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PREFACE

This report summarizes the development of theoretical rotor blade
structural models for designs based upon composite construction. Care has been
exercised to include a member of nonclassical efiects that the author's previous
experienne indicated would be potentially important to account for. A model,
representative of the size of a main rotor blade, is analyzed in order to assess the
importance of various influences. The findings of this model study supgest that for
the slenderness and dosed cell construction considered, the refinements are of
little importance and a classical-type theory is adequate, The potential of elastic
tailoring is dramatically demonstrated, so the generality of arbitrary ply layup in

the cell wall is needed to exploit this opportunity.
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INTRODUCTION

Composite material systems are now the primary materials for helicopter
rotor system applications. Bearingless rotor designs proposed for the LHX
helicopter are an example. In addition to reduced weight and increased fatigue
lifs, these materials provide designs with fewer parts which means increased
service life and improved maintainability. Also, in terms of manufacturing, it is
possible to achieve more general aerodynamic shapes including flapwise variation in
planform, section and thickness.

The aeroelastic environment in which rotor blades operate consists of
inertial, aerodynamic and elastic loadings. Because of the directional nature of the
composite materials, it is possible to construct rotor blades with different ply
orientations and hybrid combinations of materials exhibiting coupling between
various elastic modes of deformation. For example, if 'the fibers are placed
asymmetrically in the upper and lower portions of the blade, there will be a twist
induced by flapwise bending, This provides a potential for improving the
performance of a lifting surface through aeroelastic tailoring of the primary load-
bearing structure. Aeroelastic tailoring of a composite structure involves a design
process in which the materials and dimensions are selected to yield specific
coupling characteristics which in turn enhance the overall performance of the
structure. The design of such advanced structures requires simple and reliable
analytical tools which can take into consideration the directional nature of these
materials. In this report, a comprehensive bending theory is presented to aid in the
design of composite rotor blades.

Most of the existing analyses are formulated for isotropic metal blades. A
general tendency is to extend these analyses to composite blades with bending and

shear stiffnesses appropriately modified. This, however, does not describe the

e YA A e



EE Gt

b W B (] il - e

anisotropic character of the composites, One of the earlier efforts to account for
this particular feature of composite wings is mace by Weisshaarl. He has developed
an engineering theory incorporating the bending-torsion coupling effect for the
study of divergence of swept forward wings. Later Mansfield and Sobey2 have
presented an account of the stiffness characteristics of a cylindrical tube
representing a helicopter blade composed of a number of plies of arbitrary layup.
This theory is derived within the context of Batho-Bredt engineering analysis of thin
walled structures and small displacements.

The above theorles appear to be adequate for predicting the overall
response of slender blades. These theories, however, do not have the capability to
predict the stresses or the response with adequate precision when the blade Is
not slender. A complex three-dimensional stress field develops in such blades
which is further complicated by the anisotropy of the materials and inhomogeneity
of blade construction. Finite element analyses are reported in Refs. (3) and (4) to
obtain stiffnesses and stresses for thick walled blades. For an accurate
determination of the stresses, one needs to employ a large number of elements
which makes this type of analyses computationally unacceptable for design
purposes,

3 have studied the effects of fiber orientation on the

Hong and Chopra
flutter of rotor blades. This analysis is based on the nonlinear kinematics of
Hodges and Dowell®,

Recent theoretical research7 has contributed a new appreciation for other
nonclassical effects in addition to transverse shear deformation in bending-related
behavior. A nonclassical contribution to axial stress and transverse normal strain
affect response in planar bending situations significantly for certain combinations

of geometry and stiffness for homogeneous structures. Incorporating these

influences, theories were developed for homogeneous platess, stiffened pla‘tes9 and
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larninateslo'“. Figure | depicts the response contributions incorporated in these

theories. Stresses and displacements are improved beyond linear (with respect to
thickness coordinate) distributions, yet the overall equations retain the character
of an engineering theory. This is a distinguishing feature for it allows the
integration of nonclassical influences on a simple basis.

