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3.0 NOMENCLATURE

Two dimensional lift curve slope of the propeller
blade section

Ratio of the induced velocity to free stream
velocity V/V^

A Area of the propeller

"effective VU - $
A^ Area of the contracted slipstream at the farwake

A- Area of the contracted slipstream at any intermediate
point in the slipstream

b(r) Chord of the propeller blade

B Number of blades
2 4Cj Thrust coefficient of the propeller = T/pn D

CJ 4/TT3 • CT

c Wing chord

c. Drag coefficient of the propeller blade section

c-i Lift coefficient of the propeller blade section
1 1

CN Normal force coefficient = A (C - C )d(x/c)
plower pupper

C Pressure coefficient

ds Elemental length, defined in r = § v.ds
c

D Diameter of the propeller

dC-p/dx Thrust coefficient gradient

F Prandtl's tip loss factor defined in equation 14

KT Tip loss factor defined in equation 14 and same as F.

L Lift of the blade section

n Revolutions/second

n* Normal vector

P~ Static pressure immediately downstream of the propeller



P Static pressure at the farwake of the propeller

Q Dynamic pressure

r(z) Local slipstream radius at any station z downstream
of the propeller

R (or) R Radius of the propeller

R Root cutout expressed as r/R.

R Radial distance of a point inside the slipstream
p from the propeller axis

T Thrust of the propeller

V Velocity used in defining the circulation around
a closed path

Vj Induced velocity at the center of the propeller

V Freestream velocity

V(P) Increment velocity at a point P, due to the
propeller wake

VT Tangential velocity of the tip of the propeller blade
1 at r = R

VT Tangential velocity at any point in the slipstream of
slipstream the propeller blade

W, Axial component of the induced velocitya
Wt Tangential component of the induced velocity

w Resultant of the axial and tangential induced velocity
shown in figure 5

x Nondimensional radial station = r/R

x/c Chordwise location of the pressure tap on the wing
section

y/R Spanwise location on the wing section

z/R Nondimensional axial distance downstream of the propeller

a Angle of attack of the propeller and the aircraft

3 Pitch angle of the propeller blade

A Increment



a. Singularities used in the Hess code
\J

$ Total velocity potential

<bm Freestream potential

(}>,, Propeller wake potentialw
4>B Disturbance potential due to aircraft body

4>T Helix angle at the tip of the blade = 3j

p Density of the air

A (V̂ cosa + Vj)/Vj used in Equation (6)

r Circulation defined by § v.ds

y V^ sina/Vj used in Equation (6)

r . Circulation strength of the vortex ring

r Wake circulation for the calculation of the
tangential velocity

u> Angular velocity

SUBSCRIPTS

n derivative in the normal direction

a free stream condition

s slipstream

prop at the propeller plane



4.0 SUMMARY

A subsonic-flow panel code has been modified to handle the effects

of a propeller wake. The effects of the propeller slipstream are to

increase the induced axial velocity, tangential velocity and a total

pressure rise in wake of the propeller. Principles based on the blade

performance theory, momentum theory, and vortex theory were used to

evaluate the slipstream characteristics. The slipstream effects are

superimposed into Neumann boundary conditions in the panel code to study

the installation aerodynamics of the powered propellers mounted on over-

wing or underwing nacelle integrated with a supercritical wing. Theore-

tical calculations are compared to experimental results at Mach numbers

0.5, 0.6 and 0.7, over a wide range of angles of attack. The discrepan-

cies between the theory and the experimental results are analysed.

Inclusion of a viscous flow modelling is carried out to enhance the

accuracy of the theoretical prediction.
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5.0 INTRODUCTION

High speed propellers (propfans) have gained importance in recent

years due to their higher fuel efficiency in comparison to high by-pass

ratio turbofan engines. Propfans have the potential for reducing the

fuel consumption of current transport aircraft by 14 to 30 percent (ref. 1,

2). Recent technology advances have shown that high speed turboprops

can have up to 15 percent higher installed propulsive efficiency at Mach

0.8 cruise compared to present day propulsion systems. The propfan

concept as advocated by the NASA Lewis Research Center and Hamilton-Standard

Company consists of an eight bladed propeller operating with a disc loading

of 301 kw/m2 (37.5 hp/ft.2) at Mach 0.8 and an altitude of 9.144 km

(30,000 ft.). The projected propeller efficiency demonstrated through

wind tunnel tests is 80 percent (ref. 2, 3). The interference effects of

the propfan slipstream on the aircraft has not been determined to date and

determination of these interference effects is a main design consideration

for installation aerodynamics. Previous turboprop propulsion system

analysis has been limited to aircraft designed without the use of modern

supercritical wings or advanced propfan technology.

Even though adding a propfan enhances the fuel savings there are

several critical problems to be examined which include: the demonstration

of the projected performance, the achievement of acceptable level of

internal cabin noise, and the efficient integration of the propeller/

nacelle combination with the airframe. Careful consideration of the

propfan and nacelle effects on the wing must be taken into account during

installation in order to gain the beneficial effects derived from the

propfan. To address all these problem areas one needs to understand the



flow behaviour as an initial step. Because model construction is

expensive and time consuming, it would be advantageous to have a

theoretical prediction scheme that could adequately predict the flow

field with reasonable accuracy so that the experimental program could

be considerably reduced in cost and time. Integration of the propeller/

nacelle combination with the airframe is the key factor in determining

the lift and drag characteristics of the wing due to the interference

effect of the slipstream on the aerodynamic characteristics of the wing

and vice versa.

Efforts should be directed towards minimization of the nacelle

installation drag, which requires the elimination of the shocks and/or

separated flow in the channels between the nacelle and fuselage. This

requires a detailed understanding of the flow field aerodynamic character-

istics and a knowledge of the interference effects. The interference

effects on the propeller due to the presence of different aircraft

components such as wings and bodies are found to affect the blade angle

of attack characteristics significantly (ref. 4, 5). The interference

effects on the wing and body are due to the slipstream of the propeller

and nacelle installation onto the wing which alters the aerodynamic lift

and drag distribution considerably (ref. 6, 7). For the interference

calculations both these effects should be taken into account, causing

considerable difficulty in formulating the problem and also in implementing

a solution on present day computers. Due to this restriction, approxi-

mations are introduced into the formulation of the theory. One such

approximation is considering that the effect of the aircraft components

on the propeller blades are small.

