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Abs t race 

D i f f e r e n t i a t i n g  matrices a l low the  numerical d i f f e r e n t i a t i o n  of f u n c t i o n s  

def ined a t  po in t s  of a  d i s c r e t e  g r id .  The present  work considers  a  type of 

d i f f e r e n t i a t i n g  matr ix  based on l o c a l  approximation on a  sequence of s l i d i n g  

subgr ids .  Previous d e r i v a t i o n s  of t h i s  type of matr ix  have been r e s t r i c t e d  t o  

g r i d s  wi th  uniformly spaced p o i n t s ,  and the  r e s u l t i n g  d e r i v a t i v e  

approximations have lacked p rec i s ion ,  e s p e c i a l l y  a t  endpoints. The new 

formulat ion al lows g r i d s  which have a r b i t r a r i l y  spaced points .  It is  shown 

t h a t  high accuracy can be achieved through use of d i f f e r e n t i a t i n g  matr ices  on 

non-uniform g r i d s  which include "near-boundary" points .  Use of t h e  

d i f f e r e n t i a t i n g  matr ix  a s  an  opera to r  t o  s o l v e  eigenvalue problems invo lv ing  

ordinary  d i f f e r e n t i a l  equations is a l s o  considered.  
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Introductioa 

The p resen t  work on d i f f e r e n t i a t i n g  matr ices  has  i ts  o r i g i n s  i n  t h e  s tudy  

of t h e  d i f f e r e n t i a l  equat ions  a s s o c i a t e d  wi th  r o t a t i n g  beam conf igura t ions  

which model t h e  v i b r a t i o n s  and a e r o e l a b t i c  s t a b i l i t y  of r o t a t i n g  s t r u c t u r e s  

such a s  h e l i c o p t e r  r o t o r  blades and p r o p e l l e r  blades.  The four th-order  

boundary value groblems assoc ia ted  wi th  rotat ,ng bcams do not ,  i n  genera l ,  

have u s e f u l  closed-f o m  so lu t ions .  Consequently, most t h e o r e t i c a l  work on 

t h e s e  problems has been asymptotic o r  numerical i n  nature.  

I n  one approach t o  numerical s o l u t i o n  of t h e s e  problems, harmonic t ime 

dependence is assumed t o  reduce the  governing p a r t i a l  d i f f e r e n t i a l  equat ion t o  

an  ordinary  d i f f e r e n t i a l  equat ion i n  space  which involves  an eigenvalue.  The 

fundamental d e r i v a t i v e  represen t ing  beam curva tu re  is then taken a s  a new 

dependent v a r i a b l e ,  and t h e  cigerlvalue problem is  r e w r i t t e n  a s  a second-order 

in tegro-di f  f e r e n t i a l  equat ion (White & Malat ino,  1975). This formulat ion can 

be convenient ly  expressed us ing a p p r o p r i a t e  i n t e g r a l  and d i f f e r e n t i a l  

opera to r s .  I n  genera l ,  boundary opera to r s  w i l l  a l s o  be required.  

The opera to r  equat ion f o r  t h e  continuous s o l u t i o n  may be converted i n t o  a 

matr ix  o p e r a t o r  equat ion f o r  a f i n i t e  dimensional  s o l u t i o n  vec to r  by 

eva lua t ing  the  o p e r a t o r  equat ion a t  a  f i n i t e  se t  of d i s c r e t e  g r i d  p o i n t s  which 

span the  i n t e r v a l  of i n t e r e s t .  The key quest ion now becomes t b e  manner i n  

which the  d i f f e r e n t i a l  and i n t e g r a l  opera to r  ma t r i ces  a r e  approximated. 

The p resen t  work examines one approach which approximates a d i f f e r e n t i a l  

opera to r  through use  of a d i f f e r e n t i a t i n g  matrix. The s p e c i f i c  type  of 

d i f f e r e n t i a t i n g  matr ix  considered uses a sequence of s l i d i p g  subgr ids  t o  

o b t a i n  l o c a l  approximations a t  g r i d  points .  To mainta in  s i m p l i c i t y  whi le  

i l l u s t r a t i n g  t h e  b a s i c  f e a t u r e s  of t h i s  technique,  t h e  d i s c u s s i o n  here  w i l l  be 



r e s t r i c t e d  t o  consider ing l o c a l  approximations obta ined through Lagrange 

i n t e r p o l a t i o n .  S i m i l a r l y ,  the  e igenvalue  problems considered he re  a r e  the  

simple h i s t o r i c a l  t e s t  problems involving t h e  harmonic equation.  Appl ica t ions  

of the  present  technique t o  a  v a r i e t y  of r o t a t i n g  beam problems w i l l  be given 

i n  a  l a t e r  paper. 

