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ABSTRACT S

A study has been made of the solution of the three-dimensional flow
field for a flow-through nacelle. Both inviscid and viscous-inviscid
interacting solutions were examined. Inviscid solutions were obtained
with two different computational procedures for solving the three-
dimensional Euler equations. The first procedure employs .an allarnating-
direction-implicit numerical algorithm, and required the development of a
complete computational model for the nacelle problem. The second
computational technique employs a fourth-order Runge-Kutta numerical.
algorithm which was modified to fit the nacelle problem. Viscous effects
on the flow field were evaluated with a viscous-inviscid interacting
computational model. This model was.constructed by coupling the explicit
Euler solution procedure with a “"lag-entrainment" boundary layer soluticn
procedure in a global iteration scheme. The computational techniques have
been used to compute the flow field for a long-duct turbofan engine ..
nacelle at free-stream Mach numbers of 0.80 and 0.94 and angles=-of-attack
of 0° and 4°.

The numerical experiments show that_for predicting the flow inside
the nacelle's duct, the viscous effects are extremely important and both
the external and internal boundary layers and wakes must be simulated.
The internal boundary layer creates a pressure gradient in the nacelle's
duct. The external boundary layer and its associated wake displace the __

streamlines away from the external surface. . The displacement of the
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streamlines effectively decambers the nacelle's airfoil and weakens the
compression at the trailing edge. This gives a less positive exit .
pressure and hence a less positive overall internal pressure level which
agrees better with experiment than the inviscid computations. Therefore,
if simulating the correct mass flow through a flow-through nacelle's duct
is important, then viscous effects must be included in the computational
model.

In contrast to the internal surface, viscous effects were relatively
unimportant for predicting the flow on the external surface of the
nacelle.. Goad agréement is shown between the computational results of
both Euler numerical procedures and wind-tunnel data on the external
surface of the nacelle. The solutions exhibit the proper three-
dimensional behavior at both angles of. attack and correctly reflect the
qualitative and guantitative results at both Mach numbers.

The solutions of both Euler computational techniques exhibited a
total pressure loss on the internal surface of th2 nacelle. An
investigation of the loss proved that it was the result of the flow
stagnating on the external surface and expanding around the sharp
discontinuity in the surface of the nacelle at its. leading edge., The
studies indicate that the use of C-type grids could probably eliminate the
loss. However, for sharp leading edges or where an H-type grid is
desirable, i1t appears that some (problem-dependent) total pressure loss is
inherent in numerical Euler-equation solutions.

Even though reasonably accurate engiheering solutions were obtained
with the implicit computational procedure, a weak instability was
discovered in it when applied to the three-dimensional nacelle problem.

This instability prevented the implicit solutions from actually converging
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i@ number of integration steps before it becomes evident.

.§ computational technique is stable.
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;.‘ CHAPTER 1 !

E‘; INTRODUCTION.. ﬁ%

. Since fuel costs are projected to rise significantly over the next L
several decades, further growth of the air transportation system becomes ;;
increasingly dependent.on advances in aircraft technology and design.1 ‘é{
One important area of transport technology in which there is a potential ;'
for significant improvement is the integration of the propulsion system ;;
with the airframe. To tap this potential, engineers must increase their :
understanding of the aerodynamic interactions between the various compo- .
nents of the propulsion system and airframe well beyond the understanding !
which now exists. E

Both experimental and theoretical research is required.

Experimental studies of these interactions necessitate expensive, complex

models to simulate adequately the inlet and exhaust flows. Consequently,

experimental investigations are only practical for limited parametric ‘
studies. For analysis and design optimization, increasing attention is
being given to the use of computational methods which have been validated é
by a few.discrete experiments. For example, both the Airbus..310.and the i

|
Boeing 757 wings. have been designed with the aid of numerical ana]ys1s.2 .

Because of the geometrical complexity of transport configurations

e

- !
and computer storage limitations, current computational design studies of «
this type_have mainly been limited to inviscid potential-flow methods. .

These methods, which range from panel techniques to solutions of the full
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transonic potential equation,,‘5'have proven to be useful tools in the
aircraft design process. Nevertheless, they do not adequately simulate..
flows where rotationality is important.

To account far rotationality, even in the inviscid case, the
application of the Euler equations is required. Solving the inviscid,
variable entropy, compressible flow equations allows the solution to
capture strong shocks and simulate the jet exhaust flow without special
treatments. In addition, vortex sheets may be captured, and as recently
shown by Rizzi andvErickson,6 a Kutta condition may not need to be
explicitly enforced. The Euler equations also are thought to yield unique
solutions, whereas the full potential equation can yield multiple
solutions as shaown by Salas7 and Steinhoff and Jameson .8 Despite their
greater potential, most solutions of the Euler equations have been either
two-dimensional, or for relatively simple three-dimensional
configurations, or on coarse grids.9'13 Finally, strong interactions can
occur between the viscous boundary layer and the main stream even when the
boundary layer does not separate. Hence, the influence of viscosity on
the flow field must also be accounted for in order to simulate the
physically realistic case.

Therefore, a study of the solution of the three-dimensional flow
field for a flow-through nacelle using the Euler equations and a. viscous-
inviscid interacting computational .model was initiated. A flow-through
nacelle was selected for the study since.the engine nacelle is a
fundamental component of a transport's propulsion system. The objective
of this research was to investigate the flow field about the flow-through
nacelle and the importance of simulating the viscous effects in a

computational model for solving this problem. It included investigating
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the suitability of the Euler equations as the basis _for the computational

model and the problems associated with obtaining numerical solutions . for
this_type of configuration. In addition, it inyolved consideration of the
advantages and disadvantages of the basic types of numerical.algorithms .
and solution techniques suitable for flows of this complexity. In order

to focus specifically on the application of computational solutions to the

s it e e ame e e e = < =

flow-through nacelle problem, only state-of-the-art algorithms were

considered. i

f

To conduct the study, two separate.Euler computational procedures

L R NG e

were investigated, each of which appeared to offer certain distinct

g e
oo

advantages. The first procedure employed an alternating-direction-

- R WEL

R s

implicit numerical algorithm and required development of a computational

e e et L e M g s g

model specifically geared to the nacelle problem. An interim report on

this phase of the.research is given in reference 14. The second procedure
¥ investigated involved modification of an existing fourth-order Runge-Kutta
algorithm to fit the nacelle problem. Viscous effects on the flow field
X were evaluated with a viscous-inviscid interacting computational model.
This model was constructed by coupling the explicit Euler solution

procedure with a "lag-entrainment® boundary layer solution procedure in a

e 3 S

WAV o WL

global .iteration scheme.

The computational techniques have been used to compute the flow

a field for a long-duct turbofan engine nacelle at free-stream Mach numbers
of 0.80 and 0.94 and angles-of-attack of 0° and 4°. The results are
compared with expetimental data. New insight into the mechanics of the.

; interactions between the internal and external flows, gained during these

; investigations, is discussed. Problem areas, both general and algorithm

dependent, are identified and investigated. The numerical performance of
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the two techniques is compared, and recommendations are made for further

numerical studies.
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CHAPTER. I1

MATHEMATICAL DESCRIPTION OF THE PROBLEM

Governing Flow Equations

The Euler equations mathematically describe the physical laws
governing the motion of an inviscid compressible fluid with variable
entropy. In the present solution procedure, the .three-dimensional time-
dependent Euler equations are normalized and written in strong
conservation form for a Cartesian coordinate system. If body forces are
neglected, these time-dependent equations for mass, linear momentum, and

energy can be expressed in vector notation as

3 , f , 2., 3 |
at * ax * oy * 3z 0 (1)
where
P pU
pu puz + P
a4 ={pvis I = jouy
pwW puw
eE| u(ek +p))|
(2)
5
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; 6

' | PV PW

. puv puw

E ;

1 ; a-= pv2 +p ’ = 1PWW

| 2

| pVW pw= + p
3

; ) v(eE + p) w(pE + p)

In these equations, u, v, and w are velocities in the physical
coordinate system (coordinates x,y,z), p is the density, and p 1is the
pressure. The total energy, E, is given by

E=c, T+ %-(u2 + ve 4 w2) (3)

! where T 1is the temperature, and c, is the specific heat at constant

volume. The equation of state

p = oRT (4)
% } where R is the gas constant, completes the system of_equations.
K 1 The major interest in using computational fluid dynamics for

propulsion integration studies is in predicting the steady state flow for
! any given configuration. Therefore, the solutions to only steady flows
are considered in this analysis. In this case, the total enthalpy, H,

where
H=E+L | (5)

does not vary throughout the flowfield of the flow-through nacelle; and
the energy equation, the fifth equation of the set (1), could be replaced
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by the condition of constant enthalpy. However, in general for propulsive
flows the enthalpy is not constant due to the jet exhaust. Therefore, to
be consistent with the ultimate objective of this study, the full energy

equation was solved along with the continuity and momenta equations.

Computational Domain and Grid System

A sketch of the three-dimensional computational domain illustrating
the nacelle and domain boundaries in both the physical and computational
spaces is presented in figure 1. Three dimensionality is produced by
rotating the vertical cross-section about the axis of the nace1lé, thus
generating a cylindrical domain (see part (a) of the figure). To minimize
computer run time and storage requirements, symmetry is assumed about the
vertical plane, and only one-half of the cylindrical domain is computed.
When transformed to the computational space, the coordinate system.becomes
a fectangular three-dimensional domain (see part (b)). The axis, which is
singular, transforms into.a plane forming one side of the domain, and the
nacelle surfaces transform into a common internal plane as illustrated in
figure 1(b).

In the computational. domain, the grid system constructed for the
discretised solution procedures is body fitted (grid lines coincide with
the nacelle surface and other boundaries) in order to facilitate
implementation of the boundary conditions. It is a sheared, H-type .
computational grid. Figure 2 presents a vertical cross saction of the
grid in the physical space, again i1lustrating the nacelle geometry and
the various boundaries. The grid mesh in the ¢ircumferential direction is
generated by rotating the vertical cross-section about the axis of the

nacelle. The grid spacing in the physical space is geometrically
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stretched away from the nacelle with grid points being clustered near the

nacelle surface and near the leading and trailing edges. The basic
computations were made with 58 axial grid planes (30 along the nacelle),
29 grid planes in.the radial direction, and 11 in the circumferential
direction. Additional calculations were made with grids.refined in the
axial direction:. one containing 68 axial grid planes (40 along the

nacelle), and another with 115 axial grid planes (59 along the nacelle).

Analytical Boundary Conditions

For the mathematical description of a physical problem to be well
posed, whether the partial differential equations are to be solved in
closed form or numeriCa11y, the correct boundary conditions must be
included. Further, in numerically solving a set of equations in any
finite computational domain, boundary conditions arise from two different
sources. First, analytical boundary conditions are necessary for the
problem to be well posed, and second, numerical boundary conditions arise
from a need to complete the differencing equations in the numerical algo-
rithm. The analytical boundary conditions will be discussed in. this
chapter, while the numerical boundary conditions will be discussed in the

chapters which present the computational procedures.

The flow-through nacelle problem includes inflow, outflow, symmetry,

far-field, and impermeable surface boundaries. For a well posed problem,
only part of the flow variables can be specified at .each boundary, with
the number and combination of the variables depending on the type of

boundary. Characteristic theory provides a guide to both the number and

the form of the boundary conditions. Cl1inel® describes the application of

the theory for this purpose. The theory gives the same results for an
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inviscid fluid as the energy method of Oliger and Sundstr‘om,16 and was

used as a guide in determining the boundary conditions for this work.
Since the mainstream is essentially perpendicular to the inflow and

outflow boundaries, reference plane characteristics will be used to

determine the number and form of these boundary conditions. Reference

plane characteristics are an .approximate form of the characteristic

equations; however, they are exact if the cross derivative terms are

zero. For the three-dimensional Euler equations, “he constant-y-constant-

z reference plane characteristics can be written

characteristic direction compatability relation
dv _
PE " V3
%')t(‘:u Pg‘;i':‘l"‘ (6)

d Z2 do _
{f’aﬁ‘%

dx _ dp _ .2du_ .2
,‘ @t R SRR T
- )
- dx _ dp du _ .2
; v R (A S Wl B

| (8)
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and a 1is the local speed of sound. For a flow with the mainstream in
the x-direction, the ¢ terms on the right hand side of these equations
are very small and are treated as constants, and the equations become
exact when the ¢ terms are identically zero. The characteristic direc-
tions of equations (6), (7), and (8) represent the projection of the flow
pathline and Mach cones on the . x-t. plane. Subject to the approximate
nature of the .reference plane characteristics, they comprise. a set of five
equations in five unknowns and completely describe the flow in the.
computational domain. .

Figure 3 presents a sketch depicting the projection of the
characteristic curves on the x-t plane. For a boundary with_inflow in
the positive x-direction, the shaded area represents the computational
domain. Since three compatibility equations are associated with the
cufve dx/dt = u, equation (6), there are four characteristics entering

the computational domain and one leaving it. The four characteristics

 —
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Sketch depicting projection of the chiz~acteristic

Figure 3.

curves on the x-t plane.
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entering the domain carry no information whatsoever about the internal
solution, and therefore they must be replaced by four boundary
conditions. . The form of the boundary conditions is obtained from. the
characteristic leaving the computational domain, equation (8). Since it
originates from within the domain, both p and u cannot be prescribed
because they must obey the compatability relation holding along the
characteristic curve. Usually the total pressure, total temperature, and
flow angle are supplied at an inflow boundary, or, an alternate
combination consisting of a function of the total entropy, the static
temperature, and velocities.