The purpose of the present investigation is to develop a method for
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predicting the interference effects of the propfan on the wing body

aerodynamics that can aid in providing a better understanding of the

complex flow phenomena associated with prop/nacelle/wing integrations.

A very simple model, on which the geometry could be easily defined, is

used to assess the capabilities of the developed theory. Experimental

results obtained with this model are presented in reference 8. The

configurations selected for this assessment are an overwing-nacelle

integrated with an unswept supercritical wing, and an underwing-nacelle

integrated with the same unswept supercritical wing.
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6.0 OUTLINE OF THE THEORY

The basis of the method presented in this report is a subsonic

panel method with modifications for incorporating the propeller-induced-

onset effects. The panel method selected is based on reference 9. The

treatment of the propeller induced effects is based on the theories out-

lined in references 10, 11, 12 and 19. The panel method uses a distri-

bution of singularities for solving the potential flow past three dimen-

sional arbitrary bodies and solves the equation

V2 $ = 0 (1)

where $ is the total velocity potential. Equation (1) is solved with the

tangency boundary condition on the body surface such that the normal

velocity is zero. The second boundary condition is such that $ must

approach the undisturbed freestream potential at an infinite distance from

the body surface. The total velocity potential $, is comprised of the

free stream potential <bm, the propeller-wake potential <j> , and a distur-

bance potential <f>B due to the wing and body. Symbolically

* = *co + <fw
 + *B (2)

The flow tangency condition at the body surface requires

3$/3n = 0 (3)

Applying equation (3) to equation (2), one obtains

where

-*• -&•4*00 = _n • V^ with V^ being the freestream velocity
n °°

12



-»•
and <(>,, = - n • V(P) with V(P) being the nonuniform onset velocity due

n
to the propeller wake at a point P on the body surface. <j>R is the normal

n
component of the perturbation velocity potential due to the aircraft wing

and body. From equation (3),

-*B = -n • IX + V(P)] (4)
n

Equation (4) is solved by approximating the body surface with discrete

quadrilateral panels. Equation (4) is applied at each panel center point

on the body surface. The effect of the aircraft body geometry enters in

the left hand side of equation (4) while the propeller induced effects are

described in the right hand side of equation (4). The doublet and source

singularities are distributed on the panel surface and equation (4) can be

expressed in matrix equation form as:

.* ("i * ̂i,j)aj = '"1 (^» + ̂ (P))i (1 = lf 2' ' ' ' N) (5)
j *~ •!•

->-
where N is the total number of panels and V. . is a matrix comprised of

' 5 J

aerodynamic influence coefficients expressed in terms of the geometry.

Equation (5) is solved by standard numerical matrix techniques to obtain

the singularity strengths a-. Once the singularity strengths are
J

determined, the velocity and the pressure distribution can be obtained

(ref. 13).

7.0 DETERMINATION OF THE EFFECT OF THE PROPELLER

There are three distinct effects of the propeller slipstream which

are (1) the total pressure change across the slipstream, (2) the increased

axial velocity downstream of the propeller due to the thrust force and the
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contraction of the slipstream and (3) the swirl and the tangential

velocity due to the torque of the propeller.

The thrust exerted by the propeller results in a discontinuous

increase in total pressure of the flow as it passes through the disk

which is manifest as a continuous increase in the slipstream axial

velocity and an abrupt rise in static pressure. Due to the reaction of

the torque of the propeller the slipstream will have a rotational motion

imparted to it and this increases the kinetic energy of the slipstream.

The increased total pressure in the slipstream alters the pressure

distribution on the wing sections, immersed in the slipstream flow, and

thus alters the normal load and drag distribution on the wing accordingly.

The increase in the axial velocity increases the slipstream Mach

number. The increased velocity over the wing in the slipstream will also

cause a higher scrubbing drag due to the greater dynamic pressure in the

slipstream. The swirl will act to induce an increase in the leading edge

upwash on the upgoing side of the slipstream and a decrease on the other

side. These perturbations in the wing leading edge onset flow will

produce local loading changes which could aggravate the already existing

high suction peaks.

The interaction of the wing with the slipstream could result in

overall beneficial effect if the wing can recover some of the swirl

energy as a local thrust.

To analyse the slipstream-wing interference problem, one should

address all these areas and combine all the areas suitably to come up

with a solution. The propeller can be modelled by considering it as an

actuator disk, having an infinite number of blades, through which the

velocity increase is continuous and the pressure increase is discontinuous
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(ref. 14). The treatment of the propeller as an actuator disc model

simplifies the complex flow representation a great deal and dates back

to the Rankine momentum theory. Momentum theory is strictly a one

dimensional theory and the properties are assumed to be constant along

a plane downstream of the propeller. The momentum theory provides

average information on the flow of a propeller with an infinite number

of blades. But in reality, the flow is a rotating one, and the flow

properties change from point to point in the slipstream of the propeller.

There is no provision built in the momentum theory to accomodate this

variation. The momentum theory of propellers provides certain basic

information that is suitable in determining the upper limits of

performance, the assumptions used in the theory are too gross to be

practical for actual propellers with a finite number of blades. With a

practical propeller, the axial, radial and tangential velocity losses

must be found instead of only the axial loss as is found for the actuator

disc considered in the momentum theory. Also, with practical propellers

having a finite number of blades the axial velocity is not uniform across

the disc, further increasing the losses. For these reasons, a more

extensive theory is required to find the induced losses and velocity field

of the actual propeller than is possible using the simple momentum theory.

One such theory is the blade performance theory (ref. 15) which takes into

account the local flow to a great detail. Blade performance theories are

based on the aerodynamic characteristics of the local blade sections and

also on the resulting velocity vectors on the propeller blade sections

(ref. 15). The blade section at each radial distance from the axis of

rotation in treated as a two-dimensional airfoil section operating in a

fluid whose relative velocity is determined only by the propeller's
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rotational speed and its forward motion.