D i f f e r e n t i a t i n g  matr ices  provide a  means of numerically d i f f e r e n t i a t i n g  a  

f u n c t i o n  t h a t  is  expressed i n  terms of t h e  values  of the  func t ion  a t  

increments of t h e  independent v a r i a b l e ,  i .e.,  on a  d i s c r e t e  g r i d  with a  f i n i t e  

number of points .  When the  values  of the  func t ion  a t  the g r i d  po in t s  a r e  

arranged a s  a column vec to r ,  p r e m u l t i p l i c a t i o n  by a  d i f f e r e n t i a t i n g  matrix 

produces a  vec to r  con ta in ing  approximate values  of the  d e r i v a t i v e  a t  t h e  g r i d  

points .  

An h t t r a c t i v e  f e a t u r e  of d i f f e r e n t i a t i n g  matr ices  is t h a t  t h e i r  

d e r i v a t i o n  requ i res  only informat ion about the  g r i d  p o i n t s ,  and no e x p l i c i t  

informat ion is needed about the  func t ion  t o  be d i f f e r e n t i a t e d .  Thus, s o  long 

a s  the  g r i d  is not changed, t h e  same d i f f e r e n t i a t i n g  micr ix  can be used t o  

d i f f e r e n t i a t e  any func t ion  whose values a r e  known a t  the  g r i d  points .  This  

f e a t u r e  is  shared by i n t e g r a t i n g  matr ices  (Vakhitov, 1966; Hunter, 1970; 

Lakin, 1979) which may be used t o  numerically i n t e g r a t e  func t ions  on d i s c r e t e  

g r ids .  D i f f e r e n t i a t i n g  matr ices  of the  p resen t  type have previously  been 

der ived only f o r  g r i d s  with equa l ly  spaced points .  On t h e s e  uniform g r l d s ,  

t h e  same Newton forward d i f f e r e n c e  i n t e r p o l a t i o n  formulas l ead  t o  both an 

i n t e g r a t i n g  matr ix  and a d i f f e r e n t i a t i n g  matr ix  (Hunter & J a i n c h e l l ,  1969). 

Indeed, t h e s e  two types  of matr ices  a r e  n a t u r a l  complements. I n t e g r a t i n g  

mat r i ces  have a n  i d e n t i c a l l y  ze ro  row, and a r e  thus i n t r i n s i c a l l y  s i n g u l a r .  

Consequently, a  d i f f e r e n t i a t i n g  matr ix  is necessary  t o  undo an i n t e g r a t i o n  and 

a c t s  as an approximate inverse .  



The f a c t  t h a t  t h e s e  matr ices  depend only on t h e  g r i d  s t r u c t u r e  a l lows 

them t o  be used a s  approximations f o r  d i f f e r e n t i a l  and i n t e g r a l  opera to r s  i n  

e igenvalue  problems. The r e s u l t  of t h i s  approximation is a matr ix  e igenvalue  

problem which can be solved by s t andard  methods. 

Work i n  recent  yea r s  has focused almost e x c l u s i v e l y  on the  development 

and use of i n t e g r a t i n g  matr ices  t o  so lve  problems assoc ia ted  with r o t a t i n g  

beams (White & Malatino, 1975; Kvaternik,  White, & Kaza, 1978; Lakin, 1982). 

Despi te  i ts  l i n k s  t o  the  i n t e g r a t i n g  matr ix ,  t h e  d i f f e r e n t i a t i n g  matr ix  has 

beer. almost t o t a l l y  ignored. Two f a c t o r s  con t r ibu ted  t o  t h i s  s i t u a t i o n .  

