
GAS TURBINE LABORATORY
DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CAMBRIDGE, MASSACHUSETTS 02139

Final Report

on

NASA Grant NAG 3-200

STRUCTURAL RESPONSE OF A ROTATING BLADED DISK

TO ROTOR WHIRL

submitted to

NASA LEWIS RESEARCH CENTER
Structural Dynamics Section

21000 Brookpark Road
Cleveland, Ohio 44135

Attention: Gerald Brown
MS 500-302

Principal
Investigator: Edward F. Crawley

Associate Professor
Department of Aeronautics & Astronautics

April 1985



ABSTRACT

A set of high speed rotating whirl experiments were
performed in the vacuum of the MIT Blowdown Compressor Facility
on the MIT Aeroelastic Rotor, which is structurally typical of a
modern high bypass ratio turbofan stage. These tests identified
the natural frequencies of whirl of the rotor system by forcing
its response using an electromagnetic shaker whirl excitation
system. The excitation was slowly swept in frequency at constant
amplitude for several constant rotor speeds in both a forward
and backward whirl direction.

The natural frequencies of whirl determined by these
experiments were compared to those predicted by an analytical
6 DOF model of a flexible blade-rigid disk-flexible shaft rotor.
The model is also presented in terms of nondimensional
parameters in order to assess the importance of the interaction
between the bladed disk dynamics and the shaft-disk dynamics.
The correlation between the experimental and predicted natural
frequencies is reasonable, given the uncertainty involved in
determining the stiffness parameters of the system.
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1. Introduction

Current trends in the design of aircraft gas turbines have

resulted in lighter, more structurally efficient engines with

higher spool speeds and higher bypass ratio fans. In particular,

fans are often unshrouded and are of high aspect ratio, thereby

increasing the flexibility of the fan. blading. This increase in.

blade flexibility tends to depress the blade natural frequencies

towards those of the shaft-disk system. As the natural frequency

of the blade, in its first bending mode for example, approaches

the natural frequency of the shaft disk system, the interaction

between the blade modes and the shaft-disk modes increases.

Neglecting these interaction effects could in some cases lead to

inaccurate estimates of rotor critical speeds and system natural

frequencies at speed. Unexpected resonances within the engine's

operating envelope may result, with all the reliability and

performance penalties inherent in operating at such points. This

report describes a set of experiments carried out in order to

evaluate the influence of shaft flexibility on the dynamics of

of bladed-disk systems.

The whirling motion of a rotating bladed disk-shaft system

has been investigated by several authors. Early efforts by

Coleman and Feingold [1] to investigate the phenomenon known as

helicopter ground resonance identified the cause of the

instability to be whirling of the rotor. Later analytical efforts

by Crandall and Dugundji [2] studied the whirling of propellers

powered by piston engines. The finite element approach taken by

Palladino and Rossettos [3] as well as Loewy and Khader [4]

provides numerical estimates of the natural frequencies of a

bladed disk-shaft system. In this investigation, the analytical

model derived by Mokadam [5] will be modified to predict the

natural frequencies of whirl for a rotor typical of a

cantilevered turbofan stage. The results of a set of experimental

10
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whirl testing will be compared with predictions of the model.

A simplified rotor model involving a flexible shaft, rigid

disk, and flexible blading [5] was employed to predict the

dynamic behaviour of the MIT Aeroelastic (AE) rotor as installed

in the MIT Slowdown Compressor Facility [6]. The system vibration

modes predicted by the model included motion of the disk centroid

in the direction of rotation (forward whirl) and opposite to the

direction of rotation (backward whirl) as viewed from the rotor

frame of reference. The degree of interaction between the bladed

disk and shaft-disk dynamics can be quantified by a set of

nondimensional interaction criteria. The magnitude of these

interaction criteria determines if sufficiently accurate results

can be obtained with uncoupled analyses of the blade-disk and

shaft-disk dynamics. Otherwise a coupled analysis or a finite

element approach may be indicated.

An experimental program to determine the natural

frequencies of the MIT AE rotor was undertaken in order to

validate the predictions obtained from the model. A series of

forced response tests were conducted by setting up a particular

whirl excitation pattern, either forward or backward, and

sweeping through a range of forcing frequencies at constant rotor

speed. The response of the system was monitored with an array of

on-rotor and nonrotating instrumentation. By sweeping the forcing

frequency and monitoring the system response for amplitude peaks,

the system natural frequencies were found. Therefore the system

natural frequencies predicted by the model could be compared to

those experimentally determined.

