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Abstract

We show how pointwise values of a function, f(x), can be accurately

recovered either from its spectral or pseudospectral approximations, so that

the accuracy solely depends on the local smoothness of f in the neighborhood

of the point x. Most notably, given the equidistant function grid values,

its intermediate point values are recovered within spectral accuracy, despite

the possible presence of discontinuities scattered in the domain. (Recall

that the usual spectral convergence rate decelerates otherwise to first order,

throughout.)

To this end we employ a highly oscillatory smoothing kernel in contrast

to the more standard positive unit-mass mollifers.

In particular, post-processing of a stable Fourier method applied to

hyperbolic equations with discontinuous data recovers the exact solution

modulo a spectrally small error. Numerical examples are presented.
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I. INTRODUCTION

Let f(x) be a bounded 2_-periodic function whose Fourier coeffi-

cients are given by

^ 1 _ e-ik-Ydyf(k) = _-_f f(y) , -_ < k < _ . (I.I)

It is well-known that whenever f is a smooth function its

spectral approximation-- consisting of the partial sums

SNf(x) m }N(X) = [kl_N }(k)eik'x , (1.2)

converges pointwise to f(x). A typical error estimate in this case

asserts that for any x in the domain we have

If(x) - fN(x) l .<Csl[fll(s)'N-s+l , s > 1 (1.37

Here and below, C stands for (possibly different) generic constantS

bounds, and l]f]l(s) denotes the largest maximum norm of f and its
first s derivatives, the maximum taken over the whole domain.

We thus see that the decay rate of the truncation error on the
2-'-'----

left of (1.3) is restricted only by the degree of smoothness of the

function f . In this sense, the spectral approximation is termed to

be s_Dectrallyaccurate. If, in particular, f is a C -function, the

truncation error is rapidly decaying, faster than any fixed (m indepen-

dent of N ) polynomial rate. Thus, the spectral approximation of C=-

functions enjoys the so-called infinite order of"accuracy; this is in

constrast to the usually slower convergence rate due to a fixed degree

polynomial accuracy.

Next. assume only the gridvalues f = f(y_) are known, at the

2N equidistant gridpoints Yv -_ + vh , h = 2_/2N , _ = 0,1,...,2N-I.

Invoking the trapezoidal rule, the (exact) Fourier coefficients in (I.i)
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are approximated by discrete sums of these known gridvalues

1 2N-I -ik.yv
X fve , -N k.<N (1.4)

w=O

The difference between the exact Fourier coefficients and their

discrete approximation is also known to be spectrally small

• N-sIf(k) - _(k) l $ Cs[[f[l(s) , s > 1 (I.5)

As a substitute to the (exact) Fourier coefficients appearing in the

spectral approximation (1.2), f(k) , let us use their discrete counter-

part, _(k) The resulting new approximation is found to be exact at

the gridpoints x = y_ In other words, we arrive at the trigonometric

interpolant(I)

ik-x
_" _(k)e (1.6)INf(x) m _N(X) =

Ikl_N

The two type of errors committed in this case-- the original trun-

cation error in (1.3) padded with the aliasing errors in (1.5)-- both

are spectrally small. Hence, if f is smooth over the whole domain,

then its pseudo-spectral approximation (1.6) is spectrally accurate

even in between the gridpoints

If(x) - ?N(X) I < C llfll I S _ 1

" s (s)N , s > 1 (1.7)

We also note that as in the spectral and pseudo-spectral cases

(1.3) and (1.7) similar error decay is obtained with higher derivatives

and in more space variables; the norm on the right-hand side of (1.3),

(i.5),and (1.7) should be "raised" accordingly. Moreover, if the func-

tion is in particular analytic, then the spec_:ralaccuracy is further

improved to be exponential: let 2n > 0 be the width of analyticity

strip with maximum modulus [[flin; then an error bound of the form
e-Nn

Cnllfl n follows,e.g. [7].
Unfortunatel_ the pointwise errors associated with the spectral or