The propeller modelling described in this present work is based

on the principles derived from both the momentum theory and the blade

performance theory. The axial velocity increase is modelled either by

the vortex ring method or by the blade performance theory. Swirl is

calculated from the blade performance theory calculations. Pressure

increase is obtained by combining the axial velocity increase, and the

swirl velocity changes, with the one dimensional momentum theory.

7.1 Calculation of the Axial Induced Velocity in the Slipstream

The present work incorporates two different methods for calculating

the axial induced velocity increase in the slipstream by 1) vortex ring

modelling and 2) blade performance theory. Both of these methods are

described in detail in the following paragraphs.

7.1.1 Vortex Ring Modelling

The propeller wake is modelled by a system of ring vortices. This

model is based on the concept of a vortex system representing a finite

wing consisting of bound and trailing vortices and expressing the lift in

terms of the strength of these vortices. The vortex system for the

propeller model used in the present calculation is based on the principle

that if one examines a propeller as shown in figure 1, there will be a

bound vortex along the blade. At the root the free vortex is carried

downwind by the flow through the propeller. The tip vortex is carried

off in the same manner. These vortex lines constitute the slipstream of

the propeller and the motion of the fluid in the slipstream can be calcul-

ated as the induced velocity of this vortex wake. The sense of rotation

16



of the vortex lines is such that the fluid in the slipstream has an

increased axial velocity and a rotational velocity in the same sense as

the rotation of the propeller. The rotation of the propeller blades

makes the vortex lines lie on a spiral path (see fig. 2(a)). Even this

simple spiral is difficult to analyse. So further breakdown of these

spiral vortex lines to an axial component and a circumferential component

makes the problem much simpler. The axial component is discarded as being

of secondary importance (ref. 16). The wake then appears as a skewed

stack of vortex rings as shown in figure 2(b). The final step is to

assume that the rings are spaced so closely that they are equivalent to

a continuous elliptic cylinder of vorticity (fig. 2(c)).

The strength of the vorticity is determined from the knowledge of

the operating conditions of the propeller and from the thrust coefficient.

The details of the modelling are given below. The induced velocity at

the center of the propeller is calculated from the following relations

(ref. 17).

VI = °'5 CT

CJ = 4/7T3 • Cy

X = (V^cosa + V j ) / V T

y =

ffective

where VT is the induced velocity, Vj is the tip velocity of the blade

and Cy is the thrust coefficient. Equation (6) is a nonlinear equation.

It is solved iteratively with the initial value of Vj being obtained from

the following relations

17



VT = l/ZC-V^cosa + (V̂ cosa) + (2T/pA ) (7)
initial

where the term 2T/pA is calculated from the given thrust coefficient

CT and from the area of the propeller A- • VT is substituted in
T ° Mnitial
the definition of X and equation (6) is iterated until V, in the left

hand side of equation (6) converges. Usually only a few iterations are

required for convergence. VT is the induced velocity at the center of

the rotor for the specified thrust conditions. By the method of reference

10, this value of VT is equated to the vortex ring strength by the

following equation

VI ' J!

where k is the total number of the vortex rings stacked in the vortex wake

tube, as shown in figure 3; Rp is the radial distance of point p from the

vortex ring axis; r . is the strength of the vortex ring; d.^ and d2 are

the minimum and maximum distances respectively from point p, to the ring

as shown in figure 4. The definitions of A, B, C, D, and F are

A = k(T) - E(T) (9)

where T = (d2 - d,)/(d? + d-,), E(T) is the complete Elliptic Integral of

the second kind, and K(T) is the complete Elliptic Integral of the first

kind

B = (dr - D/dj + (dr + l)/d2

C = dj + d2 (10)

D = TE(T)/(1 - T2)

F = 1 - (1 + d2 + d2 - djd^d2 - ((1 + dr)d
2 - (l-d^Jd

18



The definitions for d and d are given in figure 4.

Equation (8) is first applied at the center of the rotor with the

left hand side of the equation being the Vj calculated from equation (6).

This fixes the value of the circulation strength of the vortex rings that

have been stacked in the wake. The circulation strength obtained from

equation (8) is for a propeller with a uniform loading, and no azymuthal

variation of the loadings are assumed.

A vortex tube, extending from the -R to +R is taken for calculations.

Wake contraction was added by varying the vortex-ring radius according to

the continuity equation. The variation of the axial induced velocity with

axial distance is given by

Wa(Z) = Vj(l + z/R/ A + (z/R)2) (11)

where z is the axial distance downstream of the propeller from the axis of

the propeller and R is the radius of the propeller (ref. 18, 19), Since

at the center of the rotor, the tangential velocity W. is zero, the only

velocity seen by the propeller is Vj. Having determined Wa from equation

(11), the radius r at any z location in the slipstream is determined by

satisfying the continuity relations as given by

7 2p • TrR • (V̂ cosa + Vj) = p • nr (z) • (V̂ cosa + Wfl(z))
~ °°

r(z) = R- VU^cosa + V I)/(Voocosa
(12)

This fixes the radius of the contracted slipstream. In equation (12) it

is assumed that the induced velocity in the rotor plane remains constant

along the blade radius and equals to the value obtained at the center of

the rotor and it is also assumed that the induced velocity does not vary

with the radius. Reference 12 determines the slipstream radius by making
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use of semi-empirical relations between the thrust coefficient and the

slipstream contraction ratio given for various propellers and rotors

(ref. 20). Equation (12) is used to determine the local radius of the

slipstream for the present work.

7.1.2 Blade Performance Theory

In equation (8), it is assumed that the axial component of the

induced velocity at any blade section is equal to the induced velocity

at the center of the rotor calculated from equation (6). It is also

assumed that the axial induced velocity does not change with the radius

of the propeller and remains constant all along the blade radius. But

for practical applications this is not true. So, for the correct deter-

mination of the axially induced velocity component in the slipstream, the

following analysis described in reference 19 has also been incorporated.

The theory incorporates the blade element properties. Figure 5 shows the

section of a propeller blade operating in a freestream velocity of V with

an angular co.

