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Abstract

Differentiating matrices allow the numerical differentiation of functions
defined at points of a discrete grid. The present work considers a type of
differentiating matrix based on local approximation on a sequence of sliding
subgrids. Previous derivations of this type of matrix have been restricted to
grids with uniformly spaced poiats, and the resulting derivative
approximations have lacked precision, especially at endpoints. The new
formulation ailows grids which have arbitrarily spaced points. It is shown
that high accuracy can be achieved through use of differentiating matrices on
non-uniform grids which include '"near-boundary” points. Use of the
differentiating matrix as aon operator to solve eigenvalue problems involving

ordinary differential equations is also considered.

Subritted for publication to the International Journal for Numerical Methods in Engineering.
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Introduction

The present work on differentiating matrices has its origins in the study
of the differential equations associated with rotating beam configurations
which model the vibrations and aeroelastic stability of rotating structures
such as helicopter rotor blades and propeller blades. The fourth-order
boundary value problems associated with rotat.ag beams do not, in general,
have useful closed-form solutions. Consequently, most theoretical work on
these problems has been asymptotic or numerical in nature.

In one approach to numerical solution of these problems, harmonic time
dependence is assumed to reduce the governing partial differential equation to
an ordinary differemtial equation in space which involves an eigenvalue. The
fundamental derivative representing beam curvature is then taken as a new
dependent variable, and the eigenvalue problem is rewritten as a second-order
integro-differential equaticn (White & Malatino, 1975). This formulation can
be conveniently expressed using appropriate integral and differential
operators. In general, boundary operators will also be required.

The operator equation for the continuous solution may be converted into a
matrix operator equation for a finite dimensional solution wvector by
evaluating the operator equation at a finite set of discrete grid points whicn
span the interval of interest. The key question now becomes the manner in
which the differential and integral operator matrices are approximated.

The present work examines one approach which approximates a differential
operator through use of a differentiating matrix. The specific type of
differentiating matrix considered uses a sequence of sliding subgrids to
obtain local approximations at grid points, To maintain simplicity while

illustrating the basic features of this technique, the discussion here will be
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restricted to considering local approximations obtained through Lagrange
interpolation. Similarly, the eigenvalue problems considered here are the
simple historical test problems involving the harmonic equation, Applications
of the present technique to a varlety of rotating beam problems will be given
in a later paper,

Differentiating matrices provide a means of numerically differentiating a
function that 1s expressed in terms of the values of the function at
increments of the independent variable, i.e., on a discrete grid with a finite
number of points., When the values of the function at the grid points are
arranged as a column vector, premultiplication by a differentiating matrix
produces a vector containing approximate values of the derivative at the grid
points.

An attractive feature of differentiating matrices 1is that their
derivation requires only information about the grid points, and no explicit
information is needed about the function to be differentiated. Thus, so long
as the grid is not changed, the same differentiating macrix can be used to
differentiate any function whose values are known at the grid points, This
feature 1s shared by 1integrating matrices (Vakhitov, 1966; Hunter, 1970;
Lakin, 1979) which may be used to numerically integrate functions on discrete
grids., Differentiating matrices of the present type have previously been
derived onlv for grids with equally spaced points., On these uniform grids,
the same Newton forward difference interpolation formulas lead to both an
integrating matrix and a differentiating matrix (Hunter & Jainchell, 1969).
Indeed, these two types of matrices are natural complements. Integrating
matrices have an identically zero row, and are thus intrinsically singular.
Consequently, a differentiating matrix is necessary to undo an integration and

acts as an approximate inverse,
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The fact that these matrices depend only on the grid structure allows
them to be used as approximations for differential and integral operators in
eigenvalue problems. The result of this approximation is a matrix eigenvalue
problem which can be solved by standard methods.

Work in recent years has focused almost exclusively on the development
and use of integrating matrices to solve problems associated with rotating
beams (White & Malatino, 1975; Kvaternik, White, & Kaza, 1978; Lakin, 1982),
Despite its links to the integrating matrix, the differentiating matrix has
beer. almost totally ignored. Two factors contributed to this situation.
First, for uniform grids, a differentiating matrix was found by Hunter and
Jainchell to give less accurate results than a corresponding integrating
matrix in a simple test problem involving the harmonic equation. Further, for
the vibrations of a rotating cantilevered beam, the problem of principal
interest in earlier work, it was found that the matrix eigeanvalue problem
could be formulated using only the integrating matrix (White, 1978). However,
this is not the case for other problems of current interest. For example, in
the rotating beam model for vibrations of spokes of an energy-storing
flywheel, the bhoundary conditions are such that reformulation as a matrix
eigenvalue problem requires the use of both differentiating and integrating
matrices., Indeed, this 1is the case for many beam problems which do not
involve cauntilevered boundary conditions.

