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,_-' ABSTRACT ...............................
it.

i !' A study has been made of the solution of the. three-dimensional flow
iii_ field for a flow-throughnacelle. Both inviscidand viscous-inviscld
i_
_ interactingsolutionswere examined. Inviscidsolutionswere obtained

with two differentcomputationalproceduresfor solvingthe three-

dimensionalEuler equations. The first procedureemploysan alternating-

direction-implicitnumericc_1algorithm,and requiredthe developmentof a

_ completecomputationalmodel for the nacelleproblem. The second
J

computationaltechniqueemploys a fourth-orderRunge-Kuttanumerical

_" algorithmwhich was modifiedto fit the nacelleproblem. Viscouseffects

on the flow field wereevaluated ,,'itha viscous-inviscidinteracting

i computationalmodel. Th_s model was.constructedby coupling the explicit !_

: Euler solutionprocedurewith a "lag-entrainment"boundary layer solution
<

_ ', procedurein a global iterationscheme The computationaltechniqueshave ,i._i, a

_ been used to computethe flow field for a long-ductturbofan engine.,
c

C _ nacelleat free-streamMach numbersof 0.80 and 0.94 and angles-of-attack

of 0° and 4°.

The numericalexperimentsshow that_for predictingthe flow inside

the nacelle'sduct, the v_iscouseffects are extremelyimportantand both

; the externaland internalboundarylayers and wakes must be simulated.|

F

The inter_halboundary layer createsa pressuregradient in the nacelle's
&. i

< _., duct. The external boundarylayer and its associatedwake displacethestreamlinesaway from the external surface.......The displacementof the

)'" I'



streamlineseffectivelydecambersthe nacel.le'sairfoil and weakens the

compressionat the trailing,edge, This gives a less positiveexit

pressureand hence a less positiveoverall internalpressurelevel which

agrees better with experimentthan the inviscidcomputations. Therefore,

if simulatingthe correctmass flow through a flow-throughnacelle'sduct

is important,then viscouseffectsmust be includedin the computational

model.

In contrastto the internalsurface,viscouseffectswere relatively

unimportantfor predictingthe flow on the externalsurfaceof the ,

_I nacelle. Good agreementis shown betweenthe computationalresultsof

_) both Euler numericalproceduresand wind-tunneldata on the external

i- surlaceof the nacelle. The solutionsexhibitthe proper three-
_). dimensionalbehavior at both angles of attack and correctlyreflectthe

qualitativeand quantitativeresultsat both Mach numbers.)

_ The solutionsof both Euler computationaltechniquesexhibiteda ....r--

total pressureloss on the internalsurfaceof th,_nacelle. An

investigationof the loss proved that it was the resultof the flow l

stagnatingon the external surfaceand expandingaround the sharp
I

discontinuityin the surfaceof the nacelleat its.leadingedge. The _,)
studiesindicatethat _he use of C-type grids could probablyeliminatethe I

loss. However,for sharp leadingedges or where an H-type grid is

desirable, it appearsthat some (problem-dependent)total pressure loss is

inherentin numericalEuler-equationsolutions.

Even though reasonablyaccurateengineeringsolutionswere obtained

with the implicitcomputationalprocedure,a weak instabilitywas

discoveredin it when appliedto the three-dimensionalnacelle problem,

i! This instabilitypreventedthe implicitsolutionsfrom actuallyconverging
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W althoughthe long wawlength nature of the instabilityrequiresa large

number of integrationsteps before it becomesevident, The explicit

,.,!:' computational technique is stable.

[i !

ii
1

i
! r

,.._,_

i_[!

!-!;

.t

(



J_

'i l

;,!i:- TABLE OF CONTENTS

!:
li ABSTRACT ii "

of., o mmo..o m,,. um, • m..¢.&.m,.mom, mmm ,, 0, ,,,, m, om.m.., ,.,,,.mem,.

-!i
'_." LIST OF FIGURES viii i11 _ oo.o,o,4...o_o..,,..o,,,., o e ,o. ,o,. ooeo,., o..,, .e.g..

i._ 'iLIST OF SYMBOLS...,.._.._u__,....,.........,,,..,,.,..,,,,.,,,..,..,.....x

-oo ,be ,,oDe o,, e o, q),,, o e on,, o oqJ, oo 0...0,,..,,,...,0,o, • o V :i

Chapter !!"

_:i_ I INTRODUCTION Im ,,,oee,,m,o,oe,, m m., ,,._.o o o o m, m , o e, ,,,, m,. , ,, ,, , ,, ,, ,,

_!' _.

_..!, II. MATHEMATICALDESCRIPTIONOF THEPROBLEM...........................5. ,,.
GoverningFlow Equations - 5o..ooeo..o,.,oo ,,0., emeo.,,o,e,eee,ee,,

:. ComputationalDomain and Grid System...........................7

,i .................................

•i AnalyticalBoundary Conditions II
NacelleConfiguration..............,....................,...,.16

' Ill IMPLICITCOMPUTATIONALPROCEDURE 17, .,, o , coo. 0,,0, .oo4,,o o ,,,,_o.,. 0.

TransformedEuler Equations.,.............,.........,.............18
NumericalMethod..................,...........................20

• Algorithm.................,,......................,..,......20
i_: Numericaldissipation 22

Metric calculation..........._..................,.....,...,. 23
I_" Boundary Conditions 24

Inflow boundary...,....,.,..,....,....,....,.,,.............24.

il Outflow boundary..,....,......,.,..,..,.,..................,,, 24Far-fieldboundary..,,..,.....,,.,.,,.,.,,.,.....,..........28
Surfaceboundary..,,,........,.......,.,....,......,.,........ 28

•. Leadingand trailingedges...,........,.,,..,.,...,,,.,.,...30
• I

IV. EXPLICITCOMPUTATIONALPROCEDURE.......,......,,,.,,,,,.,........32
J

Finite Volume Formulation,,,,,,.,.,.,,.,,,.,,,.,,.....,.,.,,,,.33
Numerical.Method...,,,,.,.,,,,..,,.,,,,.,,,,.,,,,,,.,.,,.,.,,,34
Algorithm,.....,..,.,,.....,,,,.,,,,,,..,,,,.,,,.,,°,.,,,,,,.34
Discretisedequations,...,,.,,,,.,,.,,,,,,,,,,,,,,.,,,,,,.,.35
Numericaldissipation,.,.,.,,,,,,,,,,,.,,,,,,,,,,,,,,,,,,,,.36
Implicitsmoothing.....................,.,,,.,..,.,.........39
Convergenceacceleration...,,,,.,,,,,,.,,,,.,,.,,.,,,.,,,.,.39

L :',

ti '
!!'



....... ¸¸-¸.... .....

'I vi
i !:i

:.W! Boundary Conditions...........................................41

_._ Inflow boundary......................,......_...............41 _ :_: Outflow boundary........................................o...43
il Far-Fieldboundary...........................................43

"I Surfaceboundary 43,
i_ V. VISCOUS-INVISCIDINTERACTINGCOMPUTATIONALMODEL...............46 i

i' BoundaryLayer Equations......................................46L

!ii! Viscous-lnviscidInteractingTheory............._..............49 li

Matching conditions.........................................49Surface pressureequation....................................53
Applicationof the Viscous-lnviscid .!
InteractingTechnique.......................................53

VI. INVISCIDRESULTS...............................................55

ImplicitComputationalResults...............................o.. 55
Basic solution ..............................................55 _.
Effect of grid refinement...................................59 !
Nacelleat angle of attack...................................59

Explicit ComputationalResults.................................64
Basi soluti 64
Grid refinementstudy.......................................68
Internalpressurelevel...................................... 71
Supercriticalsolution......................................71

NumericalProblemAreas....................................... 77
Effect of boundaryconditionson

;' implicitconvergence......................................78L i Validityof the implicitsolutions.......................... 82
_! Explicitconvergenceproperties..............................82
__. Total pressure loss at the surface.....................,..... 85
_" Origin of the total pressureloss...........................90 '

Eliminatingthe total pressure loss.................o.......94
Comparisonof Techniques.........................................98 i
Processingtime and computer storage '
requirement_................................................ 98 p

Convergence.................................................100 I100Accuracy.................................................... i
VII. VISCOUS-INVISCIDINTERACTINGRESULTS...........................102 I

Results.......................................................103
Overall viscouseffects....................................103
Externaland internal boundarylayer_.............,........103

: Interactingmechani 109sm......................................
!" 1

t
.1



J

vii

i_ Decambering concept,,,,,,,.,,,.,,,,,,,,.,,,,.,,,,,,,,,,,,,, 115
Implications of the viscous effects..,.........,.,..,,..,,..ll6

SummaryOf the ViscousEffect_,.,,,,,,...,,.,,,,.,,,,,,.,,,,,.11B
" z _'I

i Vll CONCLUDINGREMARKS 119_i m momm,o,m..mom.mm,m.m,.,m,,.eQmom.,oem.mmg, m

_ _ APPENDIX: TWO-DIMENSIONALINVESTIGATIONOF THE TOTAL ._
PRESSURELOSS,,,,...,,,,,.,,..,,.,,,,......,,.....,...,.,.122 i

REFERENCES,......,...,.,,..,,,.,,.,,...........,.,,.,.,,,.....,,,,,..140 'i

BIOGRAPHICALSKETCH 144 :..mmoe,......m.,.,,.6.,..,.ommoemm.,.me,,emom.o..m

!

i -L

I

!

}
i !

_'__"Z'_-'_.._; L-."i_....................................._ ................_'!_ ..................



!: LIST OF FIGURES

; FigureP

I. Sketch of the computationaldomain..........,,......,,.....,...., 8

. L 2. Cross sectionof a typicalthree-dimensional
I__ .grid..............,.,.......,...,........,.....................I0

curves on the x-t plane..........................................14
.ii il
i_i 4. Basic solutioncalculatedwith the implicit

_i computati,hal procedure.......................................56

5. Fine grid solutioncalculatedwith _' !
_ the implicitcomputationalprocedure................ 60 _memo. • .mo • $I

._ 6. Computedand experimentalpressure,coefficient

_"!i distributionsat angle-of-attack..........,..,...............,. 61

'-_ 7. Co,_putedsurfacepressure coefficientdistributions
_I for several rows at angle,of-attack.........................,. 62

_.;_ 8. Pressurecoefficientcontours for the !i
. _ computationsat angle-of-attack...........,.........,.,....,.. 65 il

_i 9. Basic solutioncomputedwith the explicit il
7 computationalprocedure,......,.........,.,......,..,o,.....,, 66

10. Solutionfor the finer grid and the i
explicit computationalprocedure................,.......,......69

i 11. Comparisonof the experimentaland calculated IiI I:
._ pressuresfor the inviscidEuler equations............,.......?2 Ii

• tI

) 12. Supercriticalsolutioncalculatedwith.
the explicitcomputational.... procedure,.,....................,.. 74

13. Iterationhistoryfor the residualof the
implicit computationalprocedure 80-.,. -,o .oo.,,,,o,, .o.o.,......o,o.,

iI_, 14....Residualcontours for the implicitcomputations,,,,..,.,,,,,,.,,8_

_i_ 15. Iterationhistoryfor the residualof theexplicit computationalprocedure,..,..,,.,,,,..,,.,,.........., B4

|! !:

f "
viii



_-_...............-_-_ _-_ _...... _,,_ _-_,,,: _--<T..-_ "_'_mm'_'_'_fT_'__

'_. ix i'

16. Surfacetotal pressuredistributions,,,.,,,,.,,,,,.,,,.,,,,,,,,,87
.

_ 17, Calculatedflow-fieldin the vicinityof the
[_ flow-throughnacelle'sleadingedge...,,,.,..,,,,,.,.,,..,,...,92

[i-; 18, Solutionfor the modified flow-throughnacelle,.,.....,.,.,,,,,,.,.95 _(i
.:. ,

19. Effect of viscous-inviscidinteraction "i
on the nacelle pressures,......,,.....,.,.......,.,....,.....,. i04

,I
20. ViscousefL-=;_tson the external nacellepressures....,..,..,..,106 _!

L, 21. Viscouseffects on .theinternalnacellepressures..............107 I

22. Transpirationboundary condition.parameters. ..

I_'.

'_: 23. Viscouseffectson the velocities.inthe
..... vicinityof the trailingedge 112{ . ,O qb,o, o,o O,OO • ,Oo.,,,,os,, ,,o,OO 'I

24. Detailedcon_parisonof the velocitiesimmediately_ _ downstreamof the trailing edge.................... !13
I cw .. _ o • oo •

25. Sketchof the inviscidand viscousstreamlines.................117

I/ A-I. cal wing grids.............................................124

( Typi

_ A-2. Solution for the wing with a symmetricalairfoil...............125 ._

_ A-3. Computedtotal pressuresfor the wing with
a cambered airfoiland an H-grid..,....,..,.,.,,,.,.,,....,,. 127 :

_,. A-4. Solu_..ionfor the wing with a cambered
c airfoiland a C-grid,...........,...........,.,.o..,,,,.,,.,,129

_ A-5. Solution for the wing with a symmetricalairfoil and
a C-grid at a free-streamMach number of Oo80.,,o...,..,,,...132

A-6, Solution for the wing with a camberedairfoil and
a C-grid at a free-streamMach number of 0.40...........,... I._6



I". LIST OF SYMBOLS il

i" "
,t

i_ A,B,C Jacobianmatricesof the transformedEuler flux vectors

I . Iii,; A,_ scalar multipliersfor convergence..accelerationin the i
explicit numericalprocedure !

L al,a2,a3 coefficientsin.the Runge-Kuttanumericalalgorithm !
a,b,c,d terms in the surfaceboundaryequation,equation (37)

Cp pressurecoefficient, (p - p.)/q®

Cf skin-frictioncoefficient, _w/!O.SPeUe2),.Chapter VI

Cfo skin-frictioncoefficientin equilibriumflow in zeroii pressure gradient,ChapterVI

coefficient, _/(PU.e2) , Chapter Vl
C shear-stress

i Ce entrainmentcoefficient,Chapter VI

cv specific heat at constantvolume

D numericaldissipationterms, equation (50) I

d numericaldissipationterms, equation (51)

- E total energy, CvT + 0.5 (u2 + v2 + w2)

F_.,_ flux vectors in the steady Navier-Stokes-equations,
Chapter Vl

F,G,H flux vectorsin the transformedEuler equations

'_ _ matrix of fluxes in.the finite..volumeformulationof the
Euler equations ......

if". f,g,h_, flux vectorsin the Euler equations

_,_ flux vectorsin the boundary layer equations,ChapterVl

i_.' h height of the boundary layer, ChapterVl

x



xi .............

gmn metric tensor

H total enthalpy ._

H,R,H1 boundary layer shape parameters,Chapter VI

b,i_,i! I identitymatrix

li! J Jacobian-of.thetransformation_from the physical coordinate
system_tothe computationalcoordinatesystem

M Mach number
i,

n unit normal vector
,i

P residual,equation (55) !i
!
,l

p pressure

q dynamic pressure,defines_Cpin symbol list i.

q vector_f dependentvariables,equation (2) ]
)

, Aq incrementalvector of dependentvariables

:_ R gas constant

R body radius,equation (69) ii

R Riemann invariant,Chapter IV I

r radial cylindricalcoordinate

S surfacearea

T static temperature

t time

At incrementaltime

U velocityat the boundary,equat_ions.(61-63).

i._ U_.,V,_ contravariantvelocitiesin the _,_,n directions

I Ue boundary layer edge veloclty,ChapterVl
I

' u,v_,w velocitiesin the x,y,z directions

,



. IIxii

V surfacevelocity,equations (II and 65)

i i V Volume of the computationaldomain, equati.on(39)
F__ V axisymmetrictranspirationvelocitynormal to the '',
• -- wall, ChapterVlW,.

il_ v_. .. two-dimensionaltranspirationvelocity normalto
,_,- the wall, Chapter VI

I.. ,,_ _._:
v differentialvolume,equation (39) i_:

_,w__ y .andz componentsof the transpirationveloci.ty _"
' normal to the wall, Chapter VI

I, x,y,z Cartesian coordinares ..!i
L _

! Greek and MathematicalS_mbols

_-_] _ scalarmultiplier,equation (56)
1
! y ratio of specific heats

' _ boundary layer thickness,ChapterVI
_., _,

6 boundary layer displacementthickness,ChapterVl

!} _ smoothingcoefficient,equation (55)
.I

i_ _ ,a_,6n differencingoperatorsin the _,{, and n directions 'i
_!i_ _,_,n spacialcoordinatesin the transformedcomputationalspace .;

0 boundary layer momentum thickness,ChapterVl

0 circumferential coordinote I

_. }, boundarylayer scaling parameteron dissipationlength, I, ChapterVI i

:(.' p density .
.l

I: denotessummation

l ltransformed time, equations(28-31)

I.!



xiii

¢ potentialfunction in the telegraphequation,equation (59)

" ¢ circumferentialangula_rlocation

_ _ source terms on the right hand side of the characteristici,
_ compatability relations
)
il _,_,¢ ..............numericaldissipationcoefficients 41

,_l

_ V partialderivativeoperator _]

!_ Superscriptsand Subscripts I
: b boundary

' e explicit

denotestransformedquant.it'_" _:

I denotesthe face of a computationalcell

i implicit.

i,j,k indicescorresponding,to the_ {.,{,n directions

int inte'rnal

_.: Y_ summationindex

i_. n denotescurrenttime step
!.

.,._'_'i t stagnationconditions
.,i w wall values

! ® free streamconditions

_!- (_) denotes vector quantity

All variables.arenondimensionalizedby appr.opriatecombinationsof

; the free stream parameters,the length of thenacelle, and the specifick

[i. heat at constantvolume.