The series of experiments described in this report were

the high speed tests in an ongoing rotor whirl testing program.

Previous work [5] involved the development of the flexible

shaft-rigid disk-flexible blade model and the construction of a

low speed vacuum whirl spin rig. Tests were conducted in the low

speed spin rig in 5 Hz (300 rpm) increments of rotor speed up to
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30 Hz (1800 rpm). The high speed experiments were conducted in

the vacuum of the MIT Slowdown Compressor facility test section

in 30 Hz (1800 rpm) increments of rotor speed up to 150 Hz (9000

rpm). At higher rotor speeds the effects of rotation had a more

pronounced effect on the system natural frequencies and on the

interaction of the modes.

Chapter 2 provides an overview of the 6 degree of freedom

(DOF) coupled rotor model developed in [5] and presents the

necessary first order corrections to the shaft disk dynamics to

account for a system center of mass offset from the disk

geometric center. The nondimensional interaction criteria are

also explored and comparison are made with the classical

cantilevered bladeless rotor analysis of Den Hartog [7] and with

recent work on bladed disk dynamics by Crawley and Mokadam [8].

The experimental facilities, instrumentation, whirl excitation

system are described in Chapter 3. Chapter 4 describes the

series of nonrotating modal surveys performed on the MIT AE rotor

as installed in the MIT Compressor Slowdown Facility in order to

characterize the stiffness parameters of the system. From the

experimental determination of the system stiffness parameters,

the natural frequencies of the rotating blade-disk-shaft system

are predicted. The rotating forced whirl response tests are

discussed in Chapter 5 and reasonable agreement between the

predicted and experimentally determined natural frequencies is

found.



2. Analysis of a Rotating Shaft - Bladed Disk System

In order to predict the dynamic behaviour of a shroudless

fan with flexible blades affixed to a rigid disk and supported by

a flexible shaft, an appropriate analytic model has been

developed. Since they are attached to a rigid disk and not

connected through midspan or tip shrouds, the N fan blades are

assumed to be elastically uncoupled. The blades are also assumed

to be structurally identical, or well tuned. The shaft upon which

the disk is suppported has sufficient flexibility to allow for

translation of the disk centroid in the plane of rotation and

pitching of the disk out of the plane of rotation. The main

objective of the development of the coupled blade-disk-shaft

dynamic model is to determine the criteria for interaction

between the blade motion and the rigid body motion of the disk

supported on the flexible shaft. If the coupling interactions

are strong, then the solution of the fully coupled system is

warranted in order to obtain accurate estimates of the system

natural frequencies. Otherwise, if the interactions are weak,

then the bladed disk dynamic problem may be solved independent of

the shaft-disk dynamic problem.

The generalized degrees of freedom of the model express

blade and shaft deflection with reference to a rotor-fixed

coordinate system. The equations will first be derived in a

coordinate system centered at the geometric centroid the disk.

In the absence of a massive shaft, this point would also be the

system center of mass. The approximate effect of the presence of

a massive shaft, which shifts the system center of mass of the

system away from the centroid of the disk, will be explored.

Subsequently the equations will be expressed in a

nondimensional form. In this way the the relevant nondimensional

parameters governing the coupled blade-disk-shaft vibration of a

shroudless fan can be identified. These parameters will be

13
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compared to those obtained by Den Hartog [7] in his classical

analysis of the asynchronous whirl of a cantilevered bladeless

disk. The similarities between the two analyses will be

identified and the necessary extensions to include blade

flexibility will be pointed out. The nondimensionalization

procedure will facilitate the assessment of the importance of the

interactions between the bladed disk vibration and the whirling

shaft motion in rotating turbomachinery.

2.1) Equations of Motion

The homogeneous equations of motion of a system of N

flexible blades cantilevered from the hub of a rigid disk

supported by a rotating flexible shaft will be presented. The

blades are modelled with a single Ritz bending mode and are

attached to the disk with an effective structural stagger angle a

between the normal to the disk plane and the blade chord line, as

shown in fig. 2.1. In general the disk may be located at any

axial position along a shaft of arbitrary boundary conditions.

The shaft stiffness, which is represented by equivalent springs,

may include both translational and pitch displacement

stiffnesses, as well as a stiffness coupling between disk

pitching and translation.

