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Abstract

This paper treats elliptic problems with corner singularities. Finite

element approximations based on variational principles of the least squares

type tend to display poor convergence properties in such contexts. Moreover,

mesh refinement or the use of special singular elements do not appreciably

improve matters. Here we show that if the least squares formulation is done

in appropriately weighted space, then optimal convergence results in

unweighted spaces like L2.
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I. Introduction

Least squares methods have proven to be useful for indefinite elliptic

systems. The Helmholtz equation is perhaps the most important example ([I]-

[2]). The main advantage over standard Galerkin formulations is that least

squares always yield Hermitian definite algebraic systems. Thus iterative

methods like SOR can be used [3].

The main disadvantage of least squares is the extreme regularity

requirement it has for optimal rates of convergence. For example, the

standard least squares approximation to

(I.i) A_ + q_ = f in

(1.2) _ = 0 on _

is to require that

(1.3) J {Igrad _ - ul2 +ldiv u + ql - fl2}

be minimized as _ and u vary over appropriate finite dimensional spaces.

It has been shown that such an approach will give optimal L2 convergence

(i.e., second-order if linear elements are used, etc.) only in special

circumstances [I]. The most restrictive condition being the existence of a

number 0 < c < = such that for any f in the Sobolev space HI(_) the

solution _ of (1.1)-(1.2) lies in H3(_) and

(1.4) H_IIH3( < cHfllHl .- (e)
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A regularity result of this type is valid only for smooth regions _, and

in particular corners on a_ are excluded. Numerical experiments suggest

that this condition may in fact be necessary. For example, a series of

calculations dealing with rectangular polygons in _ having re-entrant

corners showed that not only was the L2 convergence suboptimal on uniform

grids but it also remained suboptimal even in the presence of mesh refinement

[4].

In this paper we consider an alternative least squares approximation in

weighted Sobolev spaces. These are spaces where analogs of (1.4) are valid.

The key feature of our analysis is that the error estimates are in unweighted

norms like L2. Selected numerical experiments with this type of formulation

and with appropriate mesh refinement are also reported here.

The results obtained here generalize those in [5]. As in the latter the

Hardy-Littlewood inequality plays a key role; however, in this paper the

analysis takes a different direction in the sense that the discrete

decomposition property introduced in [6] is also used extensively. In

addition, the special mesh refinement introduced by Babuska, Kellogg,

and Pitkaranta [7] is also exploited explicitly.

For simplicity we shall consider planar regions _ having only one

corner as is shown in Figure i-I. Since existin_ proofs of the Hardy-

Littlewood inequality [8] uses both exterior and interior cone conditions our

results are restricted to interior angles e0 satisfying

0 < e0 < 2_.
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Figure I-I: The planar region _.

2. Variational Formulation

Let r denote the distance to the corner at P0 (see Figure I-i) on

_. For a nonnegative integer k and a nonnegative number 8 let

k

= f r2(8+j-k) IDj _I2,
(2.I) I'*U2'8 j_0 a

and let _k,8(_) denote the closure of [C=(_)] 2 in this norm. We approach

o().i)-(1.2) with a least squares formulation in the space HI(_) × '
o

(where HI(_) is space of functions in HI(_) with zero trace on _). In

particular, let
O

(2.2) Sh _ Hl(_)' _h _ _I,B(_)

be finite dimensional subspaces parameterized by h > 0. We seek
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(2.3) _h E Sh, uh E _h

which minimize

(2.4) f {Igrad _ - vl 2 + r2B Idiv v + q_ - fl2}

+ 2B
over (_,_) E Sh × Vh. That is, we have (1.3) with a weight r on the most

highly differential terms. Our goal is to find appropriate B for which

- lh '_- _h converge in unweighted spaces like L2 at the optimal rates.

Our analysis can be also used for the case where one has weights on both

terms in (2.4). It can be shown that the weight on the first term does not

help, and to minimize technical details we anticipate this result and start

with (2.4). An intuitive justification for (2.4) can be obtained from the

nature of the corner singularity. Indeed, if 00 denotes the interior angle,

then the solution _ to (1.1)-(1.2) will have a singularity of the form

'_/90 O(r_/eO-I(2.5) _ ~ O(r ), u_ = grad { ~ )

and here we are concerned with the case or re-entrant corners where _ < 00.

Thus if one were dealing with functions (_,_) in S,_ having this type of

behavior (such as special singular elements), then

7/o 0 _I00-1
(2.6) _ ~ OIr ), v = 0(r )

and so

_/00-2
(2.7) div _ = 0(r ).
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Observe that grad _ and v are square integrable; hence the first term in

(2.4) is well defined. However, div v is not square integrable, and the

second term in (2.4) is finite only if B exceeds 1 - _/e 0. Our analysis

(Section 4) indicates that if B is slightly larger than this; i.e.,

(2.8) 1 - _/2e0 _ B _ i;

then optional rates of convergence will result in L2 under suitable

conditions Sh and Vh.