The nonclassical influences relevant to rotor blades are those due to
transverse shear, bending-related warping, stretching-related warping and torsion
related warping. Laminated composites are in general strong and stiff in the plane
of lamination and weak and flexible in the transverse direction. Consequently,
transverse shear deformation becomes much more pronounced. Bending-related
section warping also affects reponse in a similar way, but it is due to the fact that
bending strain does not strictly correspond to planar deformation. Torsion-related
warping arises whenever a section Is restrained against out of plane deformation.
The key to improving the stress predictive capability of a theory is to account for
these effects correctly. With this background, the present work is undertaken. A
comprehensive theory is developed within the context of small displacements for a
single cell composite blade model. The distributions for the warping displacement,
axial stress and shear flow are improved.

The starting point is the engineering theory of Mansfieid and Sobeyl. The
kinematic procedure to develop the equations follows that of Ref. (8). An example
is presented to illustrate the potential for aeroelastic tailoring and the significance

of nonclassical influences for rotor blades.
OVERVIEW

A typical composite rotor blade cross section appears in Figure 2. For a
preliminary design, it is common to consider the forward structural hox as the

primary stiffness producing and load bearing structure. The remaining structure is




considered only as a mass contribution, along with tuning weight which is added to
favorably alter the dynamic characteristics. Therefore, the foregoing development
is for a single cell beam which is shown in Figure 3 together with a reference
coordinate axes system.

The dassical development of the theory of thin walled beams under
combined loading is based on two hypotheses. The first one is the Euler-Bernoulli
hypothesis which states that plane cross sections normal to the axis of the beam
remain plane during bending-related deformation and that these sections remain
undistorted in their own plane. The second one is due to Saint-Venant which states
that the applied torque is carried by a uniform shear flow and the cross sections are
free to warp In torsion-related deformation. According to the first hypothusis, the
only significant stress is the axial stress, g, This stress is effective in carrying
bending and stretching-related loads. For thin walled beams, these assumptions

lead to the following results:

ulx, y,2) = U- y‘v"’x - zw’x 2w ¢,x (n
vix,y,2) = V-z¢ (1a)
wix,y,2) = W y¢ (1b)
N = y_&‘ (2)
xs —
2Q
where w = -ZI-J.rds (2a)

Here, u, v and w denote the components of displacement of any point on the cross
section in the directions of the coordinate axes x, y and z, respectively. Similarly,
U, V and W represent the respective displacement components of the origin of the
(x, y, 2) coordinate system. The twist of the cross section is denoted by ¢. In

Saint-Venant-type torsion, the variation of this variable is linear with respect to
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the axial coordinate, x. U, V, W and ¢ are functions of x only. It is convenient to
describe the variation of any given parameter on the cross section with respect to a
circumferential coordinate, s, whose origin can be arbitrarily selected. As shown in
Figure 3, the perpendicular from the origin of the (x, y, z) coordinate system on to

the tangent at any point s on the circumference is denoted by r. N g Is the shear

X
flow. [t is the shear stress resultant per unlt length of circumference. Mx is
the applied torque and §} is the area enclosed by the box.

There are additional assumptions made regarding the stress state in the
structure. Let s and n denote circumferential and tangential coordinates so that (x,
s, n} forms an orthogonal coordinate system. With respect to this coordinate

system, Oy and g g are the dominant stresses in the structure. The axial stress,

X

0y is due to bending and stretching and the shear stress, Tygr is due to the applied

torque. In the classical development, the remaining stresses -- o

w90

g
and X

fs n

are assumed to be zero because their influence on the response is negligible. This
is justified for the following reasons.

In view of the nature of the construction, the structure cannct develop and
support s’ Therefore, this stress is neglected. The skin of the structure is
usually very thin. Therefore, the skin is assumed to be in a state of plane stress
with respect to the n-coordinate direction, which means that 0, and ¢ are zero.
It is essentlal for the aerodynamic reasons to preserve the airfoil shape. The
rigidity of the cross section is maintained by an internal structure, such as a
honeycomb filling which does not add measurably to t.he overall stiffness of the
structure. Therefore, the circumferential normal stress, o g cannot develop. It is
also not possible to account for this stress within the limitations of a one-
dimensional theory. In the new theory, these stress assumiptions are retained.