pseudospectral approximations, suffer from the limitation of being

dependent on the smoothness of the function f over the whole domain

(real or complex) and not just on its local behavior in the neighbor-

hood of the point of interest. This dependence of the local conver-
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gence rate on the global smoothness, which is reflected by (though not

a consequence of) the error estimates (1.3) and (1.7), is indeed in-

herent in both approximations. That is, the roughness of the function

in one part of its domain decelerates the convergence rate in the

smoother part of it. Most notably is the case of piecewise smooth

functions: not only that Gibbs phenomenon is recorded at points of

discontinuity, but in addition the spectral accuracy is lost at re-

gions where the function is smooth.

In this paper we show how pointwise values of the function f(x)

can be recovered from the information contained in either its spectral

or pseudo-spectral approximations, so that the accuracy solely depends

on the local smoothness of f , that is, its smoothness in the neigh-

borhood of the point of interest x If, in particular, f is in-

finitely smooth in that neighborhood, then the value f(x) is approx-

imated within infinite order of accuracy. Most notably, we recover

pointwise values within spectral accuracy, despite the possible pre-

sence of discontinuities scattered in the domain.

For such pointwise recovery, we should dismantle the above local-

global coupling limitation, associated with the (pseudo-) spectral

approximations. To this end, we employ a regularization kernel which

is convoluted against the (pseudo-) spectral approximation in the

usual fashion. Our regularization kernel consists of the product of

two terms: first we introduce a cut-off function to localize the ker-

nel in the spirit advocated above; secondly, it is multiplied by the

spectral approximation of the delta function (_ Dirichlet kernel), so

that spectral accuracy is guaranteed. Convolution with the resulting

kernel has then the effect of (locally) smoothing the spectral and

pseudo-spectral approximations.

The paper is organized as follows: in Section 2 we briefly dis-

cuss those fundamentals of Fourier summation which will be later

needed. Smoothing of the spectral approximation is described in

Section 3. In Section 4, we similarly treat the pseudo-spectral

approximation. It should be emphasized that the latter case directly

involves only neighboring gridvalues, so that the construction of the

pseudo-spectral approximation can be avoided altogether. In other

words, (intermediate) pointvalues are recovered here via a locally

supported yet spectrally accurate interpolation recipe. We remark

that more general orthogonal families - other than the aforementioned
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trigonometric one - can be used as well, to yield spectral smoothing:

the notable examples of Legendre and Tchebyshev are brielfy sketched in

Section S. We conclude with numerical evidence which back up on theore-

tical considerations.

In [6], Mock and Lax have shown how to recover within polynomial

accuracy pointwise values of discontinuous solutions to linear hyper-

bolic equations. They have employed a locally supported unit mass

post-processing kernel with a finite number of vanishing higher moments.

Our spectral smoothing is motivated by the Mock and Lax discussion -- indeed,

our regularization kernel based on the Legendre spectral approximation

is intimately related to their kernel. Majda and McDonough and Osher

[S] on the other hand, extending their previous study [4] with regard to

the same problem, have employed a spectrally accurate smoothing proce-

dure by operating directly in the Fourier space. Our smoothing in the

real space rather than in the transformed one seems to offer more ro-

bustness, resulting from the use of physical space localization; the

latter is in fact the key element which enables us to apply our smooth-

ing procedure to pseudo-spectral approximations. Moreover, it is also

applicable in conjunction with orthogonal families other than the trig-

onometric one.

This work has been motivated by the numerical studies of (pseudo-)

spectral s_mulation of shock waves, tlowever,in this paper we restrict

our attention to the level of approximation only; applications to P.D.E.

will be discussed elsewhere.