F i r s t ,  f o r  uniform g r i d s ,  a  d i f f e r e n t i a t i n g  matrix was found by Hunter and 

J a i n c h e l l  t o  g ive  l e s s  accura te  r e s u l t s  than a corresponding i n t e g r a t i n g  

matr ix  i n  a simple t e s t  problem involving the  harmonic equation.  Fur the r ,  f o r  

the  v i b r a t i o n s  of a r o t a t i n g  c a n t i l e v e r e d  beam, the  problem of p r i n c i p a l  

i n t e r e s t  i n  e a r l i e r  work, i t  was found t h a t  the  matr ix  eigenvalue problem 

could be formulated us ing only t h e  i n t e g r a t i n g  matr ix  (White, 1978). However, 

t h i s  is not the  case  f o r  o the r  problems of cu r ren t  i n t e r e s t .  For example, i n  

the  r o t a t i n g  Seam model f o r  v i b r a t i o n s  of spokes of an  energy-s tor ing 

f lywheel ,  the  boundary coildit ions a r e  such t h a t  ref ormulation as  a matr ix  

e igenvalue  problem requ i res  the  use of both d i f f e r e n t i a t i n g  and i n t e g r a t i n g  

matr ices .  Indeed, t h i s  is the  case  f o r  many beam problems which do not 

involve  c a n t i l e v e r e d  boundary cand i t ions .  

I n  the  p resen t  work, d i f f e r e n t i a t i n g  matr ices  a r e  f i r s t  derived f o r  g r i d s  

with a r b i t r a r i l y  spaced po in t s .  This is a n a t u r a l  g e n e r a l i z a t i o n ,  a s  phys ica l  

problems o f t e n  have s p a t i a l  v a r i a t i o n s  i n  m a t e r i a l  p r o p e r t i e s  which 

n e c e s s i t a t e  the  use of unequal increments i n  t h e  independent va r i ab le .  

However, i n  t h e  przsent  context ,  removal of the  uciform g r i d  r e s t r i c t i o n  a l s o  



serves another, more fundamental, purpose. For differentiating matrices on 

uniform grids, relztively large approximation errors are found to occur at the 

endpoints of the interval being considered. Errors at interior points are 

considerably smaller. This situation is not surprising given the one-sided 

nature of the approximation at an endpoint and the intrinsically two-sided 

character of the derivative operation. In a formulation which is not 

restricted to uniform grids, one or more additional interior grid points can 

be added "close" to each endpoint. It wlll be shown that, at the cost of a 

slight increase in the size of the differentiating matrix, the addition of 

even a single "near-boundary" point dramatically reduces the errors in the 

derivative approximations. A reconsideration of the test problem of Hunter 

and Jainchell further shows that the results obtained using the 

differentiating matrix with near-boundary points as an operator in an 

eigenvalue context are now fully comparable in accuracy with the earlier 

integrating matrix results. The reliability of the generalized 

differentiating matsix is further demonstrated by considering two additional 

test problems involving both integrating and differentiating matrices. 

2. Derivation of the Differentiating b t r i x  

Suppose that f(x) is a function whose values are known on a grid G 

consijting of the N+l discrete points xo, xl,...,xs. The spacings 

x - x 1 j  1,2,..,N must be non-negative, but are otherwise arbitrary. 

Le,: I f )  denote the N+1-dimensional column vector (fo, f l ,  . . . ,fN)t where 

f j  = f (xj). A iifferentiating matrix on the grid G is then a square N+1- 

by-N+l matrix [Dl such that 



where {f'} = (fb;, f;,...,ffi)t, wi th  f *  1 - f O ( x j )  , is a column vec to r  of t h e  

d e r i v a t i v e  values a t  t h e  g r i d  points .  I n  p a r t i c u l a r ,  l e t  [ D ~ J  denote t h e  

i - t h  row vec to r  of the  matr ix  [Dl. Then, by (2.1), t h e  dot  product 

Loi] *{f} - f;. Hence, L D ~ ]  can be obta ined d i r e c t i y  from any express ion  f o r  

f i  which can be w r i t t e n  a s  a l i n e a r  combination of the  values f j  f o r  

j = 0,. ..,No I n  p r a c t i c e ,  the  row vec to r s  of [Dl w i l l  be obtained from 

approximations t o  f i  r a t h e r  than exact  express ions .  Consequently, a  

d i f f e r e n t i a t i n g  matr ix  on G w i l l  not be unique. 

D i f f e r e n t i a t i n g  mat r i ces  on G may be obta ined i n  a number of ways 

i n c l u d i n g  i n t e r p o l q t i o n  and l eas t - squares  polynomial approximation, and t h e  

form of the  matr ix  depends on both t h e  under ly ing technique and the  degree of 

t h e  approximating polynomials. I n  t h e  p resen t  d e r i v a t i o n ,  rows of [Dl w i l l  

be obta ined using Lagrange i n t e r p o l a t i o n  polynomials of degree n - < N on a 

sequence of appropr ia te  subgr ids  wi th  n+l po in t s .  