In the present work, differentiating matrices are first derived for grids
with arbitrarily spaced points. This is a natural generalization, as physical
problems often bave spatial wvariations 1in material properties which
necessitate the use of unequal increments in the 1independent variable,

However, in the present context, removal of the uriform grid restriction also
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serves another, more fundamental, purpose. For differentiating matrices on
uniform grids, relatively large approximation errors are found to occur at the
endpoints of the interval being considered. Errors at interior points are
considerably smaller., This situation 1s not surprising given the one-sided
nature of the approximation at an endpoint and the intrinsically two-sided
character of the derivative operation. In a formulation which is not
restricted to uniform grids, one or more additional interior grid points can
be added "close" to each endpoint. It will be shown that, at the cost of a
slight increase in the size of the diffeventiating matrix, the addition of
even a single '"near-boundary" point dramatically reduces the errors 1in the
derivative approximations. A reconsideration of the test problem of Hunter
and Jainchell further shows that the results obtained wusing the
differentiating matrix with near-boundary points as an operator in an
eigenvalue context are now fully comparable in accuracy with the earlier
integrating matrix  results. The reliability of the generalized
differentiating mat'ix is further demonstrated by considering two additional

test problems involving both integrating and differentiating matrices.

2. Derivation of the Differentiating Matrix

Suppose that f(x) 1is a function whose values are known on a grid G
consisting of the N+l discrete points xg, X)seee,Xye The spacings
x5 xj_l(j = 1,2,.44,N) mus: be non-negative, but are otherwise arbitrary.
Le: {f} denote the N+l-dimensional column vector (fo, fl,...,fN)t where
£j = f(xj). A differentiating matriz on the grid G 1is then a square N+l-

by-N+1 matrix [D] such that
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[D] {f} = {£7} (2.1)

where (f°} = (fa, fi,...,fﬁ)t, with f3 - f‘(xj), is a column vector of the
derivative values at the grid points. In particular, let LDiJ denote the
i-th row vector of the matrix [D]. Then, by (2.1), the dot product

LDiJ-{f} - fi. Hence, [DiJ can be obtained directly from any expression for
f{ which can be written as a linear combination of the values fJ for
J = 0,..0,N. In practice, the row vectors of [D] will be obtained from
approximations to fi rather than exact expressions. Consequently, a
differentiating matrix on G will not be unique.

Differentiating matrices on G may be obtained in a number of ways
including interpolation and least-squares polynomial approximation, and the
form of the matrix depends on both the underlying technique and the degree of
the approximating polynomials. In the present derivation, rows of [D] will
be obtained using Lagrange interpolation polynomials of degree n { N on a
sequence of appropriate subgrids with nt+l points.

As a first step in obtaining a suitable approximation to fi, and hence,
LDij, f(x) will be approximated by an interpolating polynomial of degree n
on an appropriate subgrid GY of G which contains the point x;. In
particular, suppose that GY consists of the nt+l grid points
X, X

Y
should be centered as much as possible in GY' This is not a problem if n

Y+1,...,xY+n. As the eventual goal is an approximation to fj, x4
is even as xy will be exactly centered in GY if y=14 -n/2, If n 1is
odd, however, two choices of vy are possible: y = 1 - (n+l1)/2 or

y =1i- (n~1)/2. It will, of course, not be possible to center the endpoints

xg or xy or points x; which either have values of y which are less than
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zero, or values of vy + n greater than N. Consequently, Y must be
restricted to the range 0 < y £ N-n-l.