For a boundary with outflow in the positive x-direction, the
unshaded area of figure 3 represents the computional domain. The figure
illustrates that there is only one characteristic entering the computa-
tional domain, indicating one boundary condition must be suppliied. It is
usually the static pressure, since, when combined with the previous inflow
boundary conditions, it completely defines the free stream.

The far field boundary can be either an inflow or an outflow
boundary. Therefore the appropiate conditions described above are
app1{ed,

The expression for the boundary conditions at the symmetry plane is
where n 1is the normal to the symmetry plane.

Finally, the surface boundary condition. is that the flow is tangent

to the wall, and is expressed by the equation
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neV = 0 . (11)

where V is the velocity at the surface and n represents the unit vector:
normal to the surface.

As mentioned above, in addition to these analytical boundary
conditions, numerical boundary conditions necessary to complete the
difference equations are required when actually carrying out the numerical

process. They will be discussed in the next two chapters.

Nacelle configuration

A flow-through nacelle was selected for the study since the engine
nacelle is a fundamental component of a transport aircraft's propulsion
system. The particular flow-through nacelle chasen is depicted in figures
1 and 2, The external surface of the nacelle consisted of a NACA 1-70-100
inlet, a cylindrical section, and a circular arc afterbody. The internal
duct of the nacelle was cylindrical. For the computations, the leading
edge was made sharp as a simplification to the geometry. This particular
configuration was chosen because it resembled.long-duct turbofan engine
nacelles being proposed for current jet transports, and because experimen-
tal_data for the isolated nacelle were available for comparison with the

computational results.
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CHAPTER II1
IMPLICIT COMPUTATIONAL PROCEDURE

The implicit procedure used for the flow-through nacelle problem

employs the approximately-factored, alternating-direction implicit

algorithm of Beam and Warming.17 This algorithm has been applied success-

fully to a number of two- and three-dimensional pr‘obl,ems,ls’19 The

principal advantage offered by implicit methods is that, if properly
formulated, they theoretically have no stability limitations on the size
of the time step when integrating the set of flow equations. Thus, for
obtaining steady-state solutions, fewer integration steps may be needed.
The use of a large time step can in some cases further act to accelerate
the convergence rate in a manner similar to relaxation schemes for
elliptic problems. The principal disadvantage of implicit methods is the
requirement .for solving large sets of simultaneous algebraic equations.
Thus while fewer time steps may be required than for explicit methods,
more computational work per time step is usually needed. However, the
previous applications of the Beam and Warming algorithm have indicated
favorable improvements in overall computational efficiency. The applica-
tion of this algorithm to solving the three-dimensional Euler.equations
for flowsthrough nacelles required the development of a computational
model specifically geared to the problem. This chapter describes that

computational model.
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Transformed Euler Equations

Equation (1) presented the Euler equations written for a Cartesian
coordinate system. _In the present finite difference technique, the
equations are transformed to the computational space before they are
integrated. The transformed version of the three-dimensional Euler

equations can be written

?

A

ag , 3F , 2
at+.a+

>
[ep ]

l

Lo

Cal
L b)
vy

where t _is the normalized time, gz, §, and n are the spatial coordi-

nates in the transformed plane, and

q = Jg
Fo=u(g,f + 9+ z,h)
(13)
G = J(g f + £, + g,h)
H =

- J(T\x_t + ny.9..+ nz.!.‘.)

where th: vectors, g, f, g, and h are the vectors for. the Euler

equations written in Cartesian coordinates (see Chapter II). 1In the
relations above, J .is the Jacobian of the transformation from the

physical plane (coordinates x,y,z) to the computational plane

(coordinates ¢, &, n ). The expression for the Jacobian is
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Equations (12), (13), and (14) are valid for transformation between
any two coordinate systems. In this particular case, the coordinates,

x, Y, and z, vrepresent respectively the axial, vertical, and
horizontal Cartesian coordinates in which the Euler equations were first
written. The coordinates, ¢, €, and n, represent respectively
functions of the axial, radial, and circumferential directions of the
cylindrical computational domain with the stretched grid spacing.‘ They

can be expressed as

g = fi(x)
g = f,(r) - (8)
n = f3(0)
where
r= (y2+ 22)1/2

(16)
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and  fq, fos and f, are stretching functions. The g, £, and n
coordinates "unwrap" to form the computational space with equal spacing

between coordinate lines. A point to point correlation between the
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physical space and the computational space is given in figure 1 and

discussed in Chapter II.

Numerical Method

Aigorithm. . The computational technique empipys the approximately-
factored alternating-direction implicit numerical algorithm of Beam and
Warming in its delta form.17 The delta. form of the Beam and. Warming
scheme has the advantage that the steady state solution, if one exists, is
independent of the size of the time step. The algorithm, including
stability and accuracy limitations, is described in detail for two dimen-
sions by Warming and Beam;z0 therefore only a brief outline of the method
will be presented here.

The. algorithm 1is déve]oped by first applying an Euler implicit
formula between time levels n and n+l to expréss the vector an+lof
the transformed Euler equations (12) in terms of an' Then by applying a
lTinearization procedure to the vectors ?. é; and vﬁ, using a local

Taylor expansion about an’ the Euler equations can be written in the

form

&+ W) womt?) (17)

where 1 1is the identity matrix. The term in the braces on the left<hand

1

side of the equation (17) operates on Aa"+ “where
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antl _ ant+l A
8" = M L g (18)
The terms A", B", and C" are Jacobian matrices defined as
en AN nn
L A L (19)
9q 3q 3q
Equation (15) is then approximately factored giving
3 LN 3 N 9 AN\, °n+l _
(I + 4t o= A )(I + ot o B )(1 tat g C )Aq =
d ¢ .3 An 3 °n
-At(-a-;-F + 5 G +EH;) (20)

The factorization of equation (17) produces additional terms which are on
the order-of Atz and hence do. not destroy the temporal accuracy of the
scheme. .However the present studies indicate that, in three dimensions,
the additional terms may seriously degrade the stability characteristics
of the algorithm. This property of the algorithm will be discussed in
detail later. The spatial derivatives in equatior (20) are approximated
by second-order certral-difference operators yielding a b]ock-tridiagona]
system of equations to be solved. in each of the three directions
t, &, and n. The alternating-direction-implicit seqﬁence for

1

determining a"+ is

; ‘Mm._"‘;"i.-‘: : ‘.
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(I + at %—-C")Aa"+1 = ay*l
qn+1 Aan+1 Y

Numerical dissipation. In order to obtain solutions, it was

necessary to add dissipation terms to equation (20) to damp numerical
pertubations of short wavelengths and prevent odd-even point

decov.:p11‘r\g.21922 The fourth-order term

4 4 4

9 “n P> “n ] “n
wol=7 9 .+ q + q) (22)
e(ac 2ts and

was added to the right-hand side of the equation, and the third-order

terms
2 2 2
33 on+l 3 3 -n+l 33 ~n+l
e A e A 1 (23)

were added to the appropriate .factors on the implicit left-hand side. The
value of the explicit damping coefficient, Wy s is set equal to at,

and the value of the implicit damping coefficient, Wy is set equal

to Zwe in the manner of Pulliam and Steger.22 For the numerical

calculations, the derivatives in the dissipation terms are approximated by
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finite-d1fférence formulas. It should be noted that although numerical
dissipation can stabilize a solution process, it has the disadvantage of
causing a loss of accuracy in regions of strong gradients.

Recently, Abarbanel, Dwoyer, and Gott]ieb23 have proven that the
undamped Beam and Warming scheme in three dimensions is weakly, but uncon=
ditionally, unstable for the Euler equations. Their work, which has been
accomplished since the present research was initiated, shows that the
instability is very weak and is only present in the very long wave-
lengths.. Numerical experiments conducted in the present investigation
indicate that the dissipation terms described above do not fully stabilize
the solution process. However, the experiments also show that the weak
long-wavelength instability takes a very large number of time steps to
develop near the body. For a reasonable number of time steps (~ 1000),

reasonably accurate solutions were abtained.

Metric calculation. If the scheme is applied in a uniform free

stream, it is expected_that uniform free-stream conditions would be
exactly maintained. In three dimensions, however, errors in .the uniform
flow can be introduced since the transformed flux terms being differenced
in equation (20) contain the metric derivatives. These errors can be
avoided by using the proper. averaging technique when numerically
calculating the metric derivatives as pointed out by Pulliam and Steger.
Since three-point central-difference operators are used to evaluate
the flux terms of equation (18), the errors will exactly cancel if, for

example, Sy is calculated by the equation

22 .
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and the other metric derivatives are calculated in a similar manner. In
equation (24), 6j and §, are the three point central difference
operators in the j and K directions, respectively. The metric
derivatives were computed by this technique to hold numerical errors to a

minimum and consequently enhance the stability of the computational

procedure.,

Boundary Conditions

Inflow boundary. The analytical boundary conditions were covered in

the previous chapter. The numerical boundary conditions, necessary to
complete the differencing equations in the finite difference scheme, will
‘now be specified for the implicit algorithm. At the inflow boundary, the
analytical boundary conditions are met by specifying the total pressure,
total temperature, and inflow angle., The static pressure is tre remaining
unknown on the boundary and must be numerically determined. It must obey
the compatability relations along the characteristic connecting the inflow
boundary with the interior solution. Compatability_is approximated by

extrapolating the pressure from within the computational domain.

Outflow boundary. At the outflow boundary, the analytical boundary

condition is.the specification.of the static pressure. Two basic methods

were used to specify the static pressure for the implicit numerical
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scheme. The first technique evaluated was setting the bhoundary pressure

equal to the free-stream value, 1.e.

P =Py (28) .. .

In addition to this method, a radiation boundary condition based on a

solution to the three-dimensional wave equation

By = V0P (26)
where
p=p-pP, (27)

was tested. Bayliss and Turkelz4 derived the radiation boundary condition

and applied it in two dimensions with good results. During the present
research, the radiation boundary condition was transformed to a three-

dimensional form and applied to the flow-through nacelle problem.

In the far field where pertubations are small, the three-dimensional

Euler equations assume the form of equation (26) when linearized and

transformed by the relations
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= (1 - m2)"l/2

1}

X

v=a(1- M2 4mg (28)

«<
]
«<

2 =.2

If spherical coordinates are also introduced,

n 2 52 + y2 + z2
(29)

o = tan-l<_{__)

9
= L
¢ = tan < 7 )
equation (26) has solutions of the asymptotic form
B o flr - E’.e’ ¢) (30)

for large 1 and r. The functional form in equation (30) represents an
outgoing spherical wave solution to (26). The specific function, f, is

not usually known. However, the condition

§_§+3.;!,+2-=o (31)
or r : '

is exact for all functions which identically have the form (30).
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Equation (31) 1s_the analytic boundary condition used at the .outflow

boundary. Transforming back to the physical plane (coordinates t,x,y,z)

gives

1 1 1
+ (= + - 32
(.-)Pm st (a2 - uz)l/z:l T (32)

where
r= (x2 + y2 + 22)1/2 (33)

and the superscript, n, indicates the time step. During transient
periods, equation (32) allows impinging pressure waves to pass through the
outflow boundary more effectively than equation (25). At steady state,
equation (32) reduces to equation (25). In the implementation of both
boundary equations, (32) énd (25), the flow quantities other than the
static pressure are obtained fram the interior of the computational domain
by zeroth order extrapolation,

In addition to the two basic outflow boundary conditions just

25

described, the nonreflecting outflow boundary condition of Rudy“” was

tested briefly with_mixed results. The Riemann-invariant method described

in the next chapter was also tried in conjunction with the implicit
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computational technique. An equally brief investigation of this

combination failed to yield a satisfactory solution.

Far-Field boundary. The treatment of the far-field boundary depended

on whether outflow boundary condition (25) or (32) was used. When outflow
boundary equation (25) was used, all the flow quantities on the boundary
were obtained by zeroth order extrapolation from interior points. When
the radiation equation, (32), was applied, it was simultaneously applied
at both the outflow and far-field boundaries (see figure 2) as suggested
by Bayliss and Turkell.24 In the application of the radiation cohdition
at the far-field boundary, p_ 1in the right-hand side of equation (32)
was replaced by the local value of the pressure at the previous time step.
A more precise treatment of the far-field boundary would be to test
each point on the boundary at each time step for an inflow or an outflow
condition and treat the point accordingly. However, since the boundary is
relatively far from the nacelle, and the velocities normal to the boundary
are very low in comparison to the free-stream velocity, the less.
complicated treatments were chosen for the calculation at 0° angle of
attack. For calculations with the nacelle at angle of attack, inflow
boundary conditions are éssigned to the lower half of the far-field

boundary and outflow boundary conditions to the upper half,

Surface boundary. For an inviscid fluid, the boundary condition at

an impermeable surface is that the flow is tangent to the surface. This
condition . is expressed at the nacelle surface by equating the

contravariant velocity which is not tangent to the surface to zero,

= + + 2 34
Y=tu syx g ”o (34)
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By using this expression and combining the three momentum equations in the

manner of Puliiam and Steger,22

%; Ex(x-momentum.equation)
+ Ey(y-momentum equation)

+ gz(z-momentum equation) = 0 (35)

the following relation which is independent of time can be obtained for

the surface pressure:

ap, + bpg +opy = d (36)
9{ where
" a =gz * EyCy £,
1
3 C =88yt EyEy 58, (37)

d = —pu(ﬁxu; eVt €ZWC)

-eH(E, U + E v+ £ )

and U and W are the contravariant velocity components tangent to the
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nacelle surface. .