An equivalent statement of the least squares formulation involves the

bilinear form

(2.9) BB((_,X),($,_)) = f (grad _ - X).(grad $ - _)

+ f r2B(div _ + q_)(div _ + q$)

and the functional

(2.10) FB(_,_) = _ r2B f(div _ + q_)

defined for (_,_) and (_,_) defined in the finite dimensional subspaces

x o _i,
Sh _h of HI(_) x _(_). In particular, (_h,_h) € Sh x _h is the

minimizer if and only if

(2.11) Bs((@h,_h),(_,_)) = FS(_,_) all ($,w_)E Sh x _h
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after selecting a basis for Sh × _h' (2.11) reduces to a set of algebraic

equations [9]. As noted in the first section, the chief virtue of this system

is that it is Hermitlan definite.

3. Approximation and Regularity

In this section we develop the approximation and regularity results that

will be needed for the error analysis in the next section. It will be assumed

throughout this paper that the function q is bounded away from eigenvalues

of -A (with Dirlchlet boundary conditions). Thus (1.1)-(1.2) has a unique

solution. Of fundamental importance is the following result due to Kondratlev

[i0].

Theorem 3.1: Let _ satisfy (1.1)-(1.2) on the region _ shown in

Figure I-I. Then for t > 0, t + I > B > t ---_ + i
_ _ e0

(3.1) ll_Nt+2,8 <__Cllfflt,8

and

(3.2) lIV_tlt+l,8 < Clifltt,8.

We now turn to approximation. The starting point is a special

triangulation first introduced by Babuska, Kellogg, and Pitkaranta [7]. Three

conditions are needed in order to obtain the appropriate approximation

results. The first is the standard angle condition on the individual

triangles [9]. To describe the second let h be the maximum mesh spacing

associated with the triangulation. Then, given h and weight factor 8, each

triangle T must satisfy
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d(T) = 0(hr B)(3.3)

where

d(T) = max Ix-Y[.
x,yET

The third and most crucial rule governs the amount of refinement.

Given h and 8, the triangles which have the corner as a vertex must satisfy

!

(3.4) d(T) < Ch I-B.

For a mesh refined according to these conditions, Pitkaranta [II] proves the

following.

Theorem 3.2: Let 0 _ B < i. Let Sh be the space of continuous

piecewise linear polynomials. Let _ be defined on _ such that

(3.5) f r2B [D2 _[2 < =.

Then there exists a constant C depending on B such that

(3.6) min {f [DI(_- _h)[ 2 + h-I _ r-B [_- _h [2} <__Ch2 _ r2B [D2 _[2.
n r

*hCSh

Proof: See [II].

Equation (3.6) implies that
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(3.7) min 11_- _htll _< Chll_fl2,8.
 hESN

We will need a similar result for approximation in other norms.

Lemma 3.1: For 0 < 8 < i

(3.8) min {f i_ - _h 12 + h2 f r2B JDI(_ - _h) i2} <__Ch4 _ r4B iD2 _i2"

_hESh

Proof: See [12].

Lemma 3.1 contains two approximation results, namely

(3.9) II_- _hl10_< Ch 2 II_It2,28

and

(3.10) II_- _hfll,8 _< Chlt_;12,28.

Our analysis will require estimates in dual norms. In particular, the

following will be important:

r2_ _ .

(3.11) It_fl,,B = sup _ flnll1
nEWI,2B _ ,28

The following is an inequality that will be useful in the sequel.

Lemma 3.2: ,div vlt,,8 < CllvllO.
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Proof: Follows from (3.11), Schwarz's inequality, and the inequality

2

(3.12) llV(r2B n)ll2 <__Cllnlll,2B.

The final result that will be needed is the analog of the Grid

+

Decomposition Property introduced in [6]. This is a condition on Vh, and not

all finite elements spaces have this property as we will indicate in the

sequel. The version we will need can be stated as follows. There is a

number C, 0 < C < _ and independent of _h such that for each _-h in _h
+

there are Wh,Z h in Vh for which

vh = wh + zh

with

div zh = 0 J z_.w_ = 0

and

(3.13) flWhll0 < Cltdiv Vhll,,B.

4. Error Estimates

The analysis given here has a structure similar to that found in the

analysis of mixed methods (see, for example, [6]). The first step is use the

basic orthogonality property derived from (2.11) to get an estimate in a

nonstandard norm; in this case it is

(4.1) IIl(_,v) lll= BB((_,v),(_,v)) I/2,
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where BB(-,.) is the bilinear form defined by (2.9). One then uses this to

derive estimates in the negative norm (3.11), from which one can obtain L2

estimates for _ - lh" These plus the grid decomposition property yield L2

estimates for u - uh. In the sequel we let

(4.2) € = _ - _h

and

(4.3) e = _ - _-h"

In addition throughout we shall assume

(4.4) 1 - _/280 < 8 ! i.