I:
[

i



• !!
I

i '_ "

k

E;
ACKNOWLEDGMENTS

FI
r

The author wishes to.expresshis appreciationto the National
_,
_ Aeronauticsand Space Administrationfor its continuedsupportof his

i! graduatestudies and for supportingthe researchpresentedin this
............i

dissertation. _,
. I

i The author is very appreciativeof the assistanceand guidancegiven _

by his advisor,Dr. John L. Whitesides,during both the graduatestudies
_....•

i! and the research investigation. :i

The authorextends specialthanks to Miss Sherri L. Sanchez for

_, typing the.manuscript.

In addition,thanks are extendedto the author'scolleaguesat

, LangleyResearch Centerand elsewherewith whom many technicaldiscussions

_ were carriedout, Specialthanks are extendedto Mr. LawrenceE. Putnam

! who suggestedthe general researcharea, and also to Dr. Richard E.

Wilmoth who reviewedthe manuscriptand providedmany helpfulsuggestions, li
" ii

The authorespeciallywishes to express his gratitude,t_.his parents 1

_i _ who continuallyencouragedhim during his graduatestudiesand research,
il

! and to whom this dissertationis dedicated. "

I I

; {
xiv

' !i



p

I:

! CHAPTER I

INTRODUCTION

Since fuel costs are projectedto rise significantlyover the next

severaldecades,furthergrowth of the air transportationsystem becomes

increasinglydependent.onadvancesin aircrafttechnologyand design.I
F

One importantarea of transporttechnologyin which _here is a potential

i '
I for significantimprovementis the integrationof the propulsionsystemwith the airframe. To tap this potential,engineersmust increasetheir :_

_ I understandingof the aerodynamicinteractionsbetweenthe variouscompo-
!]
_( nents of the propulsionsystem and airframewell beyond the understanding _

i

..i which now exists.

_i: Both experimentaland theoreticalresearchis required.

:_ Experimentalstudiesof these interactionsnecessitateexpensiw, complex i, _

_,- models to simulateadequatelythe inlet and exhaust flows. Consequently,
tk

experimentalinvestigationsare only practicalfor limitedparametric [
P

studies, For analysisand design optimization,increasingattentionis

being given to the use of computationalmethods which have been validated

_i by a few discreteexperiments. For example,both the Airbus_310and the

Boeing 757 wings have been designed with the aid of numericalanalysis.2

Becauseo_ the geometricalcomplexityof transportconfigurations

i and computer storagelimitations,currentcomputationaldesign studies of

this type have mainly been limitedto inviscidpotential-flowmethods.

(_., These methods,which range from panel techniquesto solutionsof the full

r_



). transonicpotentialequation,3"5.have provento be useful tools in the

_'' aircraftdesign process Nevertheless,they do not adequatelysimulate
I

: flows where rotationalityis important.

) To accountfor rotationality,even in the inviscidcase, the

i_i applicationof the Euler equationsis required= Solving the inviscid,

'it variableentropy,compressibleflow equationsallows the solutionto L
I

capture strong shocks and simulatethe jet exhaustflow withoutspecial

treatments• In addition,vortexsheets may be captured,and as recently _]':

shownby Rizzi and Erickson,6 a Kutta conditionmay not need to be -_

explicitlyenforced• The Euler equationsalso are thoughtto yield unique )_

i solutions,whereas the full potentialequation can yield multiple _.

i l solutionsas shown by Salas7 and Steinboffand Jameson.8 Despitetheir

greaterpotential,most solutionsofthe Euler equationshave been either _)

two-dimensional,or for relativelysimple three-dimensional ,_k

confi_jurations,or on coarse grids.9"13 Finally,strong interactionscan [

occur betweenthe viscousboundarylayer and the main stream even when the i;

i!," boundary layer does not separate..Hence, the influenceof viscosityon
_;_ ,,

i the flow field must also be accountedfor in order to simulatethe
l

physicallyrealisticcase. li

Iii Therefore,a study of the solutionof the three-dimensionalflow Iifield for a flow-throughnacelleusing the Euler equationsand a.viscous- i,

i.: inviscidinteractingcomPutational.modelwas initiated, A flow-through

nacellewas selected for the study since.theengine nacelle is a
I
[ fundamentalcomponentof a transport'spropulsionsystem. The objective
I, " - "

i of .thisresearchwas to Investigatethe flow field about the flow-through
[, i nacelle and theimportance of simulatingthe viscouseffects in a

_ computationalmodel for solvingthis problem• It includedinvestigating



3

_ the suitabilityof the Euler equationsas _he basis-forthe computational
o

model and the problems associatedwith obtainingnumericalsolutionsfor

this_typeof config.usation.In addition,it involvedconsiderationof the

advantagesand disadvantagesof the basic types of numericalalgorithms

and solutiontechniquessuitable for flows of this complexity. In order

to focus specificallyon the applicationof computationalsolutionsto the

flow-throughnacelle problem,only state-of-the-artalgerithmswere

considered.

To conductthe study,two separate.Euler computationalprocedures H
l

I were investigated,each of which appearedto offer _ertain distinct

advantages. The first procedureemployedan alternating-direction- !

-_ implicitnumericalalgorithmand requireddevelopmentof a computational
i

,. model specificallygeared to the nacelle problem. An interim report on i
this phase of the researchis given in reference14. The second procedure !

: investigatedinvolvedmodificationof an existingfourth-orderRunge-Kutta I!i

_ algorithmto fit the nacelleproblem. Viscouseffectson the flow field ,_

were evaluatedwith a viscous-inviscidinteractingcomputationalmodel. !

This model was constructedb_ couplingthe explicit Euler solution

procedurewith a "lag-entrainment"boundarylayer solution procedurein a

global iterationscheme.

The computationaltechniqueshave been used to compute the flow

field for a long-duct_turbofanengine nacelleat free-streamMach numbers

of 0.80 and 0,94 and angles-of-attackof 0° and 4°. The resultsare

L_ comparedwith experimentaldata, New insight into the mechanicsof the

i interactionsbetweenthe internaland external flows, gained during these
i

_F _ investigations,is discussed. Problemareas,both generaland algorithm

dependent,are identifiedand investigated. The numericalperformanceof

_ .t'



n n

_ the two techniquesis _compared.and recommendationsaremade for furtheri;: .

' numerical studies.

!-_
p,_ ,

i_..iI !_
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i!iI_ "

MATHEMATICALDESCRIPTIONOF THE PROBLEM ill

' " Governin9 Flow Equations ,]

The Euler equationsmathematicallydescribethe physical laws iI
;i

governingthe motion of an inviscidcompressiblefluid with variable _L

ii, entropy. In 1;hepresent solutionprocedure,the.three-dimensionaltime- i_i
I

_'i!. dependent Eul er equat ions are normalized and wri tten in strong

, conservationform for a Cartesiancoordinatesystem. If body forces are
.I
I neglected,these time-dependentequationsfor mass, linearmomentum,and

energy can be expressedin vector notationas

I,_, _q , B_Lf, _g, B__ o (I)
_i Bt Bx By Bz il

}
iI_" ,,

where "

p pU

pU pU 2 + p

q = pV ' mf = pUy

!_ pw pUW

pE u(pE + p)

(z)



J.__\ _ _ !'_'._r'_iT_- ,

I

.,, 6

pv _w:il
!.:!,
. ]

pUV _LIW

_ h = _vw; _. g= pv2+p ,
{.

i I _w2 + P, i pvw

iii :v(pE+ p) w(pE+ p)

'1In these equations, u, v, and w are velocitiesin the physical

_!iil coordinatesystem (coordinates x,y,z), p is the density, and p is the
;-I-_ pressure. The total energy, E, is given by ii

i E : CvT +½ (u2 + v2 + w21 (31
t

"_ where T is the temperature,and cv is the specific heat at constant"i

' volume. The equationof state

_.. p = pRT (4) i.;
LI L}

i where R is the gas constant,completesthe system of__equations, i

_ The major interestin using computationalfluid dynamicsfor I
.!

:= propulsionintegrationstudiesis in predictingthe steady_stateflow for

any given configuration. Therefore,the solutionsto only steady flows !

are considered in this analysis. In this case, the total enthalpy, H, • T

where i

H = E + p (5)
P

P

lit, does not vary throughoutthe flowfieldof the flow-throughnacelle; and

the energy equation, the fifth equation of the set (1), could be replaced

I

i'

i



u ,-+..+ '+++. , " " + J +t
_ it.. + _f iiI +._i.-_ ..llln +.._II_i"i_ x+ ._ ..... +,_+ ...... +

_l_r _ !i' 7
i .I

by the conditionof constantenthalpy. However, in general for propulsive i:

flows the enthalpy Is not constantdue to the jet exhaust. Therefore,to +,:
i j.

/ be consistentwith the ultimateobjectiveof this study, the full energy

i equat.i+o+n++was solved along with the continuityand momenta equations.

1!

L_+i ComputationalDomain and Grid S_stem iil
i

A sketch of the three-dimensionalcomputationaldomain illustrating

ii++ the nacelle and domain boundariesin both+thephysic.aland comput+ational
_+ spaces is presentedin figure 1. •Threedimensionalityis produced by

_++. rotatingthe verticalcross-sectionabout the axis of the nacelle, thus

_i.._ generatinga cylindricaldomain (see part (a) of the figure). To minimize

computer run time and storage requirements,symmetryisassumed about the

verticalplane.,and only+one-half of the cylindricaldomain is computed.
" !I
;" When transformedto the computationalspace, the coordinatesystem+becomes ii

a rectangularthr+ee-dimensionaldomain (see part (b)). The axis, whichi_s :!:

singular,transformsinto.a plane formingone side of the domain, and the

+ nacellesurfacestransforminto a common internalplane as illustratedin

figure 1(b).

In the computationaldomain,the grid systemconstructedfor the+

discretisedsolutionproceduresis body fitted (grid lines coincide with+

F"

i the nacellesurfaceand other boundaries)in order to facilitate

i_ implementationof the boundaryconditions. It is a sheared,H-type

computationalgrid. Figure 2 presentsa verticalcross sectionof_the

grid in the physicalspace, again illustratingthe .naceilegeometryand

the various•boundaries. The grid mesh in the circumferentialdirection is

generatedby rotatingthe vertical cross-sectionabout the axis of the

" i nacelle, The grid spacing in the physical space is geometrlcally

i,i
i...

_ -_+_ _



,._ Figure I. Sketch of the computationaldomain. ,



(b).......Co_mputationalspace

?,

Figure I. Concluded. I

I '

)
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P stretchedawayfromthe nacellewith grid_pointsbeingclusterednearthe
,K

nacellesurfaceand nearthe leadingandtrailingedges. The basic
I
_-2 computations were made with 58 axial grid planes ..(30 along the nacelle),
.'

_' 29 grid planesin.theradialdirection,._nd11 in the circumferential

Ii 'direction.Additionalcalculationsweremadewith grids.refinedin the T;

I axialdirection:one containing68 axialgridplanes(40alongthe '

nacelle),and anotherwith 115 axialgridplanes(59alongthe nacelle), i

_ _AnalyticalBoundaryConditions •_i;_i
F

Forthe mathematicaldescriptionof a physicalproblemto be well

posed whetherthe partialdifferentialequationsare to be solvedin
• , _,!

I closedformor numerically,the correctboundaryconditionsmustbe ii

! !
" included. Further,in numericallysolvinga set of equationsin any

finitecomputationaldomain,boundaryconditionsarisefromtwo different

sources. First,analyticalboundaryconditionsare necessaryfor the '1

_._ problemto be well posed,and second,numericalboundaryconditionsarise _L
|,_

_- from a need to complete the differencing equations in the numerical algo- !,_,

_ rithm. The analyticalboundaryconditionswill be discussedin this

chapter,whilethe numericalboundaryconditionswill be discussedin the

chapterswhichpresentthe computationa]procedures.

_, The flow-throughnacellepr'oblemincludesinflow,outflow,symmetry,

:L" far-field,and impermeablesurfaceboundaries.For a well posedproblem, ,

': onlypartof the flowvariablescan be specifiedateach boundary,with

,., the numberandcombinationof the variablesdependingon the typeof
i.

i

i: boundary. Characteristictheoryprovidesa guideto boththe numberand

_ the formof the boundaryconditions.Cline15 describesthe applicationof

ii !, the theoryfor thispurpose. The theorygivesthe sameresultsfor an
#m

)

_2_. " "_, ""_""._ _.__-._ I',,.i"
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p,
!_ inviscid fluid as the energy method of Oliger and Sundstrom,16 and was

used as a guide in determiningthe boundary conditionsfor this work_
i

'.i Since the mainstreamis essentiallyperpendicularto the inflow and

,_ outflow boundaries,referenceplane characteristicswill be used to ,:

d_terminethe number and form of these boundaryconditions. Reference I_

Ii plane characteristicsare an .approximateform of the characteristic

k' equations;however,they are exact if the cross derivativeterms are

Lil
i i

zero. For the three-dimensionalEuler equations,;:heconstant-y-constant-

z referenceplane characteristicscan be written (

characteristicdirection compatabilit_/relation

dv '_
i !

dw
dx P _-- *4u (6)

,.i_ _" a2 dp :

d-E- " _T- + a*2 + *5

_! (7)

dx
_-= u - a _'t" pa _-= a2'i " a*2 +'5

(S)

, l
i

t

i i.
i
Z'

T!i
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where

I J_l-" T_-(pv) +Bz (pw)

_2= " pv _+ pw_-_

Bw Bw B_E}_b4: - pv _+ pw _+ Bz

and a is the local speed of sound. For a flow with the mainstreamin

the x-direction,the _ terms on the right hand_sideof these equations

are very small and are treated as constants,and the equationsbecome

"i exact when the ¢ terms a_ identicallyzero. The characteristicdirec-
(

i tions of equations (6), (7), and (8) representthe projectionof the flow
I

) pathlineand Mach cones on the x-t plane. Subjectto the approximate
!
.( nature of the.referenceplane characteristics,they comprisea set of five

i equationsin five unknownsand completelydescribethe flow in the

_,_) computationaldomain._i
c!

Figure 3 presents,a sketch depictingthe projectionof the

[i
[ characteristic_rves on the x-t p!ane..For a bounda_ with_inflowin

the positivex-direction, shaded area representsthe computational

the

domain. Since three compatibilityequationsare associatedwith the

Ill curve dx/dt : u, equation (6), there are four.-characteristicsenteringthe comput.at!ona]..domainand one leavingit, The four characteristics
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enteringthe domain carrj6no informationwhatsoever•aboutthe internal'

solution,and thereforethey must be replacedby four boundary .....

! conditions The form of the.boundary conditionsis obtainedfrom the

_i characteristicleavingthe computationaldomain,equation (8). _Sinceit
, originatesfrom within the domain,both p and u cannot be prescribed

i becausethey must obey the compatabi]ity•relationholdingalong the

i characteristiccurve•.Usually the total pressure,total temperature,and

flow angle are supplied at an inflow boundary,or, an alternate 'i

• combinationconsistingof a functionof the total entropy,the static

temperature, _'I!and velocities. !

i__ For a boundarywith outflowin the positive x-direction,the
-

unshadedarea of figure 3 representsthe computionaldomain. The figure

illustratesthat there is only one characteristicentering the computa-_:_ 1

." tional domain, indicatingone boundaryconditionmust be supplied. It is !
"_ usuallythe static pressure,since, when combinedwith the previousinflow i_'• li

_:_. boundaryconditions,it completelydefinesthe free stream.

E- The far field boundarycan be either an.inflowor an outflow

boundary. Thereforethe appropiateconditionsdescribedabove are

applied.

i_ The expressionfor the boundary conditionsat the symmetry plane is

: o (1o)
i @n

F

i_ where n is the normal to the symmetryplane.

! Finally,the surfaceboundaryconditionis that the flow is tangent

to the wall, and is expressedby the equation
jl

,,i

i
I'
I

• _ _'W "-_"_.......... -" ,
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4

_!_ n.v= 0 (11) i

f _
i

il. where V is the velocityat the surfaceand n_.representsthe unit vector

normalto the surface. _,

_:i As mentionedabove, in additionto these analyticalboundary _i

, conditions,numericalboundary conditionsnecessaryto completethe

dif.ference equations are required when actually carrying out the numerical ._

..,_" process. They will be discussedin the next two chapters. .....:,..._

Nacelleconfiguration I .ii |. • ';

A flM-through nacelle was selected for the study since the engine

l nacelle is a fundamentalcomponent.ofa transportaircraft'spropulsion i_

i

'c

system. The par_ticularflow-throughnacellechosen is depicted in .figures

I and 2. The externalsurfaceof the nacelleconsistedof a NACA 1-70-100

!,
! inlet, a cylindricalsection,and a circulararc afterbody. The internal :

!"_ duct of the nacelle was cylindrical, For the computations, the leading
edge was made sharp as a simplificationto the geometry. This particular

configuration was chosen because it resembled, long-duct turbofan engine

nacelles bein9 proposedfor currentjet transports,and becauseexperimen-

tal_data for the isolated nacelle were available for comparison with the
1

computationalresu!ts.



CHAPTER Ill

IMPLICITCOMPUTATIONALPROCEDURE

_' The impli.citprocedureused for the flow-throughnacelleproblem

employs the approximately-factored,alternating-directionimplicit

algorithmof Beam and Warming.17 This algorithmhas been applied success-- ' "

fullyto a number of two- and three-dimensionalproblems,18'19 The

_:_ principaladvantageofferedby implicitmethods is that, if properly

formulated,they theoreticallyhave no stabilitylimitationson the size _:

of the time step when integratingthe set of flow equations. Thus,.for

__ obtainingsteady-statesolutions,fewer integrationsteps may be needed,

The use of a large time step can in some cases furtheract to accelerate 1

the convergencerate in a.manner similarto relaxationschemesfor !

erleqluiptiiremenCtProb.floremSso,lvlhneglargPerincipasletsdioiadvantagseimultaneouOsf imPallgebraiicCitmethOdeSquationisSth,e i"

Thus while fewer time steps may be requiredthan for explicitmethods, i

more computationalwork per time step is usuallyneeded, However,the

previousapplicationsof the Beam and.Warming.algorithmhave indicated

favorableimprovementsin overall.computationalefficiency, The applica-

tion of this algorithm,to solvingthe three-dimensionalEuler..equations
z

for flow-throughnacelles required_thedevelopmentof a computational, i

i model specificallygeared to the problem, This chapter describesthat

.! computationalmodel,

17



P
_i TransformedEuler Equation.s
i:

I:_ Equation (I) presentedthe Euler equationswritten for a Cartesian
fI ._
L _ coordinatesystem.....In_the presentfinite differencetechnique,the

_ equationsare transformedto the computationalspace before they are

_..! integrated. The transformedversionof the three-dimensionalEuler tl

i_ equationscan be written 'i
_ _q + _F + _G + --O (12)

!i where t is the normalizedtime, _, _, and n are the spatialcoordi- _4

nares in the transformedplane, and i

!