The induced angle of attack is given by

a. = l/2(-x + x
2 + 4y)

x = tan<f> + a/(8xFcos<j>) (13)

y = aaQ(B - 4>)/(8xFcos<j))

where cj>, and 6 are defined in the figure 5. a is the solidity of the

blade given by

a = Bb(r)R/irR2 = Bb(r)/TrR

where B is the number of blades, b(r) is the local chord of the blade

20



section, R being the radius of the propeller and x is the nondimensional

radius given by r/R. F is the Prandtl's tip loss factor and it is given

by

F = (2/Tr)cos"1 exp[-B(l - x)/2sin<j>T] (14)

cj)j is the helix angle of the propeller's helical trailing vortex system

at the tip and is given by

4>T = fST

wt is initially approximated by wt = VRa1-sin((j) + a^) where VR is the

resultant freestream velocity given by

VR = (V̂ cosa)2 + (or)2

and a- is given by equation (13).

Figure 5 shows the induced velocity at the propeller plane in more

detail. The resultant velocity w is normal to V and is composed of a

tangential component, w^, and an axial component, wfl. From the geometry,

w+ and w, are related by
(• d

(V̂ cosa + wa)/(a)r - w^) = wt/wa = tan(ai + cj>)

This equation can be solved for w as a function of wt.

wa =

It is convenient to express all velocities in terms of Vj, where

is wR and the preceeding equation becomes

wa/VT = l/2[-Voocosa/VT + \(̂ cosa/Mj)2 + 4wt/VJ
x " V

Goldstein's vortex theory relates wt to the bound circulation, r, around

any blade station given by the relation

BF = 2-rrr • 2wtF (16)

where F is the Prandtl's tip loss factor and is given by equation (14).
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From the Kutta-Joukowski theorem

L = PVJ = l/2p\lm
2 b(r)C £ (17)

Thus r = 1/2 b(r ) C^

Substituting equation (17) in equation (16), the result can be expressed

as

aC£Ve/VT = 8xF Wt/VT (18)

C. can be calculated from
X/

C£ = a0(B - tan'
1 (wt/wa)) (19)

and from figure 5,

-^ = [((Voocosa/VT) + wa/VT)
2 + (x - wt/VT)

2]1/2 (20)

Substituting C£ calculated from equation (19) and Ve/Vj from (20), one

obtains the value of W^ from equation (18).

Equation (15) to (20) can be solved iteratively for Wt/Vj and

w /VT. Once the final values of w,./VT and w,/VT are obtained, accuratea ' t i a i
values of C« can be determined from equation (19). The value of C^ at the

particular angle (B - tan (w./w )) can be obtained from the Cd vs a table

for the particular blade section at the given operating conditions. C.,

and Cd with other quantities are used to evaluate the thrust coefficient

gradient along the radius of the propeller and is given by

dci 9 9
-± = (bBTTZxV8R) • XT (21)

/\

XT = (cos
2a.j/cos2(|>) • (C£cos($+ai) - Cdsin(4>+ a^)

Equation (15) gives the axial component of the induced velocity in the

propeller plane at the desired blade section.
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For the axial component of the induced velocity calculated by

equation (8) the blade properties were not considered by the vortex ring

analysis. The axial component of the induced velocity at the propeller

plane calculated from the equation (15) takes into account of the blade

sectional aerodynamic properties, and represents the local flow to a

greater detail rather than the global nature of the vortex ring analysis.

An attempt was made to incorporate equation (15) in the calculation proce-

dure in determining the axially induced velocity in the slipstream. In

the slipstream the axial component of the induced velocities are obtained

from the knowledge of the axial component of the induced velocity

distribution at the propeller plane by making use of the following equation

(ref. 19)

Wa(z) = Wa(0) (1 + (z/R)/Vl + (z/R)
2) (22)

along a streamline. From the knowledge of the slipstream contraction,

the local radius at any station downstream of the propeller is determined

by making use of equation (12). From the coordinates of the point in the

slipstream at which the induced velocities are to be determined the radius

R from the propeller axis to the desired point is calculated. The ratio

R /R-|oca1 determines the relative position of the point in the slipstream

with reference to the propeller axis and R-ioca-i being the local contracted

slipstream radius. This ratio fixes the streamline position relative to

the propeller axis on which the point lies in the slipstream. Figure 6

explains this in detail. The location of this stream!ine on the propeller

plane with respect to the propeller axis is given by RS = (
R
p/

R-|oca-|) '
 R
0-

From the knowledge of the axial induced velocity distribution at the

propeller plane, along the blade radius, the corresponding value for the
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axial induced velocity distribution at the radius RS on the propeller

blade plane is calculated using the interpolation routine. Equation (22)

is then used to determine the axial component of the induced velocity

in the slipstream.

Figure 7 shows the axial component of the induced velocity distri-

bution along the SR2 propfan blade radius calculated by the vortex ring

analysis and by blade performance calculations. The vortex ring analysis

predicts a constant value for the axially induced velocity component along

the blade radius and this is due to the uniform loading, assumed in the

formulation of the vortex ring theory. In the same figure, the results

of the theory outlined in ref. 21 for propeller performance evaluation is

also plotted. Figure 8 shows the calculated induced angular velocity

distribution along the blade radius. The calculated values for w, and w+a t

distribution using the equations (15) and (18) agree moderately well with

the distribution calculated by the method of reference 21. The w, and w+
G U

calculation include the Prandtl's tip loss factor for simulating the three

dimensional flow near the tips of the blades. The thrust coefficient, Cj,

calculated by integrating the equation (21) along the blade radius for a

high thrusting propeller, is overpredicted by a factor of 10 to 20 percent

relative to the experimental CT obtained by Bartlett (ref. 8). The possible

reason for this behaviour is due to the theoretically computed values of

C. and Cd of the blade section, used in the Cy calculation, not exactly

matching with the true values of C- and C^ in the experiments.

7.2 Calculation of the Swirl Velocity

Swirl velocity is the tangential component of the induced velocity
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and value of the tangential velocity at the prop plane is given by

equation (18). In the slipstream of the propeller it can be shown that

the circulation r remains constant at any station inside the slipstream

(ref. 18). Due to the contraction of the slipstream, the local radius of

the slipstream changes. In order to accomodate this slipstream contraction,

tangential velocity increases according to the conservation of circulation

for that station (ref. 18). The conservation of circulation is given by

the following relation:

Br = 2irR • 2w. • 1C = 2Trr(z) • 2w.(z) • KT

prop prop slipstream slipstream

(23)

Here KT and 1C are the tip loss factors at the prop and
prop slipstream

in the slipstream. 1C is given by equation (14). 1C is
prop slipstream

assumed to be unity. R is the radius of the propeller, r(z) is the local

radius of the slipstream given by equation (12) and w. is the
prop

tangential velocity in the propeller plane calculated from equation (18).