=
"

Tt EY
(38)

i=
"

+ +
LR W W)

Equation (36) is solved for the surface pressure.by first
extrapolating p, U, and W along the £ coordinate to the nacelle
using a first-order procedure. Then Pe is expressed as a second-order
one-sided finite-difference formula, and pc and pn are written as
second-order central difference formulas. The resulting equation is then
approximately factored, and a series of tridiagonal equations in
the 7z and n directions are numerically solved to yield the surface

values.

Leading and trailing edges. The implicit finite-difference computa-

tional procedure requires a direct treatment of the leading and trailing
edae boundaries, and a wide variety of the treatments was attempted in the
present work. Solutions to the Euler equations at such points require
careful treatment in order to overcome the mathematical difficulties while
at the same time maintaining correct physical behavior. For example, the
condition of tangency of the flow to the nacelle surface necessitates that
stagnation conditions exist at the sharp leading and trailing edges.
However, for the grid spacings investigated, specifying stagnation
conditions at the leading and trailing edges resulted in large jumps in
the flow quantities in the 1mmed1ate‘v1c1n1ty of these points. A more
accurate solution is obtained by the following approximate treatment of

the leading and trailing edge boundaries.
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At the leading edge, the density and contavariant velocities are

extrapolated along the internal and external surfaces of the nacelle. The
condition that the total enthalpy is constant plus the extrapolated
quantities determines the thermodynamic and kinetic properties.of the
leading edge flow. The internal and external surfaces are treated
separately and the tangency condition is maintained on each surface.

The densities and contravariant velocities are also extrapolated
along the internal.and external surfaces to the trailing edge. The
pressure at the trailing edge is determined from the external values and
the condition that the total enthalpy is. constant. A discontinuity in the
density and in the magnitude of the velocities is allowed between the
internal and external surfaces. .

Best agreement between the inviscid computations and the
experimental pressures on the inside of the nacelle were obtained when a
Kutta-like condition was adopted at the trailing edge. It consisted of
setting the flow angle at the trailing edge equal to the angle of the
internal surface of the nacelle. The primary results presented for the
implicit procedure in Chapter VI are calculated using this boundary
condition. However, further numerical studies show that instead of giving
the correct inviscid solution, the Kutta-like condition actually models
viscous effects present in the experimental data. These results and their

implications are presented in Chapter VII.
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CHAPTER IV
EXPLICIT COMPUTATIONAL PROCEDURE

In. addition to the implicit finite-difference numerical procedure
described in Chapter 1II, an explicit finite-volume procedure which

employed a fourth-order Runge-Kutta numerical algorithm was also evalu-

ated. The algorithm has been applied to both two and three-dimensional
problems, and appears to give accurate and stable solutions in both

cases.n’13 The main advantage of explicit schemes is that the updated

solution at a new time step is independently calculated at each grid point
or cell. Thus, sets of algebraic equations do not have to be solved as
they do for implicit methods. The disadvantage of explicit numerical

algorithms is that the grid spacing imposes stability limitations on the

size of the time step when integrating the flow equations. Thus, less
computational work is required at each time step, but more time steps are
normally needed. The limitation on the size of the time step is most

4 i restrictive for viscous solutions where the grid spacing must be very fine
{ in order to adequately define the boundary layer. For inviscid solutions,
the resfriction is much less severe.

Unlike the implicit computational procedure, the explicit procedure
was not completely developed in the present study, but was adapted to the
nacelle problem from an existing computer code written by Jameson anq
Baker.l3 The adaptation consisted mainly of changing the logic of the
code to allow for both internal and external nacelle surfaces on an H-type

32
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grid. Essentially, the explicit interior point algorithm and boundary
treatments were inserted into the overall framework developed for the
implicit code. The adaptation also involved reprogramming some of the
boundary conditions for the H grid. This chapter describes the applica-

tion of the explicit algorithm to the nacelle problem.

Finite Volume Formulation.

The basic principles of the .explicit procedure are covered.
thoroughly in references 1., 12, and 13; therefore only a brief outline of
the procedure will be presented here. The Euler equations, (1), can be

written in integral form as

) -—
ﬁ-‘/\/qdv +/;F ds = 0 _ (39)

where q 1is the vector of conserved quantities (dependent variables)
presented in equations (1), V 1is the volume of the domain, S 1is its

surface area, and F is

U, PV, pW il
oul +p, puv, PUW
F = |ouv, pvZ +p, oW (40)
pUw, PVW, pw2 +p
_puH, pvH, pwH i

The commas separate the x, y, and 2z, or physical, components of Fo

No transformations are necessary with the finite-volume formulation.
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) Numerical Method

F, f Algorithm. To integrate the equations over the computational domain, ‘
? - the explicit procedure uses the four-stage Runge-Kutta numerical algorithm

L

E;'; in its standard form. For a linear system of equations

é

b

the four-stage scheme can be written as

q(o) = qn
q(l) = q(o) - alp(o)
q(z) = q(o) - azp(l)

N
S
n

L
o~~~

o
S
]

v
-

w

N

n+l o 4(4)

where q" and q”*l are the values of the dependent variables at time

steps n and n+l respectively. For the standard scheme, the values for

the coefficients, a, are

[y

al = %3 a

W]

(43)
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These coefficients give the scheme a numerical stability bound

which allows a maximum Courant number of 2v/2.

Before the Euler equations can be numerically integrated by using
the Runge-Kutta algorithm, they must be.discretised. In the present
procedure, dissipation terms are also appended to the discretised
equations before the solution process is begun. The next two sections

describe the discretization process and dissipation terms.

Discretised equations. The Euler equations are spatially discretised

by approximating them in integral form in each cell of the computational
domain. Note that the computational grid divides the domain into a system

of adjoining hexagonal cells.. The discretised equations for a cell are

d -
Vi,5,k @ @ik *Zl (Sg* Falygk = 0 (44)

where the indices 1i,j,k didentify the center of the cell, and v is the
differential cell volume which is independent of time. The summation on
the subscript, £, denotes summation.on all six faces of the hexagonal
cell. At each face, the dot product between the face area, S, and the.
flux tensor, F, is evaluated as . . . |

Sef = SxEx"f_§yFy + S,F, (45)
where the subscripts x, y, and 2z indicate components in the physical
directions. Since the intermediate solution, the solution at time level

n, 15 known at each cell center, the flux at each cell face is evaluated
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by averaging the fluxes at the centers of adjacent cells. For example, ‘
for.a typical face, 1, Tlocated at 1i+l1/2,j,k with adjacent cell centers .
at i,j,k and i+l,j,k, the mass flux at time level n would be
(ou)y =5 {(ou)y ;.\ * (ou) } (46) .
1 2 1,J.K 41,3,k R
This method of averaging amounts to using central differences in a finite

difference formulation, and yields second order spatial accuracy in the

absence of any dissipation terms.

Approximating the time derivatives with a forward difference formula

and solving for q"*l gives

o o e W

n+tl _ .n AL E ‘
gt =q -——E (S,oFg)s 4 - (47)
vi,j,k 2 g 71,5,k

T N Nk Y

which completes the discretization of the integral form of the Euler

PRSNGSR

equations.

R * ST W

Numerical dissipation..Equation (47) is in a form compatible with

the Runge-Kutta numerical algorithm. However, to insure numerical
stability, dissipation terms are appended to the right-hand side of the
equation before the solution process begins. The dissipation terms are
the same as those used by Jameson et. al. in reference 13. The augmented

form of the equations is

ntl _ n . At
qisjpk qioj,k vi,j,k

[Zg G Faltgon * P10k e)
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where Di,j,k represents the _dissipation terms in all three computational

directions (directions gz, &, and n).

D.l ,j,k s (DC +. D€+ Dn)1 ,j,k (49)

The damping terms are composed of third order terms (fourth-order
differences) which prevent odd-even point decoupling , and first order
terms (second-order differences) which prevent preshock oscillations..

The third order terms are similar to‘the ones appended to the
implicit procedure, and are formed by taking the fourth-order differences
of the dependent variables along each of the computational coordinate

directions. Taking the g direction as an example gives

(4) _ . (4) (4)
(%" )4, 5,6 = 9i41/2,5,k ~ Y3-1/2,5 k (50)
where
(4) OB UR _
dis1/2,5,k = ¢ At (9540 = 39543 *+ 3q qi-l)j,k(SI)

and d(4)1-1/2,j,k is calculated by a corresponding formula. The
term, (v, + v ); /28t insvres that the units are consistent in

i i+15,k
equation (48). Similar terms are formed for the & and n directions.
These dissipation terms are spatially accurate to the third order, and
hence do not compromise the accuracy of the spatial discretization of the

Euler equations which is second order.
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In addition to the third-order dissipation just discussed, first-
order dissipation is necessary in the.vicinity of shocks to prevent
preshock oscillations. These terms are.formed by taking second-order

differences of the dependent variables, and have the form

(2) _ ) V14172 A
(O™ )i 50k = " Vi =g (a1 = 9)
V. ¥
i-1/2 -
- &2 —ae o (94 - 44.) (52)
where v .and € form a switch sensitive to the second differences in

pressure.13 Their formulas for the face located at i+l/2 are

[Pist,ik T PPiL5 0k P,k

Vi . F (53)
adok TPy 5 0k %P5,k T PiaL,g k]
and
14172 = MX(Vi40 5 k0 ViL4,k) (54)
-Similar formulas are used to calculate v and e at 1-1/2,j,k. Near

pressure discontinuites such as.shocks, the first order dissipation terms

become very large, and the scheme is first order accurate. Whenever the
pressure variations are smooth, the first order terms are negligible, and

the scheme remains spatially second order accurate.
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The numerical .dissipation just discussed is added to. equation (47)

at all four stages of the Runge-Kutta algorithm. However, the damping
terms are updated only at the beginning of each time step, and are not

recalculated between the stages of the scheme.

Implicit smoothing. In the present explicit method, 1ike reference

13, the stability bound is increased by applying implicit smoothing to the

residuals which are calculated explicitly. The smoothing method is
26

similar to the class of numerical algorithms suggested by Lerat,®” and
takes the form
2 - 2 = 2\p -

where P 1is the smoothed residual. The smoothing operators are applied

A

as factors operating on P in the transformed directions. Therefore only

three separate tridiagonal equations must be solved to determine the

smoothed value of the residuals.

Convergence acceleration. Convergence to a steady state solution is

accelerated in the computational procedure by two mgthods.13 First the
maximum allowable time step is used for a given Courant number at each
individual cell. Using a variable time step destroys the temporal
accuracy of the solution technique, but that is of relatively 1ittle con-
cern since the steady state is the solution of interest. A variable time

step is equivalent to making the following modification to the Euler equa-

tions
39 , grlaf , 39, 80l _
- + BI'ax + 5y + Tif 0 ) (56)
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where B 1s a scalar multiplier and I 4s the identity matrix., Thus 8
can be chosen individually for each cell to advance the solution at the
maximum Couiant number.

The second method of enhancing convergence is by tncluding a forcing
function in the Euler equations proportional to the difference between the

local enthalpy and the free-stream enthalpy. With the addition of this

term, the modified form of the equations becomes

9,28

af |, 3 3h _ .
ot + a—yg"'é“ A(H - H,) =0 (57)
where
(Go(H - H,) ]
dpu(H - H,)
A(H = H) = | @ov(H - H) (58)
dpw(H -~ H.)
(3 (H-H,) |

and a 1is a constant. At steady state, H = H, » so the steady state
Euler equations remain unaltered when the enthalpy damping term is
included. Jameson also shows that in the absence of shocks, the flow
would remain irrotational and homentropic.12 The enthalpy damping

function acts similar to the ¢4 term of the telegraph equation

¢tt + a¢t = ¢xx + ¢yy (59)
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where in relaxation methods, 2 plays an important role in determining

the rate of convergence.

Boundrary Conditions

Inflow boundary. The treatment of the inflow, outflow, and far-field

boundaries is based on the Riemann invariants for a one-dimensional flow
normal to the boundary.13 For a one-dimensional flow, the Riemann invari-

ants and the characteristics along which they apply are

characteristic Riemann invariant
dx _ _ 2a
T oYUt : R=u+ a—
(60)
%% =y =~-a R=U-~- ;Eg-r

where R is the value of the Riemann invariant, u is the velocity
normal to the boundary, and a is the speed of sound.