L

i; r= + h-) :'. i

i'

_ where th- vectors, __,f_.,g, and h are the vectorsfor.the Euler

equationswritten in Cartesiancoordinates(seeChapter II), In the
i

i relationsabove, J .isthe Jacobian of the transformation.fromthe

physical plane (coordinatesx,y,z)t9 the computationalplane

(coordinates{, _, n ). The expressionfor the Jacobian is

#

.w

.__ _ _ :--.. ,.--_._;__ALA_"-_/"T'7 L "''_"_T_;L___:T.... ,.-,._ _._..._ _.-i, -'j_" ,," /
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O -- xCy_zn + x_yCzr, + x_;z¢ - xny_;z_. - x_nz_; - xCy_;z (14)

Equations(12), (13), and (14)are valid for transformationbetween

any two coordinatesystems. In this particularcase, the coordinates, _

x, JK, and z, representrespectivelythe axial, vertical,and

horizontalCartesiancoordinatesin which the Euler equationswere first

written. The coordinates, {, C, and n, representrespectively

_ functionsof the axial, radial,and circumferentialdirectionsof the

I_i cylindricalcomputationaldomain with the stretchedgrid spacing. They

! can be expressedas

!i : fi(x) ;
,_._" _ = f2(r) (15)

,_ n : f3(O)

where

r -- (y2+ z2)i/2
(i6)

e : tan'l(y)

and fl, f2, and f3 are stretchingfunctions. The _, {, and n

coordinates "unwrap" to form the computational space with equal spacing

between coordinatelines. A point to point correlationbetweenthe

_._

......_ ..---,-._ ............. --_ _- " '2_=__':"i_"_2, ..--_ ............. _..... Z'_2-" ___ .'. ":rc'_........ :_ _ .... _ .... _ _-'"
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physical space and the computationalspace is given in figure 1 and

' discussedin Chapter If.
i.. i_,

t .j
i', NumericalMethod -I
p I

i,_ Al_orith.m....The computationaltechniqueempl'oysthe approx!mately- ..,
_.._. _i
; factoredalternating-directionimplicitnumericalalgorithmof Beam and ,'1i.! ,
i l Warming in its delta form.17 The delta,form of the Beam and.Warming

scheme has the advantagethat the steady state solution,if one exists, is _
. ,',J

independent of the size of the time step. The algorithm, including. ii

stabilityand accuracylimitations,is describedin detail for two dimen-

sions by Warming and Beam;20 thereforeonly a brief outlineof the method

will be presentedhere. :_-.

i} The.algorithmis developedby first applyingan Euler implicit

formulabetween t;me levels n and n+l to expressthe vector qn+lof i ,

_/I the transformedEuler equations (12) in terms of. _n. Then by applying a
i:i!_; ' linearizationprocedureto the vectors F, G' and H, using a local

_.-' Taylor expansionabout qn, the Euler equationscan be written in the _
' l'i

i_- I + At -An+_-B-+_.C n) aqn+1 =
I.
!'

(B Rn + @ Gn + B nn):..i -At _ _ ._ +_o(At2) (!7) :

where I is.theidentitymatrix. The term in the braces on the left-hand

side of the equation (17)operates on Aqn+1....where

i'
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, : A_n+1= _n+1 . _n (18) ,]!

i:.,. The terms An, Bn and Cn;..__ , are Jacobianmatricesdefinedas

• An - BFn Bn aftn Cn aHn ,^ , = --_-, = _ (19) ,_
, @q @q @q

.! i
_ Equation (15) is then approximatelyfactoredgiving

" -At(_ Rn + _'_aan +a_._in) (20) '!

!
r

_. The factorizationof equation (17) producesadditionalterms which are on i_'.- the order-of.At2 and hence do.not destroy the temporal,accuracy of the .

scheme..However the present studiesindicatethat.,in three dimensions,

the additionalterms may seriouslydegrade_thestabilitycharacteristics

I of the algorithm. This property of the algorithmwill be discussedin• detail later. The spatialderivativesin equatior_(20).are approximated

:. by second-ordercentral-differenceoperatorsyielding a block-tridiagonal
i'

systemof equationsto be solved,in each of the three directions

Ii _, _, and n. The alternating-direction-implicitsequence for ............

i "' determining _n+1 is

li. •_,i,
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i '

(zl)

aqn+l = aVn+l+ at TTC n ^

 n,1 __a n,1 ,

-:_ Numericaldissipation.In.order to obtain solutions,it was

: necessaryto add dissipationterms to equation (20) to damp numerical _il
. pertubationsof short wavelengthsand preventodd-evenpoint

)

decoupling. 21,22 The fourth-order term .

!,

B4 B4 Gn) (22)e(_4{-_qn.* _ qn .

IL"

! was added to the right-hand side of _;he equation, and the third-order
terms

i

P

B B2 aqn+1 B B2 a_ln*l B B2 aGn+:

;.2

i
i

i_ were added to the appropriate.factorson the imPlic_Itleft-handside. The

!;ii: value of the explicitdamping coefficient, =e ' is set equal to at,• _ and the value of the implicit dampingcoefficient, _i ' is set equal

_-,,, to 2_e in the manner of Pulllamand Steger.22 For the numerical

ii__ c_l cul ations, the deri .ati yes in the dissipation terms are approximated b,

""-_ ............... " _-- '_ .... T:T.'-._. .... __.'__ _i -._LI2T_ 2._-."._.;_ ...c • ...... , ...... . _ . .-- "'-...... :- -.
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L_.., finite-differenceformulas. It should, be noted that although n.umerical
,. _,

E-, dissipationcan stabilizea solution process,it has the disadvantageof '

,:l causing a loss of accuracy in regionsof strong gradients.

i. Recently,.Abarbanel,Dwoyer, and Gottlieb23 have proventhat the ,

_ undampedBeam and Warming scheme in three dimensionsis weakly',but uncon- .,

ditionally,unstablefor the Euler equations. Their work, which has been ..............

accomplishedsince•the present researchwas initiated,shows that the i_

F instabilityis very weak and is only presentin the very long wave- !_

_" lengths. _lumericalexperimentsconductedin the present investigation i

_-_ indicate that the dissipation ter_T,s described above do not fully stabilize

-ii the solutionprocess. However,the experimentsalso show that the _eak ii

•i_ i!

, ': long-wavelengthinstabilitytakes a very large number of time steps to

_:Ii: developneariii the body. For a reasonablenumber of time steps (~ I000), ,,i,

il;. reasonablyaccurate solutionswere obtained.

Metric calculation.Ifthe scheme is applied in a uniform free

_, i stream,it is expected that uniform free-streamconditionswould be

exactlymaintained. In three dimensions,,however,errors in.theuniform

_ flow be introducedsince the transformedflux terms being differencedcan

!" in equation (20)contain the metric derivatives. These errors can beavoidedby using the proper,averagingtechniquewhen numerically

• ! calculatingthe metric derivativesas pointedout by Pulliamand Steger.22
i.

Since three-pointcentral-differenceoperatorsare used to evaluate

,,_ the flux terms of equation (18), the errors will exactly cancel if, for
•.c _=

_ example, {x is calculatedby the equation

"_i"'

•_
'#f,

. :,

_.__:_.:-:. ::;--...;___-_____:,-..... -.,-



! 24

_' ({x)i'J'k i,j,kiiil " T {[(6jYi,k+1+ _JYi,k-i)/2_-

_ x [(6kZi,j+1 + 6kZi,j-1)/2]" [(_kYi,j+l

" 4

_! + akYi,j,l)/2][(ajzi,k+l " 6jZi,k-l)/2]} (24) .'i
!it ,i

and the other metric derivativesare calculatedin a similarmanner• In

equation (24), 6j and ak are the three point centraldifference
i

operatorsin the j and k directions,,respectively. The metric

derivativeswere computedby this techniqueto hold numericalerrors to a

minimum and consequentlyenhance the stabilityof the computational (

ii_: procedure. ,_

i Boundary/Conditions

-! Inflow boundary.The analyticalboundary conditionswere coveredin ,_

the previouschapter. The numericalboundary conditions,necessary.to

i_- complete the differencingequationsin the finite differencescheme,will

now be specifiedfor the implicitalgorithm. At the inflow boundary,the

analyticalboundaryconditionsare met by specifyingthe total pressure,

total temperature,and inflow angle. The static pressureis tn,-_remaining

unknown on the boundary and must be numericallydetermined It must obey
FI" •

)T the compatabilityrelationsalong the character_isticconnectingthe inflow i

iL_ boundarywith the interiorsolution. Compatabillty.isapproximatedby
U : .... "- ';i,

i_. extrapolatingthe pressurefrom within the computationaldomain. _):

_ _, Outflow boundar_t.At the outflowboundary,the analyticalboundary i
E" '_ i

_,,r._.,_:_ conditionis_the speclfication.ofthe static pressure.Two basic methods ;i

ix:;i were used to specifythe static pressurefor the implicitnumerical 1!I(.,
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scheme. The first.techniqueevaluatedwas settingthe boundarypressure

equal to the free-streamvalue, i.e.

p = p= (2B)...........

In additionto this method, a radiationboundaryconditionbased on a

solutionto the three-dimensionalwave equation

Ptt=v2P (26)

where

= p - p= (27) ;

was tested. Bayliss and Turke124derivedthe radiationboundary condition

f,!_ and _pplied it in two dimensionswith good results, During the present _,

,i research,the radiationboundaryconditionwas transformedto a three-
}J

!_ dimensionalform and appliedto the flow-throughnacelleproblem.

In the far field where pertubationsare small, the three-dimensional

Euler equationsassume the form of equation (26) when linearizedand

• transformedby the relations



equation (26) has solutionsof the asymptoticform
i

I
;__f(_-;,+e,+) (30)

r

A

for large z and r. The functionalform in equation (30) representsan

+,., outgoing spherical wave solution to (26). The specific function, f, is
C:i
_i not usually known. However,the condition
,, +i,
! 1

ri+,; ^
i:! _P+ + ; o (3z)B+ @r r

is exact for all functionswhich identicallyhave the form (30).

)
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_'_: Equation.(31)is_the analytic boundaryconditionused at.the.outflow
i,

boundary. Transformingback to the physicalplane (coordinatest,x,y,z)

_, gives
F

t(_2.u2il/p +ITS2.u21 _t
-r

•E(,)]v•., ® t, = I;

I! + I p I

_ . tC_2.u2)_/+ <3_>

i, where .:
L L

]" i

.! r = (x2 + + z2)I/2 (33) _'

_i !I_".*

i_. and the superscript, n, indicatesthe time step. During transient i_'
periods,equation (32)allows impingingpressurewaves to pass throughthe !,

! i

outflow boundarymore effectivelythan equation (25) At steady state, :'• ............. i

equation (32) reduces to equation (25). In the implementation of both .I

i boundaryequations, (32)and (25), the flow quantitiesother than the t
static pressureare obtainedfrom the interiorof the computationaldomain

by zeroth order extrapolation.

In additionto the two basic outflowboundaryconditionsjust

. i_

_._ described,the nonreflecting,outflow boundaryconditionof Rudy25 was

:_ tested brieflywith_mixedresults• The Riemann-invariantmethod•described' !i

,._, in the next chapterwas also tried in conjunctionwith the implicit

!!

I

2: _'_, _ ........
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,! computationaltechnique. An equally brief investigationof this
i. !

_: combinationfailedto yield a satisfactorysolution.

•i. Far-Fieldboundary.Thetreatment of the far-fieldboundary depended.

........ill

r,. ./

on whether outflowboundarycondition (25) or (32) was used. When outi_low r,

boundary equation (25)was used, all the flow quantitieson the boundary I
L _

j,

ii were obtainedby zeroth order extrapolationfrom interiorpoints. When. the radiationequation, (32),was applied, it was simultaneouslyapplied

,._ at both the outflow and far-fieldboundaries(see figure 2) as suggested_

_ by Baylissand Turkell.Z4 In the applicationof the radiationcondition

!)_ at the far-fieldboundary, p® in the right-handside of equation (32)

- was replacedbythe local value of the pressure at the previoustime step.

A more precisetreatmentof the far-fieldboundarywould.be to test

each point on the boundaryat each time step for an inflow or an outflow
k

: conditionand treat the point accordingly. However,since.theboundary is.
_ relativelyfar from the nacelle,and the velocitiesnormalto the boundary

!i"'_' are very low in comparison,to the free-streamvelocity,the less

,, complicatedtreatmentswere chosen for the calculationat 0° angle of

attack. For calculationswith the nacelleat angle of attack, inflow

boundary conditionsare assignedto the lower half of the far-field............
)

i: boundary and outflowboundaryconditionsto the upper half.
i

t_

•_ .Surfaceboundary. For an inviscidfluid, the boundaryconditionat

an impermeablesurface_s that the flow Is tangentto the surface. This .............

: ) •
/.__i condition.isexpressed at the nacellesurface by.equatingthe

contravariantvelocitywhich is not tangentto the surfaceto zero. ;

-.;_; _V = _xU + _yV + _zW = 0 (34)

..
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' By using this expression.andcombiningthe three momentumequationsin the

!i_ 22
- manner of Pulliamand Steger,

_x(x'm°mentum.equation),,... + _y(y-momentumequation)

i!i..i + _z(Z-momentum equation) : 0 (35) i'_

i[ the followingrelationwhich is independentof time can be obtainedfor ii

the surfacepressure:

,. + + = d (36)
[. ap_ bp_ cpn

[i it,i i'

!_: a : _x:x + Cy{y + {z_;z !.

b : {x + {y {z I

c : _x:x + {y{y +-{z_z (37) '
:'

! d = -pU(_xU_ + _yV_ + _zW_) ._i

,!"_ -pW(_xUn + _yvn + _zWn)F_
|I

;:" and U and W are the contravarlantvelocitycomponentstangentto the

#,'-
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,I

nacelle surface .... ,,

!i
_u= u+¢yv+¢zw

i: : (38).
i/' iW = nxU_.+ nyV + nzW

Equation (36) is solved for the surfacepressure.byfirst
:i

i
_: extrapolating p, U, and W along the _ coordinateto the nacelle

i;_ using a first-orderprocedure. Then p_ is expressedas a second-order

i one-sidedfinite-differenceformula,and PC and Pn are written as '

second-ordercentraldifferenceformulas. The resultingequation is then

;'_ approximatelyfactored,and a series of tridiagonalequationsin

i the _ and n directionsare numericallysolved to yield the surface i'!
, values.i

LeadinBand trailin_edges. The implicitfinite-differencecomputa-

tional procedure requires a direct treatment of the leading and trailing

! edae boandaries,and a wide varietyof the treatmentswas attemptedin the

); presentwork. Solutionsto the Euler equationsat such points require

carefultreatmentin order to overcomethe mathematicaldifficultieswhile

at the same time maintainingcorrectphyslca]behavior. For example,the

!
conditionof tangency of._he flow to the nacellesurfacenecessitatesthat

::_ stagnationconditionsexist at the sharp leadingand trailing edges.
• i. i_

i However, for the grid spacings investigated,specifyingstagnation li:
i

i conditionsat the leadingand traillngedges resultedin large jumps in
i !

I_ the flow.quantitiesin the immediatevicinityof these points. A more I

[ . accurate solution is obtained by the following approximate treatment of _

_:i the leadingand trailingedge boundaries.



f

At the leadingedge,the densityandcontavariantvelocitiesare

extrapolatedalongthe internaland externalsurfacesof the nacelle, The

conditionthatthe totalenthalpy_isconstantplusthe extrapolated

__i quantitiesdetermines._Uctethermodynamicand kineticproperties..ofthe
_4

leadingedge flow, The internalandexternalsurfacesare treated
t

sep_atelyandthe tangencyconditionis maintainedon eachsurface.

The densitiesand contrawariantvelocitiesare alsoextrapolated

alongthe internal.andexternalsurfacesto the trailingedge. The

pressureat the trailingedge is.determinedfromtheexternalvaluesand

the conditionthatthe totalenthalpyis.constant.A discontinuityin the !!densityand in the magnitudeof the velocitiesis allowedbetweenthe i
Best agreementbetweenthe inviscidcomputationsand the

experimentalpressureson the insideof the nacellewere obtainedwhen a

) Kutta-likeconditionwas adoptedat the trailingedge, It consistedof

setting the flow angle at the trailing edge equal to the angle of the i_

i)
internalsurfaceof the nacelle. The primaryresultspresentedfor the

implicitprocedurein ChapterVl are calculatedusingthisboundary I
f

condition.However,furthernumericalstudiesshowthat insteadof giving I

the co_r_ectinviscidsolution,theKutta-likeconditionactuallymodels (

_. viscouseffectspresentin the experimentaldata. Theseresultsand their +

,['' implicationsare presentedin ChapterVII. :
. :: i

'[, Jl
w-
L _

m,

---- _L" r-:.: "-_- "........-, :::-:::-?22_ _ _._ _ _ "
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!_ CHAPTER IV

F i

_ In.additionto the implicitfinite-differencenumericalprocedure

describedin Chapter III, an explicitfi__ite-volumeprocedurewhich

._,. employed a fourth-order Runge-Kutta numerical algorithm was also evalu- !

ated. The algorithmhas been appliedto both two and three-dimensional

problems,and appearsto give accurateand stable solutionsin both I:i
cases.II'13 The main advantageof explicit schemesis that the updated

'_ solution at a new time step is independentlycalculatedat each grid point
wL,.' N

i: or cell. Thus, sets of algebraicequationsdo not have to be solved as ",

they do for implicitmethods. The disadvantageof explicitnumerical i

algorithmsis that the grid spacingimposes stabilitylimitationson the ;

_: size of the time step when integratingthe flow equations.Thus, less ,iI

_ computationalwork is requiredat.each time step, but more time steps are

_ normally needed. The limitationon the size of.the time step is most
_ "
i- restrictivefor viscous solutionswhere the grid spacingmust be very fine

in order to adequatelydefine the boundary layer. For inviscidsolutions, I
the restrictionis much less severe.