Swirl angle is calculated from the expression, relating w., w3t a
and V^cosa and is given by

swirl = tan"1[2wt/(Voocosa + W )]

According to the normality relations for the axial and tangential induced

velocity components, in the propeller farwake, the tangential component wt

increases from zero just ahead of the propeller to 2W. just behind the
C»

propeller. This is due to the conservation of angular momentum in the wake

and due to the slipstream contraction to maintain the axial velocity

increase downstream of the propeller.
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7.3 Treatment of the Pressure Increase in the Slipstream

From the momentum theory the propeller flow pressure difference

between a point just downstream of the propeller and the farwake is

given by

(P2 -
 P
0)/ * Poo

V~2 = 8CTVT/TrV - <a2 + 2a> <24>

where P2 is the pressure just downstream of the blades, PQ is the

farwake pressure, and a is given by ((V̂ cosa + Vj/V^ - 1) where Vj is the

induced velocity at the disc and V^ is the freestream velocity. The ratio

of the disc area to the farwake area is known from the slipstream con-

traction. The static pressure increase across the entire wake is given by

equation (24). From the knowledge of the area variation from the disc to

the wake, the pressure increase at any other location is fixed.

The difference in static pressure at any point i inside the slip-

stream and freestream is given by

Ap. /qoo = (8C V
2Ar\2 - (a2 + 2a))- ((V/ ) (25)

static v °° o'

where A is the area of the disc, Aoo/AQ is the ratio of the farwake area

to the disc area obtained from the momentum theory. The difference in

total pressure inside the propeller wake at any point i and freestream is

given by

APt i
/cU = APj AU + AVq«> (26)

' static
where Ap. stat- "is given by (equation (25). Aq^/q^ is expressed as

((V̂  + AVj)2/V2 - 1.0) where AVi is the resultant of the axial induced

velocity, calculated either from equation (8) or from equation (15), and

the tangential swirl velocities, calculated from equation (18).
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8.0 IMPLEMENTING THE PROPELLER EFFECTS INTO THE

PANEL CODE AND THE CALCULATION PROCEDURE

First, from the propeller operating conditions, the axial induced

velocity and the tangential component of the induced velocity along the

blade radius are determined. This part of the solution needs the two-

dimensional Cp and C, characteristics of the blade section along the

radius of the blade. This is calculated from the MCARF code (ref. 22)

for the given Mach number, freestream Reynolds number and for a set of

incidence angles. The axial induced velocity and the tangential velocity

distribution are obtained by the method of iteration as explained in

equation (13) to equation (20). The theoretical thrust coefficient of

the propeller, operating at the given conditions, is also determined from

equation (21). It is observed from the prediction of the thrust coeffici-

ent that the theory over predicts the experimental Cj by a factor of 10 to

20 percent. From the knowledge of the experimental thrust coefficient

and the operating conditions of the propeller, the induced velocity at

the center of the propeller given by equation (6) is determined. This is

based on the one dimensional momentum theory. The axial component of the

induced velocity can be calculated either by vortex ring analysis (eq. 8)

or by the blade performance theory (eq. 15). The computer code has these

two options and either one can be invoked.

For the vortex ring analysis, the vortex ring strength is determined

from the induced velocity at the center of the propeller and from the

slipstream contraction ratio. Slipstream contraction ratio is calculated

using equation (12). Equation (8) is used in relating the vortex ring

strength to the induced velocity distribution at the center of the rotor.

27



Only uniform loading of the propeller has been assumed. The aircraft body

is divided into a number of panels for the Hess code (ref. 23) and these

panel points are defined with respect to the propeller coordinate system.

Knowing the vortex ring strength r . from knowledge of the load

distribution on the propeller blade, the axial velocities induced at these

panel points are determined by repeatedly applying equation (8) and summing

these for a definite number of vortex rings. Equation (12), (15) and (22)

are used if the axial component of the induced velocity by blade perfor-

mance theory is required.

From the knowledge of the slipstream contraction and the local radius

of the slipstream, a test is done to determine whether a panel point lies

inside the slipstream for calculation of the swirl velocity effects. The

swirl velocity is determined from the tangential velocity distribution

along the blade radius given by equation (18) and from the conservation

law of angular momentum. An interpolation routine has been used in

determining the swirl velocity at a given panel point, from the tangential

velocity distribution on the propeller radius. The induced velocity com-

ponents are then transformed back to the aircraft coordinate system. These

velocity components are the onset velocities at the panel-control points

and they enter in the normal boundary condition for the Hess code

calculations (ref. 9). The Hess code is run for the normal boundary

condition incorporating the calculated propeller onset velocities. The

pressure rise calculated from equation (26) is added to the C distribution

obtained from the Hess code. Effectively the influence of the propeller

enters in the form of onset velocity components in the Neumann boundary

condition and the pressure rise obtained from the actuator disc theory
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enters in the final Cp computation as an added total pressure rise due

to the propeller slipstream. Effectively, the whole formulation can be

defined in the following flow chart.

PROPELLER SLIPSTREAM CHARACTERISTICS

Axial Velocity Increase Swirl Velocity

Blade Performance Theory

I
Vortex Ring Method

1

Blade Performance Theory

I
Total Pressure Increase

One Dimensional

Momentum Theory

PROPELLER SLIPSTREAM

Freestream Conditions and
Geometry of the Panelled
Configuration.

-HESS CODE

Slipstream Effect on Wing Pressure
Distribution

Method 1 - Vortex Ring Method for Axial Component of the Induced Velocity, Swirl,
Total Pressure Increase.