In applying the Riemann invariants to calculate the numerical
boundary conditions, the values of u and a are determined from the
flow variables in the regions where the respective characteristics origi-
nate. For the inflow boundary depicted in figure 1, the characteristic
originating from outside the computational domain is dx/dt = u + a.
Therefore, the value of the corresponding Riemann invariant is calculated

by the formula

R n + = (61)

w=-l£d: y =1
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where n is the unit normal to the boundary and .U  {is the velocity of
the free~stream. . The Riemann invariant for the characteristic originating

inside the computational region, dx/dt =u - a, fis

2a
_ int
Rint = Yypeo DL = Y- 1

L1
Uen =5 (Ry + Rype)

where the subscript, .int, indicates the interior of the domain. 1In
making this calculation, the values of U; . and a;.. are computed from
the properties of the flow variables in the cell next to the boundary.

The equations for the two invariants, (61) and (62), can be combined to
yield the normal velocity and the speed of sound at the boundary.

a = L= (R, - R (63)

® int)
where the subscript, b, indicates boundary values.
This procedure for calculating the normal velocity and speed of

sound is equivalent to specifying one.boundary condition and numerically
calculating another. Consistency with the analytical boundary conditions
discussed in Chapter IIl must be maintained. . Therefore, at the inflow.
boundary where four-conditions must be supplied, the tangential velocities
and entropy are set equal to their free stream values. The three velocity
components, the speed of sound, and the entropy completely determine the

dependent variables at the inflow boundary.
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Outflow boundary. The outflow boundary is treated in a similar

manner. However, the characteristics entering and leaving the
computational domain are reversed, resulting in the new equations for the

normal velocity and speed of sound

1

Yrn =5 (Rypy * R,)
(64)
2y-1 -
& =71 (Rint R,

On the outflow boundary, the entropy and tangential velocities are
extrapolated from the interior of the computational domain. Thus, the
treatment of the outflow boundary is also consistent with the number and.

form of the analytical boundary conditions given by characteristic theory.

Far-field boundary. The far-field boundary is treated as an inflow.

boundary where the normal velocity is the vector sum of the velocities in

the y and z directions, or v and w respectively.

Surface boundary. The surface boundary creatment is very similar to

the treatment for the implicit procedure. The concept is the same;
however it_is applied slightly differently to the finite volume
formulation used in the explicit numerical procedure. For the finite
volume formulation, the pressure is the only flow quantity required on the
body surface. A brief overview of the method, which was proposed by
Rizzi%’ and used in reference 13, follows.

The boundary condition for a solid body in inviscid flow is that the

flow is tangent to the surface, equation (11). Taking the total

sy s




?} derivative of the flow tangency condition with respect to time -
|
- i
= .§-—- °qré {{e =
.- (at + V grad) {Ven) = 0 (65)
p,i'. .
x (wnere V is the velocity at the surface and n represents the unit _ b
, - - o
v R 13
vector normal to the surface) and substituting it into the inner product
of n and the momentum equations yields o
/
pVe(Vegrad)n = negrad(p) (66) Ly
4
for a stationary body. For a general nonorthogonal grid, equation (66) f
can be expressed in the form v
|
%
L
T AT m2 3p_ )
ol (u —)+ ¥ (u )= o™ 61 1
Iy ! 1;;”3', 2" |
3
where 1A
. | i
u =.d_'.(.l w1=9__1- w3=.d_;i gm2=.a_§r_n.§._c—2- (68) .
1 - d@ t o at e X, 89X !
£ L i
|
: and double indices indicate summation as in tensor notation.
g: In equation {67), Rizzi substitutes the. flow quantities at the
' nearest field point for those on the body surface. This yields a first-
' order accurate boundary method which is consistent with the accuracy of !
|
|

P e i e R o -y e -




R A

CAAR AR e 4

N
-

ey TR

T T T TR 71
| £
;o
‘ﬂ
45

the second-order interior scheme and gives an overall solution accuracy of
second order. Thus, the gradient of the pressure along the coordinate '

line intersecting the surface, &, can be evaluated, and then the
pressure can be extrapolated to the body.
T
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CHAPTER V
VISCOUS-INVISCID INTERACTING COMPUTATIONAL MODEL

Chapters III and IV respectively describe an implicit and an
explicit computational procedure for solving the three-dimensional Euler
equations for the flow past a flow-through nacelle. However, the Euler
equations, which model compressibility and rotationality, do not model
viscous stresses. In the physically realistic case, strong interactions
often occur between the viscous boundary layer and the main Stream aven
when the boundary layer does not separate. In these instances, modeling
the frictional forces becomes essential if accuracy is to be maintained.
Therefore, to complete the study of the flow field surrounding the flow-
through nacelle, a procedure with which to assess the viscous effects was
needed.

To obtain a computational technique which simulated viscous effects,
the explicit Euler solution procedure was coupled with a boundary layer
solution procedure. The resulting viscous-inviscid interacting
computational model is based on a global iteration between the. integration
of the Euler equations and the boundary layer equations. The present

chapter describes this interacting computational model.

Boundary Layer Equations

Since the objective of the viscous-inviscid interaction phase of the

research was to evaluate the viscous effects on the nacelle pressures, a

46
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boundary layer solution procedure that was well validated was desired.
The inviscid calculations and the wind-tunnel data indicate that the flow
on the nacelle remains attached. Therefore an integral technique used in
the direct mode was considered app]icab]e.28 “Green'szg compressible,
axisymmetric, "lag entrainment" method solved in the direct mode - was
chosen because of its reliability.

The method involves the integration of three ordinary differential
equations: the momentum integral equation, an entrainment equation, and a
rate equation for the entrainment coefficient.

RC du
ds f 2o 6 e dR
ax ["‘2_'(”*2'”)3'6;(&")’6’&] R

n

4R _ dH (S o 4Ua
i) [Ce'“l(—z '(“*”n;a&— 8

T |F 2.8 (2, 12), s Ve
dx 8 H.- H1 t'ege T U dx

. du 2
8 e<1 + ,o75r42 1_1__"‘__2_”_.l>:|

Ug dx (1 + .1M%)

The momentum integral equation, the first equation, is obtaind by

integrating in the direction normal to the wall both the continuity and

!
4
x

PR ¥ it
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streamwise momentum equations and combining the results. The entrainment

equation, which is the second one, is obtained by integrating the
continuity equation in the direction normal to the_wall. The rate
equation for the entrainment coefficient comes from a similar integration

of the energy equation, and represents explicitly the balance between the
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convection, production, diffusion, and dissipation of kinetic energy.
In the previous equations, 6 is the momentum thickness and R the

radius of the body. The shape factors are defined as:

2
n

§*/8 (incompressible flow)

X
"

§*/6 (compressible flow) (70)

Hl = (6 -5*)/8

*
where & is the boundary layer thickness, & the displacement thickness,

and the emperical relationships

1.72

Hy = 3.1 + - 0.01(H - 1)?

H+1=(R+ 1)(1 +-£§3)

exist between H, H, and Hye The term, r, 1is the temperature recovery
factor. The entrainment coefficient is defined by
1 d

Ce ) rp;Ue dx (rpe UeHle) (72)

and the term, F, by

2 i .
(0.02Ce + Ce + 0.8 Cf0/3)

e ( K S (73)

vhere Cf is the equilibrium skin-friction coefficient at zero pressure
0
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gradient., The .term Cg is the skin-friction coefficient and ¢ 45 the
T

shearing-stress coefficient, -
These boundary layer equations are_integrated by a variable order,
variable interval Adams method. The method ic part of the Langley Cyber-

200 mathematical 1ibrary30 and is recomended for sets of stiff first-order

ordinary differential equations.

Viscous-Inviscid Interacting Theory

Matching conditions. The global viscous-inviscid interacting

technique depends upon. a coupling of the invisci
boundary layer equations through conventional transpiration boundary
conditions. As pointed out by Thomas31, for the inviscid Euler solution
to simulate a solution with viscous effects, it must match the vicous
solution in that part of the flowfield where the inviscid and viscous
equations both describe the flow accurately. The matching conditions for
the Euler equations are described for two dimensions in his dissertation.
The viscous-inviscid interaction technique presently used to assess

the viscous effects on the nacelle uses a three-dimensional adaptation of

the two-dimensional matching procedure. In both procedures, transpiration

boundary conditions determined from a solution of the boundary layer
equations &re imposed at the body surface and in the wake of the body to
enfarce the boundary layer effects. An outline of the method used to
determine the equivalent inviscid transpiration boundary conditions
necessary to match the inviscid and viscous solutions follows.

Eor two-dimensional steady flow, the Navier Stokes equations are:

oF . 3G _ .
T T (74)

d Euler equations and the ’
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; i
% and the Euler equations are !
of 89 _ \
5X 3y 0 (75) |

Designate the point where both sets of equations describe the flow

accurately by h. Then intergrating both sets of equaticns with respect

{
to y over the range 0 <y < h and matching the solutions at y 3 h : 2
yields S E
3
_— il

9y = Gy * 5% 0 (f - F) dy (76)

e o R AP ST T

The subscript, w, indicates wall values and implies that the inner

boundary of the inviscid. solution is the nacelle wall. An advantage of

,i choosing the wall as the inner boundary of the inviscid solution is that E
i Y
ihi only one computational grid needs to be generated. Thomas follows the ; %
?% example of Johnston and Socho1,32 and lets F be a composite function .
1 '
3 !
| |
:l Faf+f-f (77) i
i

where T is from the boundary layer equations:

of _ag _ 4
-5-)-(-4»3?,--0 (78)

Substituting the composite function into equation (74) and

performing the integration gives
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) dy (76)
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The resulting vector, g,, 1is the Euler vecter, g, at the nacelle
surface when the Euler and Navier-Stokes layer solutions are properly
matched at y = h. Using the continuity equation as an example, the
equivalent inviscid boundary condition at the wall necessary to match the

inviscid and viscous solutions is:

(pv).

= 5 Lleu), 8% | (80)

Note that Johnston and Sochol use the inviscid wall values in determining
the mass flux term on the right hand side of equation (80). This is the
same equation as the one presented by Lock.33 It states that the mass
£1ow normal to the wall in the equivalent inviscid flow is equal to the
streamwise rate of change of the mass flow deficit produced by the
boundary layer.

The previous development of the transpiration boundary conditions is
in two dimensions. However, the present computational technique solves
the Euler equations in three diménsions. The steady three-dimensional

Euler equations in vector form are.
of .39 . 3h _
T 5y t e s 0 (81)

and contain, in addition to the vector g, the vector, h,. which must
also be determined at the wall. In determining these two vectors,

advantage was taken of the axisymmetric nature of the nacelle. By
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performing a mass balance for.the flow between iwo axial stations, the
wall, and the edge of the boundary layer, it can be shown that the axisym-
metric equivalent of equation (80) is

) (82)

1
(pk), ==

. ((pu) (2re* + 6%

0o
=

where V is the velocity vector normal to the surface. For the three-
dimensional adaptation, V 1is divided into components v and W in the

vertical and horizontal directions respectively

(83)

Due to the relatively small boattail ang]es of the nacelle, the axial
component is neglected. The vectors, Ny and n,, represent the y
and z components of the unit normal to the surface. Using these

quantities and the inviscid values of the tangent velocity, u,, and

pressure, p,, at the surface, the equivalent inviscid vectors g, and

h, can be evaluated at the surface of the nacelle where
PV pW
puv puw
9, * pv2'+ P , hy, = {ew (84)
PVW pwz +p
v(pE + p)|w w(pE + p)|w
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Surface pressure equation. The. surface pressure equation for.a solid

wall boundary with no flow across it, equation (67), was presented

previously in Chapter IV, For convenience, it is repeated here

. an, . on,
m2 8p_ . Y N BN 3, 3
g NG = o[}l (u ——a'l) + W (u —?a )]
g 5 g

Allowing for flow across the solid boundary introduces an extra term and

changes the surface pressure equation into

- pEfl -1 (njuj) + Wl —a-g (njuj)] (85)

Computations with both forms of the surface pressure equation
resulted in negligible differences in the solution. However, all viscous-
inviscid interacting calculations presented in this dissertation were made
with the modified form, equation (85).

Application of the Viscous-Inviscid
Interaction Technique

The transpiration boundary conditions presented in equation (84) are
applied on both the external and internal nacelle surfaces and also in the
wakeé of the nacelle. In the wake application, the transpiration boundary
conditions are imposed along the constant ¢ coordinate surface
starting at the nacelle trailing edge and extending approximately one hailf
of the nacelle cord downstream. At this axial location, the wake boundary

c¢ondition had decayed to a very low value. The wake is composed of the
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boundary layers originating from both the external-and the¢ internal
nacelle surfaces., . Separate transpiration boundary conditions, calculated
from each of these components of the wake, were imposed along the

£ = constant surface depending on whether the particular grid cell was
on the outside or inside of the surface. However, when numerically
integrating the Euler equations, fluxes were allowed to flow freely
through the surface, and a pressure balance was maintained across it.