. Unlike the implicit computational procedure, the explicit procedure !i

_ was not completelydevelopedin the present study, but was adaptedto the i

! _ nacelle problemfrom an existingcomputer codewritten by Jamesonand i

i i Baker.13 The adaptationconsistedmainly of changing the logic of the ,

_ code to allow for both internaland external nacellesurfaceson an H-type I
'# 32
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grid. Essentially,the explicitinteriorpoint algorithmand boundary ,
_' treatmentswere insertedinto the overallframeworkdevelopedfor the '

i; implicitcode. The adaptationaTso involvedreprogrammingsome of the

boundaryconditionsfor the H grid. This chapter describesthe applica-

[)_ tion of the explicit algorithmto the nacelleproblem, li
'i
l

Finite Volume Formulation. _I

_ The basic principlesof the .explicitprocedureare covered ,

)',
_i_ thoroughlyin referencesII, 12, and 13; thereforeonly a brief outline of ._

_:_. the procedurewill be presentedhere. The Euler equations, (1), can be '_!

l_,Li i

!!i written in integralform as !

'.: (39) i
) _- qdV + "F ds 0

:" where q is the vector of conservedquantities(dependentvariables)

:; presentedin equations (I), V is the volume of the domain, S is its _',.

_, !'_surface area, and _ is _i

_ _u, pv, pw

pu2 + p, puv, pUw i,

'_ F = puv, pv2 + p, pvw (40) _

_- pvw, pw2 + p•: pUW, ...... ;

[ pUll, pvH, pwH

L: I

i: 1

_i No transformationsare necessarywith the finite-volumeformulation.

._.
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NumericalMethod

Algorithm. To integrate the equations over the computational domain,
! the explicit procedureuses the four-stageRunge-Kuttanumericalalgorithm

!_.._ in its standardform. For a linear system of equations

Ii!.,
l,o

I P(q):o (41)

the four-stage scheme can be written as

'_)_i: q(O) = qn

_ :i q(1) = q(O) . aiP(O)

q(2) = q(O) . a2P(1)

(42)

q(3) = q(O) . a3P(2)

F

q(4) = q(O) . p(3)

i> qn+l = q(4)

_ where qn and qn+l are the values of the dependentvariablesattime

steps n and n+l respectively. For the standard scheme,the values for

the coefficients, a, are
p.

T . 1 1 (43)
.' aI = 41--, a2 --_, a3 =r.

#
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_i These coefficientsgive the scheme a numerical_tabilitybound

which allows a maximum Courantnumber of 2V'2.

I.! Before the Euler equationscan be numericallyIntegr_atedby using,;cl the Runge-Kuttaalgorithm,they must.be.discretised. In the present

Ii procedure,dissipationterms.arealso appended to the discretisedequationsbefore the solutionprocess is begun. The next two sections

_|_ describe the discretizationprocess and dissipationterms. T ii

Discretisedequations.The Euler equationsare spatiallydiscretised _ _|

by approximatingthem in integralform in each cell of the computational

:_,! domain. Note that the computationalgrid dividesthe domain into a system ..

_!_ of adjoininghexagonalcells..The discretisedequationsfor a cell are _ i

'_ _ t

d _ Fg.)iji vi,j k _-_(q)ijk+ (S_. k = 0 (44)' ;_ il

_i where the indices i,j,k identifythe center of the cell, and v is the .

!_ differentialcell volumewhich is independentof time. The summationon
i

. the subscript, 4, denotes summation.onall six faces of the hexagonal.

_:' cell. At each face, the dot productbetweenthe face area, S, and the.

+. flux tensor, _, is evaluatedas .................................
F. !'

I

i s + z
E :

iil where the subscripts x, y, and z indicatecomponentsin the physical

_;_, directions. Since the intermediatesolution,the solutionat time level

._i n, is known at each cell Center, the flux at each cell face is evaluated

v.
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i

...._ by averagingthe Fluxesat the centersof adjacentcells. For example,

_' for a typical face, I, locatedat i+I/2,j,k with adjacentcell centers
: ..... 7:

: 1

, at i,j,k and i+l,j,k, the mass flux at time level n would be .I

'_,_*' (PU)l :½ {(Pu)i,j,k+ (PU)i+l,j,k} (46) ,,

This method of averagingamounts to using centraldifferencesin a finite

differenceformulation,and yields second order spatialaccuracy in the

_i_ absenceof any dissipationterms. !

!! Approximatingthe time derivativeswith a forwarddifferenceformula _

• and solvingfor qn+1 gives

_. qn+l = qn At ($_F_,)i,j,k (47) ,

vi,j,k _ !

I:il which completesthe discretizationof the integralform of the Euler i
_ equations ...... i _:

!

Numericaldissipation..Equation(47) is in a form compatiblewith i
b

the Runge-Kuttanumericalalgorithm. However,to insure numerical I
I

i stability,dissipationterms are appendedto the right-handside of the 1
t

equationbefore the solutionprocess begins. The dissipationterms are

_ the same as those used by Jameson et. al. in reference13. The augmented

form of the equations is

v

!?

-_, Mi,j,k = qi,j,k " vi,j,k

' _ _ .... -___
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i

I

i where Di,j,k representslhe_d_Lsslpationterms in all three computational _.

i directions(directions _, 4, and n) i}. •

i" i

,'I}'i

i:!:il4 Di,j,k " (D: + DC + Dn)i,j,k (49) (',

The dampingterms are composedof third order terms (fourth-order

differences)which preventodd-even point decoupling, and first order ' !

terms (second-orderdifferences)which preventpreshock oscillations• i !

The third order terms are similarto the ones appendedto the ,,',.,:ii

implicitprocedure,and are formedby taking the fourth-orderdifferences i.I

of the dependentvariablesalong each of the computationalcoordinate !i!J!.!,
_:. directions• Taking the _ directionas an example gives

-!!
_'_ (D_4))i,j,k" di+i/:,j,k i-I/2,j,k

(4) .,., - d(4) (50) ' '!'i ii
! 'Cwhere r,

t

i dl4) =m(4) (vi + vi+1)i'k i
+I/2,j,k 2At (qi+2 " 3qi+l + 3ql " qi-l)j,k(51)

'_: and d(4)i.i/2,j,k is calculatedby a correspondingformula•The

i term, (v i + v i + 1)j,k/2At insures that the units are consistent in

i equation (48). Similarterms are formed for the _ and n directions.

_i!i! These dissipationterms are spatiallyaccurateto thethirdorder, and_ hence do not compromisethe acCuracy of the spatialdlscretlzationof the
i
_', Euler equationswhich Is second order. ....



i]__

I' 38
,..: In additionto the third-orderdissipationjust discussed,first-

I order dissipationis necessaryin the vicinityof shocksto prevent ,_;
c

_ preshock oscillations These terms are. formed by taking second-order _,,!

!i" differencesof the dependentvariables,and have the form :,

=.=(2){ '

 i-i>2 } !I._ " _i-I/2 At (qi " qi-1) (52)
':=i_ Li

•_.__i where v and ¢ form a switch sensitiveto the second differencesin i!_,

I_iii: pressure.13 Their formulasfor the face located at i+i/2 are ,ii
"i IPi+z,j,k"2Pi,j,k* Pi-1,j,kl
i! vi,j,k = iPi+l,j,k + 2p_,j,k • Pi.l,j,kI (53)

i ¢i+I/2 =max(vi+l,j,k' vi,j,k) (54) ,i

,li,
• Similar formulas are used to calculate v and ¢ at i-i/2,j,k Near

pressurediscontinuitessuch as.shocks,the first order dissipationterms.

,.. become very large, and the scheme is first order accurate, Whenever the i_.

pressurevariationsare smooth,the first order terms are negligible,and

_ the scheme remainsspatiallysecondorder accurate, _i

:l

.........,L_,_T" " _=2 ? - ? ......=__--_"_ _ - - " ".... ...... - ............ ".........'
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The numerical.dissipationJust discussedis added to equation (47)

at all four stages of the Runge-Kuttaalgorithm. However,the damping
I. i,

_ terms are updated only at the beginningof each time step, and are not
i:!

_!ii recalculatedbetweenthe stagesof the scheme.

_. Implicitsmoothinq.In the presentexplicitmethod, like reference

13, the stabilitybpund is increasedby applying implicitsmoothingto the

iii: residualswhich are calculatedexplicitly. The smoothingmethod is

I_ 26 and I;_'_ similarto the class of numericalalgorithmssuggestedby Lerat, :i_

_:!Ii!_ takes the form ,II• !
;i; (I _ 2)(i - _ a_)(1 - _ a2)P = Pi (55)
i!!! " a_ n i,j,k ,j,k t

!_ where P is the smoothedresidual. The smoothingoperatorsare applied 1

--_ as factorsoperatingon P in the transformeddirections. Thereforeonly UI:

;i!. three separatetridiagonalequationsmust be solved to determinethe _i

F- smoothedvalue of the residuals.
.| _

Convergenceacceleration.Convergenceto a steady state solutionis !t
l

, acceleratedin the computationalprocedurebytwo methods.13 First the i

i maximum allowabletime step is used for a given Courant number at each
i

individualcell. Using a variabletime st_p destroysthe temporal

"_ accuracy of the solution technique, but that is of relatively little con-

_" _ cern since the steady state Is the solutionof interest. A variabletime i_

::' i step is equivalentto making the followingmodificationto the Euler equa--_; tions

i.'_: _ + _I _f +_ + _z/ . o (_6)•). at By i
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k_ ,,!
,i.!

i _ where B is a scalar multiplierand ! is the identitymatrix, Thus B _

!. can be chosen individuallyfor each cell to advancethe solutionat the ,

maximum Cou;:antnumber. ':

,i The second method of enhancing convergence is by incluoin_ a forcing :_]I 'I

functionin the Euler equationsproportionalto the differencebetweenthe ._

_. local enthalpy and the free-streamenthalpy. With the additionof this _

I;i- term, the modified form of the equationsbecomes ,t

t,i '
i__ where
k !_ W

(H-H®)
-(

' _pu(H - HaD)

A(H - H ) = _pv(H - H=) (58) i'
_pw(H - H®)

{

!: _ (H - H ®)i

F
!
)

and _ is a constant. At steady state, H = H , so the steady state
•! i
_ Euler equations remain unaltered when the enthalpy damping tem is

included. Jamesonalso shows that in the absenceof shocks,the flow

would remain irrotationaland homentropic.12 The enthalpydamping !
i

.) function acts similarto the @t term of the telegraphequation

Ctt+ act--Cxx+ Cyy (_g)
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i:i
H
_. where in relaxationmethods, *t plays an importantrole in determining_ _,:

E:' the rate of convergence.

ZIIII Boundrar#'Con(litions ,

Ii Inflowboundary.The treatmentof the inflow,outflow, and far-field ,.. boundariesis based on the Riemanninvariants for a one-dimensionalflow !K.',-

ii_ normal to the boundary.13 For a one-dimensionalflow, the Riemann invari-

ants and the characteristicsalong which they apply are ii

characteristic Riemann invariant

dx 2a _

_'T: u + a R = u +_---_-T (60) _':,

, dx 2a

i _T: u-a R = u y-Twhere R is the value of the Riemann invariant, u is the velocity i}

[_ normal to the boundary,and a is the speed of sound.

In applyingthe Riemanninvariantsto calculatethe numerical ,,

boundary conditions, the values of u and a are determined from the

_/'m flow variablesin the regionswhere the respectivecharacteristicsorigi-

.,. nate. For the inflow boundarydepicted in figure I,the characteristic i_

"! originatingfrom outsidethe computationaldomain is dx/dt - u + a, i:t

' ii

r Therefore,the value of the correspondingRiemann invariantis calculated ii

i._ by the formula

: u.n + (61)

I'
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r);

i where n_.is the unit normal to the_boundaryand U is the velocityof
the free-stream, ._The Riemann invariant for the characteristic originating

inside the computationalregion, dx/dt - u - a, is

2aint J
:i Rint --Uint,_n- _ ,I

'i
i (62) ii !

. ', U_.b,_= _ (R® + Rint)

i

;iJl where the subscript, int, indicatesthe interiorof the domain. In ,;

_i making this calculation,the values of U_.int and -_nt are computedfrom ; i,

I_ the propertiesof the flow variablesin the cell next to the boundary. I

The equationsfor the two invariants,(6!) and (62), can be.combinedto , ;:

yield the normal velocity and the speed of sound at the boundary. :i_
1

.:I'
_,!_ ab =-_ (R - Rint) (63) '

!,

where the subscript, b, indicatesboundaryvalues, i

This procedurefor calculatingthe normal velocityand speed of ii
_ sound is equivalentto specifyingoneboundary conditionand numerically I

}
' calculatinganother. Consistencywith the analyticalboundaryconditions
!, i

i..+
discussed .in Chapter III must be maintained,. Therefore, at the inflow

" "i

i_ boundarywhere four-conditionsmust be supplied,the tangential velocities

i'i' and entropy are set equal to their free stream values. The three velocity

I_:i' components,the speed of sound, and the entropy completelydeterminethe

dependentvariablesat the inflow boundary.

I

__L_........- 7 .-'--T-•2 2



,, Outflow boundary.The outflowboundary is treated in a similar

i!" manner. However,the characteristicsentering and leavingthe .

_ resultingin the new equationsfor the

t, computationaldomain are reversed, i
i;i normal velocityand speed of sound ,._

• U_b.n: _ (Rint -_"R®)

(64)

Li :
!_}! ab = "_ (Rint " R®)

_F On the outflowboundary,the entropy and tangentialvelocitiesare
1

ii extrapolatedfrom the interiorof the computationaldomain. Thus, the ._

outflowboundary.isalso consistentwith the number and :_litreatmentof the

form of the analyticalboundaryconditionsgiven by characteristictheory• :!_'I

!.i_2_": Far-fieldboundary•The far-fieldboundaryis treatedas an inflow _il
_ boundarywhere the normal velocityis the vector sum of the velocitiesin :'

the y and z directions,or v and w respectively•

.,; ii

_ Surfaceboundar;¢.The surface boundary treatmentis very similarto !i

_.- the treatmentfor the implicitprocedure• The conceptis the same; ili
however it_is appliedslightly,dlfferentlyto the finite volume _Ii

.... formulationused in the explicitnumericalprocedure For the finite ;_
f,. .

!.. volume formulati_on, the pressure is the only flow quantity required on the :.
p,

FI body surface. A brief overviewof the method, which was proposed_by

i Rizzi27 and used in reference13, follows•

i_/.ili The boundary condltlonfor a soiid body in inviscid flow is that the
flow is tangent to the surface, equation (11), Taking the total

,. :.
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F:_ derivative of the flow tangency condition with respect to time

i,, C )i , TT+V,grad (V,n) - 0 (65)

_ (where _ is the velocity at the surface and n__ represents the unit

i vector normal to the surface)and substituting it into the inner productL. of n and the momentum equations yields

::-:L1 pV.(V,grad)n__ _: _n'grad(p) (66) F
i<4

?-.

_ for a stationary body. For a general nonorthogonal grid, equation (66)
i:
_ can be expressed in the form _.

r

i, ' @nl + W3 @nl_ gm2.ap (67)o ,i u1_T: k @r, m ..........F
where _

i
dXl i d_I W3 dc3 gm2 _ @Cm @C2 (68) i

_: ul :d-_-' w :tT_-' : d-T-' ax__x_ !
I

i; and double indices indicate summation aS in tensor notation.

_ In equation (67), Rizzi substitutes the,flOw quantities at the

nearest field point for those on the body surface, This yields a first-

i order accurate boundary method wbi:h is consistent with the accuracy of

i". I
r ,

-'__' "-p'_,'_""- V
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t ! the second._.order...interior scheme and gives an overall solution accuracy of
.

;, ', second order. Thus, tllegradient of the pressure along the coordinate

!

i_ line intersecting the surface, _, can be evaluated, and then the

_i::_ pressure can be extrapolated to the body.

i

i,
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_ CHAPTER V i

. _ VISCOUS-INVISCID INTERACTINGCOMPUTATIONALMODEL _

Chapters III and IV respectively describe an implicit and an !

i explicit computational procedure for solving the three-dimensional Euler

i il
_i equations for the flow past a flow-through nacelle. However, the Euler _
_:

Li] equations, which model compressibility and rotationality, do not model

_! viscous stresses. In the physically realistic case, strong interactions ,
often occur between the viscous boundary,layer and the main stream even i!

_x_ when the boundary layer does not separate, in these instances, modeling

Ithe frictional forces becomes essential if accuracy is to be maintained.

_ Therefore, to complete the study of the flow field surrounding the flow-

through nacelle, a procedure with which to assess the viscous effects was

_. needed.To obtain a computational technique which simulated viscous effects,

the explicit Euler solution procedure was coupled with a boundary layer

solution procedure. The resulting viscous-inviscid interacting

!" computational model is based_n a global iteration between the integration

of the Euler equations and the boundary layer equations. The present

chapter describes this interacting computational model.L . " "

i.

f, Boundar_ La_er EquatiOns

Since the Objective of the viscous-inviscid interaction phase of the

researchwaS to evaluate the viscous effects on the nacelle pressures, a

_ 46
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i

_: boundarylayer solutionprocedurethat was well validatedwas desired.