In order to account for the transverse shear, bending-related section

warping and torsion-related section warping, a priori knowledge of 9, and T s



is necessary. Statically equilibrating stresses can be developed based on the
assumptlons given by Equations ‘1) and (2). As a first approximation, it is assumed
that these stresses are sufficient to estimate the nonclassical effects. A brief
summary of the procedure for developing these stresses follows. This procedure is

similar to that of Mansfield and Sobey!

up to Equation (16). It serves to introduce
notatlon and provides a basis for the new theory. A flow diagram of the subsequent

development of the new theory is shown in Figure 4.
DEVELOPMENT OF ENGINEERING STRESSES

The skin of the single cell tube is considered to be a laminate built from
distinctly different layers or lamina. For a typical lamina within this laminate, the
relationship between stresses and strains referred to x, s coordinate system may be

expressed in the following matrix form

Ty Qi Q) Qe Ex T
O Q2 Q2 Qa6 € }
\_%xs Q6 Q26 Q6 Y xs

Where €y and €g are the normal strains in x and s coordinate directions. Vs

Is
the engineering shear strain along the contour of the cross section. Q.lj are the
stiffnesses which depend upon the fiber orientation and elastic moduli of the
lamina. Equation (3) is derived in Ref, (12).

Now, the layers are assumed to deform together so that the skin can be
represented as a homogeneous anisotropic material represented by averaged
material properties. Let N, N, and N, be the stress resultants per unit length in

s-coordinate direction. Then,



Ny [ Au A2 Mg 2"
Nys Alg Agg Age Yxs
Where
N
Ay = Z f Q?j() dmy  1,j=1,2, and 6 (5)
=1

and N denotes the number of layers in the skin. N_ is negligible in unpressurized

$
slender structures, so it is set to zero. Equation (4) is contracted to the following

result:
[}
Nel [Au “ApfiaiPan Mg At/ A ] ey
Nys Alg~AiahaelPaa  Age-AaePae/Aoal Yxs
. (6}
It is convenient to have Equation (6) expressed in the following form:
Ny Hy; Hy ey
= (7)
Yys Hy) Hag Nys
where
Hyy = /(Agg - Agghoe/Asy)
Hy = - (A - ApAg/AgpHy,
Hy = Ay - ApAp/Ayy +(Ajc - ApAge/AxgiHy,
(8a)

The resultant loads acting on a given cross section are defined by the

following integrals:



(N, My, Mz) = fo(l, z, yids (8b)

Where, N is the tensile load along x-axis, M is the bending moment about y-axis

y

and M, is the bending momzit about z-axis.
The location of the origin of the y,z axes and their orientztion are at

present arbitrary. The ensuing analysis ls greatly simplified if they are selected so

that

f(YD Z, yZ)HudS = (0’ ol O) (9)

The resulting locus of origins of each section, then, defines the tension axis of the
blade and the new y, z axes are the principal axes of bending. Now the stress

resultants are evaluated with the aid of equations (1) and (7).

- M
N =U xcbuuds- X f H,ds (10)
' j 20
M = -w_ Hz2ds Y & 1 205 (1)
y - T Vxxy U T 0 2]
M. = -V __dH 2ds-bf-’£ H., yd (12)
z - " Vxx ¥y 2a 21Yds

Since the cross sections undergo only a rigid body rotation and also because

the axial displacement, u, is continuous along the contour df the cross section, the

rate of twist is evaluated from the following iormula(13 )
1l ¢y, ds 13)
%7 7 -{ *

and Equations (1) and (7) to obtain

¢, =(U, fHZl ds - W,xxf”mz ds

M
X -
-V Pz v s+ -z-:ﬂ*szzds 2% (14)

Equations (2), (10), (ll), (12) and (14) are now recast in the following form to obtain
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the overall engineering elastic law for the structure
4 h K r
Yx 3 0 0 Si4 N
'w,xx 0 522 0 524 My
< >= . \ 15)
Vx| |0 0 S33 S34 M,
¢ S 5 S S M
L X 14 24 34 .l&lg_ L X
S is a symmetric flexibllity matrix whose nonzero elements are given by
5, = l/fH“ds
5,, = llfH 22 ds
22 1
2

844 = 533/(2§§H22 y ds)

S,, = 3£H ds + — ¢‘H ds

44 mz 22 2?? 14 2

1
+ H,.z ds + H,, y ds (16)
27 2af 2l S2u4 f 21

The development described so far is reported in Ref. (I). The constitutive

equations (I5) are to be supplemented with the following equilibrium equations

N_+n =0 (17)