In the overall global iteration between. the Euler and boundary layer
solutions, the boundary layer equations are solved every 100 time steps of
the Euler integration process using the current values of the viscous-
inviscid solution. The transpiration boundary conditions are then updated
using the new boundary layer solution and held constant until the next

global iteration. The overall solution technique is started from a

converged inviscid solution and is typically run for 1000 time steps which .

gives 10 iterations of the boundary layer. After the 10 overall global
iterations, the solution has essentially ceased to change.

The transpiration boundary conditions described in the preceding .
sections physically displace the outer inviscid flow away from the surface
to allow for the deceleration of the stream in the boundary layer. Hence
they account for the displacement effects of the boundary layer. They do
not account for wake curvature effects which are theoretically as
important, but, in practice are usually smaller in magnitqde.34 Neither
do they account for strong interaction effects such as the interaction
between the boundary layer and a strong shock wave which results in a

breakdown of thé usual boundary layer apprOxim.*ions.34'
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CHAPTER VI
INVISCID RESULTS

Calculations were made with the two.computational techniques de-
scribed. in Chapters III and IV for a flow=through nacelle at free-stream
Mach numbers of 0.80 and 0.94, and at angles of attack of 0° and 4°, Al
computations were made on a Control Data Corporation Cyber 203 vector
processor-in the scalar mode. In this chapter, the results obtained with
the alternating-direction-implicit computational procedure will be
presented first, and then the results obtained with the explicit Runge-
Kutta procedure. Several interesting difficulties which had a significant
impact on the solutions were encountered and investigated in detail during
the numerical studies. This aspect of the research will be discussed.

Thé twa techniques will be compared on the basis of quality of the
solutions, and also on practical considerations in implementing and

processing the resulting computer codes on the Cyber 203.

Implicit Computational Results

Basic _solution. The results obtained with the alternating-direction-

implicit computational procedure are presented in figures 4 through 8.
Figure 4 presents the basic solution for the .nacelle at a free stream Mach
number of 0.80 and an angle of attack of 0%, Wind-tunnel data of Re.and
Peddrew3® are included in part (a) of the figure, which presents the

surface pressures. A comparison of the calculated results and experimen-
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(a) Surface pressure coefficients.

Basic solution calculated with the implicit computational

procedure. (M_ = 0.80, a = 0.0%.)
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tal data shows that the comuptational technique predicts the general
features of the flow and the magnitude of the pressures. ...

Specifically, the calculations predict the correct axial location .of
the leading edge suction pressure peak; however, they underpredict its
magnitude by about 20 precent. The compression and reexpansion .over the
middle portion of the nacelle is also predicted by the ca1cu1ab1ons. The
large local gradient and reexpansion is the result of discontinuities in
the curvature of the external nacelle surface. Although the slope of the
nacelle surface is continuous, the juncture of the cylindrical section
with the inlet and afterbody sections has a discontinuous curvature.
Similar to the leading edge pressure peak, the predicted compression and
reexpansion are in the correct sxial location but the compression is some-
what smeared by the calculations. The tendency of .the computational
technique to smear the gradients is at least partly due to the sparseness
of the grid over the middle portion of the nacelle coupled with the

inclusion of numerical damping in the solution technique. For example,
over the region where the compression occurs, there are only 5 or 6 axial
grid stations which appear to be an insufficient number to resolve the

gradient. The sparseness of the grid may also lead to excessive numerical

dissipation in this region.

part (b) of figure 4 presents. computed pressure coefficient contours
in the vertical plane for the nacelle at 0° angle of attack. The contours
i1lustrate that even though the computational technique is three dimen-

sional, the solution at 0% angle of attack exhibits the proper

axisymmetric behavior.
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Effect of grid refinement. A solution was obtained with twice as

many grid points in the.axial direction as for the calculations presented
in figure 4. The fine grid resulted in the maximum number of grid points
possible for the implicit technique before the incore storage capacity of
the Cyber 203 was exceeded. The solution with this. grid, which is
presented in figure .5, shows a considerable improvement in the agreement
between the computations and experiment on the external surface. It has a
more negative leading edge suction pressure peak, and the compression in
the mid-nacelle region is stronger and has a steeper gradient. 1In
addition, the computed reexpansion region on the nacelle is in quite good

agreement with the wind-tunnel data..

Nacelle at angle of attack. A solution for the flow around the

nacelle was also obtained at a free-stream Mach number of 0,80 and an
angle of attack of 4.0%, Figure 6 presents a comparison of the calculated
pressures with the experimental data of Re and Peddrew for the side
meridian of the nacelle, ¢ = 90%. The compﬁtational technique predicts
the qualitative and quantitative character of the flow well, and the
general comments about the comparison of the calculations with
experimental data at Q° angle of attack apply. For this calculation,
however, it was necessary to average the internal and external flow
quantities at the leading edge in order to obtain a solution.

The computed pressure distributions for the top, side, and bottom
rows. of the nacelle are presented in figure 7. The external distribu-
tions, presented in figure 7(a), demonstrate the three-dimensional
character of the flow with the nacelle at angle of attack. The majority

of the three-dimensional effect is confined to the forward portion of the
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Figure 5. Fine grid solutions calculated with the implicit

computational procedure. (M“ = 0,80, a =70.0°.)
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Figure 6. Computed and experimental surface pressure
coefficient .distributions at angle of attack.

(M, = 0.80, a = 4.00, side row, implicit code.)
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Figure 7. Computed surface pressure coefficient distributions for

several rows at sngle of attack, (M_= 0.80, a = 4.00,
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nacelle wiere the calculations show that a large suction peak is being
generated at the leading edge of the top meridian. The internal pressure
coefficients, presented in figure _7(b), are influenced by the three- . .. ... ..
dimensionality of the flow only in a relatively small region at the
nacelle leading edge.

Contours of the computed pressure coefficients in the vertical plane
with the nacelle at an angle of attack of 4.0° are presented in
figure 8., The contours also illustrate the three-dimensionality of the
computed flow’.eld with the nacelle at angle of attack. A comparison of
these contours with those at 0.0° angle of attack, presented in
figure 4(b), illustrates the more pronounced pressure gradient on the
inside of the nacelle at a = 0.0°, and the differences between the
pressure gradients on the inner and outer surfaces near the leading
edge. It also illustrates the greater expansion of the external flow on

the top of the nacelle at the higher anglie of attack.

Explicit Computational Results

Solutions for the flow past the flow-through nacelle were also
computed using the expiicit Runge-Kutta computational procedure with
implicit smoothing of the residuals described in Chapter IV. The results
obtained with the explicit procedure are presented in figures 9 through

12.

Basic solution. The basic solution at a.Mach number of 0.80 and an

angle of attack of 0° is presented in figure. 9. Like the implicit
computational technique, the explicit technique predicts all of the
general features of the flow, and the pressures on the external surface

agree quite well with the wind-tunnel data (see part (a) of the figure).
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Pressure coefficient contours for the computations at angle

of attack... (M, = 0.80, a = 4.0%, vertical plane, implicit code.)
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(a) Pressure distributions.

Figure 9. Basic solution computed with the explicit computational

procedure. M, = 0.80, a = 0,00.)
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(b) Pressure coefficient contours.
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By comparing these pressure distributions with the ones calculated by
using the implicit procedure, figures 4(a) and 5, one can see that the
explicit procedure gives a more accurate solution. on the external surface
for the same number of grid points. This is particularly evident in the
region of the rapid compression and reexpansion which occurs on this
surface, Here the explicit procedure captures the gradients much better
than the implicit procedure and comes close to matching the resolution of
the pressure distribution computed by using the implicit procedure with
twice as many grid points. The computed pressures on the internal surface
are much more positive than thé data.

Pressure .coefficient contours for the explicit solution are
presented in part {(b) of figure 9. The region of low pressures which is
affected by the nacelle is slightly larger for the explicit calculations
than for the implicit calculations (see figure 4). The differences in
hoth the external surface pressures and the pressure coefficient contours

between the two solutions may be the result of the slightly different

implementation of the surface boundary condition.

Grid refinement study. An attempt was made to look at the effect of

grid resolution for the explicit computational technique. It was possible
to add 10 grid stations. axially along the surface of .the nacelle, for a
total of 40 .grid stations along the surface, before the incore storage.
capacity of the Cyber 203 was exceeded. Figure 10 presents the solution
for this finer mesh at a free stream Mach number of . 0.80 and an angle of
attack of 0,09, By comparing the computed pressures, which are presented
in figure 10(a), with the pressures for the coarser mesh, one can detect a

slight improvement in the agréement with the wind-tunnel data as the mesh
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(a) Pressure distributions.

Solution for the finer-grid and the explicit computational

procedure, (M_ = 0.80, a = 0.00.)
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is refined., The pressure coefficient contours for the refined grid case
are presented in part (b) of figure 10, _The contours are essentially the
samé¢ as those for the coarser grid.

The modest increase in the number of .grid points resulted in a
s1ight improvemént in the correlation between the explicit solution. and
the wind-tunnel data. Evan though the overall level of the correlation is
very good, a greater increase in the number of grid points may further
improve the agreenent in the region of the peak expansion and the

following compression.

Internal pressure level. The addition of more grid points along the

surface did little to improve the correlation between the computations and
the wind-tunnel data on the internal surface. The results of. the implicit
technique agree much better with experiment inside the nacelle, and hence
seem to be more accurate. However, the implicit technique has a Kutta-
like condition imposed at the trailing edge. A calculation with a version
of the implicit code which did not contain the "Kutta" condition shows the.
same basic trends as the explicit code as can be seen from figure 11. In
a similar observation, Miranda3® indicates that inviscid potential
solutions for similar configurations frequently give good solutions for
the external flow but yield the incorrect .internal mass flow ratio. These
results lead one to speculate that the Euler "non-Kutta" solutions possess
the correct internal trends for inviscid.flow. Chapter VII examines in
detail the possibility that the discrepancy between the data and the -

calculations is due to viscous dissipation present in the experiment. .

Supercritical solution. In addition to the solution at a Mach number_

of 0.80 and an angle of attack of 0°, a solution with the explicit
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Figure 11, Comparison of experimental and calculated rressures for the

inviscid Euler equations. (M, = 0.80, a = Oo.)
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procedure was obtained.at a Mach number of .0.94 and 0%.angle of attack.
The experimental data_indicated that 0.94 was. the highest Mach number for
which the flow on the nacelle was not separated., The calculation was made
with. the finer computational mesh described in the earlier. section on grid
resolution.

The computational results agree very well with the measured pres-
sures on the external surface of the nacelle as figure 12(a)
illustrates,. On the internal surface, just as they did at the Mach number
of 0.89, the calculations predict higher pressures than the wind-tunnel
data. Even though the predicted peak expansion near the leading edge is
low, the pressures agree with the data everywhere except at the very
peak. Probably grid resolution or excessive dissipation due to the large
changes in the pressures in this region of the flow is responsible for the
discrepency. The calculations both qualitatively and quantatively predict
the rearward movement of the leading edge negative pressure peak with
increasing Mach number. Notice that the general shape of the leading edge
expansion and subsequent .recompression has changed from the lower Mach
number. At the higher Mach number, the expansion continues until it is
abruptly terminated by a strong compression, or possibly a shock. The
calculations correctly reflect this shape change. Also, at the higher.
Mach number, the more pronounced hump in the pressures on the rear of the.
nacelle is predicted and the calculations match the data very well in this
region.

Parts. (b) and.(c) of figure 12 gresenf pressure contours in the
vertical plane for the calculation. Part. (b) of the figure shows the
overall region in the vi¢inity of the nacelle, and _part (c) presents a

detailed view of the leading edge region. The pressure contour
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(a) Pressure distributions.

Figure 12, Supercritical solution calculated with the explicit

computational procedure,

(M, = 0,94, a = 0.0%)
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corresponding to a local Mach number of 1.0 s represented by & dashed
1ine. The.contours illustrate the extént of the supersonic bubble on the
forward part of the nacelle, and also show that there is a small
supersonic bubble on the afterbody. In addition, they illustrate that the
zone influenced by the nacelle, both the compression zones originating at
the leading and trailing edges and the expansiun zones, extend further
outward in the radial direction. One might expect this general change in
the nature of the flow at the supercritical Mach number.

The calculations have correctly predicted the changing nature of the
flow from the lower to the higher transonic Mach number, and also
oredicted the quantitive results at the two Mach numbers very well.
Combined with the good predictions at angle of attack, these results
demonstrate the potential of the Euler equations in solving flows of this

complexity.

Numerical Problem Areas

During the development of the implicit computational procedure, and
the subsequent numerical studies using both the implicit and explicit
procedures, two unexpected numerical difficulties were discoverad and
investigated. The first difficulty concerns the stability properties of
the implicit algorithm. The second pertains to a numerically produced
surface total pressure loss, and.is inherent in both the implicit and
explicit algorithms. While other researchers may have encountered similar
difficulties, until recently a large segment of the computational
community was unaware of the stability prob1em.37 The total pressure
problem sti1l remains largely unreported.37' The investigation of these

areas is discussed in this section.
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Effect of boundary conditions on implicit convergénce. In the early

1980's, when the development of the implicit computational procedure was
initiated, the Beam and Warming alternating-direction-implicit numerical
algorithm was relatively new and untested, particularly in three
dimensions. Difficulties with its stability properties in three
dimensions were then known or. suspected by only a small community of
researchers,38-39 As noted in Chapter III, while the implicit phase of
the present work was eing conducted, Abarbanel, Dwoyer, and Gott]eib23
proved that the undamped Beam and Warming scheme in three dimensions is
weakly, but unconditionally, unstable. They also showed that the weak
instability is only present in the very long wavelengths.