Method 2 - Blade Performance Theory for Axial Component of the Induced Velocity,
Swirl,
Total Pressure Increase.
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9.0 EXPERIMENTAL SET-UP

The experimental data came from a propfan investigation (ref. 8)

conducted in the Langley 16 Foot Transonic Tunnel. The model consisted

of an overwing nacelle, or an underwing nacelle integrated into an unswept-

untapered supercritical wing mounted on the Langley 16 Foot Transonic

Tunnel bifurcated strut support system. Photographs of the models in the

tunnel are shown in figure 9. Figure 9a shows the photograph of the over-

wing nacelle/supercritical wing configuration while figure 9b shows the

photograph of the underwing nacelle/supercritical wing configuration.

Figure 9c and 9d show the panelled overwing nacelle/supercritical wing and

underwing nacelle/supercritical wing configuration required for running

the Hess code. The SR-2 propfan, 12.5 inches in diameter, was powered by

an airturbine motor (ref. 24). The chord of the wing is one foot in length.

Detailed information on the airfoil section is presented in reference 25.

The wing had approximately 350 pressure taps to measure static pressures.

The chordwise locations of the pressure taps are the same all the way

across the wing, while the spanwise locations are symmetric about the

centerline of the propfan. Figure 10 shows the spanwise locations of the

pressure taps with respect to the propeller axis.

The model was tested from Mro = 0.5 to 0.8 over angles of attack rang-

ing from 0 deg. to 3 deg. The propeller tip speed was varied from 650 to

850 ft/sec at different power loadings (ref. 8). The power loading was

varied by changing the geometric pitch of the propeller. Force data were

taken on the propeller so that propeller coefficients could be calculated.

Model forces were calculated by pressure integration of the wing static

pressure taps.
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10.0 RESULTS AND DISCUSSION

The current theoretical method has been applied to an overwing

nacelle on an unswept supercritical wing configuration using the panelling

arrangement shown in figure 9c. Similarly the current theoretical method

has also been aplied to an underwing nacelle on an unswept supercritical

wing configuration using the panelling shown in figure 9d. A 12.5 inch

diameter propeller with eight blades is considered for the calculations.

For this investigation the propfan rotation was clockwise as viewed

from the rear.

The calculations have been carried for the following cases:

(1) wing with bifurcated support system

(2) wing/overwing-nacelle with bifurcated
supported system

(3) wing/overwing-nacelle/propeller at
various power levels with bifurcated
support system

(4) wing/underwing-nacelle with bifurcated
system

(5) wing/underwing-nacelle/propeller at various
power levels with bifurcated support system.

10.1 Wing Alone Comparisons

Figure 11 shows the C comparison of the theory with the experiments

for case (1), namely the straight wing with the bifurcated support system.

While the predicted upper surface pressure distributions agree well with

the experiments, the predicted lower surface pressure distributions do not

match well with the experiments. This is due to the boundary layer effects

on the supercritical wing, which have not been taken into consideration in
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the theoretical calculations. This effect is evident at all the span

stations shown in figure 11. From the figure it is evident that the theory

and the experiment do not compare very well. This is due to the omission

of the treatment of boundary layer in the theory.

To incorporate the boundary layer effect, two different approaches

have been sought. The first approach uses a two dimensional strip theory

boundary layer correction (ref. 26) while the second approach solves the

three dimensional compressible boundary layer equation (ref. 27). In the

first approach, there are two options available. One option is to keep

the original geometry of the wing section fixed and the boundary layer

effects are simulated in the form of onset velocity components (blowing or

suction) on the selected control points on the wing section. Then carry

out the inviscid analysis for the original wing section as if the wing

section is immersed in a nonuniform flow field due to the boundary layer

(ref. 28). The second option of the first approach is to calculate the

displacement thickness on the wing section, add it to the original geometry

of the airfoil, calculate the aerodynamic characteristics for the new

geometry, and iterate on the lift coefficient until the convergence

criteria is met. The second approach calculates the displacement thickness

on the whole wing by solving the three dimensional boundary layer equations

and everytime the original wing geometry is updated with the new wing

geometry by adding the displacement thickness and iterating for the value

of C., till the convergent limit is obtained (ref. 27).

Figure 12 shows the pressure comparison between the strip theory

boundary layer model with the experiments. The inclusion of the viscous

modelling improves the accuracy of the C computation. From figure 12, it
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is evident that the inclusion of the viscous effects is felt to a greater

extent in the lower surface C distribution than in the upper surface.

The plots of normal force coefficient in this report have the upwash

side on the left and the down wash side on the right with the nacelle

centerline in the center of the plot at span station 0.0. The plots are

presented so that the span values are negative on the upwash side and

positive on the downwash side. Refer to figure 10.

Figure 13 shows the CN comparison for the inviscid and viscous

calculation for the straight supercritical wing alone configuration at

0.5 Mach number and angle of attack,a = 1.0 deg. (ref. 28). It took six

iterations to model the viscous effects with the transpiration boundary

condition on the original wing section by the strip theory method.

Actually most of the viscous effects has been modelled in the first two

iteration. The other four iterations stabilizes the C., convergence

criteria. It is also of interest to note that there is not much of a

difference between the 5th and 6th iteration values. Comparison of pre-

dictions using the three dimensional boundary layer model with the experi-

ments showed siightly better agreement than the comparisons of the strip

theory boundary layer modeling. However, the improved agreement does not

warrant the extra computational effort required. Therefore the strip

theory model is used in the present prediction method.

10.2 Wing/Nacelle Comparisons

Over Wing/Nacelle - Figure 14 shows the C comparisons of the theory with

the experiments for case (2), namely the straight wing with overwing

nacelle mounted on it. From the theoretical calculations, it is apparent
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that the addition of the nacelle does not change the flow pattern very

much at the span stations 1, 2, 3, 9 10 and 11. The only significant

changes to be seen are at the span stations 4, 5, 7 and 8. Figure 15

shows the C., comparison of the theory with the experiments.

Under Wing/Nacelle - Figure 16 shows the C comparisons for the case (4)

namely, the wing with the underwing nacelle while figure 17 shows the Cw

comparisons for the same case. This computations does not include the

boundary layer modelling, since at these high Mach numbers considerable

difficulty was experienced in running either the three dimensional boundary

layer code or the strip theory boundary layer code. From comparisons it

is evident the theoretical prediction compares reasonally well with the

experiments. Addition of the nacelle increases the CN value at span station

4, 5, 7, 8 and increases the negative pressure peaks encountered on the

upper surface of the wing at these span stations.