A s  a f i r s t  s t e p  i n  ob ta in ing  a s u i t a b l e  approximation t o  f i ,  and hence, 

L D ~ ] ,  f ( x )  w i l l  be approximated by an i n t e r p o l a t i n g  polynomial of degree  n 

on a n  a p p r o p r i a t e  subgr id  G of G which con ta ins  the  point  xi. I n  
Y 

p a r t i c u l a r ,  suppose t h a t  
G~ 

c o n s i s t s  of t h e  n+l g r i d  po in t s  

XY' XY+l' " 'XY+n' 
A s  t h e  even tua l  goa l  is an approximation t o  f i ,  xi 

should  be centered a s  m c h  a s  p o s s i b l e  i n  G This is  not a problem i f  n 
Y 

i s  even a s  xi w i l l  be e x a c t l y  cen te red  i n  G i f  y = i - 1112. I f  n is  
Y 

odd, however, two choices  of y a r e  p o s ~ i b l e :  y = i - (n+1)/2 o r  

y = i - n - 1  It w i l l ,  of course ,  not be p o s s i b l e  t o  c e n t e r  the  endpoints  

xo o r  XN o r  p o i n t s  x i  which e i t h e r  have values  of y which a r e  less than 



zero,  o r  values of y + n g r e a t e r  than N. Consequently, y must be 

r e s t r i c t e d  t o  the  range 0 L y L N-n-1, 

I f  G i s  a uniform g r i d ,  f ( x )  can be approximated on G by a Newton 
Y 

forward o r  backward d i f f e r e n c e  i n t e r p o l a t i n g  polynomial which can then be 

r e w r i t t e n  a s  a l i n e a r  combination of f Y ,  f l + l , - , f y + n a  Newton forward 

d i f f e r e n c e  formulas were used by Hunter and J a i n c h e l l  i n  t h e i r  i n i t i a l  

d e r i v a t i o n  of the  d i f f e r e n t i a t i n g  matrix. These d i f f e r e n c e  formulas may be 

genera l i zed  t o  a r b i t r a r y  g r i d s ,  i f  d e s i r e d ,  us ing divided d i f fe rences .  

However, i t  rap id ly  becomes q u i t e  d i f f i c u l t  on non-unif orm g r i d s  t o  perform 

t h e  required s e p a r a t i o n  of func t ion  values  and g r i d  information. Hence, t h e  

present  d e r i v a t i o n  u t i l i z e s  Lagrange i n t e r p o l a t i n g  polynomials which a r e  v a l i d  

f o r  a r b i t r a r y  g r i d s  and, a s  def ined,  s e p a r a t e  func t ion  values and g r i d  

information. The required approximation t o  f ( x )  on G is now 
Y 

where t h e  Lagrange c o e f f i c i e n t s  L(Y)(x) a r e  given by 
j 



Approximations t o  f'(x) on G can be obtained d i r e c t l y  from (2.2) by 
Y 

d i f f e r e n t i a t i o n .  Evaluat ion a t  xi now g ives  

where 

I n  f a c t ,  t h e  genera l  form (2.5) of L ( ~ ) - ( J C ~ )  can be considerably s impl i f i ed .  
1 

Suppose t h a t  i = y + k wi th  0 - < k - < n. Then, f o r  j not equal t o  k 

and f o r  j = k 

The i - t h  row vector  L D ~ ]  of [Dl can now be obtained i n  a s t ra igh t fo rward  

manner from equat ion (2.4). I f  t h e  elements of t h i s  row vector  a r e  dij ,  then 

(y)*(xi) f o r  d i j = O  f o r  j < y  and j > N - y - n  while d i y + m = L m  

m = O,...,n. 



The i n t r o d u c t i o n  of near-boundary p o i n t s  can d r a s t i c a l l y  change t h e  form 

of t h e  d i f f e r e n t i a t i n g  matr ix  on a g r i d .  For example, i f  G is a m i f o r m  

g r i d  of f i v e  p o i n t s  wi th  xo = 0 and x4 = 4, the  d i f f e r e n t i a t i n g  mat r ix  

based on fourth-degree polynomials is  

Adding two near-boundary po in t s  a t  .O1 and 3.99 t o  the  uniform g r i d  t o  g ive  a 

new ?on-unif o m  g r i d  of seven po in t s ,  the  d i f f e r e n t i a t i n g  matr ix  based on 

s ix th-deg~.ee  polynomials has the  form 

Matr ices  which approximate h igher  d e r i v a t i v e s  may a l s o  be defined.  For 

example, t h e  eecond d e r i v a t i v e  mat r ix  [ D ~ ]  on G is an N+1-by-N+l matr ix  

such t h a t  

[D21 t f  1 = {f") (2.10) 



where {f")  is a column vec to r  of values  of f"(x) a t  t h e  g r i d  points .  If 

n - N, then a s  noted by Hunter and J a i n c h e l l ,  

However, i f  n < N, then t h e  second d e r i v a t i v e  mat r ix  cannot be obta ined 

simply by squarfng [Dl a s  t h e  l ead ing  and/or t r a i l i n g  zeros  i n  the rows of 