During the development of the implicit procedure, an instability
manifested itself near the outflow boundary. The problem was
investigated, and a radiation outflow boundary treatment was applied which
enabled reasonably accurate engineering solutions to be obtained. These
results which are reported by Compton and Whitesides in reference 14 tend
to confirm the work of Abarbanel, Dwoyer, and Gottleib.23 The results of
reference 14 have helped clarify the weak instability in the undamped Beam
and Warming algorithm when applied. to the three dimensional Euler
equations. This aspect of the development of the implicit computational
procedure is described below.

Two parameters, Acp,max and the maximum residual, were used to
test the convergence of the numerical solutions obtained with the implicit
numerical technique. At any given time level, ACp is defined to be the.
absolute change in the pressure coefficient between the present time level

and the previous time level. The total residual at any time step is
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defined to .be the root mean square of .the rate of change of all five of

the normalized dependent variables, At.every time step, ACp and the

total residual are computed at each grid point and the entire

computational region is searched for the maximum value of each parameter,
Figure 13 presents the iteration history for the solution obtained

with the outflow boundary condition p = P, and extrapolation at the far-

field boundary. The history of &C indicates that the solution is

P,max
converging., However, the history of the maximum residual indicates that
the solution is in fact diverging. Thus it is misleading to base
convergence strictly on the change of a flow parameter. The increase in
maximum residual coincides with its location gradually changing from the
vicinity of the nacelle to the outflow boundary, implying that the outflow
boundary condition p = p_ equation (25), is partially reflective.

The nonreflecting outflow boundary condition of Rudy25 was tried
with mixed results in stabilizing the solution process. In addition, the
Riemann-invariant method of treating the outflow boundary,13 which was
used very successfully in combination with the explicit computational
procedure, was briefly investigated. However, a satisfactory solution was
not obtained with this combination.

As a consequence .of these results, the radiation boundary condition,
equation (32), was derived and investigated. The iteration history of the
residuals when the radiation boundary condition was used at both the
outflow and far-field boundaries is presented in figure 13(b). The
overall maximum residual indicates that the pressure disturbances passed
through the .outflow boundary more easily, delaying the emergence of the

instability until approximately 1000 iterations. After the instability
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(a) Outflow boundary condition p = p_.

Figure 13. Iteration history for the residual of the implicit

computational procedure. (M_ = 0.80, a = 0.00.)
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emeryges, the rate at which the overall maximum. residual grows 1s reduced

to near zero from the rapid growth associated with using equation 25.

Validity of the implicit solutiens. The iteration history of the

overall maximum residual presented in figure 13(b) tends to confirm the
results of Abarbanzl et. al. However, the boundary conditions were
imposed explicitly which may degrade the convergence properties of the
implicit scheme and increase the run time. The maximum residual near the
nacelle is also plotted in figure 13(b). This local residual continues to
decrease with a total drop of about 4 orders of magnitude in 1200
iterations, and 6 orders of magnitude in 2400 iterations, further
indicating that the instability is associated with the boundary treatment.
Residual contours after 1200 iterations or time steps are
presented in figure 14. These contours confirm that the maximum residuals
do indeed occur near the outflow boundary and that the solution near the
nacelle appears to be converging. Since the solution .near the nacelle
continues to converge and the local residual has decreased 4 orders of
magnitude at 1200 time steps, the solutions near the nacelle should be

reasonably accurate and useful for engineering calculations.

Explicit convergence properties. There does not appear to be a

problem with the stability or convergence of the explicit computational
procedure. The presentation of these properties of the explicit technique
is placed. in this sectior merely for comparison with the implicit
algorithm. The residual upon wn1ch convergence is based for the explicit
computational procedure is the difference between the computed enthalpy at
any particular grid point and the free stream enthalpy. Figure 15

presents the iteration.history of the maximum residual in the
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Figure 15. Iteration history for the residual of the explicit

computational procedure. (M = 0.80, a = 0..0°.)
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computational region.for the basic solution. The history shows that the
solution is stable and converging. . The maximum residual initially drops
rapidly, and although its rate of decrease levels off some, its general
trend_still continues down after 4000 time steps.

The solutions were obtained at a Courant number of 4 which was the
largest Courant number for which numerical stability could be maintained.
The optimum rate of convergence may be better than indicated by
figure 15, However, no studies were made to determine the size of the
damping parameters for the maximum rate of convergence. Numerical studies ..
by vatsa?0 indicate that the optimum values of the damping parameters for

a maximum convergance rate depends upon the grid.

Total pressure loss at the surface. Calculations with both computer

codes show a surface total pressure loss even at subsonic Mach numbers.
This feature of the solutions, which is inconsistent with the physics of.
the inviscid flow, was first noticed in calculations made with the
implicit computer code, and was reported in reference 14, However, an
indepth investigation of the problem was not undertaken at the time. When
solutions obtainaed with the explicit code also exhibited this
characteristic, it was considered highly desirable to inVestigate it more
fully. The resulting investigation of the problem is discussed in this
section.

Since there are no supersonic regions, and hence no shocks 1in the
present solutions for M = 0.80, and since the flow is inviscid, the
total pressure in the entire flow field should be constant. However, the
numerical calculations at this subsonic Mach number result in total

pressure losses which are most noticeable on the internal surface of the
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nacelle, Although the losses are confined to .a small region in the
immadiate vicinity of the nacelie, they are somecimes quite large., The
total pressure losses do not seem to affect the values of the static
pressures, but as stated before, they are inconsistent with the correct
physical nature of the problem. _

Figure 16 presents the total pressure distributions on the nacelle
surface, and illustrates the magnitude of the total pressure losses for
the free stream Mach number of 0.80., Tne figure is typical for both the
sparse. and fine grids since refining the grid had little effect on the
losses. .Parts (a) and (b) of figure 16 present the surface total
pressures calculated by using the implicit numerical procedure. The

results presented in figure 16(a) were obtained with an. early version of

the code in which the flow variables for the top and bottom surface were
averaged at the_leading edge. While.the total pressure on the external

surface of the nacelle is essentially correct, the figure shows a loss in

total pressure.of approximately 5.0 percent on the invernal surface of the
nacelle. Initially, the loss was attributed to incorrect treatment of the
the leading edge boundary (the implicit computational technique required a
direct treatment of the leading and trailing edge boundaries). As a

consequence, a wide variety of leading edge treatments was investigated in

order to correct the problem,

e i AR T R A e T T SeTR S e T T L TR SR

o The outcome of the leading edge study was to adopt the present

B

treatment described in Chapter III in which the two surfaces were treated

separately. Figure 16(b) shows the total pressure distributions resulting

]
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1oss 15 now split between the upper and lower surfaces, with a loss of

about 2.5 percent on each surface. Considering the following results
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averaged at the leading edge.

Figure 16. Continued.

A (1.

Fon ™3 SUGECLr T SR S

-

Do me . P

ti
!

i
{
!



Py

Pie

1.2

1.0

89
CALCULATIONS
+ EXTERNAL SURFACE
¢ ————— INTERNAL SURFACE

(¢) Explicit computational procedure.

Figure 16. Concluded.

- Lol L L Lk

'y

W4 4 oy ot t = o = + e

‘L--_ - o ~—\
T VR W DS SRS SR S TR S

0 2 4 6 8 1.0

e

s T N

Y -

e et T R S, .

e e e tvte e ————




i i alie o Heab ot o Sl Ay e 4 Py
- "y 3 PR T

90

obtained with the explicit computational procedure, it is doubtful that
thé new boundary treatment. results in a more-physically correct solution.

Since the explicit computational procedure incorporates a finite
volume differencing technique, and therefore does not require any direct
treatment of the leading or trailing edge boundaries, it was not expected
to give total pressure losses at a subsonic Mach..number. However, as part
(¢) of figure 16 shows, the problem is magnified by the explicit
technique. Like the results for the implicit technique with the earlier
leading edge boundary treatment, the total pressure on the external
surface is essentially correct. The losses on the internal surface,
however, have increased to approximately 10 percent. These results
indicate that the source of the loss is not associated with the treatment.

of the leading and trailing edge boundary conditions.

Origin of the total pressue 1oss. In order to help determine the

source of the losses, additional numerical experiments were conducted with
the explicit computational proczdure using an unswept, Qntapered wing as
the test configuration. Using the unswept, untapered wing resulted in a
physical problem with two-dimensional flow, but retained the three-
dimensionality of the computational prccedure. . The results of the
experiments, which are presented in the appendix, indicate that the
surface boundary condition as well as the rest of the explicit computer
code was programmed correctly. The numerical studies on the wing also
indicate that the origin of the total pressure loss is.an expansion of the
flow around the sharp leading edge of the nacelle. The sharp leading edge

is a feature of the nacelle geometry made necessary by the H-grid. The
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studies additionally indicate that by eliminating the nearly discontinuous
expansion, the total pressure losses can be eliminated.

These ideas are demonstrated for the nacelle in figures 17 and 18.
Figure 17 presents the solution for the computations made with the
explicit numerical computaticnal technique at & free stream Mach number
of 0.80 and an angle of attack of 0.0°, Parts (a) and (b) of the figure,
show respectively the Mach number contours and the velocity vectors in the
vicinity of the leading edge of the nacelle. They illustrate that
contrary to what one would expect at 0.0° angle of attack, the flow
stagnates on the external surface of the nacelle and expands around the

sharp leading edge to the internal surface.

The stagnation point on the external surface can be seen most
clearly from the Mach number contours. The clustering of the Mach number
contours at the leading edge indicates the severity of the singularity
created in the filow.as it expands in.traversing the discontinuity in.the
nacelle surface. The velocity vectors show an inward component of the
flow immediately above and in front of the leading edge, and futher -
indicate that the direction of the flow at the leading edge is from the
external surface, around the .leading edge, and to the internal surface.
Since the first-order damping terms become very large in regions with such
strong gradients in the flow, a calculation was made. with these
f dissipation terms turned off. Very little difference could be detected in
the solution.

It is.thought that this problem would be much less severe for a

rounded leading cdge coupled with the use of a locally embedded body

normal grid such as those normally used for blunt.bodiet. However, as the

appendix shows, care must be taken even with a rounded leading edge and a
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(a) Mach number contours.

Figure 17. Calculated flow-field in the vicinity of the
o leading edge of the flow-through nacelle.

(Men = 0,80, o = O.OO, explicit procedure.)
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C-type grid. Even with this type grid, the strony gradients generated as

the flow expands around the rounded leading edge can for all practical

e s =

to resolve the rapid changes in the flow variables.

Eliminating the total pressure loss. To demonstrate that the total

e e e G R £

pressure losses on the internal surface of the nacelle can be eliminated

22 A i SN S EC. EREG~ ol abi-R O N S
ST .

by eliminating the expansion around the sharp leading edge, calculations
ware made for a modified flow-through nacelle. The modification to the
nacelle consisted of adjusting the mean camber line of the nacelle's air-
foil so that the flow stagnated precisely at the leading edge instead of
on the external surface. Thus the expansion of the flow around the sharp
leading edge was eliminated.

The camber was decreased to 75 percent of the original camber at the

leading edge. Along the airfoil, the reduction in camber was

progressively decreased according to the square of the cord so that at the
trailing edge, the camber remained 100 percent of the original value. The
change in the mean camber line necessary to_adjust the stagnation point
was most noticeable in the first 25 percent of the cord. Figure 18
presents the sclution for the modified nacelle with part (a) of the figure
showing the pressure coefficient distributions. The pressures Took
reasonable; however, comparisons with experiment could not be made since
no wind-tunnel data was available for the modified configuration.

Mach number contours in the vicinity of the leading edge are
presented in part (b) of the figure. They 1llustrate the fact that the

flow dues stagnate precisé]y at the leading edge, and hence does not

expand around around.the corner. . The result, shown in figure-18(c), 1s

purposes appear as discontinuites unless there are sufficient grid points
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tiach number centours in the vicinity of the leading
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Continued.,

Figure 18.
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that the total pressuré on both the external and the internal surfaces of
the nacelle ma‘ntains its free stream value. An indication of the amount
of change in the nacelle's mean camber line neécessary to adjust the
stagnation point can be seen by comparing the modified nacelle contour
depicted in figure 18(b) with the original nacelle contour depicted in
figure 17(a).

The source of the total pressure loss on the surface of the nacelle
has been identified as an expansion around the discontinuity in the
nacelle's surface at the leading edge. It has also been demonstrated that
by eliminating the expansion around the sharp leading edge, the free

stream total pressure can be maintained.

Comparison of Techniques

The previous sections in this Chapter have presented a discussion of
the solutions. calculated by the two computational techniques, an implicit
technique employing the three-dimensional Beam and Warming numerical
algorithm, and an explicit technique employing the four-stage Runge-Kutta
algorithm with implicit residual smoothing. The quality of the.solutions
obtained with these techniques was compared during the discussion.. The
comparison on the basis of solution quality will be summarized in this
section, and, in addition, practical considerations of implementing the

two techniques on the computer will be discussed.