If G 1s a uniform grid, f(x) can be approximated on GY by a Newton
forward or backward difference interpolating polynomial which can then be

rewritten as a linear combination of € f

Y’ fﬂl’...’ Y+n.
difference formulas were used by Hunter and Jainchell in their 1initial

Newton forward

derjvation of the differentiating matrix., These difference formulas may be
generalized to arbitrary grids, 1if desired, wusing divided differences.
However, it rapidly becomes quite difficult on non-uniform grids to perform
the required separation of function values and grid information. Hence, the
present derivation utilizes Lagrange interpolating polynomials which are valid
for arbitrary grids and, as defined, separate function values and grid

information. The required approximation to f(x) on GY is now

n
£(x) =Z LgY)(x)fm (2.2)
3=0

where the Lagrange coefficients LgY)(x) are given by

n n

(v) 1

LJY (x) = l—[ (x - xy,rm) / l_[ (xY,,,j - me)). (2.3)
m=0 m=0
m#§ m#4
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Approximations to f“(x) on GY can be obtalned directly from (2.2) by

differentiation. Evaluation at x; now gives

n

- Ln°
£1 Z j (x )fY+J (2.4)
j=0

where

n (Y)(x )

(Y)’(x ) -Z (2.5)

m=0
m# )

(v~
]

Suppose that 1 =y + k with 0 < k < n, Then, for j not equal to k

In fact, the general form (2.5) nf L (xi) can be considerably simplified.

n
w7 =0 [ oy - x /n(x - x ) (2.6)
=0

w=0
w#k, j m#j
and for j =k

n

(v)° - 2 : 1

L (xi) —————xi S . (2.7)
n=0 Y
m#k

The i-th row vector [DIJ of [D] can now be obtained in a straightforward
manner from equation (2.,4)., If the elements of this row vector are dij’ then

dij'o for § <y and j >N~y -n while d -L;Y)(xi) for

i ytm

m™ 0,000,006
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¢ e ——
B



PR Y o N .
ORI IENC R T4 VR N S N SO O e e

-

P S A .

The introduction of near-boundary points can drastically change the form
of the differentiating matrix on a grid. For example, if G 1is a uniform
grid of five points with xj = 0 and x, = 4, the differentiating matrix

based on fourth-degree polynomials is

=25 48 -36 16 -3

-3 -10 18 -6 1
pr =L | 1 0 8 -1 (2.8
-1 6 -18 10 3

| 3 -16 3 48 25

Adding two rnear-boundary points at .01 and 3.99 to the uniform grid to give a
new +on~uniform grid of seven points, the differentiating wmatrix based on

sixth~degree polynomials has the form

[C-102.33  102.37  -.05 03 -.02 .25 -.25 ]
-97.69 97.65 .05 -.03 .02 -.25 .25
18,55  -19.18  ~-.16 1,12 -.50 6.35 -6.18
(D] = 8,27 8.51  ~.89 0 .89 -8.51 8.27 | (2.9)
6.18 ~6.35 50 =1,12 .16 19.18  ~18.55
-.25 25  -.18 .03 -.05  -97.65 97.69
| .25 ~.25 .18 -.03 .05 -102,37  102,33_

Matrices which approximate higher derivatives may also be defined, For
example, the second derivative matrix [D2] on G 1s an N+l-by-N+1 matrix

such that

[D,] {£} = {£"} (2.10)

PoR R



where {f"} 1is a column vector of values of f"(x) at the grid points. If

n = N, then as noted by Hunter and Jainchell,
[D,] = (D)2, (2.11)

However, if =n < N, then the second derivative matrix cannot be obtained
simply by squaring [D] as the leading and/or trailing zeros in the rows of
[D] lead to inaccurate approximations. Rather, the second derivative matrix

must be computed directly from the subgrid approximations

n
f"(xi) -ZLgY)"(xi)fY"'j (2.12)
j=0
where
n-1 n
(v)
2L, " (x,)
D NP P
L (x ) - — — . (2013)
: ' p=0 m=p+l (xY*J xY+§)(xY+J xv+4y
pP*j m¥j

48 is the case with cthe first derivative matrix, considerable simplification

of the coefficients in (2,13) is possible. For example, if 1 = y + k, then

(2.14)

n-1 n
()" 2 : 2 : :
L (x,) =
k i (ii - xy+pj(xi - xY+m

) L ]
p=0 m=p+l
ptk m*k

Similar results are easily derived for third and higher derivatives.
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3. Accuracy of the Differentiating Matrix