2. PRELIMINARIES ON FOURIER SUMMATION

Given a 2_-periodic function _ with Fourier coefficient
^ o ^

_(k) = (2._)-l.J_-_¢(y)e-lk'Ydy , its spectral approximation _ (x) isP

^ 1 _ e-ik ik-x
p(X3 _ , ,_ _ f ¢(y) "Ydye = f O(x-y)Dp(y)dy ; (2.1a)Ikl_p -_ -_

here D (y) stands for the Dirichlet kernel
P

1 _p eik-y _ 1 sin (p+l/2)y (2 lb)Dp(y] = _ [k[ 27 sin y/2

normalized so that it has a unit mass
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Dp(y)dy --1 (2.1c)

An (a' postriori) bound on the truncation error is given by

in agreement with (1.3), taking (¢,p) = (f,N). Thus we have

-s+l

IJ' ¢(y)Dp(X-y)dy-_(x)] .< CsIl¢ll(s)p , s > l ; (2.3a)

for later purpose, we quote here the special case x = 0,

-s+l

1; ¢(y)Dp(y)dy - ¢ (0) [ -< Cs] I¢[l(s)p , s > 1 . (2.3b)
-1[

The above error bound is not the sharpest bound possible: let _( ; )

denote the function's modulus of continuity, then Kolmogorov's result

yields an asymptotr]ally exact bound (2)

_r _r/2 2_.DS¢)sin_d_ + O(p_So(p) )if ¢(y)Dp(X_y)dy_¢(x)l .< 21n p f _(___,-_ 2pS 0

(2.4)

Turning to the pseudo-spectral approximation, we have encountered the

additional source of aliasing errors, due to discretization of the

(exact) Fourier coefficients' integral. Invoking the aliasing rela-

tions, e.g. [3],

_(k) = [ ¢(k+2jp) , -p _ k _ p , (2.5)

(2p equidistant point's interpolant is assumed). The aliasing errors

do not exceed

^

[k+2jpl -s .<
]_(k)-'¢(k)I "< j/0[' ]¢(k+2jp)] .< II¢ll(s) it0

.< Csll¢ll(s)p -s , S > 1 , (2.6)
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in agreement with (1.5), taking (_,p) = (f,N). Hence, the aliasing

error ]%(k) - ¢(k)[ , k = -p,...,p , adds up to a contribution

similar to that of the truncation error, yielding in view of (2.5)

I pCx)- Cx)l Ilkl! p  (k)eik'Xl + Ikl p I_(k) - _'(k)l + _l%'(-p) + '_(p) l
-s+l

.<%1l_ll(s)p , s > 1 , (2.7)

in agreement with (1.7), taking (_,p) = (f,N). It should be noted,

(e.g. [3]), that there is no qualitative difference between the spectral

and pseudo-spectral approximations.

3. RECOVERING POINTWISE VALUES FROM THE SPECTRAL APPROXIMATION

In this section, we show how to extract highly accurate approxima-

tion to the point values of a discontinuous function from its first N

Fourier coefficients in regions where the function is smooth. The basic

idea is that these coefficients are moments of the functions and conse-

quently, the integral of any smooth function against the spectral approxima-

tion is highly accurate with that against the function itself. We

therefore construct an auxiliary function such that when the spectral

approximation is integrated against it, the desired original point value

at a given point is recovered.

To do that, let O(Y) be a cS-function vanishing outside the

interval (-_,_) and normalized to take the value one at the origin

o(y=o) --1 (3.1)

We recall that the Dirichlet kernel in (2.1b) is given by

ik-v 1 sin (p+I/2)y .
D (y) _ 1 _ e " - (3 2)
p 27 Iklzp 27 sin (y/2) '

multiplying the two we obtain

¢l,p(y) = p(y)Dp(y) (3.3)

We now set as our regularization kernel
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_e,p(y) _ e-l_l,p(e-ly) = e-lo(e-ly)op(e-!y) , (3.4)

depending on a yet to be determined free parameter 6 , 0 g @ g 1
A

Given the spectral approximation, fN , we smooth its value via

convolution with the above regularization kernel, computing

fN* ce'P(x) = f fN(y') 'P(x-y')dy' (3.S)
-'8"

In order to estimate the error, we decompose

^

^ . _ ^ ^6 ^ _ ,r,@_p]
fN _6'P f = (fN-f) * _N 'p + (fN-f) * (_@'p _N _ +

+ (f * _6'P- f). (3.6)