Processing time and computer storage requirements. All. numerical

calculations were processed on a Control Data Corporation Cyber 203
computer in the scalar mode. For the implicit code, a typical calculation
was processed for approximately 1100 time steps on a computational. grid

containing 18,502 grid points. The calculations were made at a Courant
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number of order 11 based on the minimum grid spacing in the axial
directions ..The processing time on the Cyber 203 was approximately 6.7

hours or 1,22 milliseconds per _grid point per time step._ The code was..

written for maximum visibility of the form of the equations, and hence
containaed many divisions by quantities whose value were 1.00, By
eliminating these divisions, and optimising the code for speed of
computation, a considerable reductiun in processing time should be
realized,

The explicit code required an average of 3000 time steps to reach a

-

steady state solution. Fur the same computational grid, this yielded a
computer processing time of. approximately 2.1 hours or 0.15 milliseconds
per grid point per time step or approximately one third the computational
time of the implicit code. Although neither the implicit code nor.the
explicit code was vectorized, vectorization of the codes should result in
a decrease in the processing time.

In order to calculate flows around more complicated configurations,
additional grid points will be required. The maximum number of grid
points .possible for the implicit. computer code as it was Written was

approximately 37,000 before the jacore storage capacity of the Cyber 203

computer was exceeded. By deleting all possible arrays in the computer

program, and by recomputing the necessary parameters from the deleted -

arrays every time they were needed, approximately 63,000 grid points could

be obtained before the computer's incore storage capacity was exceeded. . ..

The maximum number of grid points possible before.the explicit gode, which
was not_optimized for wminiwan storage requirements, exceeded the incore

storage capacity of the Cyber 203 was approximately 20,000,
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; In general, the implicit code requires less computer storage while

tha explicit code runs faster. Both the run time and the computer storage

f ﬁ requirements of each code are marginal for general design studies where

many configurations.need to .be evaluated quickly unless optimization of :}

517 programming for storage and run time can be realized. However, the cost ;i
| of obtaining a given. solution has steadily decreased by an order of

->? magnitude every eight years for the past fifteen _year‘s.41 Computers which

have much more computing power and memory than the Cyber 203 will be@ome

available in the very near future. For example, NASA Langley Research
Center .received a 16 million word version of the Control Data Corporation
Cyber 205 in the fall of 1984, Another example is the NAS facility
discussed by Ballhaus.*! With such advances in. computer technology,
coupled with advances in numerical techniques, computer codes based on
solutions of the three-dimensional Euler equations should soon become

practical for problems of this complexity.

Convergence. While reasonably accurate engineering solutions were
obtained with the implicit technique, its overall convergence properties
are unacceptable, The implicit application of the boundary conditions to

this problem may enhance its stability and should be investigated, as

should the effect of enthalpy damping on its stability characteristics.

However, at present, the scheme has a weak instability when applied to
f' i this three-dimensonal problem with the result that the implicit solution :
never actually converges. The explicit scheme is stable and converges

even though its rate of convergence is less than desirable. .

Accuracy. The relative accuracy of the solutions obtained with the

twd numerical techniques has already been discussed in the previous
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sections., Basically, the explicit technique.yields more accurate

solutions for the same number of grid points in that it captures the
pressure gradients and peak pressure expansions better.than the implicit.
technique. The better accuracy of the explicit code may be a result of
the slightly different implementation of .the surface boundary conditions
in the two numerical procedures. Both procedures, however, give solutions
that.are in good agreement with experimental data on the external surface

of the nacelle where the effects of viscosity are relatively small.
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CHAPTER VII
VISCOUS-INVISCID. INTERACTING RESULTS

In.general, the inviscid solutions calculated by using the Euler
computational techniques agree very well with the wind-tunnel data on the
external surface of the nacelle. However, there are large differences
between the inviscid solutions and the measured pressures inside the
nacelle's duct.. In Chapter VI, it was hypothesized that since the Euler
equations model compressibility and rotationality, the discrepancy was due
to viscous dissipation present in the experiement. In the physically
realistic case, strong interactions often occur between the viscous
boundary layer and the main.stream even when the boundary layer does not
separate. Typical examples of this type of flow occuf near the trailing
edge of an aft-loaded airfoil or at a shock-boundary-layer interaction,

In these instances, modeling the frictional forces becomes essential if
accuracy is to be maintained.

Therefore, to complete the study of the solution of the flow field
for the flow-through nacelle, a preliminary assessment was made of the the

influence of viscosity. The viscous-inviscid interacting computational .

model described in Chapter V was used for this phase of the research which

was conducted at a free stream Mach number of 0,80 and an angle-of-attack
of 0.0°. These investigations, which have yielded new insight into the
wechanics of the interactions between the internal and external flows, are
des¢ribed in the present chapter.
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Results

Overall viscous effects. The overall result of including the

boundary layer effects in the otherwise inviscid Euler solution is illus-
trated in figure 19, The figure presents the viscous-inviscid interacting
solution as well as the inviscid solution, and illustrates that the
viscous effects significantly change the internal pressures but leave the
external pressures largely unchanged. Including the boundary layer and
wake does.result in a slight decrease in.the external pressures very near
th2 trailing edge. However, on the internal surface, it causes a
significant decrease in the.exit pressure, and produces a sizable axial
pressura gradient in the nacelle's duct. The net effect improves the
correlation between the computed internal pressures and the experimental
data.

As pointed out previously, in addition to surface boundary layer
thickness, this interacting procedure compensates for wake thickness but
not wake curvature. Melnik34 indicates that wake curvature, while not
being as important as wake thickness, produces similar results. Hence, if
allowance were made for wake curvature in the present calculations, the

computations should match the internal. pressure datum even better.

External and internal boundary layers. An attempt was made to

determine the relative importance of the external and internal boundafy
layers in changing the character of the flow past the nacelle. Therefore,
in addition to the inviscid and the complete viscous-inviscid interacting
solutions, interacting computations were made with the the boundary layer

and wake originating only from the external surface of the nacelle,
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Figure 19.

Effect of viscous-inviscid interacticon on the

nacelle pressures. (M = 0,80, a = 0.0°.)
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Similar computations were also made with the boundary layer and wake
originating only from the internal surface.

Figure 20 presents the. computed. pressure distributions on the
external surface of the nacelle for all four solutions, and shows that
neither the external nor the internal boundary layers greatly influence
the utside pressures. .The viscous effects on the internal nacelle pres-
sures are illustrated in figure 21. These effects are substantial, and
consist of both a change in the overall pressure level and the generation
of a pressure gradient in the axial direction. '

Fifst consider the influence of the boundary layer and wake
originating from.only the external surface of the nacelle. Part (a) of
figure 21 contains the pressure distributions for the complete viscous-
inviscid interacting solution, and for the solution which includes the
viscous effects produced by only the external nacelle surface. . The common
factor between the curves is that each includes the viscous effects
originating from the external surface of the nacelle. Even though there
are differaences in the pressure gfadients between the two calculations,
the exit pressures in both cases are the same.

In part (b) of figure 21, the viscous effects due to the external
nacelle surface are absent. Part.(b) presents the inviscid solution and
the interacting solution with only the internal boundary layer and wake.
As in part (a), the pressure gradients are different but the exit
pressures of both curves are equal. The message of the comparisons is.
that the external boundary layer and its wake in combination with the
inviscid flow determine the exit pressure and hence the overall pressure
Tevel of the internal flow. The internal boundary layer has very little

effect on the exit pressure. Comparing parts (a) and (b) also illustrates
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Figure 20, Viscous effects on the external nacelle pressures.
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(b) Inviscid versus internal viscous-inviscid interaction.

Figure 21. Viscous effects on the internal nacelle pressures.

(M, = 0.80, @ = 0.0%)
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that the external viscous effects produce a lower exit pressure and hence
a Tower-overall internal pressure that is in better agreement with the
wind-tunna=l data,

Next, consider the effect of the boundary layer originating from
only the internal surface of the nacelle. In.parts (c¢) and (d) of.
figure 21, the correlating factor.is the viscous effects produced by the
inside nacelle surface. In part (c), both pressure distributions are the
result of calculations in which the internal viscous effects are absent,
and in part (d) both are the result of calculations with them present. An
examination of both sets of pressure distributions illustrates that the
boundary layer on.the internal surface of the nacelle produces a pressure
gradient in the nacelle duct. In addition, it shows that the gradient is
essentially unaffected by the boundary layer on the outside surface. One
dimensional axisymmetric calculations demonstrate that the gradient {s the
result of the change in the effective duct area due to the growth of the
internal boundary layer. For example, the one-dimensional calculation
yielded a pressure coefficiant gradient of 0.13 versus the gradient of

0.11 given by the present viscous-inviscid calculation.

Interacting mechanism. A more complete understanding of the

mechanism by which the boundary layer produces these results, and of the

relative influence of each boundary layer.on the overall flow pattern can

'be gained by also considering figures 22, 23 and 24. Figure 22 shows the

‘strength of the sources and sinks that are imposed on the nacelle surface

and in the wake in order to satisfy the transpiration boundary conditions
for the continuity equation. The strengths are equivalent to the stream-

wise rate of change -of the mass flow deficit produced by the boundary
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layer or wake., The figure 1llustrates. that the external boundary layer.

and its associated wake result in boundary conditions that are nearly an
order of magnitude larger than those associated with the internal boundary
layer and wake., The figure further shows that the dominating portion of
the external viscous effects comes from the trailing edys ragion where
there is a rapid deceleration of the external flow and consequently a
rapid buildup of the boundary layer.

The influence of these viscous “oundary conditions on the flow field
in the vicinity of the trailing edge is illustrated in figure 23. Part
fa) of the figure shows the velocity vectors in the vicinity of the
trailing edge for the inviscid solution, and part (b) the corresponding
vectors for the interacting solution. Compairing the two velocity vector
plots illustrates the difference in the basic nature of the two solutions;
the inviscid solution possesses a greater inward radial component of the
flow which .suggests a greater circulation.

A quantitative comparison of the viscous boundary conditions on the
velocity vectors.immediately downstream of the trailing edge of the
nacelle is presented in figure 24, Part (a) of the figure presents the
velocity vectors of the inviscid Euler solution, and the “vieracting solu-
tion with only the external viscous effects. It shows that the viscous
effects originating_from the external surface straighten out the.
streamlines, thus reducing the circulation. in the trailing edge region,
The effects of viscosity produced by the internal surface, part (b), show
the opposite effect, but are much smaller in magnitude as .would be
expected from the results presented in figure 22, The net effect on the
velocity vectors immediately downstream of the trailing edge {s presented

in figure 24(c). Basically, the viscous effects reduce the inward radial

1
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(b) Viscous-inviscid interacting velocity vectors.

Figure 23. Viscous effects on the velocities in the vicinity -
of the trailing edge. (M_= 0.80, a = 0.00.) '

Ai

|

|

|

srmem ot e s e e e s T

SERCK mae an s R I C ROIL RS T ST - “ . R




e T EA3
A T
¢ oy

M . et o RO S R Y
« : .

113

INVISCID
---------- VISCOUS~-INVISCID INTERACTION

(a) Inviscid versus external viscous-inviscid interactior,

-———— e
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(b) Inviscid versus internal viscous-inviscid interaction.

Figure 24, Detailed comparison of velocities immediately
downstream of. the trailing edge. (viscous and

inviscid solutions, M = 0.80, u = 0.00.)
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Inviscid versus complete viscous-inviscid interaction.

Figure 24, Concluded.
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velocity component of the mainstream and increase its streamwise

component,

Decambering concept. The.external viscous effects produce a change

in the stream velocities that is similar to a change that would be
produced by decambering the nacelle's airfoil. The analysis presented
above strongly indicates that the decambering effect is responsible for
decreasing the exit pressure and the overall internal pressure level from
their inviscid values. This theory can be further evaluated by two
completely inviscid tests. For the first test, recall the comparison of
the two inviscid solutions which were calculated with the implicit
computational procedure (see figures 3(a) and 11). For the "non-Kutta"
calculation presented in figure 11, a substantial inward radial velocity
existed at the trailing edge of the nacelle. For the "Kutta" calculation
presented in figure 3(a), this .velocity was set equal to zero. As would
be exhected, imposing the “Kutta" condition.lowered the internal pressure
lev2l so that it agrees much better with experiment.

The second test was conducted with the explicit Euler code. In this
test, an infinitely thin trailing edge extension, or tab, was attached to
the nacelle parallel to its axis of symmetry. Calculations using this
configuration produced even more dramatic results than those of the first
test. The .internal pressure coefficient was lowered from<0.3; a value
which was higher than the experimental pressure coefficient, to 0,1, a
value approximately one half the experimental pressure coefficient.