The accuracy of derivative approximations obtained using differentiating
matrices based on uniform grids has been 1investigated by Hunter and
Jainchell. They found that, in general, if n-th degre: polynomials are used
to obtain approximations to the values f;(i = l,.se,N), then the errors are
of order h" where h = (xy - xg)/N 1s the uniform spacing. However, in
assessing this error estimat., it must be noted that in actual applications to
problems in rotor dynamics, h 1is usually O(l) or even 0(10). In practice,
the use of differentiating matrices on uniform grids leads to large errors in
derivative approximations at endpoints. These errors can be clearly seen from
the data in the first three rows of Table 1. The first row of this table
gives the exact derivatives of f(x) = sin (kwx/4) and g(x) = cos(kmx/4) at
x =0 for k= 1,2,3, Rows two and three give approximations to £7{0) and
g (0) obtained using a differentiating matrix based on a uniform grid of five
points with Xg = 0, Ay = 4, h = 1, and interpolatring polynomials of degre.-
three and four, The errors are particularly pronounced for the two higher
modes,

The final eight rows of Table 1 show approxim:tions to f“(0) and
g (0) obtained by using a non-uniform grid of seven pcints consisting of the
previous uniform grid plus two near-boundary points at Ax and - Ax,
Differentiating matrices based on fifth and sixth degree polynomials for Ax =
.05, .01, .001, and .0001 were used, At the smallest value of Ax,
approximations to both £f°(0) and g°(0) agree with the exact values to at
least four decimal places for all three values ¢ Kk,

A simple example will serve to 1illustrate the reasun that employing a

nor-uniform grid with near-boundary points serves to drastically reduce

-~ 4a
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derivative approximation errors at the endpoints of the grid. Consider first
the uniform grid approrimation (with spacing h) to the derivative of an
unspecified function £(x) at the right hand endpoint xy. Using a third
degree Lagrange interpolating polynomial on the subgrid GY conaisting of the
four points XN-3 through XN gives as an approximation to £, the

N

expression

. 6} = Lf - 18f, | + 9y o - 2f 4 3.1y
L N+1J ~6h ' *

"t the function values fk(k = N - 3,...,N - 1) are now expanded in Taylor

series relative to the endpoint xy, then
Dy |+(f} = £7(x,) + O(h%) (3.2)
L N+1J N

which is the result found by Hunter and Jainchell.
Consider next the approximation to the derivative at xy obtained using

a fourth degree Lagrange infterpolating polynomial on the non-uniform grid

~

GY consisting of GY plvy the near-boundary point X = XN — Ax. Let

f = £(x). Then

(3.3)
+ A% (108f, . - 276, + 4f, )41 4 0(AY)
;7 “UURN-1 N-2 N-3 h/(
By the nature of the near-bound..ry point of the non-uniform grid, Ax 1is small
compared to h. Expanding the function values £ and fk(k = N-3,.0.,N"1)

in Taylor series relative to xy now gives the result

—an o
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'_DN"'l '{f} = f ()LN) + 0(—5-, h—z)- (304)

Unlike error estimates for the uniform grid, the non-uniform grid error
estimate (3.4) is essentially independent of the degree of the interpolating
polynomials.

An equation similar to (3.4) predicts that the errors in the derivative

Ax Ax)
1] L]

h h2
which this is valid in practice can be obtained by examining the data in Table

approximation at x; will also be o A measure of the extent to

1. The actual errors for the non-uniform grid approximation~ are completely
consistent. For h =1 and all four valres of Ax, approximations to both

£°(0) and g“(0) are valid with eirors of order Ax.

4, The Diffrrentiating Matrix as an Operator
As a test of integreting and differentiating matrices, Hunter and

Jainchell considered the harmonic equation
" +uly=0 0<x<b (4.1)
with the homogeneous boundary conditions
y(0) = y(4) = O« (4.2)

The exact solution of this problem is simply

yk(x) = sin w X with W = 5%-. (4.3)

g
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If equation (4.1) 1is written at each of the N+1 points of a discrete
grid G with x5 = 0 and xy = 4, the differentiating matrix may be used as
an operator to rewrite the problem in matrix notation. Let {0} be the
N+1 dimensional zero column vector. The differentiating matrix formulation
of (4.1) is then

D, {y} + o*{y} = {0} (4.4)

where [Dy] 1is the second derivative wmatrix. This may be written in the
eigenvalue form

[A] {y} = Ay} 5 [A] = [D,]7" (4.5)
where

A= 1/w? (4.6)

so that the dominant eigenvalue corresponds to the lowest frequency. Both
boundary conditions in (4.2) have not been explicitly used in obtaining the

eigenvalue problem (4.5). However, since Yo = ¥y = 0, equation (4.5) reduces

N
to the (N-1)-by-(N-1) dimensional problem

(Al (3} = AGY 5 [A] = [321'1 4.7

where [5%] is the (N-1)-by-(N-1) wmatrix obtained from [D,] by removing
the first and last row and column and {y} is the (N-1)-dimensional column
vector (y,, yz,...,yN_l)t.