The first term on the right vanishes in view of the orthogonality be-

?6'P and the truncatedtween the N-degree (trigonometric) polynomial _N^

sum fN - f '

^ ^@,p 0 (3.7a)(fN -f) * CN =

Thus we are left with two sources of error in this case: the truncation

error in the second term

T_'P = (iN-f) * (_@,P ?@,P-- _N _ (3.7b)

and the regularization error in the third term,

R@'p - f * _6'P - f • (3.7c)

With regard to the truncation error T_'P_Young inequality implies

[l(fN-f) * (C0'p- $_'P)][ .< IIfN-f]ILII[_°'P- $°N'P[I , (3.8a)

and in the view of (1.3) we conclude that this term is spectrally small

IITN,PII_ i[(_N_f) . (,e,p_ SN,P)ll .<
N-:;+I

.< Cs[ [)N-f[ ]LI [ [_@'P[ [ (s) (3.8b)
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Turning to the regularization error, R@'p , we compute at a given

fixed point x

x+O_

R0,P @0,p x-y' x-y' ,
(x) = f * (x) - f(x) = f f(Y')0-1O(:_L-)Dp(:_L-)dy -f(x).x-O_

(3.9a)

x-y' and making use of (2.1c), the regulariza-Changing variables Y - 0

tion error is simplified into

1'[
R0,P

(x) - f * _O'P(x) - f(x) = f _O'X(y) Dp(y)dy (3.9b)-'IT

where the auxiliary function oO,X(y) is given by

_0,X(y) =- f(x-Oy)0(y) - f(x) (3.9c)

In view of the normalization (3.1), _O,X(y) vanishes at y = 0 , and

by appealing to the truncation error estimate quoted in (2.3b), we end

up with
71"

_O,p, ¢)0, II,O,Xll -s+l (3.9d)IR(x)l -If X(y)Dp(y)dyl- < Cs (s)P-71"

Added together, we have shown in (3.6) - (3.9) the following:

proposition 3.1 (Main Error Estimate)

Let @0,p be the regularization kernel (3.4). Fix a point x i__n_n

the domain, and set ¢O,x to be the auxiliary function in (3.9c).

Then, the following error estimate holds

If N * ¢O'P(x) - f(x) l .<Csllfll.ll¢°'Pll(s)N -s+l +

+c ll_°'Xll -s+l (3.10)s (s) p

The following two lemmas, whose technical proofs are postponed to

the end of this section, provide us with the necessary explicit bounds

on the two terms appearing on the right of (3.10).

Lemma 3.2

Let _O,p denote the regularization kernel in (3.4). The follow-

ing estimate holds

II¢°'Pllcs) _ o-s-l-Ilpllcs).(l+p) s+l (3.11)
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Lemma 3.3

Let ¢@,x denote the auxiliary function in (3.9c). The following

estimate holds

• Max [Dkf(Y) I (3.12)
IlCe'Xll[s;"_[l+°)S'llpll[s; ly-xl.,o_

0.<k.<s

Choosing p = NB 0 < B _ 1 , we conclude from (3.6), (3.8b)

(3.9d) and the last two lemmas, the main result of this section, stating

THEOREM 3.4

Let f be a bounded 2_-periodic function with a given N-degree
A

spectral approximation fN " Setting the regularization kernel

_0,NB 1 sin (NB + I/2)y/0 (3 13)(Y) - 2_0 p(O-ly) sin (y/20) '

then for any x in the domain, we have the pointwise error estimate

. .Nfl[N.O s I .N-(1-fl) sIfN _0'NB(x) f(x) l _ cslloll(s) I;N-fIIL1 +

+ Max [Dkf(y) l.N -Bs] . (3.14)
ly-xl_e_
O_k_s

Choosing @ = B = 1 brings us back to the exactly same global error

estimate we had in (1.3). Taking B = i/2 ollthe other hand, the

truncation and aliasing errors' contributions in (3.14) are balanced,

and we are led to the following:

Corollary 3.5 (Spectral Smoothing)

. C2Let p(v) be a S-function, supported in [-_,_] and satisfy-

in_ (2.1). Then, for any x in the domain, the value f(x) can be
A

recovered via the spectral smoothing of fN ' which obeys the following
error estimate

I;N* 0°'_-(_3- f(x)l .<cs.ll_ll_2s).[N-0-2S,llfll+

+ Max ']Dkf(y)]-N-s+l , s > I. (3.15)
ly-xl.<0_
O.<k.<2s
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In general, of course, the choices of the cut-off function, p , and

the B-exponent, 0 < 6 < 1 , provide us with a whole variety of admis-

sible kernels, for which we have:

Corollary 3.6 (Infinite Order of Accuracy)

Let p(y) be a C_-function, supported in [-_,_] and taking the

value one at the origin. Assume the function f is C_ in the e-

neighborhood of a point x in the domain. Then the spectral smoothing

• --6 1._(x-y)

, °=el_'"B(x)= x+ef? (y) ( _s_n_*_--_. 1 Tr(x-y) dy-N 2-7 -N _ e ] . _(x-y)y=x-e sln 2e

0 < 6 < I , (3.16)

recovers the function value f(x) within infinite order of accuracy.

Remarks

(i) Suppose f is known to be smooth in the asymmetric neighborhood

• C °° _of x , (x - VL ' x + ER) , 0 < eL eR ,<_ Let P be a function

supported in the interval [-o-lvL, 0-1eR] inside of [-_,_] , such

that O(Y = 0) = 1 Then a nonsymmetric version of the above spectral

smoothing reads

fN * _O'N6(x) - 2_0 (Y)D x-y dy , (3.17)
x-_L sin 2--0--

recovering f(x) within spectral accuracy. The case EL = eR = _ = _O
coincides with Corollary 3.6.

(ii) The above error estimates concerning the spectral smoothing

f̂N * _O,p still enjoy the further flexibility in choosing different

s-orders in (3.10). This provides us with even further richness so as

to tune the different free parameters to yield accurate results.

As promised, we conclude this section with the following:

Proof of Lemma 3.2

With the regularization kernel @0,p in (3.4), Liebnitz's rule

gives us

Ilc°'Pll ._ e-s-ll Io(y)Dp(y)lI (s) "_(s)
S

o-s-1 _: (_)IIplI(s_j)IID II ; (3.18)
j=0 P (j)

complemented by the maximum norm estimate
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1 ' i ,
1 _ IklJ _<_(j+l) pJ+ (3.19)

[[Dp[[(j) .<_ [k[.<p

the desired result follows

i i,e,pll .< I e-s.l sil
(s) j=o (s) Iloll(s) ( )-I+P" s+l"

(3.20)

Proof of Lemma 3.3

Let _0,X(y) = f(x-0y)p(y) - f(x) be the auxiliary function in

(3.9c) with p(Y) supported in [-_,_] We observe that the only f-

values participating in the definition of _0,x are those from the

0-_ neighborhood of x , IY - x[ .<O-_ Applying Liebnitz's rule

restricted to that neighborhood, we find

S

.< _ ( )llpll(j)o s-J Max IDkfl.<
j=O ly-xl.<e_

0:_k.<s-j

• Max [Dkf(y) I (3.21)
"<(l+°)Sllpll(s) ly-xl. o

0.<k.<s
as asserted.

4. RECOVERING POINTWISE VALUES FROM THE PSEUDOSPECTRAL APPROXIMATION

In this section we treat the case where the discrete gridvalues

f = f(yu) are given so that a pseudo-spectral approximation _

collocating these gridvalues is uniquely determined; see (l._,). The

observation here is that the integrand AfN(y,)_O,P(x_y,) inkey (3.5)
is smooth over the whole domain, due to the kernel localization in the

neighborhood of the point of interest, x Hence, replacing the con-

volution integral with an appropriate trapezoidal sum, only an addition-

al spectrally small aliasing error is committed. Thus, in analogy with

(3.5), we smooth the pseudo-spectral approximation via the convolution

sum 2N-I 2N-I

27r _ _N(yu)¢e,p(x_yu) _ 2g _ f ,@'P(x-yv) (4 13
2N - 2N u=O u "v=O

Observe that since _0,p is supported in the neighborhood of x , only

those neighboring gridvalues are taking part in the pseudo-spectral

smoothing.