[Dl l ead  t o  inaccura te  approximat ions.  Rather ,  the  second der! v a t  i v e  mat r ix  

must be computed d i r e c t l y  from t h e  subgr id  approximations 

where 

A s  is the  case  wi th  che f i r s t  d e r i v a t i v e  matr ix ,  considerable  s i m p l i f i c a t i o n  

of t h e  c o e f f i c i e n t s  i n  (2.13) is  poss ib le .  For example, i f  i - y + k, then  

S i m i l a r  r e s u l t s  are e a s i l y  der ived f o r  t h i r d  and h igher  de r iva t ivee .  



3. Accuracy of the Different la t i ryy Matr ix  

The accuracy of d e r i v a t i v e  approximatione obta ined using d i f f e r e n t i a t i n g  

mat r i ces  based on uniform g r i d s  has been i n v e s t i g a t e d  by Hunter and 

J a i n c h e l l .  They found t h a t ,  i n  genera l ,  i f  n-th degrec ?olynomials a r e  used 

t o  o b t a i n  approximations t o  the  values  £;(I = l,...,N), then the  e r r o r s  a r e  

of o rde r  hn where h = (xN - xo)/N is t h e  uniform spacing. However, i n  

a s s e s s i n g  t h i s  e r r o r  e s t i m a t , ,  it must be noted t h a t  i n  a c t u a l  a p p l i c a t i o n s  t o  

problems I n  r o t o r  dynamics, h is u s u a l l y  O(1) o r  even O(10). I n  p r a c t i c e ,  

t h e  use of d i f f e r e n t i a t i n g  matr ices  on uniform g r i d s  l eads  t o  l a r g e  e r r o r s  i n  

d e r i v a t i v e  approximations a t  endpoints.  These e r r o r s  can be c l e a r l y  seen from 

t h e  d a t a  i n  t h e  f i r s t  th ree  rows of Table 1. The f i r s t  row of t h i s  t a b l e  

g ives  the  exact  d e r i v a t i v e s  of f ( x )  = s i n  (knx/4) and g(x)  = cos(knx/4) a t  

x = 0 f o r  k = 1,2,3. Rows two and th ree  g ive  approximations t o  f O ( 0 )  and 

g O ( 0 )  obta ined us ing a d i f f e r e n t i a t i n g  matr ix  based on a uniform g r i d  of f i v e  

p o i n t s  wi th  xo = 0, xN = 4, h = 1, and i n t e r p o l a t i n g  polynomials of degrer - 

t h r e e  and four .  The e r r 3 r s  a r e  p a r t i c u l a r l y  pronounced f o r  the  two higher  

modts. 

The f i n a l  e i g h t  rows of Table 1 shoe approximi.tions t o  f O ( 0 )  and 

g'(0) obta ined by us ing a non-uniform g r i d  of seven p c i n t s  con8 i s t ing  of t h e  

previous  uniform g r i d  p lus  two near-boundary p o i n t s  a t  Ax and 5, - Ax. 

D i f f e r e n t i a t i n g  matr ices  based on f i f t h  and s i x t h  degree polynomlals f o r  Ax 

.05, .01, .001, and .0001 were used. A t  t h e  s m a l l e s t  value of Ax, 

approximations t o  both f O ( 0 )  and g'(3) agree  wi th  the  exact  values  t o  at  

l e a s t  four  decimal p laces  f o r  a11 t h r e e  values c ! k .  

A simple example w i l l  s e r v e  t o  i l l u e t r a t e  the  reabcn t h a t  employing a 

non-uniform g r i d  wi th  near-boundary p o i n t s  eervee t o  d r a s t i c a l l y  reduce 



der iva t ive  approximation e r ro r s  a t  the endpoints of the grid.  Conelder f  lrst 

the uniform grid appro~t taat ion (with spacing h) t o  the der iva t ive  of an 

unlrpecified funct ion f (x )  a t  the r i gh t  hand endpoint xN. Using a t h i r d  

degree Lagrange in t e rpo la t i ng  polynomial on the subgrid G cons is t ing  of the 
Y 

four  points xN-3 through xN gives a s  an approximation t o  f i  t he  

expreesior. 