Hunter and Jainchell used a differentiating matrix based on fourth degree
polynomials on a uniform five-point grid with h = ] to solve the 3-by-3
eigenvalue problem corresponding to (4.7). They obtained as approximaticns to

the first three modes the eigenvalues and eigenvectors

PN
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w, =0.7893 {3} = ( 0.70, 1.00, 0.78)",

w, = 14142 {y,} = ( 1.00, 0.00, -1.00)%,
wy = 1.7920  {y,} = (-0.27, 1.00, -0.27)".

By contrast, exact values for the first three modes are

( 0.71, 1.00, 0.79)%,

€
]

0.7854 {;l}

€
0

1.5708  {y.} = ( 1.00, 0.00, -1.00)%,
2

=2.3562  {y.} = (-0.71, 1.00, -0.71)".
3

€
w
|

The differentiating matrix results on the uniform grid thus compared poorly
with the exact solutions.

Hunter and Jainchell also solved this eigenvalue problem using a
formulation base! only on integrating matrices on the uniform five-point

grid. They obtained the results

w =0.7860 {3y} = ( 0.71, 1.00, 0.71)%,
w, = 1.5492  {y,} = ( 1.00, 0.00, -1,00)",
wy = 2.8522  {y,} = (-0.83, 1.00, -0.83)",

For uniform grids, the integrating matrix formulation of the eigenvalue
problem was thus clearly superior,

The situation is quite different when the eigenvalue problem (4,5) is
solved using a second derivative matrix based on a grid which includes near-
boundary points. In particular, consider the non-uniform, seven-point grid

obtained from the previous uniform grid by adding two near—boundary points at

e
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0.01 and 3.99. Using a differentiating matrix on this grid based on sixth

degree interpolating polynomials, the eigenvalues and eigenvectors of the

5-by-5 prcblem corresponding to (4.7) are now

w = 0.7855  {y,} = ( 0.71, 1.00, 0.71)%,
wy = 1.5499  {y,} = ( 1.00, 0.00, -1.00)%,
wy = 2.1726  {y,} = (-0.61, 1.00, -0.61)%,

These results are fully comparable with the integrating matrix
approximations. This conclusion is not changed if the integrating matrix
method is also enhanced through the addition of near-boundary points.,

Two additional eigenvalue problems involving equation (4.1) will further
serve to illustrate the utility of differentiating matrix operators on grids

vhich include near-boundary points. Consider first the eigenvalue problenm

consisting of equation (4.1) with boundary conditions

y“(0) = y(4) = O, (4.8)
Exact solutions are

y(x) = cos ;k x with ;k = Sg&ﬁ%—Lll , (4.9)

and thus

W= 0,392, @, = 1.1781, and wg ~ 1.9635.

Because of the form of the boundary conditions, the problem (4.1) and

(4.8) cannot be reduced to a matrix eigenvalue problem for {y} itself using
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only the differentiating watrix. Rather, a combination of differentiating and
integrating matrices can be used to obtain a matrix eigenvalue problem for the
first derivative vecter {y“}. To do this, a differentiating matrix is used
to express the second derivative vector as {y"} = [D] {y”}. The boundary
condition at xy 1is now used to express y(x) in terms of y“(x) as

4
y(x) = =[] y“(s)ds. (4.10)

x
If [Jll is an integrating matrix on G which approximates integrals from

X to Xy, (4.,10) has the matrix form
[p] {y"} - ?(J;1 {y"} = {0}. (4.11)
Equation (4.1) thus has the matrix eigenvalue formulation
[A] {(y"} = A{y"} with [a) = (D)7 (3] (4.12)

and A = 1/&2. The boundary condition that y6 = 0 has not been explicity
used in deriving (4.12). However, this condition implies solutions can be
obtained ..om the N-by-N problem [A] {y"} = {y}, where [A] 1s the N-by-
N msx11x obtained from [A] by deleting the first row and column and
U7} = (0] Vgaeeery"e

To solve the matrix eigenvalue problem, G was taken to be the same
seven-point grid as above with near boundary points at 0.01 and 3.99. A
differentiating matrix D] based on fourth degree polynomials and an

1.tegrating matrix [J1] based on fifth degree polynomials were used. This
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e A <

e e g

*)



*
s

@

RO T S R R

R, v T

e

-17-

even/odd degree scheme was chosen so that grid points or subintervals would be
centered to the maximum extent possible in the approximation subgrids,

Approximations for the first three eigenvalues were found to be
)= 0.3926,  w, = 1.1730, and wy = 2,0883.