My’x = QZ (18)
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Myx = Q 19
Qz,x+qz = 0 (20)
Qy+dy =0 @n
Mx,x+mx =0 (22)

to form the engineering theory for single cell laminated beams under combined

loading. Here, n, represents the Intensity of axial distributed loading, Qz and Qy

represent shear stress resultants, q, and qy represent the distributed loads and m.

represents the distributed torque. 3
In order to proceed with the development of the new theory, it is necessary

to have statically equilibrating stress resultants. The axlal stress resultant can

be represented in terms of overall stress resultants with the aid of Equations (15),

(1) and (7)
Nx = IIN + szy + 153Mz + IQMx (23)
where
i = H)§)
f3 = yH| 54
By = HySiy v 2 HySgy vy HySay - Hyy/2R
(24)

The nonuniform shear flow due to bending and stretching can be derived from the

following equilibrium equation

Nx,x + Nxs,s =0 (25)
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and an additional requirement that the shear flow be equivalent tc the applied
torque. This result can be given as
M
- L f f
N = = fo,x ds + 7 rds Nx,x ds (26)
With r denoting the perpendicular from the origin to the tangent at s. The axial

stress term can be eliminated from above with the ald of Equation (25).

M
x *
NXS = 5-.‘-] - fb N’x - fﬁMy.X - 17M2’x - fsMx’x (27)
where
l *
fi = ff(i-‘i)ds - '26 fr ds t(i'#)ds H l=5,6,7'8 (28)

Equations (23) and (27) provide stress resultants which are In static equilibrium. A
comparison of Equations (2) and (27) reveals that the two expressions for the shear
flow are different. The new shear flow s nonuniform along the contour of the
cross section and this is due to bending and stretching loads. The nonuniform shear
flow in turn affects the twist; its contribution can be evaluated from Equations (13),

(7), (15) and (28). The result can be expressed as

dx = SN +S5yMy + 59, M, +5,,M,

y

+ £9N,x + flOMy,x + flle,x + leMx,x (29)

where

f 1=9,10,11,12 (30)

. .4 is
Tl A TR O
flO and f“ will be zero if the shear resultants pass through the shear center. This

does not, however, indicate that twist will not develop under bending and stretching

related loads. The presence of coupling includes this possibility.
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DEVELOPMENT OF THE NEW THEORY
The theoretical developmental process is described in the form of a flow
chart in Figure 4. The fundamental assumption that permits this development is
that the transverse shear strain can be estimated from the statically equivalent
stresses given by Equations (23) and (27). It is also assumed that the cross sections
undergo a rigid body rotation, 1f n is the tangential displacement in the s-
direction, then

ns= r¢ (31)

The linear strain-displacement relation for the transverse shear strain is given by

Yys = Ugt Ny (32)

The following result emerges upon integration of u _ with the aid of Equation (31)
]
u = U-zw,x-yv’x-m ¢,x+_fosds (33)
where

w 2 rds _ {34)

The first three terms in Equation (33) satisfy the engineering hypothesis that plane
cross sections remain plane during deformation. The fourth term denotes the
effect of restrained warping and the fifth term contains the effect of transverse
shear deformation. With the aid of Equations (7), (10, {15), (27) and (29} the non-
classical part of the displacement is expressed in terms of force resultants to
arrive at

N+f

13 l4

+ f17N,x ¥ f:s’“ +E1gMy o +T20My x (35)

where
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3

.‘x fIB = -ZmSm +f HZISII ds
- 20S,, + f Hy Spp 2 d5

£ = - 205, +f(H215m + Hy 25, + Hy, ¥y, + Hypl200)ds

[H

f14

f

15

. fl? = -2mf9 -szzfsds
f1g = ~2u £ - [Hyfeds
g = 201, - [Hy,t;ds
fr9 = - 201, -szzfgds (36)

The new displacement is now used in conjunction with Equations (7) and (26)

to compute the axial stress resultant

Ny = Hll(U,x - zw,xx - yv,xx + fIBN, +1),M Mz,x + fIGMx,M

y,x 15

)