,!':"_ The inviscidcalculationsand the wind-tunneldata indicatethat the flow

,_!! on the .nacelleremainsattached. Thereforean integraltechniqueused in

Ii_ the directmode was consideredapplicable Green compressible, _;
28 S29

I

i axisymD]etric,"lag.entrainment"methodsolvedin the directmode was

_. chosenbecauseof its r_liability, i

The methodLnvolvesthe integrationof three ordinarydifferential

equations: the momentumintegralequation,an entrainmentequation,and a !i
}._,;

ITI rate equationfor the entrainmentcoefficient.

i

' i

'

" dT = C)eq ® - _,c + d---_--I i

i ...... ii

e due/ CI "2"2)I i
"!!! " "_'ed-'_--,1 + "075M2 + ('
• (I + .IM_) i'

I'

:. The momentumintegralequation,_the first equal:ion,is obtaindby

integratingin the directionnormaltothe wall both the continuityand

streamwisemomentumequationsand combiningthe results. The entrainment

equation,which is the secondone, is obtainedby integratingthe

; continuityequationin the directionnormalto the_wall. The rate

!I equationfor the entrainmentcoefficientcomes from a similarintegration

of the ener'gyequation_and representsexplicitlythe balancebetweenthe
"'. ii ....... "
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i:: convection, production, diffusion, a_FLddissipation of kinetic energy.
I_ In the previous equations, B is the momentum thickness and R the!.

!,

i: _ radius of the body. The shape factors are defined as:

t;: '
, H = 6*/e (incompressible.flow)

iil M = _*/0 (compressible flow) (70)

E_, where _ is the boundary layer thickness, 6 the displacement thickness, ':I:_
t

:_ and the emperical relationships

_L •

• H1 = 3.15 + 1.72 O.OI(H- I)2R-I

(71)

k

i . exist between H, R, and HI. The term, r, is the temperature recovery

_, factor. The entrainment coefficient is defined by
!

i"

I d (rpe UeHIO) (72)Ce = rPeU e dx
i

i

. and the term, F, by _

L (0.02C_ + Ce2 Cfo/3)
[ i - (73)
,. 1 F = (0.01 + Ce) !

_ I

!V i

i !: vk,ere Cfo iS the equilibrium skin-friction coefficient at zero pressure

I



1

i:i gradient. The term Cf is the skin-frictioncoefficientand C is the

shearing-stresscoefficient. _

i_! These boundarylayerequationsare_integratedby a variableorder,

._!:i_ variableintervalAdamsmethod. The methodis part of the LangleyCyber-

200 mathematicallibrary30 and is recomendedfor sets of stifffirst-order

ordinarydifferentialequations.i
i

_i_ Viscous-lnviscidInteractin_Theor_

,_ Matchingconditions.The globalviscous-inviscidinteracting
i! I

i_! techniquedependsupon.acouplingof the inviscidEuler equationsand the
i,:i boundarylayer equatioasthroughconventionaltranspirationboundary

conditions. As pointedout by Thomas31, for the inviscidEuler solution

to simulatea solutionwith viscouseffects,it must match the vicous

;_: solutionin that pantof the flowfieldwhere the inviscidand viscous
equationsboth describethe flow accurately. The matchingconditionsfor

L
the Euler equationsare describedfor two dimensionsin his dissertation.

The viscous-inviscidinteractiontechniquepresentlyused to assess

i the viscouseffectson the nacelleuses a three-dimensionaladaptationof

the two-dimensionalmatchingprocedure. In both procedures,transpiration

boundaryconditionsdeterminedfrom a solutionof the boundarylayer

equationsare imposedat the body surfaceand in the wake of the body to

enforcethe boundarylayereffects. An outlineof the methodused to

_" determinethe equivalentinviscidtranspirationboundary.conditions

_- necessaryto match the inviscidand viscoussolutionsfollows
)
L For two-dimensionalsteadyflow,the NavierStokesequationsare:

_F + _G
o (74) i

]
r

I

i
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!,

and the Euler equations are

af + _g.= 0 (75)

, 1

Designate the point where both sets of equations describe the flow ,J

accurately by h. Then intergrating both sets of equations with respect
i;

to y over the range 0 < y < h and matching the solutions at y ) h

yields

_ foh iigw =.Gw +_" (f - F) dy (76) , _

The subscript, w, indicates wall values and implies that the inner , i

boundary of the inviscid,solution is the nacelle wall. An advantage of

choosing the wall as the inner boundary of the inviscid solution is that

_ i
only one computational grid needs to be generated. Thomas follows the

i example of Johnston and Sochoi,32 and lets F be a composite function

.:.i F: f + - fw (77)
_: where _ is from the boundary layer equations:

,i _a_+_ --0 (78)
ax ay ....

i.

['i

II
, '_ Substituting the composi.tefunction into equation (74) and

i' i
_.. performing the integration gives

i]

_ , - . ...... • . . .
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!.;I _ /oh '
_;I : gw + ( " _) dy (79)

The resulting vector, gw' is the Euler vector, g at the nacelle
!,

!!!i surface when the Euler and Nawier-Stokes layer solutions are properly _j

i i matched at y : h. Using the continuity equation as an example, the ,',

ii equivalent inviscid boundary condition at the wall necessary to match the

'i
inviscid and.viscous solutions is:

;i

:d ] (8o):i Note that Johnston and Sochol use the inviscid wall values in determining
W

.:, the mass flux term on the right hand side of equation (80). This is the

• _ same equation as the one presented by Lock.33 It states that the mass

,i flow normal to the wall in the equivalent inviscid flow is equal to the
; i

:_ streamwise rate of change of the mass flow deficit produced by the
., (

i!..... boundary 1ayer, '__ -

, The previous development of the transpiration boundary conditlons is

i" in two dimensions. However, the present computational technique solves

the Euler equations in three dimensions. The steady three-dimensional

Euler equations in vector form are
r" 'i

af + @_._..+ah_. -- --0 (81)
!. ax ay ,

i; and contain, in addition to the vector g, the vector, h, which must
f

also be determined at the wall. In determining these two vectors, i

. advantage was taken of the axisymmetric nature of the nacelle, By _

# .i

I
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;! performing a mass balance for.-tneflow between two axial stations, the
i
{ $,

i wall, and the edge _ofthe boundary layer, it can be shown that the axisym-

•i metric equivalent of equation (80) is
!

_:"i _Id i
(P_)w r dx {(PU)w(2r6* + 6*2)} (82) ,i

:. where V is the velocity vector normal to the surface. For the three-

_i dimensional adaptation, V is divided into components v and w in the ' !i

_! _ _ icl i
L: vertical and horizontal directions respecti.vely

"i
v : (V._y)_. -=W W

.i:t ---_- (83) :'
_w: (v.n_)w L

i Due to the relatively small boattail angles of the nacelle, the axial _ :
_:_ component is neglected. The vectors, ny and nz, represent the y :
£o i
_ and z components of the unit normal to the surface. Using these _'_

!_ quantities and the inviscid values of the tangent velocity, uw, and

_ pressure, Pw, at the surface, the equivalent inviscid vectors gw and

hw can be evaluated at the .surface of the nacelle where

i:

p_ pw

puv puw

= pv2 + p , h_ : pvw (84)

pvw pw2 + p

v(pE + p) w w(pE + p) w
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i I Surface pressure equation. The.surface pressure equation for_a Solid
i,

i wall boundary with no flow across it, _equation (67), was presented I

previously in Chapter IV. For convenience, it is repeated here

i,

Allowing for flow across the solid boundary introduces an extra term and ,_
" ;: i
;_ changes the surface pressure equation into 14

;5"_: [

E( / ( ,gm2 _ p I uj W3- uJ !
' _m _. @3

E ,J_.. l _) _ W _ B In U j (85)

! 1,_ Computations with both farms of the surface pressure equation
i'

i',t
_., : resulted in negligible differences in the solution. However, all viscous-
:_ ,

:'i
_.! inviscid interacting calculations presented in this dissertation were made

i
_ _ with the modified form, equation (85)

i_ i Application of the Viscous-lnviscid

ill.- Interaction Technique
The transpirat!on boundary conditions presented in equation (84) are

i

applied on both the external and internal nacelle surfaces and also in the

_. wake of the nacelle. In the wake application, the transpiration boundary

conditions are imposed along the constant { coordinate surface

, starting at the nacelle trailing eClgeand extending approximately one half

of the nacelle cord downstream. At this axial location, the wake boundacy

i: Condition had decayed to a very low value, The wake is composed of the
P

T..... 1.1-L.'"LT-SL-2.L__.._LLZ2.L "_ 5L'L"":....... L:_._'_-_: . .... "" ....... "_" "_" " . " " "
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;. boundary layers originating from both the external-and the internal ..... "

_ nacelle surfaces Separate transpiration boundary conditions, calculated _,[i. ' '
_" : from each of these components o.fthe wake,.w_re imposed along the

i _ : constant surface depending on whether the particular grid cell was

_i;, on the outside or inside of the surface. However, when numerically t!i
i 1

I,

integrating the Euler equati.ons,,fluxes were allowed to flow freely

iii through the surface, and a pressure balance.was maintained across it. i:

_:: In the overall global,itecation between,the Euler and boundary layer
.J

__.._ solutions, the boundary.layer equations are solved .every 100 time steps of

,_._". the Euler integration process using the current values of the viscous-

if" inviscid solution. The transpiration boundary conditions are then updated

using the new boundary layer, solution and held constant.until the next

i global iteration. The overall solution technique is started from a
converged inviscid solution and is typically run for 1000 time steps which

_" gives 10 iterations of the boundary layer. After the I0 overall global

_ iterations, the solution has essentially ceased to change.

_ The transpiration boundary conditions described in the preceding.

i _ sections physically displace the outer inviscid flow away from the surface

i i to allow for the deceleration of the stream in the boundary layer. Hence

they account for the displacement effects of the boundary layer. They do

not account for wake curvature effects which are theoretically as

• important, but, in practice.ace usually smaller in magnitude. 34 Neither

do they account for strong interaction effects such as the interaction

Iii between the boundary layer and a strong shock wave which results in a

,;_[ breakdown of the usual boundary layer approxim..'ions.34-

u,.. ,
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i CHAPTER VI

lil
INVISCID RESULTS _i

!, e

Calculations were made with the two computational techniques de- !

i scribed in Chapters Ill and IV for a flow,through nacelle at free-stream i_
_ Mach numbers of 0.80 and 0.94, and at angles of attack of 0° and 4o . All _:

,..!"I_,, computations were made on a Control Data Corporation Cyber 203 vector i:_

_._i processorin the scalar mode. In this chapter, the results obtained with "_

the alternating-direction-implicitcomputational procedure will be

presented first, and then the results obtained with the explicit Runge-

i_" Kutta procedure, Several interesting difficulties which had a significant

_. impact on the solutions were encount.eredand investigated in detail during _I'
the numerical studies. This aspect of the research will be discussed, i!

_;_' The two techniques will be compared on the basis of quality of the ...........;ii

solutions, and also on practical considerations in .implementingand

processing the resulting computer codes on the Cyber 203_

:;- Implicit Computational Results

Basic solution. The results obtained with the alterF,ating-direction-

implicit computational procedure are presented in figures 4 through 8.

i i
i.. Figure 4 presents the basic solution for the .nacelleat a free stream Mach !I

number of 0.80 and an a_gle of attack of 0°. Wind-tunnel data of Re_and ;

i "Peddrew35 are included in part (a) of the figure, which presents the
i

L Surface pressures. A comparison of the calculated results and experimen- I
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Figure4_ Basic solutioncalculatedwith the implicitcomputatio_nal

• procedure. (M® = 0.80, a : 0.0°.)
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(b) Pressurecoefficientcontours.

, Figure 4. Concluded.



n
_i tal data shows that the comuptational technique predicts the generalI

i' features of the.flow and the magnitude of the pressures.....

! Specifically, the calculations predict the correct axial location.of

the leading edge suction pressure peak; however, they underpredict its

magnitude by about 20 precent. The compression and reexpansion over the

!
_. middle portion of the nacelle is also predicted by the calculations, The

i_ large local gradient and reexpansion is the result of _iscontinuities in

i_.i the curvature of the external nacelle surface. Although the slope of the

_ nacelle surface is continuous the juncture of the cylindrical section :_
_._

: _ with the inlet and afterbody sections has a discontinuous curvature, i!

[- Similar to the leading edge pressure peak, the predicted compression and

__ reexpansion are in the correct Bxial location .butthe compression is some- ._

what smeared by the calculations. The tendency of the computational

_,o._ technique to smear the gradients is at least partly due to the sparseness

_ of the grid over the middle portion of the nacelle coupled with the
_ inclusion of numerical damping in the solution technique. For example, i'

over the region where the compression occurs, there are only 5 or 6 axial

grid stations which appear to be an insufficient number to resolve the iI

_ gradient. The sparseness of the grid may also lead to excessive numerical !I

(dissipation in this region.

_- Part (b)of figure 4 presents_computed pressure coefficient contours ;'

in the vertical plane for the.nacelle at 0° angle of attack. The contours

" illustrate that even though the computational technique is three dimen-

sional, the solution at 0° angle of attack exhibits the proper

axiSymmetriC behavior.

J,,-_ " V
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_: Effect of grid refinement. A solution was obtained with twice as
!-t
_,- many grid points in the.axial direction as for the calculations presented

_ in figure 4. lhe fine grid resulted in the maximum number of grid points

possible for the implicit technique before the incore storage capacity of

i the C_ber 203 was exceeded. The solution with this.grid, which is ,

presented in figur.e.5, shows a considerable improvement in the agreement

! between the computations and experiment on the external surface. It has a

:_i more negative leading edge suction pressure peak, and the compression in
iLi , !I
_ the mid-nacelle region is stronger and has a steeper gradient. In -N

: addition, the computed reexpansion region on the nacelle is in quite good _!

agreement with the wind-tunnel data.
,e

:_ Nacelle at an_le of attack. A solution for the flow aroun_ the

nacelle was also obtained at a f_e-stream Mach number of 0.80 and an i1r_'_ angle of attack of 4.0°'. Figure 6 presents a comparison of the calculatedis

; pressures with the experimental data of Re and Peddrew for the side

..... meridian of the nacelle, @ = 900. The computational technique predicts
b

k the qualitative and quantitative character of the flow well and the,
_ general comments about the comparison of the calculations with

:; experimental data at 0° angle of attack apply. For this calculation,• however, it was necessary to average the internal and external flow

quantities at the leading edge in order to obtain a solution.

,.." The computed pressure distributions for the top, side, and bottom

! rows of the nacelle are presented in figure.?, The external distribu-

i:
tions, presented in figure 7(a), demonstrate the three-_cLimensional

_ character of the flow with the nacelle at angle of attack. The majority

of the three-dimensional effect is confined to the forward portion of the

-.. ,

_q
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Figure 5. Fine grid solutions calculated with the implicit

computational procedure. (M = 0.80, _ = 0.0°.)
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Figure 6. Computed and experimental surface pre_ssure

coefficientdistributions at angle of attack.

_ (M® = 0.80, a : 4.0O, side row, implicit code.)
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nacelle.where the calculations show that a large suction peak is being _'

generated at the leadi-ngedge Of the top meridian. The internal pressure _'

coefficients, presented in figure7(b), are influenced by the three,...........................

dimensionality of the flow only in a relatively small region at the
,i

nacelle leading edge. _
I

Contours of the computed pressure coefficients in the vertical plane

with the nacelle at an angle of attack of 4.00 are presented .in _:

figure 8. The contours also illustrate the three-dimensionality of the

computed flowf:eld with the nacelle at angle of attack. A comparison of . F

these contours with those at 0.0° angle of attack, presented in

figure 4(b), illustrates the more pronounced pressure gradient on the

inside of the nacelle at a = 0.0°, and the differences,between the
pressure gradients on the inner and outer surfaces near the leading

edge. It also illustrates the greater expansion of the external flow on _)r! the top of the nacelle at the higher angle of attack.

_ Explicit Computational Results ._

Solutions for the flow past the flow-through nacelle were also

computed using the explicit Runge-Kutta computational procedure with

implicit smoothing of the residuals described in Chapter IV. The results

obtained with the explicit procedure are presented in figures 9 through

; 12.

7

F Basic solution. The basic solution at a_Mach number of 0.80 and an

_i angle of attack of 0° is presented in figure.9. L_ke _he implicit

!E computational technique, the explicit technique_predicts all of the ..... .
i .... ' !

I
ii_ gener_alfeatures of the flow, and the pressures on the external surface

agree quite well with the wind-tunnel data (see part (a) of the figure).
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i Figure8. Pressurecoefflcientcontoursfor the computationsat angle

of attack. (M® = 0.80,a = 4.0°, verticalplane,implicitcode.)
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(a) Pressure distributions.