Approximations to the elgenvectors f;k} for these eigenvalues, obtained by
using the eigenvectors {;;} of (4.12) in (4.11), agreed well with exact
results.,

In an alternate procedure, the cigenvalue problem with boundary
conditions (4.8) can be solved for ({y} directly using a combination of the
integrating matrix [Jll and the integrating matrix [Jol which approximates
integrals from x; to x. This formulation is somewhat simpler and also
fractionally more accurate than the mixed differentiating-integrating matrix
formulation above, However, if the boundary conditions associated with

equation (4.1) are changed to
y“(0) = y7(4) =0, (4.13)

it is no longer possible to derive a viable matrix eigenvalue formulation of
the type [A} {y} = A{y} using integrating matrices alone. The lack of
information on y 1itself at either endpoint forces use of a boundary matrix
operator which leads to a singular matrix at the next-to—last step of the
reformulation. This 1s not the case if a combination of integrating and
differentiating matrices is used to reformulate (4.1) and (4.13) as a matrix

eigenvalue problem for {y~}.
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1€ equation (4.1) is integrated from x to xy using the condition

yo = 0, then
N 4

-y~ + w? | y(s)ds = 0, (4.14)

X
The function y(x) may also be expressed in terms of y“(x) as

X
y(x) = [ y“(s)ds + y(0) (4.15)

0
and, from equation (4.1), the unknown boundary value yo can be written as
Yo = -Ay"(0) with A as in (4.6). Consequently,

4 s
Sy (x) + (x - 4) y"(0) + w? [ | y7(£)deds = O. (4.16)
x 0

The value of y"(0) may now be obtained from y“(x) using a matrix
formulation on a grid G 1involving both the differentiating matrix [D] and
the left boundary wmatrix [BO]' In particular, [Byl is an  (N+1)-by-(N+1)
matrix with first column vector {1} and all other entries zero so that

[Bol {£f} = {£(0)}. 1f [E] 1is a diagonal matrix with entries

€4y = Xy.] — X,, the matrix eigenvalue formulation of (4.1) and (4.13) is

now {A] {y"} = A{y"} with
[A) = {IE] [8) [0} + [11}7'03,) [3,) (4.17)
and [I] {s the identity matrx. The condition that y“(0) = 0 implies that

the first row and column of [A] may be removed and solutions obtained from

the resulting N-by-N eigenvalue problem. Once W and {yi} have been
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deternined, {y} itself may be obtained using (4.15) and (4.16) Exact
solutions are given by (4.3) with sine replaced by cosine.

The wmatrix formulation for this eigenvalue problem was solved on the
seven-point non-uniform grid with near-boundary points G = (0., 0.001, 1.,
2., 3., 3.999, 4.). The differentiating matrix was based on sixth degree

olynomials, and both integrating matrices were based on fifth degree

polynomials. Eigenvalues were found to be

= 1,7663, and w, = 3,7402,

= 0.7872 w 3

“ 9
Results for the higher modes can be improved by increasing the number of

points in G.

5. Conclusions

Generalization of the differentiating matrices to grids with non-
uniformly spaced points removes many of the difficulties associated with
previous versions of these matrices which were restricted to uniform grids.
The 1nclusion of appropriate near-boundary points allows for accurate
approximation of derivative values, 1including derivatives at endpoints.
Greatly improved accuracy 1is also achieved when the present differeatiating
matrices are used as operators to express second order eigenvalue problems in
matrix form.

For eigenvalue problems which can be reformulated as matrix problems
using only the integrating matrix, such as the fourth order models for

vibrations of rotating cantilevered beams, alternate formulations involving
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the integrating and/or differentiating matrices will probably not be used in
practice. This is because a pure integrating matrix approach, if feasible,
allows for a slightly simpler treatment of boundary conditions. However,
boundary conditions for many eigenvalue problems are such that a mixed
formulation involving both types of matrices is unavoidable. Differentiating
and integrating matrices on grids with near-boundary points should provide the

basis for a fast and efficient numerical technique for solving these problems.
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