'.t the  funct ion values fk(k = N - ? # .  . . ,N - 1) a r e  now expanded i n  Taylor 

ae r i e s  r e l a t i v e  t o  the endpoint xN, then 

whfch is the r e s u l t  found by Hunter and Ja inche l l .  

Consider next the a p p r o x i ~ a t i o n  t o  the der iva t ive  a t  x~ obtained using 

a four th  degree Lagrange in te rpola t ing  polynomial on the  non-uniform g r id  
A 6 

Gy cons is t ing  of G p l w  the near-boundary point x - + - Ax. Let 
Y 

i = f(;) . Then 

By the nature of the near-bound..ry point of the mn-uniform gr id ,  Ax is small 

compared t o  h. Expanding the funct ion value. i and fk(k = W3~...,N-l) 

i n  Taylor s e r i e s  r e l a t i v e  t o  + now gives the r e s u l t  



Unlike e r r o r  e s t ima tes  f o r  t h e  uniform g r i d ,  t h e  non-uniform g r i d  e r r o r  

e s t ima te  (3.4) i s  ~ s s e n t i a l l y  independent of the  degree of the  i n t e r p o l a t i n g  

polynomials. 

An equat ion s i m i l a r  t o  (3.4) p r e d i c t s  t h a t  the  e r r o r s  i n  the  d e r i v a t i v e  

Ax Ax 
approximation a t  xo w i l l  a l s o  be 0 ) A measure of the  e x t e n t  t o  

h 
which t h i s  is v a l i d  i n  p r a c t i c e  can be obta ined by examining the  d a t a  i n  Table 

1. The a c t u a l  e r r o r s  f o r  the  non-uniform g r i d  approximationr a r e  completely 

cons i s t en t .  For h = 1 and a l l  f o u r  vali*.es of Ax, approximations t o  both 

f O ( 0 )  and g'(0) a r e  v a l i d  wi th  e r r o r s  of o rde r  Ax. 

4. The Dlif~rentiating Matrix as an Operator 

As a t e s t  of i n t e g r r t i n g  and d i f f e r e n t i a t i n g  mat r i ces ,  Hunter and 

J a i n c h e l l  considered the  harmonic equat ion 

with the  homogeneous boundary cond i t ions  

y(0) = y ( 4 )  = 0, 

The exac t  s o l u t i o n  of t h i s  problem is simply 

kn 
yk(x) = s i n  q x wi th  uk = 7 . 



I f  equat ion (4.1) i s  w r i t t e n  a t  each of t h e  N+l p o i n t s  of a d i s c r e t e  

g r i d  G wi th  % = 0 and % = 4, the  d i f f e r e n t i a t i n g  matr ix  may be used a s  

an opera to r  t o  r e w r i t e  t h e  problem i n  matr ix  nota t ion.  Le t  ( 0 )  be t h e  

N+l dimensional ze ro  column vector .  The d i f f e r e n t i a t i n g  matr ix  formulat ion 

of (4.1) is then 

[D21 {yl  + w2{y1 = {O! (4.4) 

where [D2] is  the  second d e r i v a t i v e  matrix. Th i s  may be w r i t t e n  i n  t h e  

e igenvalue  form 

[A] {yl  = A{y} ; [A1 = ID,]-' (4.5) 

where 

s o  t h a t  the  dominant e igenvalue  corresponds t o  t h e  lowest frequency. Both 

boundary cond i t ions  i n  (4.2) have not been e x p l i c i t l y  used i n  ob ta in ing  t h e  

e igenvalue  problem (4.5). However, s i n c e  y = yN = 0, equat ion (4.5) reduces 
0 

t o  t h e  N - 1 - b y - - 1 )  dimensional problem 

where 15 ] is t h e  - 1 - b y - 1  matr ix  obta ined from [ D ~ ]  by removing 
2 

t h e  f i r s t  and l a s t  row and column and { is the  (N-1)-dimensional column 

vec to r  (y l ,  Y ~ # * . * # Y ~ - ~ ) ~ *  

Hunter and J a i n c h e l l  used a d i f f e r e n t i a t i n g  mat r ix  based on f o u r t h  degree 

polynomials on a uniform f ive-point  g r i d  wi th  h I t o  so lve  t h e  3-by-3 

e igenvalue  problem corresponding t o  (4.7). They obta ined as approximations t o  

t h e  f i r s t  t h r e e  modes the  e igenvalues  and e igenvec to r s  



By c o n t r a s t ,  exact  values f o r  t h e  f i r s t  t h r e e  modes a r e  

The d i f f e r e n t i a t i n g  matr ix  r e s u l t s  on the  uniform g r i d  thus compared poorly 

wi th  t h e  exact  so lu t ions .  

