
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