10.3 Wing/Nacelle/With Powered Propfan

10.3.1 Over Wing/Nacelle - Figure 18 shows the C comparison of the
]

theory with the experiment for a high power loading of CT = 0.443, calcul-

ated by the Method I (refer to the flow chart on page 29). In the calcul-

ations, the axial component of the induced velocity is calculated by the

vortex ring analysis described in equation (1) thru (8). Figure 19 shows

the C comparison for a high power loading of Cj = 0.408 calculated by the

Method I. The comparisons are moderate. Figure 20 shows the C comparisons

calculated by the Method II for the high thrust case with CT = 0.443.

Figure 21 shows the C comparison for a high thrust case with Cj = 0.408

calculated by Method II. In figure 22, C., calculated by Method I and
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Method II for CT = 0.443 is shown. The Method II compares well with the

experiments. Figure 23 shows the CN given by the Method I and by the

Method II for a high power loading with CT = 0.408. From figure 23, it

is inferred that the C., value calculated by the Method II agree better

with the experiments than the Method I. So, in all the calculations to

follow, the Method II will be used for the slipstream/wing interaction.

Figure 24 shows the C comparison of the Method II with the experi-

mental results for the medium power loading with C-j- = 0.338. At span

station 4 it is observed that there is a slight difference between the

calculated and the measured pressure peak. The theory did predict the

high pressure peak shown by the experimental results. The theory does

seem to predict the correct propeller effects responsible for the pressure

peak at these span stations. On the lower surface of the wing the

boundary layer effects are significant. For span station 7 in the medium

powered case, the agreement between theory and experiment on the lower

surface is good and on the upper surface the agreement is fair. The

theoretical calculations tend to show the correct pressure peaks on the

lower surface. Span station 8 also shows similar trends. The theoreti-

cally calculated local angle of attack based on swirl does produce the

higher negative pressure peaks in the upwash side of the wing.

Figure 25 shows the pressure comparison of the Method II with the

experimental results for the low power loading with Cj = 0.137. The

theory shows an increase in the angle of attack of span stations 3, 4,

and 5 evidenced from the pressure distribution due to upwash created by

the swirl. The theoretical results agree reasonably well with the

experimental results at these span stations.
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From the C distribution for the high power loadings, it can be seen

that at span station 4 the theory predicts a higher pressure peak than

indicated by the experiment. While the theory predicts a gradual increase

in pressure peak for span station 3, 4 and 5, the experimental pressure

peak was the largest at span station 4. A similar trend was found for the

medium power loading, while for the low power loading the experimental

pressure peaks increase gradually from span station 3. It is evident from

the experimental results that the swirl component at span station 5 is

less than the swirl at span station 4. But this trend is not present in

the theoretical calculation. This is probably due to the theoretical

prediction scheme not matching exactly the natural loading of the prop

and the fact that the interference effect of the wing/nacelle on the

propeller wake has not been included in the calculation. Similarly for

span station 7 and 8, the theoretical calculations agree moderately well

with the experiments. It is evident from the experiments that the

pressure peak on the lower surface of the wing section at span station 8

is greater than at the span station 7 and the theory did not predict this

effect. The comparisons at these span stations are moderate.

The greatest difference between C values of the wing alone and

propeller-on occurred at the wing leading edge. On the upwash side there

was a negative shift in C on the upper surface with a positive shift in

C on the lower surface. On the downwash side the reverse was true with

a positive shift in C on the upper surface and a negative shift in C

on the lower surface. Again this was caused by the swirl in the propeller

slipstream changing the wing local angle of attack. From the pressure

coefficient comparisons it is inferred that the theory predicts the
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pressure distribution with a reasonable accuracy except at low powers.

At low power levels, the theory over predicts by a factor 50-60%.

Figure 26 and 27 compares the theortical and experimental values of

CN for the wing/overwing nacelle with the low and medium power setting

respectively. Similar comparison for the high power loading of the

propeller are shown on figures 22 and 23. The CN comparisons for the

high power loading and for the medium power loading are reasonable while

the CN comparisons are poor for the low power loading. Figure 28 shows

the AC., comparisons (the difference in the C,, with respect to the wing

alone C.,) of the theory to experiments. This effectively compares the

interference effects caused by adding the overwing nacelle and the powered

propeller to the basic wing configuration. From figure 28, it is evident

that the addition of an overwing-nacelle increases the CN at most of the

span stations. Generally there was an increase in wing lift on the up-

wash side and a decrease in wing lift on the downwash side caused by the

propeller slipstream swirl changing the local wing angle of attack. The

dynamic pressure (q) was increased by the propeller which caused a lift

increment across the complete span of the wing. Because the dynamic

pressure and swirl effect were additive on the upwash side, the increment

in lift was greater on the upwash side than the decrement in lift on the

downwash side resulting in a overall increased lift coefficient due to the

propeller slipstream.

As the power of the propeller increases, the theory predicts an

increase in C^ at span stations 1, 2, 3, 4 and 5 and a decrease in CN at

span stations 7, 8, 9, 10 and 11. The upwash effect of the propeller is

not greatly pronounced at span station 1. This is evident from the small

37



variation in C.. with the increase in power. At span stations 9, 10 and

11, the theory predicts only a small change in CN as the power of the

propeller increases. As the power increases the theory predicts an

increase in the effective angle of attack associated with a higher swirl

at span stations 2, 3, 4 and 5. At span stations 7, 8 and 9, the theory

predicts a decrease in the effective angle of attack. This trend is

found in the experiments as well as in the theory. For the powered

propeller the rotational energy in the slipstream is high and this energy

alters the lift and drag characteristics of the wing in the slipstream by

increasing the suction peaks on upper surface of the outboard side as

evidenced by the C distribution for the span station 3, 4 and 5 and

reducing the negative pressure peaks on the upper surface at the inboard

span stations 7, 8, 9 and this eventually decreases the values of the C.,.

10.3.2 Underwing-Nacelle - Figure 29 and 30 shows the C comparisons

for the case (5), namely the wing/underwing nacelle/powered propeller.