Hunter and J a i n c h e l l  a l s o  solved t h i s  eigenvalue problem using a 
i 

formulat ion base? only on i n t e g r a t i n g  mat r i ces  on t h e  uniform five-point  i 

gr id .  They obtained the  r e s u l t s  

For uniform g r i d s ,  t h e  i n t e g r a t i n g  matr ix  formulat ion of t h e  eigenvalue 

problem was thus c l e a r l y  super io r .  

The s i t u a t i o n  i s  q u i t e  d i f f e r e n t  when t h e  e igenvalue  problem (4.5) is 

solved us ing a second d e r i v a t i v e  matr ix  based on a g r i d  which includes  near- 

boundary points .  I n  p a r t i c u l a r ,  consider  t h e  non-uniform, seven-point g r i d  

obtained from t h e  previous uniform g r i d  by adding two near-boundary po in t s  a t  



0.01 and 3.99. Using a differentiating matrix on this grid based on sixth 

degree interpolating polynomials, the eigenvalues and eigenvectors of the 

5-by-5 problem corresponding to (4.7) are now 

These results are fully comparable with the integrating matrix 

approximations. This conclusion is not changed if the integrating matrix 

method is also enhanced through the addition of near-boundary points. 

Two additional eigenvalue problems involving equation (4.1) will further 

serve to illustrate the utility of differentiating matrix operators on grids 

which include near-boundary points. Consider first the eigenvalue problem 

consisting of equation (4.1) with boundary conditions 

Exact solutions are 

A 

y(x) = cos A (2k+l)n qc x with 1% = 8 9 

and thus 
LI A A 

ol= O.392;, w2 = 1.1781, and w3 - 1.9635. 

Because of the form of the boundary conditions, the problem (4.1) and 

(4.8) cannot be reduced to a matrix eigenvalue problem for {y) itself using 



only the  d i f f e r e n t i a t i n g  matrix.  Rather,  a combination of d i f f e r e n t i a t i n g  and 

i n t e g r a t i n g  matr ices  can be used t o  o b t a i n  a matr ix  e igenvalue  problem f o r  t h e  

f i r s t  d e r i v a t i v e  v e c t c r  y To do t h i s ,  a d i f f e r e n t i a t i n g  matr ix  is  used 

t o  express  t h e  second d e r i v a t i v e  vec to r  a s  {y") = [Dl {ye). The boundary 

cond i t ion  a t  x~ is now used t o  express  y(x) i n  terms of y'(x) a s  

I f  [J1] is  an i n t e g r a t i n g  matr ix  on G which approximates i n t e g r a l s  from 

x t o  xN, (4.10) has the  matr ix  form 

Equation (4.1) thus  has  the  matr ix  e igenvalue  formulat ion 

and = 1 The boundary cond i t ion  t h a t  y; = 0 has not  been e x p l i c i t y  

used i n  d e r i v i n g  (4.12). However, t h i s  cond i t ion  impl ies  s o l u t i o n s  can be 

obta ined ;',am the  N-by-N problem [x] @) = w), where [K] is  the  N-by- 

N T a r r l x  obtained from [A] by d e l e t i n g  t h e  f i r s t  row and column and 

t 7 = ( y i ,  Y;,.*.,Y;) . 
To so lve  t h e  matr ix  e igenvalue  problem, G was taken t o  be t h e  same 

seven-point g r i d  a s  above wi th  near  boundary p o i n t s  a t  0.01 and 3.99. A 

d i f f e r e n t i a t i n g  matr ix  [Dl based on f o u r t h  degree polynomials and an 

i . ~ t e g r a t i n g  matr ix  [ J1 ] based on f i f t h  degree polynomials were used. Th i s  



evenlodd degree scheme was chosen so that grid points or subintervals would be 

centered to the maximum extent possible in the approximation subgrids. 

Approximations for the first three eigenvalues were found to be 

A 1 * 
~ ~ ~ 0 . 3 9 2 6 ,  w2=1.1750, and ~ ~ ~ 2 . 0 8 8 3 .  