L
[,

Figure 9. Basic solution computed with the explicit computational

I: procedure 0.80, 0.0°

!; • (M== _= .)
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i_ By comparing these pressure distributions with the ones calculated by

!ii using the implicit procedure, figures 4(a) and 5, one can see that the

!}: explicit procedure gives a more accurate solution on the external surface

!!,i!i for the same p_mber Of grid points. This is particularly evident in the

_I region of the rapid compression and ree_pansion which occurs on this _:

surface. Here the explicit procedure captures the gradients much better
! i,

,_11 than the implicit procedure and comes close to matching t_e resolution of

the pressure distribution computed by using the implicit procedure wi_h I

twice as many grid points. The computed pressures on the internal surface : i

are much more positive than the data. i _}
Pressure.coefficient contours for the explicit solution are

presented in part (b) of figure 9. The region of low pressures which is i faffected by the nacelle is slightly larger for the explicit calculations _

il than for the implicit calculations (see figure 4). The differences in ;iit
T; both the external surface pressures and the pressure coefficient contours

i_i between the two solutions may be the result of the slightly different i,

_. implementation of the surface boundary condition.
i'

_ Grid refinement stud_. An attempt was made to look at the effect of

l i grid resolution for the explicit computational technique. It was possible
to add 10 grid stations,axially along the surface of.the nacelle, for a

I

total of 40 grid stations along the surface, before the incore storage

': capacity of the Cyber 203 was exceeded. Figure 10 presents the solution

i'i for this finer mesh at a free stream Mach number of. 0,80 and an angle of

i:' attack of 0.0°. By comparing the computed pressures, which are presented
in figure 10(a), with the pressures for the coarser mesh, one can detect a

_;_ slight improvement in the agreement with the wind-tunnel data as the mesh

........... , i"I
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i_ ;_
i.... _ is refined, The pressurecoefficientcontoursfor the refinedgridcase

[i...... are pre__entedin part (b) of figureI0_.TMe contoursar_eessentlal_lythe _:
(

_, same a_ those for the coarsergrid l

,. The modestincreasein_thenumberof grid pointsresultedin a '_

slightimprovementin the _correlationbetweenthe explicitsolution-and .T;,

the wind-tunneldata. Eventhoughthe overalllevel of the correlationis

_ . very.good, a greaterincreasein the numberof grid pointsmay further i_

_ improvethe agreementin the regionof the peak expansionand the liI
_J- followingcompression. _

_ Internalpressurelevel.The additionof more grid pointsalongthe ,_,

t._ surfacedid littleto improvethe correlationbetweenthe computationsand

_ the wind-tunneldata on the internalsurface. The resultsof.the implicit _i,_[

techniqueagreemuch betterwith experimentinsidethe nacelle,and hence
r,

seem to be more accurate. However,the implicittechniquehas a Kutta-

like conditionimposedat the trailingedge. A calculationwi_tha version .t

_.- of the implicitcode which did not containthe "Kutta"conditionshows the I_

I;samebasic trendsas the explicitcode as can be seen from figure 11. In

a similarobservation,Miranda36 indicatesthat inviscidpotential ',II

solutionsfor similarconfigurationsfrequentlygive good solutionsfor I

the external•flowbut yield the incorrectinternalmass flow ratio. These !(!I

_. resultsleadone to speculatethat the Euler "non-Kutta"solutionspossess

, the correctinternaltrendsfor inviscicL_flow.ChapterVll examinesin
li'

'[ detailthe posSibilitythatthe discrepancybetweenthe data and the _

[ calculationsis due to viscousdissipationpresentin the exper.iment.......
¢

[J of 0.80 and an angle of attackof 0O, a solutionwith the explicit )

.....................
!,
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i procedure was obtained_at a Mach number of ..0.94 and O°_..angle of attack,
r: Theexperimental data_indicated that 0,94 was. the highest Math number for

i_, which the flow on the nacelle was not separated. The calculation was made

_i_ with_ the finer computational mesh described in the earlier.,section on grid

resolution

The computational results agree very well with the measured pres-

sures on the external surface of the.nacelle as figure 12(a) _

J,_.:. illustrates On the internal surface, just as they did at the Mach number
_J9i

il of 0.80, the calculations predict higher pressures than the wind-tunnel .........._..._
z_ _,_

=i' !
;_ data. Even though the pr.edictedpeak expansion near the leading edge is :

'_ low, the pressures agree with the data everywhere except at the .very i iJ

_ peak. Probably grid resolution or excessive dissipation due to the large I[! changes in the pr.essuresin this region of the flow is responsible for the i

_i discrepency. The calculations both qualitatively and quantatively predict .............._'_,

the rearward movement of the leading edge negative pressure peak with ,i
i!L! increasing Mach number. Notice that the general shape of the leading edge .i:

expansion and subsequent.recompression has changed from the lower Mach

number, At the higher Nach number, the expansion continues until it is ............

'it} ! abruptly terminated by a.strong compreSs.ion,or possibly a shock. The

II; calculations correctly reflect this shape change. Also, at the higher.Mach number, the mope pronounced hump in the pressures on the rear of the.

'_ nacelle is predicted and the calculations match the data very well in this

region.

Parts.(b) and.(c) of figure 12 present pressure contours in the

I_ vertical plane for the calculation. Part.(b) figu_reof the shows the

.', overall region in the vicinity Of the nacelle and_part.(c) presents a

detailed view of the leading edge region. The pressure contour

i :

.,-.-'_"'.i,,,,;F; "" v
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I_ Figure 12. Supercrlticalsolutioncalculatedwith the explicit

computational procedure. (M®= 0.94, a = 0.0°.)r ,

"" " i

IW '1



(b) Pressure coefficient contours.
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(c) Pressurecoefficientcontoursin the vicinityof the
?

i: iJ leadingedge region.

r
_ Figure 12. Concluded.
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: corresponding to a local Math number of I 0 is represented by a dasne_

[ line. The contours illustrate the extent of the supersonic bubble on the

i_ forward part of the nacelle, and also show that there is a small

li supersonic bubble on the afterbody. In addition, the_ illustrate that the .- ',
Ii
_:_ zone influenced by the nacelle, both the compression zones originating at

!i the leading and trailing edges and the expansivn zones, extend further i
ii

_ outward in the radial direction. One might expect this general change in

_ the nature of the flow at the supercritical Mach number. _

The calculations have correctly predicted the changing nature of the

flow from the lowerto the higher transonic Mach number, and also ii

predicted the quantitive results at the two Mach numbers very well.

I_,! Combined with the good predictions at angle of attack, these results

demonstrate the potential of the Euler equations in solving flows of this _

complexity. I

_:. Numerical Problem Areas !

_ During the development of the implicit computational procedure, and

" the subsequent numerical studies using both the implicit and explicit

!i procedures, twounexpected numericaldifficul'_ieswere discovered and

investiaated. The first difficulty concerns the stability properties of

the implicit algorithm. The second perta!ns to a numerically produced

surface total pressure loss, and_is inherent in both the implicit and

; i explicit algorithms. While other researchers may have encountered similar

': difficulties, until recently a large segment of the computational

_ community was unaware of the.stability problem.37 The t_tal pressure
i_ problem still remains largely unreported.37 The investigation of these

i areas is discussed in this section.
_:"
,.-...

#
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: _ Effect of boun_ar_ conditions on implicit convergence In the early

!. 19/_O's, when the development of the implicit computational procedure was

i initiated, _.he Beamand Warmingalternating-direction-implicit numerical

algorithmwas re]ativelynew and untesged,particularlyin three

dimensions. Difficultieswith its stabilitypropertiesin three ,.; 1

dimensionswere then known or.suspectedby only a smallcommunityof ;I

: researchers38-39 As noted in ChapterIII,while.theimplicitphaseof

ii _he presentwork was eing conducted,Abarbanel,Dwoyer,and Gottleib23 ii

L!_ provedthat the undampedBeam and Warmingschemein three dimensionsis

_,i weakly,but unconditionally,unstable. They also showedthat the weak

-i_ instability is only present in the very long wavelengths. .l
[,i_ii. Duringthe.developmentof the implicitprocedure,an instability i

manifesteditselfnear the outflowboundary. The problemwas

" _ investigated,and a radiationoutflowboundarytreatmentwas appliedwhich i_;:.i_

;!i?. enabledreasonablyaccurateengineeringsolutionsto be obtained. These :resultswhich.arereportedby Comptonand Whitesidesin reference14 tend i!_

_. to confirmthe work of Abarbanel,Dwoyer,and Gottleib.23 The resultsof -.

referencei_.have_elped clarifythe weak instabilityin the undampedBeam i

and Warmingalgorithmwhen appliedto the three dimensionalEuler 1

i equations This aspectof the developmentof the implicitcomputational 1. Q
I

_: procedureis describedbelow•

Two parameters, ACp,max and the maximumresidual,were used to

test the convergence of the numerical solutions obtained with the implicit

C_. numericaltechnique. At any given time level, aCp is definedto be the.

absolute change in the pressure coefficient between the present time level

-_ and the previoustime level. The total residualat any time step.is.....................!T.!

. I

-- - , ...... ---" . - .... _ _-_..._-.- _ , : "_T"_"21."2_"'2, _-_-__ =.... "....... :: ...... '- -.'-':_:.............. ,_", _
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i"i defined to .be the root mean square of.zhe rate of change of all five of
I;. the normalized dependent variables. Ate.everytime step, aCp and the
',

_ , total residual are computed at each grid point and the entire

computational region is searched for the maximum value of each parameter.
i I.

i Figure 13 presents the iteration hi_tory for the solution obtained ......

_,i with the outflow boundary condition p = p_ and extrapolation at the far- C

field boundary. The llistoryof _,Cp,max indicates that the solution is

_ converging. However, the history of the maximum residual indicates that
.,ii

:!

,_. the solution is in fact diverging. Thus it is misleading to base i

_":i;_ convergence strictly on the change of a flow parameter. The increase in :.'_:-
_,._!_ maximum residual coincides with its location gradually changing •from the

_E_I_ vicinity of the nacelle to the outflow bou,_dary,implying that the outflow
r .i

ii boundary condition p = p:=equation (25), is partial.lyreflective.

i°ii The nonceflecting outflow boundary condition of Rudy25 was tried

with mixed results in stabilizing the solution process. In addition, the

i;I Riemann-invariant method of treating the outflow boundary,13 which was

I!'".i_ used very successfully in combination with the explicit computational
L

; procedure, was briefly investigated. However, a satisfactory solution was

:_: not obtained with this combination

:, As a consequence.of these results, the radiation boundary condition,

i equation (32), '._asderived and invest.tgated. The iteration history of the

residuals when the radiation boundary condition was used at both the

!.. outflow and far-field boundaries is presented in figure 13(b). The

i i overall maximum residual indicates that the pressure disturbances passed

through the .outflowboundary more easily, delaying the emergence of the

instability until approximately 1000 iterations, After the instability

i

" iI 1_ '___. _.5
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: emerges, the rate atwhich the overall maximum,residual grows is reduced '

to near zero from tllerapid growth associated with using equation 25.
[

!,

ii Validity of the implicit solutions. The iteration history of the

i:" overall maximum residual [,r_;sen_edin figure 13(b) tends to confirm the .................

[:! results of Abarban_l et. al. However, the boundary conditions were ,I

imposed explicitly which may degrade the convergence properties of the

,._tscheme and increase the run time. The maximum residual near theimpli_'

!:
:: na,.(.,leis also plotted in figure 13(b). This local residual continues to i_

-. 6

decrease with a total drop of about 4 orders of magnitude in 1200

i!1 iterations, and 6 orders of magnitude in 2400 iterations, further

indicating that the instability is associated with the boundary treatment, if

!;* Residual contours after 1200 iterations or time steps are

presented in figure 14. These contours confirm that the maximum residuals "

do indeed occur near the outflow boundary and that the solution near the i

• nacelle appears to be converging. Since the solution.near the nacelle ;!

_... continues to converge and the local residual has decreased 4 orders of ,

magnitude at 1200 time steps, the solutions near the nacelle should be

reasonably accurate and useful for engineering calculations.

ii Explicit conyergence properties. There does not appear to be e ,

problem with the stabilityor convergence of the explicit computational
L

F..... procedure. The presentation of these properties of the explicit technique

!. is placed in this sectior merely for comparison with the implicit

algorithm. The residual upon which convergence is based for the explicit

! i computational procedure is the difference between the computed enthalpy at!
[ i any particular grid point and the free stream enthalpy. Figure 15
_._'

:_ presents the iteration.histOry of the maximum residual in the



Figure 14. Residual contours for the implicit computations.

(M® = 0.80, _ = 0.0°, 1200 iterations, vertical plane.)
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computationalregion-forthe bas_i_cSolution. The historyshowsthat the

solutionis stableand converging. The maximumresidualinitiallydropsF
i,

_ rapidly,and althoughits rate of _ecreaselevelsoff some, its general

[ trend_stillcontinuesdown after 4000time steps.

[_::i The•solutionswere obtainedat a Courantnumberof 4 which was the

1 largestCourantnumberfor which numericalstabilitycouldbe maintained.

I: The of be betterthan indicated
optimumrate convergencemay by

, i

_i figure15. However,no studieswere made to determinethe size of the ........I

i dampingparametersfor the maximumrate of convergence. Numericalstudies__)
i'_! by Vatsa40 indicate_thatthe optimumvaluesof the dampingparametersfor_i a maximumconvergeqceratedependsupon the gr_id. _

i

ii
Totalpressureloss at the surface.C_-_._ulationswith both computer

i_ codes showa surfacetotal pressurelosseven at subsonicMach numbers.
t,
_. This featureof the solutions,which is inconslstentwith the physicsof

,,iL the inviscidflow,was firstnoticedin calculationsmade with the

[! ! implicitcomputercode, and was reportedin reference14. However.,an

['i i

i: indepthinvestigationof the problemwas not undertakenat the time. When

solutionsobtainedwith the explicitcode also exhibitedthis

characteristic,it was consideredhighlydesirableto investigateit more

fully. The resultinginvestigationof the problemis discussedin this

section.

;. Sincethere are no supersonicregions,and hence no shocksInthe
k

) pre_ent_solutionsfor M® : 0.80, and since the flow is inviscid,theE

i
i _ total pressurein the entireflow fieldshouldbe constant. However,the
[!: numericalcalculationsat thts _ubsoaicMach numberresultin total

i pressurelosseswhich are most noticeableon the internalsurfaceof the
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,. nacelle. Althoughthe lossesare confinedto a small reg.ionin the

t!, immediatevicinityof the..nacelie,they.are sometimes.quitelarge. The i,

i:!' total pressurelossesdo not seem to affectthe valuesof the static i!

pressures,but as stal:edbefore,they are inconsistentwith the correct .
_:i physicalnatureOf"oneproblem._. 'i

J,
I!: Figure16 presentsthe total pressuredistributionson the nacelle ......_ j

: surface,and illustratesthe magnitudeof the total pressurelossesfor _ :,

i!_i the free streamMach numberof 0.80 Tne figureis typicalfor both the

_'_ sparseand fine gridssince refiningthe grid_had little effect on. the 'i _i
_i losses...Parts(a) and (b) of figure 16 pcesentthe surfacetotal !

_Ii_i pressurescalculatedby using the implicitnumericalprocedure. The ;I

i!i! resultspre_sentedin figure16(a)were obtainedwith an-earlyve!_sionof 1
.._ the code in which the flow variablesfor the top and bottomsurfacewere

averaged.a.1;, the_leading edge. While.the total pressure on the external

_:,_ surfaceof the nacelleis essentiallycorrect,the figureshows a loss in

_,_'_: total pressure.ofapproximately5,0 percenton the in_ernalsurface of the ;!

i',,'_ nacelle. Initially,the losswas attributedto incorrect.treatmentof the

Ji the leadingedge boundary(theimplicitcomputationaltechniquerequireda
i.

I:i directtreatmentof the leadingand.trailingedge boundaries). As a i! consequence,a wide varietyof leadingedgetreatmentswas investigatedin

i orderto correctthe problem.

_i The outcomeof the leadingedge studywas to adopt the present i

i treatmentdescribedin ChapterIII in which the two surfaceswere treated i
il

! separately. Figure16(h) shO.wsthe total pressuredistributionsresulting i
-i
i from the calculationsusingthe new leadingedge boundarycondition. The.........

loss is now split between the upper and lower surfaces, with a loss of

! about 2.5 percenton each surface. Consideringthe followingresults
,i ,I
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_:i (a) Implicit computational procedure, dependent variables

:I averaged at the leading edge.
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: Figure !6. Surface total pressure distributions.
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CALCULATIONS..................
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averagedat the.....]..eadingedge.

F.Igure 16. Continued.
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ii obtained with the explicit computationalprocedure, it is doubtful that

i the new boundary treatmen_ results in a more-physically correct solution.
!ii:_ Since the explicit computational procedure incorporates a finite

i

i;i volume differencing technique, and therefore does not require any direct :i

i treatment of the leading or trailing edge boundaries, it was not expected _;

to give total pressure losses at a subsonic Mach_number. However, as part

(c) of figure 16 shows, the problem is magnified by the explicit

_.i_ technique. Like the results for the implicit technique with the earlier

_}i leading edge boundary treatment, the total pressure on the external ._il

i surface is essentially correct. The losses on the internal surface,
however, have increased to approximately !0 percent. These results

_ of the leading and trailing edge boundary conditions.

pressue loss. In order to help determine the I
" Ii Origin of the total

i source of the losses, additional numerical experiments were conducted with ,_

_ the explicit computationalprocedure using an unswept untapered wing as _

the test configuration. Using the unswept, untapered wing resulted in a

physical problem with two-dimensional flow, but retained the three- i

dimensionality of the computational prccedure..The results of the I

experiments, _hich are presented in the appendix, indicate that the I
surface boundary condition as well as the rest of the explicit computer

code was programmed correctly. The numerical studies on the wing also

_ indicate that the origin of the total pressure loss isan expansion of the

flow around the sharp leading edge of the nacelle. The sharp leading edge

iS a feature of the nacelle geometry made necessary by the H-grid. Tne
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i_i st:Idiesadditionallyindicatethatby eliminatingthe nearlydiscontinuous

_ expansion,the total pressurelossescan be.eliminated.

_. These ideasare demonstratedfor the nacellein figures17 and 18,
)ii_

_, Fioure17 presentsthe solutionfor the computationsmade with the
ci

__ explicitnumericalcomputationaltechniqueat a freestreamMach number

lC of LI.80 and an angleof attackof 0.0°, Parts (a) and (b) of the figure.show respectivelythe Mach numbercontoursand the velocityvectorsin the

i vicinityof....theleadingedge of the nacelle. They illustratethat ..................................