The equations of motion for the blade-disk-shaft system

were derived by Mokadara [5] using a Lagrangian formulation. This

model of the whirling shaft-bladed disk system included the

following degrees of freedom, expressed in the rotating

coordinate system, as shown fig. 2.1:

- two orthogonal disk translation modes in

the plane of rotation (qxR and qVR)>

- two out of plane disk pitch modes about

mutually orthogonal diametral lines

(q^R and qnR),

- one Ritz beam first bending mode for each of
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the N blades (qit i=0 ..... N-1).

The use of coordinates expressed in the rotating frame of

reference is helpful from the point of view of the experimental

investigator, since displacement and acceleration signals

measured on the rotating bladed disk are referred to this

coordinate frame. Comparisons between the experimental results

and the behaviour predicted by the analytical model are therefore

more readily made if the behaviour is described in the rotating

reference frame.

The relevant coupling of the blade modes to the shaft

translation and pitching becomes apparent when the displacement

for each individual blade is expressed as the sum of sine and

cosine nodal diameter patterns:

N - 1

q. = I [ -a sin n0 . + b cos ne . ] , (2.1.1)
i =

 n i n i

where y^ is the angular position of the itl blade on the

disk:

9 = 2irJL .
1 IT

Only the one nodal diameter sine and cosine blade modes couple

with the translation and pitching of the disk on its shaft. The

umbrella or zero nodal diameter cosine blade mode completely

decouples from the other blade modes and would couple with the

disk axial translation and in-plane rotational degrees of freedom

of the disk. However the present model does not include disk

axial motion or rotational vibration motions. Therefore the zero

nodal diameter blade mode for this simpliflied model is governed

by eq. (2.1.2).

n 2 2
mb +[K +(m -m cos a )fl ]b =0- (2.1.2)
oo B n ° °

For a discussion of the dynamics of this mode, see [8].
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The higher blade modes, which have more than one nodal

diameter, also completely decouple from the disk motion. These

are the so called reactionless modes which exert no net inertial

reaction on the disk due to their motion. The equations of

motion for these so called reactionless modes are given by:

" 2 2

ma +[K + ( m -m cos a )n ]a =0 (2.1.3)
0 n B n ° n

n 2 2

mb +[K + ( m -m cos a )fi ]b = 0 (2.1.4)
0 n B n « n

The homogeneous coupled whirl equations of motion, which

include the blade one nodal diameter motion, are shown in matrix

form in eq. (2.1.5). The blade one nodal diameter modes couple

to the disk translation motion inertially, gyroscopically and

centrifugally. The n=1 blade modes couple to the disk pitch

motion inertially and centrifugally. These coupled whirl

equations were derived assuming that the center of the axis

system located at the centroid of the disk coincided with the

system center of mass, as shown in fig. 2.2a.

In equations (2.1.2) to (2.1.5), the following definitions

hold:

M = / dm
V

2 2 2 2

I = / [ x + z ]dm = / [ y + z ]dm
P V V

m =
0

m =
2

2 •"•IP 2

r ; [ Y ( r ) ] dm
T r

H

r / Y ( r ) dm
T r

H

T
, m = r /

T r

H

, m = r /
n T r

H

Y ( r ) rdm

rr / SY
r 3T

H

dr dm

The quantity mo is the blade modal mass, mi is the blade

consistent mass coupling to disk pitch, mi is the blade
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consistent mass coupling to disk translation, and m^ is the

blade mass foreshortening term.

Often the system center of mass is not located at the

centroid of the disk, which was chosen in the above analysis as

the coordinate system origin. This is in fact the case for the

MIT AE rotor. Instrumentation considerations made it desirable to

refer the motion to a coordinate system center at the geometric

centroid of the disk. Because the mass of the shaft was not

negligible, the center of mass of the rotor system was offset

from the centroid of the disk. Under these circumstances the

translational and pitch motion the disk are inertially coupled,

even in the absence of blade dynamics or shaft elastic coupling.

This effect must be included in the equations of motion. An

appropriate axial mass imbalance S is defined as:

S = / zdm (2.1 .6)
V

The mass imbalance was introduced in the coupled whirl equations

of motion by correcting the upper left corner 4x4 disk motion

submatrices of eq. (2.1.5) [4]. The corrected submatrix equation

exactly represents the whirling motion of a disk with rigid

blades. For small offsets of the center of mass from the disk

centriod, the effect of the resulting imbalance on the blade

dynamics and its coupling to the disk motion is of higher order,

and will not be included in the current model. For an exact

representation of these imbalance effects on the blade motion see

[8]. The matrix equations of motion for the mass imbalance

corrected system are shown in eq. (2.1.7). The dynamics of the

blade modes which are uncoupled from the disk motion, eq. (2.1.2)

to (2.1.4), remain unchanged.