The computed error at a fixed point x , amounts to



-12-

2N-1

27T2N_ f_@'P(x-Y_)) - f(x) =
_=0

2N-I

= _-_ _ f _@'P(x-y_) f * 'P(x) f * (x) - f(x)

_=0 (4.2a)

There are two sources of errors in this case: the aliasing error due

to the use of the trapezoidal rule in the first difference

2N-1

4, p _ 2Tr _ f o,,_@'P(x-yu) - f * ¢@'P(x) (4.2b)2N ,o=0

and as before, the regularization error in the second difference

RO,P = f , oO,p _ f . (4.2c)

The aliasing error estimate in (l.5)i0)andthe regularization error
estimate in (3.9d) yield:

Proposition 4.1 (Main Error Estimate)

Let oO,p be the regularization kernel (3.4). Fix a point x in
the domain and denote

×O,p,X(y) = f(y)._O,P(x_y ) (4.3)

Also, let _@,x be the auxiliary function in (3.9c). Then, the follow-

ing error estimate holds

2N-1

I_--_-__ f,_*a'P(x-y,))- f(x)l .<c IIxO'p'xll N-s,_=0 s (s) +

+ CslI*a'XlI(s)p-s+l (4.43

@,p,xWe observe that the newly introduced auxiliary function X (Y)

is supported in the @-n-neighborhood of x , where Liebnitz's rule

yields
s

IIx°'P'Xll(s) _ _ (_)II,°'PlI(j)- Max IDkf(y)l ; (4.5a)
j=O ly-xl_@_

0_k_s-j

invoking (3.11), the following bound is found
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s

[[×O'P'X[[(s ) _< [ (_)o-J+l]lpll(j)(l.p)j+l. Max IDkf(y) l
j=0 ly xl.<e

O.<k.<s

• (4.5b)
"<e(l+P)lloll(s) ly-x[.<o=

0<.k.<s

The last estimate on the aliasing part of the error, augmented with the

previously derived estimate on the regularization error in Lemma 3.3,

lead us to the main result of this section, stating:

THEOREM 4.2

Le__t_tf be a bounded 2_-periodic function with given gridvalues

f = f(yv) Setting the regularization kernel

_@,N6 I p(e-ly) sin (N6+i/2)y/e (4 6)
(Y) = 2_0 sin y/2@ ' "

then for any x in the domain, we have the pointwise error estimate

_ 2N-If _@,N8[ (x-%) - f(x) l
_=0

[Dkf(y) [-[N -_s+l + @-S.NB.N-(1-B)s]. (4.7)• Max

csIIolts}ly_xl e
0_k_s

Taking 6 = 1/2 to balance the two error's contributions',we find:

Corollary 4.3 (Pseudo-Spectral Smoothing)

Let p(y) be a c2S-function, supported in [-_,_] and satisfy-

ing (2.1). Then for any x in the domain, the value f(x) can be

recovered via the pseudo-spectral smoothing of the neighboring grid-

values, f , which obeys the following error estimate

]__ 2N-1 OO,¢_(x_yv)f - f(x) l
_=0

CS,,p,,(2S)IIII - b'ax ]Dkf(y) 1(1+@-2s)'N -s+l, s > 1. (4.8)ly-xl e
0$k$2s

In analogy with Corollary 3.6, we also have:

Corollary 4.4 (Infinite Order of Accuracy)

Let p(y) be a C_-function, supported in [-g,_] and taking the

value one at the origin. Assume the function f is C_ in the e-

neighborhood of a point x in the domain. Then the pseudo-spectral
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smoothing
13 1 _r(x-y_)

27T 2N-1 0@=E/_,NI3 1 Yv'<x+e HT(x-Yv)_sJ-n(N +g)y f = i %°( j_=0 _
y >.x-E sin

2e

0<6<1 (4.9)

recovers the function value f(x) within infinite order of accuracy.