+ fl7N,xx + fiSM +£.. M + fZOMx,xx

YiXX 19 TZyXX

X
- Hy( 2_?1 = IN - f6My,x - 1My x " iSmx,.x) (37)

g e e

The engineering kinematic variables U, W, V must be related to the generalized

force variables. This is accomplished by enforcing the definitions in Equation (8)

(N, M, M) = U,fo“(l, 2, y)ds

—\V,xxfl-!“(l, z, y) zds

“V,xfo 1(l, zZ, y)yds

#N SO g 200, 2 y)s
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These equations can be cast in a more familiar form by solving them for the

Y MY;X.I(HllfIQ + Hyf ), 2, yXds

' szxﬂﬁufﬁ + H2117)(1, zZ, y)ds

+ Mx'yf(Hufls + H21f8)(i’ 2z, y)ds

' N,XXanfnU, ¥y 2)ds
' My,xx_f Hy g0 ¥) 2)ds
* Mz xx f Hy f)ols ¥, 2)ds

* My fHyit a0t ¥ 2)ds

M, ﬁ-HleZ N, y,2)ds

engineering kinematic variables.

Sy 0 0
0 522 0
° 0 S33
J '
512 5]3
' '
S22 S 3
' '
5 23 5 13
' '
S 24 S 3

St N
S M
S34 M
M
-
S14 N
]
S 2 M
1
S 34 M
]
S 44 | M

14

(38)
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r—" " " [1] =
i S 12 513 14 N gy
" 1] n n

. 171 § 22 S 23 S 2 My xx

" L] 1" 1
13 523 5 33 S 34 M, xx
L] ‘" ”" n

NG $ 24 S 3 S uu] My xx

(39}

Equations {39) describe the stretching and bending of the beam. They replace the
classical Equations (15). The additional flexibility matrices [sJand (S'] depend only
on the elastic modulii of the material and dimensions of the cross section. The

expressions for these pacameters can easily be deduced. For example

S\, = WH )Pl L) + Hyt )ds, et (40)

The axial stress resultant may be expressed in terms of generalized force

variables with the aid of Equations (39) and (37)

N, = f

x lN + sz

y + fBMz + fQMx

N o+ 1My + £23My y + £24My,x
* fZSN,xx +EeMy xx £27M2 xx * £28My xx
(41)

where

1 L} 1
Hy (S +25 15 +¥S 3 +§3) + Hyfs

2l

[] ] L[]
22 = Hy(S )5 #2555 +yS55 + 1)) + Hyfg

t 1 L

23 = Hy(S 3+ 2553 +yS 43+ )5 + Hyfy
(] 1] []

fop = HY(S )y + 2854 +¥S 34 + f1g) + Hyfg

[]] 11} 1]
fy5 = Hy(S ) +28 5 +yS 3 +1))
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n n ]

fag = H)(5 |5 +25 55 +¥S 3 +1jg)
L} " []]

fyy = H|(S 3425 53 +¥5 33+ 1f)9)
1] " L1}

The corrections to the axial stress resultant include the effects of bending

related warping and torsion-related restrained warping. The new shear flow can

now be estimated substituting this stress in Equation (26).

M
X
Nys = ;ﬁ - fSN,x h fGMy,x N 17Mz,x - f8Mx,x
N fZ‘BN,xx B f30My,x>t - jEBIMz,xx - f32Mx,>uc
- f33N,xxx - f:’ol&r\ﬂy,xxx - fE!SMZ,xxx - f36Mx,xxx
(43)
where
l .
f = [t g ds- o Prds [t gds i=29,30,...36 W)

21

The rate of twist is re-evaluated with the aid of Equations (13), (7), (35) and (4})
O x = SN +5My +S3,M, +5,,M,

+ ng’x + fIOM + flle,x + leMx,x

Y, X

* 3N e t f3gMy wx + T3gMy iy * My xx

+f +f, .M +f (45)

41N,xxx+f42My,xxx 43" z,xxx MMx,xxx

where
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ty; = ig § ds{”zl(suu +28 |5 +YS 3 +E5) - ”21‘29}
tyg = é’n‘f "5{”21‘5"12 +28 22475 53+ f1g) - ”21130}
f39 = ;—ﬁ- f ds{HZI(S"lS + zS"23'+ 3.!5"33 + fw) - H21f31}
fo = ;_:f f ds {”21(5"14 +25 54 +¥S 34 + tp0) - “21‘32}
f = 'é"ﬁ' f ds { Hmf(i_a)} i1 = bl 42, 43, 44 (46)