Lemma 4.1:

(4.5) ]l](_,e)]]l _< Ch{llfllo,B + llflll,2B}.

Proof: It follows from (2.11) that

(4.6) BB((g,e),(_h,__h)) = 0

for all (_h,Y_h) E S x _h" Thus

(4.7) ll](g,e)]]] < inf]ll(_ - _h,U- y_h)l]]

where the inf is taken over all (_h,_h) E Sh x Vh. Using the approximation

properties in Section 3 we obtain
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(4.8) III(_,_)III< Ch{lu'Ii,B + "_II2,B + IIu__ll2,2B}.

The inequality (4.5) follows from (4.8) using Theorem 3.1. We now establish

an error estimate for dive + qc in the dual norm II-II

Lemma 4.2:

(4.9) l,dive + q_ll,,B< cIII(e,_)III.

Proof: For n E WI'2B solve

(4.10) A_ + q_ = _ in

(4.11) _ = 0 on _

with

(4.12) p = grad _.

Observe that by orthogonality and (4.12)

(4.13) B((_,e),(_ - _h,p - ph) = Jr2B n(div e + qc).

Therefore,

(4.14) Jr2B n(div e + qE) < III(_,e)IIIIII(_ _h,P - Ph)III

< IIl(_,e)III{_ - _hIIl + Up - PhIIl,_}.
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We choose _h,Ph so that

(4.15) I]_- Shlll_< Chll_ll2,B _< ChlI_II3,2B

and

(4.16) l]p- Phl[l,_ _< Chllpl[2,2_.

Using regularity (3.1) and (3.2), the estimate (4.9) is obtained by taking

the sup over n in (4.14) with llnlll,2BJ i.

We now state and prove our two main results.

Theorem 4.1: Assume that q is bounded on _. Then

(4.17) 'Igll0 < Chlll(g,e) l ll.

Proof: Solve

(4.18) AO + qn = € in

(4.19) n = 0 on _

for n. For any nh E Sh we have

(4.20) BB((g,_),(0,O - Oh)) = BB((s,!),(0,n)) .

But

(4.21)

BB((g,!),(0,O)) = J [grad g-grad n - e-grad O + r2_ qo(div _ + qg)].
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On the other hand

(4.22) S 2 = j E (An + q_) = Jr-grad g-grad _ + qq_].

Since

(4.23) f e.grad q = -_ div en

putting (4.21) into (4.22) gives

2 ,e),(0,n_ _h)) + _ (i + r2B q)-(div _ + qg)(4.24) _ g = -BB((€ -

To estimate the right hand side of (4.24) we note that nh can be chosen such

that

(4.25) BB((_,e),(0,n - qh ) < l[l(¢,e) lll lll(0,q - _h)[ll

_< Chnqn2, B [ll(€,e)[[[ •

Also

(4.26) llnl12,B < cllsNo,_ < CllcllO.

Finally,

(4.27) _ (i + r2B q)_(div e + q_) < clldiv e + qgll,,B Ur-2B nlll,2B.

Moreover,

-2B < Clln, < Cllcll_l < Cllcll(4.28) llr nlll,2B - 1,0 - ,0 -- O"

Combining these we obtain (4.17).
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m

Corollary: Assume q is bounded on _. Then

(4.29) ,Idiveft,,B _< Chili(_,e) lli.

Theorem 4.2: Suppose q is bounded on _ and suppose Sh x Vh

satisfies the grid decomposition property (3.13). Then

^

(4.30) II_0 ! chii[(s,_)ll[ + C ^inf ,I_- _U_hll0.

_h_Vh

^ ^

Proof: Let -_h E Vh be given. Use (3.13) to decompose _h --U-h as

follows:

^

(4.31) _-h - -U-h= -_h + -_h'

whe re

(4.32) div z__._= 0, f _h-Zh = 0

and

^

(4.33) llY_hll0 ! Clldiv(_-h-__h)ll*,g •

Note that for any (_h,V.h) E Sh x Vh we have

(4.34) 0 = BB((s,_),(_h,_h)) = f (grad _ - _)(grad _h - _h )

+ _ r2B(div _ + qg)(div _h + qlh).

Letting _h = 0 and _h = _-h we have

(4.35) _ Z_h.e = 0.
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Thus

_,,.3_ __-_ : S___- _ : S._._u-_,
i.e.,

^

(4.37) II_Z_hU0 < Ilu - __hll0 .

But from (4.33) and Lemma 3.2

(4.38) ll_hll0 <__Clldiv(_qh - __h)ll,,B <__Clldiv ell,,B + Clldiv(u - _h) ll,,B

<__Clldiv ell,, B + CIl_u - __hll O.