In closing this section, we would like to emphasize another,

slightly more global variant of the pseudo-spectral smoothing, based on

integral convolution of the pseudo-spectral interpolant against the

regularization kernel

The first term is spectrally small due to the interpolation

error associated with the smooth regularization kernel as argued in

Section 2; by the exactness of the trapezoidal rule applied to (trigono-

metric) polynomials of degree _ 2N , we have

?N * _ 'N6 27 2N-1 N6= 2-'-N _ fv 06' (x-Yv) (4. 113
_=0

and consequently, the second difference is spectrally small as argued

above in relation to the aliasing errors. Finally the third difference,

is the spectrally small regularization error.

S. CONCLUDING REMARKS

The above arguments also apply to other orthogonal families. In

conjunction with Legendre polynomials, we set as our regularization

kernel

_O,p(y) _ o-lp(o-ly)Kp(O-ly) ; (5.1a)

here p(y) is cS-function supported in the interval [-i,I] such that

p(y=0) = 1 and K (y) stands for Legendre spectral approximation ofP
the delta function
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K (y)= (k+l)Pk(Y)Pk(O) (5.1b)
P k=0

normalized to have a unit mass

1

f KpCy)dy-- 1 (5.1c)-1

In view of the Christoffel-Durboux identity, we can rewrite

K (y) = p+1 P (O)pp(y) - PpCO)P (y)p+l p+l (5 Id)p 2 y • •

The resulting spectral smoothing via the above Legendre-type regu-

larization kernel was introduced in [i], and is intimately related to

Mock and Lax [6] post processing: indeed, @@'P serves as a locally

supported kernel with vanishing higher moments and unit mass - modulo a

negligible spectral error.

Similarly, we can use Tchebyshev ortho_onal expansion where

K (y) in (5.1a) is replaced byP
!

P = _ k=0 Tk(Y)Tk(0) - _r ff • (5.2)

We note that the (pseudo-) spectral smoothing done with the Tchebyshev

kernel is not translated to the usual cut-off in the transformed space.

6. NUMERICALEXAMPLES

In this section we demonstrate the efficacy of the smoothing pro-

cedure outlined above. As a test function we have chosen the piecewise
C_-function

sin x

O.<x.<_

f(x) = (6.1)
-sin x

_.< x.< 2_

^

As before, denote its spectral approximation by fN(x) , and let _N(X)
be the pseudo-spectral approximation to f(x). It is evident from the

first column of Tables I and III that fN(yv) - the spectral approxima-

tion sampled at yv = v_/N - do not approximate f(yv) within spectral^

accuracy. In fact, the error committed by f128(Yv) is only half of
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^

that committed by f64(Yv) ; this is in accordance with a suitably

sharpened error estimate of type (1.3) - consult e.g. (3.4). Regarding

the pseudo-spectral approximation, _N(X) , it of course
collocates the

exact values at the sampling gridpoints, __'_N(Yv)= f(y ) ; yet, i__n

between these gridpoints, _N(Yv+i/2 = (v + I/2)_/N) .approximate

f(yv+l/2) within first order accuracy only, as shown in the first
column of Tables II and IV.

In order to construct our regularization kernel, we define the cut-

off function P(_) = P_(_) to be

exp a_2 I_I < i

pa(_) _2-i: (6.2)

0 otherwise

namely pa(_) is a C_-function whose support is the interval [_1 < 1.

Our regularization kernel is now of the form (see (3.4))

6 1 -I sin (p+i/2)y/@
'P(Y) - 2_0 Pa (8 Y) sin y/26 (6.3)

The post-processing procedure of the spectral approximation fN

involves convoluting fN against _e'P , namely

1 2} ^

2_8 % fN(y)p(_) sin (p+i/2)(x-y)/@
f(x)

sin (x-y)/26 dy (6.4)

where x is a fixed point of interest. (In practice we use the trape-

zoidal rule to evaluate the right-hand side of (6.4) taking a large

number of quaderture points.)