Approximations to the eigenvectors { for these eigenvalues, obtained by 

using the eigenvectors } of (4.12) in (4.11), agreed well with exact 

results. 

In an alternate procedure, the cigenvalue problem with boundary 

conditions (4.8) can be solved for { y j  directly using a combination of the 

integrating matrix [J1] and the integrating matrix [JO] which approximates 

integrals from xo to x. This formulation is somewhat simpler and also 

fractionally more accurate than the mixed differentiating-integrating matrix 

formulation above. However, if the boundary conditions associated with 

equation (4.1 ) are changed to 

it is no longer possible to derive a viable matrix eigenvalue formulation of 

the type [A) {y) = X{y) using integrating matrices alone. The lack of 

information on y itself at either endpoint forces use of a boundary matrix 

operator which leads to a singular matrix at the next-to-last step of the 

reformulation. This is not the case if a combination of integrating and 

differentiating matrices is used to reformulate (4.1) and (4.13) as a matrix 

eigenvalue problem for {ye 1 .  



If equation (4.1) is integrated from x to x~ using the condition 

yi = 0, then 

The function y(x) may also be expressed in terms of y'(x) as 

and, from equation (4.1), the unknown boundary value yo can be written as 

yo = -Xynn(0) with X as in (4.6). Consequently, 

The value of ynn(0) may now be obtained from y'(x) using a matrix 

formulation on a grid G involving both the differentiating matrix [Dl and 

the left boundary matrix [Bg]. In particular, [Bo] is an (~+l)-by-(N+l) 

matrix with first column vector (1) and all other entries zero so that 

[Bo] {f) = {f (0)). If [El is a diagonal matrix with entries 

eii = - 5, the matrix eigenvalue formulation of (4.1) and (4.13) is 

now [A] {y') = Xiye) with 

and [I] is the identity matrx. The condition that y'(0) = 0 implies that 

the first row and column of [A] may be removed and solutions obtained from 

the resulting N-by-N eigenvalue problem. Once % and { y  have been k 



determined, {yk} i t s e l f  may be obtained using (4.15) and (4.16) Exact 

so lu t ions  a re  given by (4.3) with s ine  replaced by cosine. 

The matrix formulation f o r  t h i s  eigenvalue problem was solved on the  

seven-point non-uniform gr id  with near-boundary points G = (O., 0.001, l o ,  

2., 3., 3,999, 4.). The d i f f e r e n t i a t i n g  matrix was based on s i x t h  degree 

polynomials, and both in tegra t ing  matrices were based on f i f t h  degree 

polynomials. Eigenvalues were found t o  be 

w1 = 0.7872, w2 = 1.7663, and w3 = 3.7402. 

Results fo r  the higher modes can be improved by increasing the number of 

points i n  G. 

5. Conclusioas 

Generalization of the d i f f e r e n t i a t i n g  matrices t o  gr ids  with noa- 

uniformly spaced points  removes many of the d i f  f icul t . ies  associated with 

previous versions of these matrices which were r e s t r i c t ed  t o  uniform grids .  

The inclusion of appropriate near-boundary points  allows f o r  accurate 

approximation of der iva t ive  values, including der iva t ives  a t  endpoints. 

Greatly improved accuracy is a l so  achieved when the present d i f f e r en t  l a t i n g  

matrices are  used a s  operator8 t o  express second order eigenvalue problems i n  

matrix form. 

For eigenvalue problems which can be reformulated a s  matrix problems 

using only the in tegra t ing  matrix, such a s  the four th  order models f o r  

vibrat ions of ro ta t ing  cant i levered beams, a l t e r n a t e  formulations involving 



t h e  i n t e g r a t i n g  and/or d i f f e r e n t i a t i n g  matr ices  w i l l  probably not be used i n  

p rac t i ce .  This is because a pure i n t e g r a t i n g  matr ix  approach, i f  f e a s i b l e ,  

al lows f o r  a s l i g h t l y  s impler  treatment of boundary condi t ions .  Enuever, 

boundary condi t ions  f o r  many eigenvalue problems a r e  such t h a t  a mixed 

formulat ion involving both types  of matr ices  is unavoidable. D i f f e r e n t i a t i n g  

and i n t e g r a t i n g  matr ices  on g r i d s  with near-boundary po in t s  should provide the  

b a s i s  f o r  a f a s t  and e f f i c i e n t  numerical technique f o r  so lv ing  these  problems. 
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