-)_ contraryto what one wouldexpect at 0.0° angle of attack,the flow

!!_ stagnateson the externalsurfaceof the nacelleand expandsaroundthe)
F
L_ sharp leadingedge to the internalsurface, '!i

The stagnationpointon the externalsurfacecan be seenmost _im _

: clearlyfromthe Mach numbercontours The clusteringof the Mach number ,_

contoursat the 1.eadingedge indicatesthe severi.tyof the singularity

!: createdin the f'1ow_asit expandsin.traversingthe discontinuityin_the
' nacellesurface. The velocityvectors show an inwardcomponentof the ii_,

immediately i_i
" flow above and in front of the leadingedge, and futher -

i

indicate,that the directionof the flow at the leadingedge is from the ,I

externalsurface,aroundthe leadingedge,and.tothe internalsurface, i'{,
Sincethe first,orderdampingterms becomevery largein regionswith such )

I
_. stronggradi.entsin the flow,,a calculationwas made...wi.ththese ... _(

_; dissipationterms turnedoff. Very littledifferencecould be detectedin

the solution.

It iS.thoughtthat this problemwould be much less severefor a

roundedleadingcdgecoupledwith the use of a locallyembeddedbody

ii'_ii normalgrid such as those normallyused for blunt_bodie_.However,as the

_F__ appendixshows,caremust be taken even with a roundedleadingedge and a



(a) Mach nut,her contours.

: Figure 17. Calcula_t.edflow-field in the vicinity of the

' leading edge of the Flow-through nacelle.

!': (M _-0.811,a = 0.0O, explicit procedure.)



(b.) Velocity vectors.

Figure 17. Concluded.
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C-typegrid, Even wi_b_this type grid,the.stronygr,_dtentsgeneratedas

the flowexpancisaroundthe roundedleadingedge can for all practical
{.

_i purposesappearas discontinuitesunlessthere are sufficientgrid points
_ to resolvethe rapid changesin the flow variables........................................:

! Elimlnatin_the total pressurelogs. To demonstratethat the total
i lm i, i ..

press,Jrelosseson the internalsurfaceof the nacellecan be eliminated

by elimina:ingthe expansionaroundthe sharp leadingedge, calculations

were _flddefor a modifiedflow-_throughnacelle. The modification.tothe _

nacelleconsistedof adjustingthe mean camberline of the nacelle'sair- "_

foil so that the flow stagnatedpreciselyat the leadingedge insteadof

on the externalsurfacE, Thus the expansionof the flow aroundthe sharp ,_

leadingedge was eliminated. ._

The camberwas decreasedto 75 percentof the originalcamberat the _.

,-_ leadingedge. Along the airfoil,the reductionin camber.was !Ti. .... ,
t i',_

_i progressivelydecreasedaccordingto the squ_reof the cord so that at the <

_"' trailingedge l_hecamberremained100 percentof the originalvalue. The

'i _ " '
i change in the medn camberline necessaryto adjustthe stagnationpoint

i was most noticeablein the first 25 percentof the cord. Figure18 ,

_ presentsthe s_lu_Ionfor the modifiednacellewith part (a) of the figure

_ i showingthe pressurecoefficient(ttstributions.The pressureslook

' _ reasonable;however,comparisonswith experiment.couldnot be made since :

.nowind-tunneldata was availablefor the modifiedconfiguration,

Mach numbercontoursin the vicinityof the leadingedge are

presentedin part (b) of the figure. They illustratethe fact that the

flow dues stagnatepreciselyat the leadingedge, and hencedoes not

_.: expandaroundaround.thecorner..The result,shown in figure18(c),is

i'!
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: i (a) Surface pressure coefficient distributions.

Figure 18. Solution for.the modified flow-through nacelle.

(M 0.80, _ = 0.0°, explicit procedure.)
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I

,!

(b) bach number centours in the vicinity of the leading

edge.
!:',I

r

i.i Figure 18. Continued. ,
i



97

LI
' I|

.... + EXTERNALSURFACE
- - - INTERNALSURFACEt

1._ _

Pt ]

,8 m

i
.i

il .6 ' ' I , , , , , , ,• 0 .2 .4 .6 .8 1.0
!i X/L

(c) Surfacetotal pressuredistributions.

Figure18. Concluded.
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,l:_ that the total pressure on both the external and the internal surfaces of
,;

i the nacelle maintains its free stream value, An indication of the amount

i, of change in the nacelle's mean camber line necessary,to adjust the

i stagnation point can be seen by comparing the modified nacelle contour

!_i depicted in figure 18(b) with the original nacelle contour depicted in

i figure 17(a).

i The source of the total pressure loss on the surface of the nacelle
F

_;:._ has been identified as an expansion around the discontinuity in the

_ nacelle's surface _t _he.leading edge. It has also been demonstrated that '_

_:_:I by eliminating the expansion around the sharp leading edge, the free _

stream total pressure can be maintained,.

.Comparisonof Techniques :t

The previous sections in this Chapter have presented a discussion of
, the solutions,calculated by the two computational techniques, an implicit

technique employing the three-dimensional Beam and Warming numerical

_T algorithm, and an explicit technique employing :he four-stage Runge-Kutta ii_
i I

'_': algorithm with implicitresidual smoothing, The quality of the.solutions "

obtained with these techniques was compared during the discussion.. Thei.

comparison on the basis of solution quality will be summarized in this

section, and, in addition, practical considerations of implementing the

f

_. i two techniques on the computer will be discussed.

, Processin_ time and computer storage requirements. All.numerical
!

....' calculations were processed on a Control Data Corporation Cyber 203

computer in the scalar mode. For the implicit code, a typical calculation

was processed for approximately II00 time steps on a computational,grid
_r .

'_ii containing 18,502 grid points. The calculations were made at a Courant

............... _ __. . _ _._ . _ -- .i,,-
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.: ,lumberof Order:II based on the minimum grid spacing in the axial

direction. ....Tlleprocessing time one,he Cyber 203 was approximately 6.?_ _ii'
[
._' .... [
i hours or 1,22 milliseconds peFL.grid point per time step. The code was.....

i:- written for maximum visibility of the form of the and hence
equations,

i.. contained many.divisions by quantities whose value_were 1.00. By I_J

if eliminating these divisions, and optimising the code for speed of

computation, a considerable reductiun in processing time should be

i realized.

:" i The explicit code required an average of 3000 time steps to reach a

_:" steady state solution. Fur the same computational grid, this yielded a_:.

_ computer processing time of approximately 2.1 hours or 0.15 milliseconds•

per grid point per time step or approximately one third the computational

[_ time of the implicit code. Although neither .the implicit code nor.the

explicit code was vectorized, vectorization of the codes should result in

_': a decrease in the processing time.

_ In order to calculate flows around more complicated configurations,

_" additional grid points will be required. The maximum number of grid

points .possiblefor the implicitcomputer code as it was written was

approximately 37,000 before the.i,_corestorage capacity of the Cytter203

; computer was exceeded. Byldeleting all possible arrays in the computer

program, and by re¢omputing the necessary parameters from the deleted

arrays every time they were needed, approximately 63,000 grid points could

be obtained before the computer's incore storage capacity was exceeded......

The maximum number of grid points possible before.the explicit code, which

was not_optimized for ,n!,_imum_torage requirements, exceeded the incore

,_ storage capacity of the Cyoer 203 was approximately 20,000.

._ ,
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"i_ In general, the implicit code requires less computer storage while

_e e_pl.Lcit code runs faster, Both the run time and the computer storage

requirements of each code are margina! for general design studies w_ere

,_ many configurations need tobe evaluated quickly unless optimization of

i programming for storage and run time can be realized. However, the cost

magnitude every eight years for the past fifteen years.41 Computers which

have much more computing power and memory than the Cyber 203 will become
• i

_- available in t_e ve_y near future. For example, NASA Langley Research ,,I_

_-i_ Center.recei.veda 16 million word version of the Control Data Corporation _

;--i Cyber 205 in the fall of 1984. Another example is the NAS facility _
):

discussed by Ballhaus.41 With such aovances in computer technology, "_

!i coupled.with advances in numerical techniques, computer codes based on

solutions of the three-dimensional Eul.erequations should soon become

!_} practical for problems of this complexity. _'

If'i- Convergence. While reasonably accurate engineering solutions were

; obtained with the implicit technique, its overall convergence properties

I are unacceptable. Ti_eimplicit application the boundary to
of conditions

this problem may enhance its stability and should be investigated, asshould the effect of enthalpy damping on its stabilitz characteristics.

,,: i However, at present, the scheme has a weak instability when applied to
.i

this three-dimensonal problem with the result that the implicit solution

never actually converges. The explicit scheme is stable and converges

even though its rate of convergence is less than desirable.

_. Accuracy. The relative accuracy of the solutions obtained with the

>_i two numerical techniques has already been discussed in the previous

I
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i'
!01

I _._tlons. Basically,the explicittechnique_.yieldsmore accurate ;'j

solutionsfor the same numberof grid.pointsin that it capturesthe i;
i

li pressuregradientsand peak pressureexpansionsbetter...thanthe implicit.... .:

il;. technique. The better accuracyof the explicitcodemay be a resultof i

i:i_ the slightlydifferentimplementationof.thesurfaceboundaryconditions _
W I,

. in the two numericalprocedures. Both procedures,.however,give solutions

that.are in good agreementwith experimentaldata on...theexternalsurface

!_:ii;_ of the nacellewhere the effectsof v,scosityare relativelysmall -
_._ LI

, ii
i

__ !
!?

li :t
_ °' ,

1,
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i:.i CHAPTER VII
i

,_., VISCOUS-INVISCID.....INIERACTINGRESULTS .i

_i In.general, the inviscid solutions calculated by using the Euler

: computational techniques agree very well with the wind-tunnel data on the _,

external surface of the nacelle. However, there are large differences

between the inviscid solutions and the measured pressures inside ,h. _,

nacelle's duct.. In Chapter VI, it was hypothesized that since the Euler _ ,"

equations model compressibility and rotationality, the discrepancy was due
i

_ilI tO viscous dissipation present in the experiement. In the physically _!"
-_.i realistic case, strong interactions often occur between the viscous i

boundary layer and themain.stream even when the boundary layer does not _

separate. Typical examples of this type of flow occur near the.t.railing _

if':

i:i" edge of an aft-loaded airfoil or at a shock-boundary-layer interaction. ;

_:_" In these instances, modeling the frictional forces becomes essential if 1_

'i!? accuracy is to be maintained.

_!o Therefore, to complete the study of the solution of the flow field

li_ for the flow-through nacelle, a preliminary assessment was made of the the
influence ofviscosity. The viscous-inviscid interacting computational.

i; model described in Chapter V was used for this phase of the research which.

p

i. was conducted at a free stream Mach number of 0,80 and an angle-of-attack

. of 0.0°. These investigations, which have yielded new insight into the

t mechanics .of the interactions between the internal and external flows, are

' described in the present chapter.

'fi
102
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I fJ'lI Overall viscous effects, The.overall result of including the

_.,.'_ boundary layer effects in the otherwise invlscid Euler solution is illus-
ri'

!':_! irated .infigure 19. T._efigure #iresands the viscous-inviscid interacting li
!:li solution.as well as the inviscid solution, and illustrates that the _
iL

ii viscous effects significantly cha_ngethe internal pressures but leave the
: external pressures largely_nG!)anged..Including the boundary layer and

wake does_result in a slight decrease in.the external pressures very.near

th.=t_aillng edge.....However, onthe internal surface, it causes a r'

significant decrease in the exi: pressure, and produces a sizable axial 1

pressure gradient in the nacelle's duct. The net.effect improves the
i

correlation between the computed internal pressu_resand the experimental *!

data. i
i

As pointed out previously, in addition to surface boundary layer i

thickness, this interacting procedure compensates for wake thickness but

'![; not wake curvature, Melnik34 indicates that wake curvature,,while not .

[<_ being as i.mportantas wake thickness, produces similar results, Hence, if
_.i'

iLi allowance were made for wake curvature in the present calculations, the

! computations should match the internal.,pressure datum even better.

i:i External and internal boundary An made to

la_ers. attempt WaS

_. determine the relative importance of the external and internal boundary .....

layers in changing the character of the flow past the nacelle. Therefore,

in addition to the inviscid and the complete viscous-inviscid interacting

solutions, interacting computations were made with the the boundary layer

and wake originating qnly from the external surface Of the nacelle,

I"
I
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_' Similar comp_utationswere also made with tileboundary layer and wake

originating only from tl_e internal surface.
i

i i
! " Figure 20 presents the_computed pressure distributions on the ]

. exter,_alsurface of the nacelle for all four solutions, and shows that :

_i,_ neither the external nor the internal boundary layers greatly !nfluence _i
zi
I

,,L_li,,,pressures..The viscous effects on the internal nacelle pres-
: 1

sures are illustrated in figure 21. These effects are substantial, and I:'
'41

[ consist of both a change in the overall pressure level and tilegeneration ,'i

:""_ of a pressure gradient in the axial direction. ;i'i

First consider the influence of the boundary layer and wake !_

!i originating from only the external surface of the nacelle. Part (a) of I"
figure 21 contains the pressure distributions for the complete viscous- .,]_

,U
inviscid interacting solution, and for the solution which includes the _,_

_ viscous effects produced by only the external nacelle surface.. The common

ii.'!' f_ctor between the curves is that each includes the viscou_ effects 'ii,_

•!; ' originating from the external surface of the nacelle. Even though there i!'
'_ are differ.,_ncesin the pressure gradients between the two calculations, ,;

i ithe exit pressures in both cases are the same.

K_- In part (b) of figure 21, the viscous effects due to the external

Ill nacelle surface are absent. Part.(b) presents the inviscid solution andthe interacting solution with only the internal boundary_layer and wake.

As in part (a), th_e pressure gradients are different but the exit_
il

pressures of both curves are equal. The message of the comparisons is
i.

_ that the external boundary layer and its wake in combination with the
R
_' inviscid flow determine the exit pressure and hence the overall pressure

i .L,

Fiii._i level of the internal flow. The internal boundary layer has very little

I_! effect on the exit pressure. Comparing parts (a) and (b) also illustrates

.'.---_W "Im'l,_. _.." , - " -
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Figure 20. Viscous effects on the extern_l nacelle pressures.

! (M= = 0.80, a = 0.0°.)
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i) '. tllattl_eexternalviscouseffectsproducea lowerexit pressur-eand hence '_,
i. ! (

, a loweroverallinternalpressurethat is in betteragre@.m.e.n._._.w..it_h,the.........

t; wind-tunn_ldata. (_

,lext,considerthe effectof the boundarylayer originatingfrom ._

only the internalsurfaceof the nacelle, In..parts(c) and (d) of )'
.... " I

figure21, the correlatingfactor__isthe viscouseffectsp!i.pducedby the il

insidenacellesurface. In part (c),both pressuredis_rib,_tionsare the
t.,

'_; resultof calculationsin which the internalviscouseffectsare absent,_
L_

!!_i!_ and in part (d)both are the resultof calcula,tiun_with them present. An
!:i.
i!_ examinationof both sets of pressuredistributionsillustratesthat the

v

[ i_ boundaryl.ayeron.the interne]surfaceoF tllenacelleprnducesa pressure

' gradientin.thenacelleduct. In addition,it shows that the gradientis

essentiallyunaffectedby the boundarylayer on the outsidesurface.One
[,

dimensionalaxisymmetriccalculationsdemonstratethat the gradientis the

_:i. resultof the changein the effec(;iv,._duct area due to the growthof the
:L:

internalboundarylayer. For example,the one-dimensionalcalculation

i" yieldeda pressurecoefficientgradientof 0.13 versusthe gradientofk_

0.11 givenby the presentviscous-inviscidcalculati_)n.

,.I.nte.ract.in_ mechanism.A more completeunderstandingof the, mechanismby which the boundarylayerproducesthese results,and of the

,. relativeinfluenceof each bou_darylayer..onthe overallflow patterncan
i

_ _ be gainedby alsoconsideringfigures22, 23 and 24. Figure22 showsthe
_'%. _

',' _ strengthof the sourcesand sinkstllatare imposedon the nacellesurface

,;!,, and in the wake in.order to satisfythe transpirationboundaryconditions
r

,,_, for the continuityequation. The strengthsare equivalenttO the stream-

:/_ wise rate of change-ofthe mass flow deficitproducedby the boundary
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[, , layer or wake The figureillustratesthat the externalboundarylayer..
I. and its associatedwake resultin boundaryconditionsthat are nearlyan

i,:':_ order of magnitudelargerthan those associatedwith the internalboundary ..............."layer and wake. The figurefurthershows thatthe dominatingportionof ,'
:_! it:

the externalviscouseffectscomes fromthe trailingedge r._._ionwhere ,i

there is a rapiddecelerationof the externalflow and consequentlya ii

rapid buildup of the boundarylayer• _j

_. The influenceof these_iscous__o,mdaryconditionson the flow field _

in the vicinityof the trailingedge is illustratedin figure23. •Part

[ (a) of the figureshowsthe velocityvectorsin the vicinityof the
_: trailingedge for the inviscidsolution,and part (b) the correspondingI

!! vectorsfor the interactingsolution. Comparingthe two velocityvector

.:iI plots illustratesthe differencein the basic natureof the two solutions;

_.,. the inviscidsolutionpossessesa greaterinwardradialcomponentof the

flow whichs,,ggestsa greatercirculation.
:,_[.

_.'' A quantitativecomparlsonof the viscousboundaryconditionson the i!.!

) velocityvec_ors_i_mnediatelydownstreamof the trailingedge of the. I"

• ii' • • . ., nacelleis pres.entedin figure24 Part fa) of the figurep,-esentsthe

i velocityvectorsof the.inviscidEuler solution,and the ':',teractingsolu- il

tion with only the externalviscouseffects. It showsthat the viscous

effectsoriginating_fromthe externalsurfacestraightenout the. il

.... _,. streamlines,thusreducingthe circulationin the trailingedge region, ii
- p

,;-i The effectsof viscosityproducedby the internalsurface,part (b),show I)
!.

;; _ the oppositeeffect but are much smallerin magnitudeas•.wouldbe
';. _ • , (,

il "
expectedfromthe resultspresentedin figure22. The net effecton the

!;' i_

_L"_I velocityvectorsimmediatelydownstreamof the trailingedge is presented ,
< " in figure24(c). Basically,the viscouseffectsreducethe inwardradial :



i

i'. li • ii

(b) VisCous-invlscid interacting velocity vectors.