The parameter @ was chosen as

e = Ix- ; (6.s)

this guarantees that _ is so localized that it does not interact with

regions of discontinuity.

It should be noted, in this stage, that if 6 was so chosen to be

the same for each x , (and not as in (6.5)), the formula (6.4) admits

a simpler form; that is, if



-17 -

¢0,p(y) = _ Okeiky (6.6)
_-_

then

N

f(x) _ _ )(k)Ok eikx (6.7)k=-N

This procedure can be carried out efficiently in the Fourier space.

Next, we turn to the post-processing for the pseudo-spectral

}N(X) which is simpler than (6.4). In fact, in thisapproximation

case 2N-1

f(x) X 'P (x-y_) • (6. 8)
2N u=0

Note that carrying out the smoothing procedure defined in (6.8) does not

involve any extra evaluation of _(y) in points other than yu , in

contrast to spectral smoothing procedure in (6.4). As before, the para-

meter 0 was chosen according to (6.5). We have yet to determine the

parameters p and _ The parameter p must be equal to NB for

0 < B < ! in view of (3.14), in order to assure infinite accuracy. (In

our computations B • .8.) Finally we feel that a is problem depen-

dent and we chose a = 10. We have not tuned the parameters to get op-

timal results; further tuning may improve the quality of our filtering

procedure.

In Tables I, II, III, and IV we give the results of the smoothing

procedure at several points in the domain. The pointwise values are

now.recovered with high accuracy. The first column in each table indi-

cates the points in which the procedure was performed. We limited our-

selves to four points in the interval (0,_) because of the symmetry

of the function f(x)
^

The second column gives either the spectral approximation fN(x)

or the pseudo-spectral approximation _N(X) , N = 128 in Table I and II
and N = 64 in Tables III and IV. The third column gives the smoothed

results, when filtered by (6.4) on (6.8), at the same points as in
column I.

The results indicate the dramatic improvement obtained by the

smoothing procedure. Moreover, note that the error committed by 9128^

(or f128) is better than the one committed by 364 (or f64 ) only
by a factor of 2 whereas after the post-processing the error
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improves by a factor of 104.

Table I.

Results of smoothing of the spectral approximation of f(x), N = 128.

^

x If(x€?N(x.)IIf-fN*¢I
. equals at x = x

2 3.2 (-3) s.8 (-i0)
3 5.2 (-3) 7.9 (-i0)

4 7.8 (-3) 6.3 (-10)

5 1.1 (-2) 1.1 (-lO)

Table II.

as Table I for the pseudo-spectral approximation _N(X).
Same

%+½ --8C.+½) If(x+½) ?N(x+_)I If- ?N*,1
, equals at x --x +½

2 5 (-3) 7 (-10)

3 8.1 (-3) 7.9 (,-10)

4 1.2 (-2) 6.4 (-i0)

5 1.8 (-2) 1.2 (-10)

Table III.

Results of smoothing of the spectral approximation of f(x), N = 64.

7T_) ^

x = -- lf(x.] I If _N, 8 fN(x,) - * _I
, equals at x = x

2 6.4 (-3) 4.8 (-6)

3 1 (-2) 5.9 (-6)

4 1.5 (-2) 7.7 (-6)

5 2.3 (-2) 8.9 (-6)
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Table IV.

Same as Table III for the _seudospectral approximation, fN(x__).

?N(X,+¢iIf-
v equals at x = x)+½

2 1 (-2) 4.1 (-6)

3 1.6 (-2) 6 (-6)

4 2.4 (-2) 7.8 (-6)

S 3.6 (-2) 8.9 (-6)

7. ENDNOTES

1
The single and double primed summations indicate halving the first
and the last terms, respectively. It is used in this case to com-
pensate for the use of even number of gridpoints.

2
Referring to the convex case.
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