The results presented above show that the external boundary layer
effectively decambers the airfoil of the nacelle and alters the overall

flow pattern by redirecting the streamlines closer to the free stream
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airection, A sketch of the inviscid and viscous Streamlines is presented in
figure 25, The compression on the external surface of the nacelle is. thus
weakened, resulting in a less positive exit pressure and a less positive
internal pressure level which agrees better with wind-tunnel data than the

inviscid computations., ,

Implications of viscous effects. It is obvious that the.magnitude.

of these results is configuration dependent. However, one conciudes that,
in. the absence of any artificial "Kutta" condition, the Euler equations
give the correct inviscid.trends. That is, that the inviscid pressure
level inside the nacelle's duct is more positive than would be experienced
in reality. Hence, if simulation of the correct mass flow through the
nacelle's duct is important in analyzing a fluid flow problem, then
viscous effects must be included in the computational model.

These implications also extend to wind-tunnel testing of models with
flow-through nacelles. In the early stages of developing a new aircraft, .
when many different confiy.irations must be tested, the complications and
expensevassociated with testing powered models necessitates the use of .
models with flow-through nacelles. Adjustments to the flow-through data
are tnen determined hy testing powered versions of the most promising
configurations. This experimental procedure was followed by Capone
et. a1%2 in determining the overall. aerodynamic characteristics of a new
fighter aircraft, As the present viscous-inviscid investigation shows,
the external boundary layer on the nacelles can affect the internal mass
flow as well as the pattern of the streamlines both behind and in front of
the nacelle. Thus, the accuracy of simulating the nacelle boundary layer

could significantly impact the measured aerodynamic characteristics of the
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INVISCID STREAMLINE

VISCOUS STREAMLINE

Figure 25.

Skatch of the inviscid and viscous streamlines.
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Summary of the Viscous Effects

!

! In summary, for predicting the flow on.the external surface of the
' nacelle, viscous effects were relatively unimportant and the Euler
equations gave good solutions. In cantrast, for predicting the flow

’-E inside the nacelle's duct, the viscous effects are extremely important and o

O R T T TN R T T T
Dieishs R4 [ s 0 ?

both the external and interaal bodndary layers and wakes must be

PR

simulated. The internal boundary layer creates an.axial pressure gradient
in the nacelle's duct, but essentially doss not affect the overall

oressure level. The external bound-my layer and its associated wake

e e ST -
Sl e el .

change the overall pattern of the inviscid flow. They displace the

P £ S

streamlines away from the external surface of the nacelle thus effectively

duecandaring the nacelie's airfoil. As & result, the compression at the

trailing edge is weakened. This gives a less positive exit pressure, and

hence a less.positive overall internal pressure level which is closer to

R I, T £

the free stream value and agrees better with wind-tunnel data than the :

ey

inviscid computations. Hence, if simulating the correct mass flow through
the nacelle's duct is important, then viscous effects must be included in Ey

the computational model.
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CHAPTER VIII
CONCLUDING REMARKS

A study has been made of the solution of the three-dimensional flow
field for a.flow-through nacelle, Both inviscid and. viscous-inviscid
interacting solutions were examined. Inviscid solutions were obtained
with two different computational procedures for solving the three-
dimensional Euler equations. The first procedure employs an
approximately-factored a]ternating-direction-imp]icit numerical algorithm,
and required the development of a complete computational model
specifically geared to the nacelle problem.  The second computational
technique employs a fourth-order Runge-Kutta numerical algorithm which was
modified .to fit the nacelle problem. Viscous effects on the flow field
were evaluated with a viscous-inviscid interacting computational model.
This model was constructed by coupling the explicit Euler solution
procedure with a “lag-entrainment® boundary layer solution procedure in a
global iteration scheme. The computational techniques have been used to
compute the flow field for a long-duct turbofan engine nacelle at free-
strean Mach numbers of 0.80 and 0.94 and angles of attack of 00 and 49,

The. numerical experiments show that for predicting the flow inside .
the nacelle duct, the viscous effects are. extremely important and both the
external and internal boundary layers and wakes must be simulated. The
fnternal boundary layer creates a pressure gradient in the nacelle duct.
The external boundary layer and wake displace the streamlines away from
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the external surface of the nacelle, thereby reducing the comprassion at
the trailing edge. This gives a less positive exit pressure, and hence a % b
less .positive overall internal pressure level which agrees better with
experiment than the inviscid computations.

In contrast to the internal surface, viscous effects were.relatively Ly
unimportant for predicting the flow on the external surface of the
nacelle., Good agreement is shown between the computational results of
both Euler numerical procedures and wind-tunnel.data on the external
surface of the nacelle. The solutions at 0° angle of .attack exhibit the
propeE axisymmetric behavior even though the computational technigues are

three dimensional. At 40 angle of attack, the solution has & definitz

three-dimensional character. The calculations correctly predict the

I 2 R R

changing nature of the flow at the . supercritical free stream Mach number
of 0.94, and predict the quantitative results at this Mach number very

wall,

Th2 solutions using both Euler computational techniques exhibited a ]

total pressure loss on the internal surface. of the nacelle. An

investigation of the loss proved that it was the result of the flow
stagnating on the external surface and expanding around the sharp
discontinuity in the surface of the nacelle at its leading edge. The

studies indicate that the use of _C-type grids could probably eliminate

the loss,_although even with the C-grid, care.must be taken to use

sufficient grid resolution to resolve the stagnation region near the

- H
. e . ——— e - P A R
e e e o e e - aa ™ o S RS ¢

leading edge. However, for sharp leading edges or where the H-type grid
is otherwise_desirable, it appears that some (problem-dependent) total

pressure 1o0ss is inherent to numerical Euler-equation solutions.
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Finally, in comparing the two.numerical techniques, the explicit
computational technique gives a more accurate solution for. the same number
of grid points than the -implicit technique. The implicit computer code
requires less computer storage while the explicit code runs faster, For
the implicit computational procedure, it was found that a radiation.
boundary condition imposed at the far-field and outfiow boundaries gives
better convergence of the computations than the condition p = p_ . Even
though reasonably accurate engineering solutions were obtained with the
implicit computational procedure, a weak instability was discovered in it
when applied to the.thres-dimensional nacelle problem and. the solutions
never actually converged. This instability would severly restrict the use
of .this implicit method for studying problems of this type. The explicit
computational technique is stable; however, its convergence rate is less
than desirable. The weak instability of the implicit scheme coupled with
the slow rate of convergence of the explicit scheme providas motivation

for further algorithm development.
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APPENDIX o
TWO-DIMENSIONAL INVESTIGATION OF THE TOTAL PRESSURE LOSS ;4

In Chapter VI, part of the discussion centered upon & total pressure

loss in the computed flow on the internal surface of the nacelle, a i?
feature of the flow. that is physically incorrect. It was stated that the ié
loss was first noticed for the solutions obtained with the alternating- ;ﬂ
direction-implicit computational procedure, and that at the time, it was ;}
attributed to incorrect treatment of the leading edge boundary. The. lE
explicit Runge-Kutta computational procedure does not contain a direct :g
treatment of the leading edge boundary. Therefore, when solutions megg
computed by the explicit procedure contained a similar loss in total gf
pressure. an investigation to determine the cause of the loss was !i
considered desirable. This appendix summarizes the resulting gl
investigation. I%

For the more detailed investigation into the source of the loss, an
unswept, untapered wing was chosen as the test configuration. Using the i

unswept, untapered wing resulted in a physical problem with two- o ;i

dimensional flow, but retained the three-dimensionality of the computa- l‘
tional procedure. Symmetry of the boundary conditions could be i
maintained. Also, by adopting a symmetrical airfoil, and by comparing the f%
solutions on the top and bottom surfaces of the wing, the.coding of the Y
surface boundary condition inside the nacelle.could be verified. This was :

possible because the boundary conditions, and hence the camputer codings,
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for the bottom surface of the wing and for the inside surface of tne
naceéile are identical,

Solutions for the wing were obtained using the explicit Runge-Kutta
algorithm for both & symmetrical airfoil and a camber:.d airfoil with He
grids and C-grids., Figure A-1 shows examples of .the two types of grids.
The H-grid resembled as closely as possible the grid used for the
nacelle. A1l calculations presented in the appendix are at an angle.of
attack of 0.0,

Figure A-2 presents the solution. at a free.stream Mach number of
0.80 for a wing with a symmetrical airfoil and an H-grid. The solution
is symmetrical about the cord line, and, even though there are regions of
supersonic flow, the total pressures on both surfaces are essentially at
the free stream value. The slight variation in the total pressures where
the flow compresses from the negative pressure peak_1is possibly the result
of excessive numerical dissipation.. The symmetry of this solution, and
the equality of the total pressures on the surface to the free stream
total pressure strongly 1ndicates.that the surface boundary condition is
programed correctly.

The computed total pressures for the wing with .a cambered airfoil
having the same cross-section as.the nacelle and an H-grid are presented
in figure A-3. This solution is also at a free stream Mach number of
0.80 and an angle of attack of 0.0°. The figure shows that there is a
larger total pressure 1oss on the battom surface of the wing than on the
corresponding inside surface of the nacelle, and there is even a..loss on
the top surface.

In order to investigate the effect of rounding the leading edge,

it's contour was changed to a ¢ircular arc which was tangent to the top
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(a) Pressure coefficient distributions.

Figure A-2. Solution for the wing with a symnetrical airfoil.

(M_ = 0.80, « = 0°, H-grid.)
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Computed. total pressures for the wing with a
cambered airfoil and an H-grid. (M_ = 0.80,

& = 0.00)
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and bottom surfaces of the airfoil, and.a C-grid was adopted. Figure A-
4(a) presents the total pressure distributions for this configuration at
the same free stream conditions as the previous calculations. It shows
that while the the total pressure is considerably closer to the free.
stream value than for the H-grid, it is now too high. Whather the calcu-
lated total pressures on the surface are higher or lower than the free
stream value depends upon the interaction between the implementation of

43

the boundary conditions and the numerical dissipation™>.

An examination of the Mach number contours for this calculation,
presented in figure A-4(b) and (c), reveals two interesting features of
the flow. The first fsature is that the cambered airfoil is at 0.0° angle
of attack, and yet the flow stagnates on the upper surface of tha wing
near the leading edge. In addition, as the flow expands around the
leading edge, a supersonic bubble with relatively high Mach numbers is
created on the bottom surface. The gradients in the supersonic bubble
coupled with the grid resolution and the numerical dissipation probably
produce tne change in total pressure on the bottom surface of the wing.
Possibly a finer grid in this region could alleviate the problem.
However, the present calculations resulted in near saturation of the
incore storage of the Cyber 203 computer.

By eliminating the severe expansion around the leading edge, the
total pressure losses on the surface of the wing can be prevented. This
has been demonstrated for a symmetrical airfoil using the H-grid and was
presented in figure A-2. It will also be demonstrated. for the C-grid in
two ways, first by going to a symmetrical airfoil as in the case for the
H-grid, and second, by lowering the free stream Mach number., Figure A-5

presénts the solution for the wing with the symmetrical airfoil and the C=
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(a) Total pressure distributions.

Figure A-4. Solution for the wing with a cambered airfoil and a

C=Grid.. _{M_= 0.80, a = 0.0%)
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0.10

= 1.00

(b) Mach number contours in the

Figure A-4.

vicinity of the leading edge.

Continued.
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(c) Detail of the Mach number contours at the leading edge.

Figure A-4. Concluded.
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Mach number contours in the vicinity of the leading edge.
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grid at a free stream Mach number of 0.80. .The pressure coefficients, ; 4
which are presented in.part (a) of the figure, agree well with the corre- -;
sponding pressure distributions calculated with the H-grid. Figure A- '
B(b), whith shows the Mach number contours, illustrates that. the
stagnation point is at the forward most point of the airfoil, and that the iﬁ
strength of the expansion at the leading edge has been reduced.. The '
resulting total pressure distributions are presented in part (c¢) of the
figure, and.show that.the total pressure on the surface of the wing
remains close to the free stream value.

By reducing the free-stream Mach number, it is alsa possible to
reduce the strength of the expansion. The results for a free stream Mach
number of 0.40 are presented in figure A-6., The pressure coefficients,
presented in part (a), look reasonable although there are no.experimental

data with which to compare them. .The Mach _number contours in the vicinity

of the leading edge, and the total pressure distributions, parts (b) and
(c) respectively, illustrate the reduced strength of the expansion at the 52
leading edge, and the .resulting surface total pressures which are i%
essentially at the free stream value.

An investigation to determine the cause of the total pressure loss

in the computed flow on the internal surface of the nacelle has been

summarized in.this appendix. It was found that the loss was associated

with the flow expanding around the sharp leading edge. of. the nacelle and

thus creating severe local gradients in the fiow field. It was determined
that by reducing the severity of these.gradients, the total pressure 10ss
could be prevented. Although the specific approaches used for the wing }
(C-grid and reducéd Mach numher) were not attempted for the nacélle, an

alternate approach in which the nacelle geometry was modified such that
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(a) Pressure coefficient distributions.

Solution for the wing with.a cambered airfoil and a

C-grid at.a free stream Mach number of 0.40,

(a = 0.00)
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0.40

Detail of Mach number contours at the leading edge.

Figure A-6.
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stagnation occured precisely at the leading edge was tried. This modified

nacelle producaed similar results in that the loss.{n total pressure was
sliminated (see Cnapter VI). The implication is that almost any modifica-
tion. to the leading-edge treatment that either reduces or resolves the

flow gradients should produce similar results.,
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