!.....! Figure 23..Viscous effects on the velocities in the vl_inity
F' !
!,--'j Of the trailing edge. (M® = 0.80, __= 0.0°.)
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i/ii VI$COUS-INVISCIDINTERACTION

f" (a) Inviscid versus external viscous-inviscid interaction. ,'
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(b) Invlscid versus internal viscous-inviscid interaction.

Figure 24. Detailed comparison of velocities immediately

6ownStream of. the trailing edge. (visCous and

inviscid solutions, M = 0.80, _ = _.0°.)
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: 115velocity component Of the mainstream and increase its streamwise

! COinponent. !_
!_

!' Decamberin_ concept. The_external viscous effects produce a change

_iI '_,in the stream velocities that is similar to a change that would be .......

_ produced by decambering the nace]le's airfoil. The analysis presented ,_
,i

above strongly indicates that the decambering effect is responsible for

i decreasing the exit pressure and the overall internal pressure level from T__,_

their inviscid values. This theory can be further evaluated by two !!

completely inviscid.tests. For the first test, recall the comparison of _

the two inviscid solutions which were calculated with the impl!cit

computational procedure (see figures 3(a) and 11). For the "non-Kutta"

calculation presented in figure 11, a substantial inward radial velocity i

existed at the trailing edge of the nacelle. For the "Kutta" calculation

presented in f.igure3(a), this velocity was set equal to zero. As would _....

be expected, imposing the "Kutta" condition.lowered the internal pressure

f" level so that it agrees much better with experiment, i
The second test was conducted with the explicit Euler code. In this

test, an infinitely thin trailing edge extension, or tab, was attached to

;.. the nacelle parallel to its axis of symmetry. Calculations using this
_'

' configuration produced even more dramatic results than those of the first

test. The _internalpressure coefficient was lowered from_O,3, a value

which _._ashigher than the experimental pressure coefficient, to 0,1, a
i

'! I value approximately one half the experimental pressure coefficient.i

li I The-results presented above show that the externalboundary layer1 eff_c_.tvelydecambers the airfoil of the nacelle and alters the overall

!_i!. flow pattern by redirecting the streamlines closer to the free stream
i

, "'I;
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. • cIirection. A sketch of.the inviscid and viscous Streamlines iS presented in I

I; ' figure 25.. The compression on the external surface of the nacelle is_thus f_i'

il!ii'_'_!i weakened, resulting in a less positive exit pressure and a less positive

!._ternalpressure level which agrees better with wind-tunnel data than the

].,vi._;idcomputations,

Implications of viscous effects. It is obvious that the.magnitude

of these results i_sconfiguration dependent. However, one concludes that,

_ in.the absence of any artificial "Kutta" condition, the Euler equations i

give the correct inviscid.trends. That is, that the iF,viscid press'Jre ii._

,_ level inside the nacelle's duct is more positive than would _e experienced

_ in reality. Hence, if simulation of the correct mass _low through the

nacelle's duct is important in analyzing,a fluid flow problem, then !

viscous effects must be included,in the computational model. !'
These implications also extend to wind-tunnel testing.of models with

il
; flow-through nacelles. In the early stages of developing a new aircraft, _

'i'" when many different confiuIr_tions must be tested,,the complications and i':i
_ expense, associated with.testing powered models necessitates the use of _:

models with flow-through nacelles. Adjustments to the flow-through data

1are then determined by testing powered versions of the most promising

:li.: configurations. This experimental procedure was followed by Capone

_ et. al42 iq determining the overall,aerodynamic characteristics of a new .

• ! ,

fighter aircraft. AS the present viscous-inviscizJinvestigation shows, ,,
v
i the external boundary layer on t.henacelles can affect the internal mass

'i' _ flow as well as the pattern of the streamlines both behind and in front of
_' the nacelle. Thus, the accuracy of simulating the nacelle boundary layer i

iii cOuld significantly impact the measured aerodynamic characteristics of the I

i'

#

__.'-. _ --.....2-'-.-" ' 2 i,
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.; Figure 25. Sketch of 1;_,einviscid and viscous streamlines. ..
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configuration.

_[
_,!_ Summar7 of the ViscousEffects

In summary,for predictingthe flowon the externalsurfaceOf the
i

nacelle,viscouseffectswere relati_velyunimportantand the Euler <

i_ equationsgave goodsolutions. In contrast,,for_predictingthe flow

_ insidethe nacelle'sduct, the viscouseffectsare extremelyimpor';antand
.L_ both the externaland in_,ern_lboJndarylayersand wakesmust be

_i simulated• The internalboundarylayer createsan axial pressuregradient

_.iI in the nacelle'sduct, but essentiallydoes not affectthe overall

_ ; pressurelevel The externalbound.'_ylayer and its associatedwake

i changethe overallpatternof the inviscidflow. They displacethe

'_:_i streamlinesaway from the externalsurfaceof the nacellethus effectively ,
!_ d_;c_.,_beringthenacel_e'sairfoil. As a result,the compressionat the

:_;: trailing,edge is weakened. This givesa less positiveexit pressure,and ,
i

:_ hence a less positiveoverallinternalpressurelevelwhich is closerto i

!:-: the free streamvalue and agreesbetterwith wind-tunneldata than the ,

• iq_iscidcomputations. HencE,if simulatingthe correctmass flowthrough '.
i

the nacelle'sduct is important,then viscouseffectsmust be includedin
';, the computationalmodel

ii,

i _._-................................±-/," _ " :: - "--'_-"T'.............. .'T_I'_I"_
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ii CHAPTER V_III.

_'_ CONCLUDING REMARKS

_i A study has been made of the solution of the three-dimensional flow

field for a flow-through nacelle. Both inviscid and viscous-inviscid

interacting solutions were examined. Inviscid solutions were obtained

with two c_ifferentcomputational procedures for solving the three-

ili/_ dimensional Euler equations. The first procedure employs an

L approximately-factoredalternating-direction-implicitnumerical algorithm,
i

_ and required the development of a complete computational model

i specifically geared to the nacelle problem. Tne second computational

_" technique employs a fourth-order,Runge-Ku_t.tanumeric_l algorithm which was

modified.to fit the nacelle problem. Viscous effects on the flow field ii
_. were evaluated with a viscous-inviscid interacting computational model. ,

" This model was constructed by coupling the expl.icitEuler solution

procedure with a "lag-entrainment" boundary layer solution •procedurein a

global iteration scheme. The computational techniques have been used to

compute the flow field for a long-duct turbofan engine nacelle at free-

stream Mach numbers of 0.80 and 0.94 and angles of attack of 0° and 4°.

:; The numerical experiments show that for predicting the flow inside

i. the nacelle duct, the viscous effects are_extremely important and both the

'_ ' external and internal boundary layers and wakes must be simulated. The
I"

i_ internal boundary layer creates a pressure gradient in the nacelle duct.
_ The external boundary layer and wake displace the streamlines away from

_i ,
i _ 119
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1 the external surface Of the nacelle, thereby red,_cingthe compression at ,I

i the trailing edge. This gives a less positive exit pressure, and hence a;.

_ leSs.positive overall internal pressure level which agrees better with .i

C
experiment than the inviscid computations. .}

In contrast to .the internal surface, viscous effects were relatively I;,

unimportant for predict.ingthe flow on the external surface of the '

: nacelle. Good agreement is shown between th_ computational results of ,.,

i!i:i__'.i_, both Euler numerical procedures and wind-tunnel.data on the_.exter_al i:i,._

_'__'i_ii!_.ii surface °f tD'enacelle" The s°luti°ns at O° angle °f-attack exhibitthe' !I

.-_ proper axisymmetric behavior"even though the computational techniques are

three dimensional. At 40 angle of attack_ the solution has a_de.fLni.'.a i
i! _ three-dimensional character. The calculationscorrectly predict the "

: i_ changing n_ture of the flow at the.supercritical free stream Mach number

_.. of 0.94, and predict .the quantitative results at this Mach number very
i- w:.l 1.

Th.._solutions using both Euler computational techniques exhibited a ._I

total pressure loss on the internal surface, of the nacelle. An

investigation of the loss proved that it was the result of the flow

stagnating on the external surface and expanding around the sharp

discontinuity in the surface of the nacelle at its leading edge. The

studies indicate that the .useof ......C-type grids could probably eliminate i• o , ..... i

P

the loss,_although even with the C-grid, care.must be taken to use !i

i sufficient grid resolution to resolve the stagnation region near the

" leading edge. However, for sharp leading edges or where the H-type grid

Ii is Otherwlse_desirable, it appears that some (problem-dependent)total

i_,:.' I pressure loss is inherent to numerical Euler-equation solutions.

,- " ........... -- .... i.,u_'. "_ _ : ilL-' _]_"2__:22_ ........................ "...... - ....... <':'_---_'_ : .... _"'_" ,,



121
t.:, i

Finally, in comparing, t_!L.etwo-numerical techniques, the explicit

: computational technique gives a more accurate solution fOr.the same number

I.'_ of grid points t'_anthe.impliCit technique, The implicit computer code

Ii£_,, requires less computer SZorage while the explicit code runs faster, For

:.. i the implicit computational procedure, it was found that a radiation.

boundary condition imposed at the far-field and outf_,owboundaries gives

I::-_' better convergence of the computations than the condition p : p_ , Even

_._,.. though reasonably accurate engineering solutions were obtained _vitnthe
h :

!iL-i''il implicit computational,procedure, a weak instability was discovered in it _i

);_ when applied to the.three-dimensional nacelle problem and the solutions !W

.....I never.actually converged, This instability would severly restrict the use

: il of.this implicit method for studying problems of this type. The explicit ,_
i'. computational technique .is stable; however, its convergence rate is less

, than desirabl= The weak instability of the implicit scheme coupled with

the slow rate of convergence of the explicit scheme provid.=smotivation

.. for further algorithm development
i

i

i'

i_' .
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t: APPENDIX

TWO-DIMENSIONAL INVESTIGATION OF THE'TOTAL PRESSURE LOSS

I In Chapter Vl, part of the discussion centered upon a total pressure

Ii i IOSS in the computed flow on the internal surface of the nacelle, a" feature of the flow.that is phyBically incorrect. It was stated that the

direction-implicit computational procedure, and that at the time, it was ,'
" _i

attributed t.oincorrect treatment of the leading edge boundary. The_ i
" i
i i

i explicit Runge-Kutta computational procedure does not contain a direct a

i,_} treatment of the leading edge boundary. Therefore, when solutions ............_.

i computed by the explicit procedure contained a similar loss in total

i pressur_ an investigation to determine the cause of the loss was !

!} considered desirable. This appendix summarizes the resulting

! investigation.

i• For the mor_ detailed investigation into the source of.the loss, an

'i unswept, untapered wing.was chosen as the test configuration. Using the

• i unswept untapered wing resulted in a physical problem with two-

_ _ dimensional flow, but retained the three-dimensionality of the computa-F _
tional procedure Symmetry of the boundary conditions could beI •

>. .
L

; _ maintained. Also, by adopting a symmetrical airfoil, and by comparing the
i.

_' - solutions on the top and bot._zomsurfaces of the wing, the_coding of the
i, !

I" i surface boundary condition inside the nacelle.could be verified.• This was

_ossible because the boundaryconditions, and hence the computer codings,

;' _ 122
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_ for t_e bottomsurfaceof the win9 and for tl_einsidesurfaceof tne

nace'Lle are identical,

ii Solutionsfor the wing were obtainedusing the explicitRunga-Kutta

! algorithmforboth a.symmetricalairfoiland a camber;_dairfoilwith H-
C

grids and C-grids. FigureA-I shows examplesof the two types of grids.

The H-grid resembled as closely as possible the grid used for the

• nacelle• All calculationspresentedin the appendixare at an angle.of
!

'_ attack of 0.0 °.
i:

_'Ii._ FigureA-2pres._ntsthesolution. a_afree._treamMachnumberof #_ii

_i!:! 0•80 for a wing with a symmetrical airfoiland an H-grid• The solu=ion
._ is symmetrical about the .cord line, and, even though there are regions of

II 'T"supersonicflow,the total pressureson both surfacesare essentiallyat i,J

• the free streamvalue• The slightvariationin the total pressureswhere _

_i_ t_e flow compressesfrom the negativepressurepeak is possiblythe result....... _'_I
}! of excessivenumericaldissipation,.The symmetryof this solution,and !

_i_ the equalityof the total pressureson the surfaceto the free stream i
"i total pressurestronglyindicatesthat the surfaceboundaryconditionis i

i; programedcorrectly.

The computed total pressures for the wing with.a cambered airfoil '

havingthe same cross-sectionas the nacelleand an H-gridare presented
t

in figureA-3 This solutionis also at a free streamMach numberof I• !

0.80 and an angleof attackof 0.0°. The figureshowsthat there is a

_, largertotal pressurelosson the bottomsurfaceof the wing than on the

corresponding inside surface of the nacelle, and there is even a.]oss on

the top surface•

In order to i.nvestigate the effect of rounding .the leading edge,

it'scontourwas changedto a circulararc which was tangentto the top

i

I

g
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(a) Pressure coefficient distributions.
• i

I

_,i Figure A-2. Solution for the wing with a symmetrical airfoil.

(H= = 0.80, a = 0O, H-grid.)!.
r:



_" Figure A-2. Concluded.
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:i, I and bottom surfaces of the airfoil, and.a C-grid was adopted. Figure A-
4(a) presents the total pressure distributions for this configuration at

ii the same free stream conditions as the _reviou_ calculations. It shows

ii' that while the the total pressure is considerably closer to the free

stream value than for the H-grid, it is now too high. Whether the calcu- _i
: I,

' lated total pressures on the surface are higher or lower than the free

stream value depends upon the interaction be_Lweenthe imple.mentationof
i

_ _ the boundary conditions and the numerical dissipation43
_'_:_,..

_=._ An examination of the Mach number contours for this calculation,

!:,_ presented in figure A-4(b) and (c), reveals two interesting features of 1
i;r,

tn. flow. The first feature is that the cambered airfoil is at 0.0° angle

_ of attack, and yet the fl_w stagnates on the upper surface of the wing

:._ near the leading edge. In addition, as the flow expands around the
i,I

leading,edge, a supers.o.nicbubble with relatively high Mach numbers is

; cre_ted on the bottom surface. The gradients in the supersonic bubble

; coupled with the grid resolution and the numerical dissipation probably

_'_ produce the change in total pressure on the bottom surface of the wing.

i': Possibly a finer grid in this region could alleviate the problem.
C

However, the present calculations resulted in near saturation of the i

_ incore storage of the Cyber 203 computer,By eliminating the severe expansion around the leading edge, the

:.. total pressure losses on the surface of the wing can be prevented. This

: , has been demonstrated for a symmetrical atrfoil using the H-grid and was I:

Ii presented in figure A-2. It will also be demonstrated,for the C-grid in

i/i
!!: two ways, first by going to a symmetrical airfoil as in the case for the
! :;i H-gMd, and second, by lowering the free stream Mach number• Figure A-5

ii_i presents the Solution for the wing with the symmetrlcal airfoil and the C_

.i
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_, (a) Total pressuredistributions. ;

FigureA-4. Solutionfor the wing with a camberedairfoiland a II
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(b) Mach numbercontoursin the vicinityof the leadingedge.

FigureA-5. Continued.



(c) Total pressure distributions.

Figure A-5. Concluded.

r .

i_



,__+ ,... ,,., _,+++,+ +

"+i

+T

!'i

j" +
'I

+,,+!+i tin5grid at a free strealn Mach number of 0.80. The pressure coefficients,

_i which are presented in_part (a) of the figure, agree well with the corre-
i,

[ spO.ndingpressure distributions calculated with the H-grid. Figure A+

5(b), which shows the Mach number contours, illustrates that.the

_:'_ stagnation point is at the forward most point of the airfoil, and.that the

strength of the expansion at the leading edge has been reduced.....The

resulting total pressure distributions are presented in part (c) of the

figure, and+show that+the total pressure on the surface of the wing

if+! remains close.to the free stream value.

._ By reducing the free-stream Mach number,.it is also possible to

reduce the strength of the expansion. The results for a free stream Mach

number of 0.40 are presented in figure A-6. The pressure coefficients,

> presented in part (a), look reasonable although there are no_experimental

data with which to compare them. +The Mach_number contours in the vicinity

ii of.the leading edge, and the total pressure distributions, parts (b) and

_ (c) respectively, illustrate the reduced strength of the expansion at the

leading edge, and the resulting surface total pressures which are

i essentially at the free stream value.An investigation to determine the cause of the total pressure loss

i"• in the..computed+.flowon the internal surface of the nacelle has been

, summarized,in._thisappendix, it was found that the loss _as associated
L_F

with the flow expanding around the sharp +leadingedge of.the nacelle and• !

_: _ thus creating severe local gradients in the flow field. It was determined

i. that by reducing the severity of these.gradients, the total pressure loss

could be prevented Although the specific approaches used for the wing

L (C-grid and reduced Mach number) were not attempted for the nacelle, an

'( alternate approach in which the nacelle geometry was modified such that

I

k t,
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(a) Pressure coefficient distributions.

Figure A-6. Solution for the wing with.a cambered airfoil and a
Ii

! C-grid at a free streacLMach number of 0.40.
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(b) Detail of Mach number contours at the leading edge.

:. Figure A-6. Continued.
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i_ (c) Total pressure distributions.• i
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Figure A-6. Concluded.
i

!.
E ',

i: I

i,

i.

it:

1'7'

U



' " ' _'q_#i

139

_tagnation occured precisely at the leading edge was _ried, This_modified

,I nacelle produced similar results in that the loss..in total pressure, was
1

":, eliminated (see Cnapter VI_ The implication is that almost any modifica-• • . # •

_;._, tlon.to the lea¢i.ng-edgetreatment that either reduces or resolves the (

flow gradients should produce similar results, i
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