It follows that

(4.39 ) IIeII0 < IIu - U-hII0 + ll__h- U-hII0 --<IIu - U-hII0 + ll__hII0 + ll_Z_hII0"

Combining (4.37)-(4.39) with the above Corollary we obtain (4.30).

5. Numerical Results

In this section we report results of computations which demonstrate the

weighted least squares method and confirm the analytical results of the

previous section. All numerical experiments were performed on a VAX 11-750

computer. Special attention is given to the roles played by mesh refinement

and the weight.

All of the examples deal with the Laplace equation



-16-

(5.1) A_ = f.

We actually solve the equivalent first-order system

(5.2) div u = f

(5.3) _ - grad _ = 0.

The insensitivity of least squares to type of boundary condition (Dirichlet,

Neumann, or Mixed) has already been demonstrated [2]. Thus it is sufficient

for the examples reported here to use the Dirichlet condition

(5.4) _ = g on r.

Consider the L-shaped membrane shown in Figure 5-i.

I

3_"r
_1 °0- 2

Figure 5-1: L-shaped Membrane.
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3_

The re-entrant corner has measure e0 = _--. Thus from [13] we know that

the solution of (5.1) with homogeneous boundary condition has a singularity

with leading term

(5.5) _ = r2/3 sin[2 (B - _)]

where (r,e) are standard polar coordinates. Therefore, we use _ in (5.5)

as our test solution. Analysis in Section 4 indicates that optimal rates will

be assured in the weighted least squares solution by the proper choice of

weight exponent B and correct mesh refinement. The approximating space for

both _ and u is the space of continuous piecewise linear polynomials. For

3_
B0 - 2 ' (3.4) and (4.4) tell us we need

0(h3) 2
hmi n = and _ < _ < I.

Symmetry allows us to solve on the region shown in Figure 5-2, with a

tangency condition imposed in the llne of symmetry, as shown.

Figure 5-2: Computational Region for L-shaped Membrane.
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Figures 5-3 and 5-4 display two of the finite element grids used in the

numerical experiments. Note that each triangulation is constructed by

subdividing the basic criss-cross grid so that every element is an isosceles

right triangle. This type of refinement was chosen instead of the coordinate

stretching from a uniform mesh since the latter contained some elements with

large aspect ratios. To assure accurate determination of convergence rates,

the meshes were constructed so that the number of points N varied with the

maximum mesh spacing h according to the relation

-2)N = 0(h .

Figure 5-3: RefinedMesh, h =1/2.
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Figure 5-4: Refined Mesh, h =1/4.

The L2 errors in _ and _ are displayed in Figure 5-5. Results from

the weighted least squares scheme on a refined mesh are contrasted with those

using the standard least squares scheme on a uniform grid.

We also applied the weighted least squares scheme to Laplace's equation

on a square region with a crack, illustrated in Figure 5-6. This model is

characteristic of such physical problems as torsion of a cracked beam and flow

over a very thin airfoil.

It must be noted that the analytical results do not hold for this problem

because the cone condition used in the regularity result is not satisfied.

However, the results hold if the crack is replaced by a re-entrant corner with

measure 80 = 2_ - _. For this problem, (3.4) and (4.4) indicate that the

mesh refinement and weight parameters must satisfy

3
hln = 0(h 4) and _ < 8 < I.
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Error
.01

Figure 5-5: L2 error in weighted least squares approximation to _ (a)

and u = V@ (b) contrasted to standard (unweighted) least

squares approximation to _ (c) and u (d).
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1 1

0 =2_ F
0

Figure 5-6: Cracked Square.

For the test solution we again use the leading term in the singularity

which is

(5.6) _ = rI/2 sln[1 (8 - _)].

As before, by symmetry we will solve only on the region shown in Figure

5-7.

(0,0) u2=O
I

Q

1

Figure 5-7: Computational Region for Crack Problem.
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The L2 errors in the weighted least squares solution to the crack

problem are displayed in Figure 5-8.

The following conclusions can be drawn from these computations. The

accuracy lost in the least squares solution due to a corner-type singularity

is fully restored by the use of a weighted scheme on a refined mesh. Specific

criteria, which depend on the measure of the corner, have been developed to

determine the correct weight and order of refinement.

Moreover, the weighted scheme inherits all the advantages associated with

least squares. Second-order accuracy is achieved using the same finite

element spaces for _ and u. The associated matrix system is always

symmetric and positive definite, allowing solutions by standard iterative

techniques. The essential boundary conditions can be included in the

variational principle instead of being imposed directly on the approximating

finite dimensional space.
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Figure 5-8: L2 errors in weighted least squares solution to crack problem

for _ (a) and u = V_ (b).
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