The governing equations for the response of single cell laminated rotor
blades can now be summarized. Overall equations of equilibrium remain same as
those in (17)-(22). Similarly, the generalized kinematic variables and force
variables also remain the same. The kinematic variablesare U _,-W _ ,-V _ and

1 X P XXT XX
¢ The force variables are N, M

' Y
sets of variables are given by (39) and (45). These overall constitutive equations

» M, and Mx' Equations that relate these two

contain the effects due to transverse shear, torsional shear and restrained warping.
New distributions for the axial displacement, axial stress and shear flow are

contained in Equations (35), (41) and (44).

APPLICATION

The following section provides an example which illustrates the relative
significance of nonclassical influences on overall response predictions and stress
estimates, The potential for aeroelastic tailoring is also investigated to a limited

extent. For this purpose, the rotor blade of Boeing's CH-47 helicopter is used as a
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guide in sizing. The blade is modeled as a single cell beam with a uniformiy
distributed load, q,, with q appiied at the quarter-chord point. The end where the
blade is joined to the hub is treated as a clamped end, with the other end being
free. The dimensions of the box are shown in Figure 3.

In order to study the influence of material properties, two different
material systems, graphite/epoxy and glass/epoxy, are selected. The foillowing
materlal properties are assumed for each ply:

Graphite/Epoxy:

E = 25x10%si,  E, = E, = 1x10%si

02x10%sl, G, = Gy = 0.5x 10%psi

G

\’12 \,13 = 0.25, \"23 = 0125

Glass[Egoxx:

E, = 73x10%s, B, = E; = 2x10%si

6 .
Glz = G13 = 0.88 x 10 psi

\,lz =\’l3 = 0-275, \’23 = 0-25

The E's are Young's modulii, the G's are shear modulii and Vv's are Poisson ratios.
The subscript "I" denotes a direction along the fibers, "2" and "3" denote directions
normal to the fiber. All plies are identical with a thickness of 0.00835 inches.

Two different layups are considered for the box skin. These are (012, 4512)
and (016’ 458). The first one is more effective in torsion and the second one in
bending. Furthermore, these plies are arranged with respect to z = 0 plane in such
a way that there exists three distinctly cifferent couplings between elastic modes of
deformation. Because of the nature of the applied loading and skin layup, there is

no coupling between stretching and twisting or between bending about z-axis and
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twisting. The only coupling is between bending about the y-axis and torsion (flap-
wise bending). This coupling is controlled by Szu. As shown in Figure 6, three
different layups are possible depending upon whether 45° plies are placed
symmetrically or antisymmetrically with respect to z = 0 plane.

The first configuration is a balanced design. Since the 45° plies are placed
symmetrically, qu is zero, which means that there is no coupling between bending
about y-axis and torsion. The other two designs are unbalanced. Depending on the
angle of orientation with respect to the load, these designs produce either enhanced
(positive) coupling or reduced (negative) coupling. As shown in the Tables 1-3, there
are now twelve different designs depending upon the material system, relative ratio
of 0% and 45° plies and relative orientation of the 45° plies in upper and lower parts
of the box and placement of the load.

Under the applied uniform]y distributed line load (qz =g}, all these
structures undergo twisting as well as bending about y-axis. Since this is a
statically determinate problem, the flapwise bending moment and torque are

estimated as

=
1t

-Ezl(x-l-):a

=
1

-ge(x-L) (47)

e is eccentricity of applied loading which in this case is 5 inches, The applicable

boundary conditions are given by the following:

Atx:O:W:O,Wx=O,¢=0 (48)
'

Under these oconditions, equilibrium equations (18), (20), (22), the overall
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constitutive equations for -\V'“ from (39) and the Equation (45) for twist are
solved.

The results for the transverse displacement and the twist at the free end
are presented in Tables | and 2, respectively, ‘These parameters are given [n terms
of unit applied load, . Similarly, the maximum values for the stress resultants Nx

and N,y at the root are also presented per unit applied load in Figure 3, The

maximu):n valye of the axial stress occurs at the center of the web-like vertical
portion of the structure.