The computations for this case does not include the strip boundary layer

modelling due to the difficulties encountered in the boundary layer

calculations at high subsonic free Mach numbers of about 0.7. In spite

of the inviscid modelling, the C_ comparisons shown in figure 29 and in

30 are quite good. It is interesting to note from figure 29 that the

experimental pressure distribution indicate a shock at the leading edge

portions of the wing sections, located in the upwash side of the propeller

at span stations 3 and 4 and similar shock effect is found on the lower

surface of the wing section, situated in the downwash side especially at

span stations 7 and 8. Other than this effect, the pressure distribution

very much look similar to the overwing nacelle case. Figure 31 and 32
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shows the C., comparisons for the underwing nacelle/powered propeller and

the comparisons are moderately good and the effect of the slipstream on

the wing normal force coefficient is similar to the effect found with the

overwing nacelle/powered propeller cases.

11.0 CONCLUSIONS AND RECOMMENDATIONS

Even though the theoretical approach described above treats the

propeller wing interaction problem in an approximate manner, the results

of the calculations are very encouraging. The theoretical results agree

with the wind tunnel results as evidenced from the C and C., comparisons

for all the power levels except at the lower power level. For low power,

there appears to be some discrepancy between the predicted and the

experimental value of C and CN and this is due to the swirl predicted by

the theory. It appears from the calculations, that the theory over pre-

dicts the swirl effect at the lower power levels. It is also evident from

the calculated results that inclusion of the boundary layer modelling

enhances the accuracy of the calculations and the boundary layer consider-

ably alters the flow characteristics on all the wing span stations. The

swirl predicted by the blade performance theory describes the local effect

of the slipstream on the immersed wing section's aerodynamic characteris-

tics to a fair degree of accuracy. The effect of the axial induced velocity

component calculated by the blade performance (Method II) theory appears to

be more accurate than the effect, calculated by the vortex ring theory

(Method I). Possible ways to improve the discrepances are as follows:

(1) Inclusion of a method for representing the effect of the wing

on the propeller aerodynamic characteristics. This would require that the
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calculations be made in an iterative manner between the wing and the

propeller. A suitable method for treating the transonic flow over the

propeller blades due to the relative velocity consisting of the high

subsonic freestream and the rotational velocity should be developed for

the propeller performance calculation. The applicability of the vortex

relations in the localized transonic flow is questionable.

(2) Due to the high energy slipstream, even at subsonic freestream

conditions, certain portions of the wing section immersed in the slip-

stream attains supercritical Mach numbers. The validity of the subsonic

panel methods to treat the localized transonic regime are not generally

accurate even in the lower range of the supercritical local Mach numbers.

For accurate calculations at these high subsonic free stream Mach numbers,

a transonic code (ref. 29) should be combined with the slipstream model.

(3) The three dimensional boundary layer model should be coupled

with the panel code such that the iterations are carried out automatically

till the C., convergence is obtained without the user's interruption.
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Figure 1. Bound and Trailing Vortex System for a Propeller.

(a) Spiral Vortex System

(b) Ring Vortex System

Figure 2. Wake System for Slipstream Model
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Uniform Load

Figure 3. Vortex Ring Modelling for the Propeller Wake.

/,Rp.B dR
-z

Figure 4. Definition of the Parameters Associated with
the Vortex Tube Modelling.
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Plane of rotation

Figure 5. Velocity Diagram for a Blade Element Showing Induced
Velocity Components.
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Prop Plane

R5=<Rp / RLocal>*R0

Figure 6. Definition of slipstream parameters,
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blade performance theory
vortex ring theory

Reference 21

Figure 7. Axial induced velocity distribution along the blade radius of
the propfan for a high thrusting load with Cj = 0.343, M^ = 0.5,

a = 2.990, J =2.367, 6 = 52.5 degrees.

blade performance theory
Reference 21

Figure 8. Induced angular velocity distribution along the blade radius
of the propfan for a high thrusting load with Cj = 0.343,
M^ = 0.5, a = 2.990, J = 2.367, 6 = 52.5 degrees.

48



(a) Photograph of the wing/overwing nacelle/propeller
in the wind tunnel.

(b) Photograph of the wing/underwing nacelle/propeller
in the wind tunnel.

Figure 9. Wing/nacelle/propfan configuration and the panelling used.
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(c) Panelling for the wing/overwing nacelle with bifurcated system.

Figure 9. Continued.
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(d) Panelling for the wing/underwing nacelle with bifurcated
support system.

Figure 9. Concluded.
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Figure 11. C Comparison for the Wing Alone Configuration

at M = 0.50, a = 1.6.rm *
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Figure 11. Continued.
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Figure n. Concluded.
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Figure 12. CD Comparison for Wing Alone with Strip Boundary

Layer Correction at Mm = 0.5, a = 1.0 degree.
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Figure 25. Concluded.
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Figure 26. CN Comparison for a Low Power Load with Cj = 0.137,

M = 0.5, a = 1.0 degree.
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Figure 27. CN Comparison for a Medium Power Load with Cj = 0.338,

M =0.5, a = 1.0 degree.
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Figure 28. Interference Effect on CN by the Addition of overwing
Nacelle/Powered Propeller to the Basic Wing
Configuration, M = 0.5, a = 1.0 degree.
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Figure 29. C Comparison for the Wing/Underwing Nacelle/Powered
Propeller with CT = 0.466, M^ = 0.701, a = 0.0 degree,
Method II, without boundary layer.
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Figure 29. Continued.
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Figure 29. Continued.
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Figure 29. Continued.
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Figure 30. C Comparison for the Wing/Underwing Nacelle/Powered
Propeller with CT = .245, M^ = 0.700, a = 0.0 degree,
Method II, without boundary layer.
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Figure 30. Continued.
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Figure 31. CN Comparison for the Wing/Underwing Nacelle/Powered

Propeller with CT = 0.466, Mro = 0.701, a = 0.0 degree,

Method II, without boundary layer.
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Figure 32. CN Comparison for the Wing/Underwing Nacelle/Powered

Propeller with CT = 0.245, MOT = 0.700, a = 0.0 degree,
Method II, without boundary layer.
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