The present theory results for W and ¢ are subdivided into three groups
as shown in Tables | and 2 to illustrate the improvements due to nonclassical
effects and coupling. In the simplest engineering app;'oach, the coupling effects
are usually neglected. The materlal is assumed to be orthotropic, effectively
represented by egquivalent bending and torsional rigidities. These results are
denoted "classical" in Tables | and 2. It can be conctuded from this study that the
nonclassical effects influence deflection more than the coupling parameter and the
improvements from both coupling and nonclassical effects are relatively small
compared to the classical result. On the other hand, the coupling accounts for a
major portion of the twist, If it is not incorporated, major discrepancies arise in
the twist predictions. This is because the classical approach cannot delineate
between the balanced and unbalanced designs. The nonclassical influences on twist
predictions are negligible. With respect to the transverse displacement prediction,
it may be seen that the nonclassical influences are more pronounced for
graphite/epoxy niaterial system and (0 16 #58) layup.

Table 3 shows predictions for the maximum values of the stress resultants.
Present theory results are evaluated from Equations (41) and (43), For the sake of

2

comparison, stresses from Mansfield's theory® are also presented. These are not

available in Ref, (2), but are evaluated using Equations (1), (7) and (15). Unlike the
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"dassical" results for twist and deflection, Mansfield stresses include the bending-
torsion coupling effect. Therefore, the apparent differences between the present
theory predictions and those from the Mansfield theory are entirely due to
nonclassical influences. Fallure to account for these effects leads to an under
estimation of the stresses. This could be as much as 4% for tensile stresses and 9%
for the compressive stresses.

The structure considered here is very slender. The theory is also developed
under the premises of a thin walled cylinder. This explains why the nonclassical

7-10 shows, for beams and

influences are so small in this example. Experience
plates made of composite materials, the nonclassica! influences become important
enough to be included as the structure becomes "thicker" on a relative basis. Since
the kinematic procedure used here is the same as the one used in Ref. (7)-(10), the
present theory can be expected to yield valid results even for very thick-walled

rotor blades.
SUMMARY AND CONCLUSIONS

A theory has been developed for composite rotor blades that can be
modeled as closed cell beams. The theory accounts for nonclassical influences
related to restrained warping, transverse shear staln and bending and stretching-
related warping. A primary influence that is included is elastic coupling that
results from arbitrary composite ply layup in the walls of the cell. To illustrate the
role of elastic coupling and nonclassical influences, a rotor blade-type model has
been created. This model is analyzed as a single cell cantilever beam under
uniformly distributed load. The following conclusions are drawiy from this example:

I Nonclassical Influences and elastic coupling have a negligible effect

on transverse deflection.

2,  Twist is controlled by the elastic coupling. Nonclassical influences

have a negligible impact on twist.
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3.  The axlal stress predictions are improved as a result of accounting for
the nonclassical influences, The shear flow (s affected only slightly
by these nonclassical influences.

4. The potential for aeroelastic tailoring has been illustrated by
choosing three designs with different layups. The first one is a
balanced design with zero coupling. The second and third are
unbalanced desigis; one of these two produces enhanced coupling and
the other reduced coupling. For all of these three designs, the weight
is the same and transverse deflection and maximum stresses
generated within are also approximately the same, yet the induced
twists are different.

5. The structure considered in this example is very slender. This s the
reason why the nonclassical influences appear so small in this
example. By the experience garnered by the authors with laminated
thick plates and beams, it is believed that these influences become
more pronounced for thick walled rotor blades and the present theory

is capable of predicting them.
RECOMMENDATIONS

It appears that the nonclassical influences are of little importance in the
model. As the model approxirnates practical dimenslons of main rotor blades, it is
likely that the slenderness, together with closed cell construction, are responsible

2 should

for this. As a practical matter, the classical theory of Mansfield and Sobey
be adequate in most cases and should be used.

If the blade under consideration is less "slender" than the example or if
moisture-temperature effects significantly alter the stiffness properties of the
composite material, then the new theory developed herein can be used. Another

situation, the determination of higher than first few vibration modes, also requires

the use of the present, more complicated theory,

L T
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