The set of equations (2.1.7) show the characteristic

behavior of the coupled shaft-bladed disk system expressed in

the rotor frame of reference. Disk rigid body translation

displacements q^ and qR couple inertially to both the disk
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rigid body pitch motion, through the center of mass offset term

S, and the blade one nodal diameter blade deflections, through

the N/2 m cosa terms. The inertial coupling effects are always

symmetric in the equations of motion. The two translational

degrees of freedom also couple gyroscopically: to each other

(through the rotor mass 2JJM), to the disk pitching motion

(through 2ftS), and to the blade one nodal diameter displacement

(through flNmzcosa). The gyroscopic coupling terms are

antisymmetric, or skew-symmetric, in the equations of motion. The

disk rigid body translation terms in the stiffness matrix show

the centrifugal destiffening of the translational stiffness terms

KxR and KyR. Depending on the sign of the center of mass

offset S, the translation-pitch coupling stiffnesses Kx R and

KyrR are either alternately destiffened or stiffened by the

centrifugal effects. The disk translation motion is also

destiffened by centrifugal coupling to the blade one nodal

diameter motion.

The disk out-of-plane pitching displacements q^R and

qnR can be seen from eq. (2.1.7) to inertially couple with the

disk translation motion (through S) and to the blade one nodal

diameter displacement through N/2'nnsina. The disk pitching

degrees of freedom are not mutually coupled in the gyroscopic

sense, as were the two disk translational degrees of freedom.

This is due to the fact that the equations of motion are

expressed in the rotor frame and not in a nonrotating coordinate

system. If the equations were expressed in the nonrotating frame,

the converse would be true, that is the two disk pitch degrees of

freedom would gyroscopically couple with each other and the disk

translation motion would be mutually uncoupled. The disk pitching

stiffness terms KjR and KnR are centrifugally stiffened by

n Ip. Depending on the sign of S, the disk translation-pitch

coupling stiffnesses Kx R and KyrR are alternately

centrifugally destiffened or stiffened. The blade one nodal
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diameter displacement modes couple to centrifugally destiffen the

disk pitch motion through the terms n2N/2«mi sina .

Centrifugal blade stiffening terms are also seen on the

diagonal of the stiffness matrix in rows 5 and 6. The Southwell

coefficient i, which represents the degree of stiffening, relates

the blade natural frequencies in the absense or presence of mean

rotation n :

cj = / u2 + i«2 (2.1 .8)
R B

Comparing equations (2.1.7) and (2.1.8), the Southwell

coefficient is:

i = ft - cos2 a (2.1.9)

The first term in eq. (2.1.9) represents the stiffening due to

blade foreshortening and the second term the destiffening due to

in-plane motion.

2,2) Nondimensional Equations of Motion and Interaction Criteria

The coupled set of equations (2.1.7) describe the

homogeneous behavior of the bladed disk - shaft rotating system.

It is instructive to express the equations nondimensionally, and

to identify the relevant nondimensional parameters. The relative

importance of each structural dynamic quantity, such as shaft

stiffness or blade inertial coupling to disk translation, can be

determined by evaluating the magnitude of the corresponding

nondimensional terms. Therefore a nondimensional equation set

would be more useful for evaluating the criteria for interaction

between the dynamics of blade vibration and shaft whirl.

Observations comparing this normalization scheme and Den Hartog's

[7] classical approach for a whirling cantilevered rotor with no

blades will also be made.
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In formulating the nondimensionalization scheme four

length scales appear. Two length scales naturally arise from the

mass parameters: the axial offset of the system center of mass

from the centroid of the disk (c) and the radius of gyration for

pitching of the disk (d). The translational degrees of freedom

qxR and qyR will be normalized by d. The length scales that

arise from consideration of the blade geometry are the blade tip

radius rT and hub radius rH. Of the four length scales, one

is chosen as the fundamental length and the others are expressed

as ratios which are normalized by this length. Because the

translational degrees of freedom were normalized by the disk

pitching radius of gyration, d is chosen as the fundamental

length and the other length scales are expressed as:

rT rH
_ i _ i _
d d d

The natural frequency of the nonrotating tuned blades us

was chosen as the reference time quantity. This is the blade

frequency that would be measured if the blade was cantilevered

from a perfectly rigid foundation. This choice of a reference

time scale was arbitrary but convenient for the current problem

of assessing the impact of the flexibility and whirling of the

shaft on the blade dynamics. The time variable t normalized by

UB is T:

T = unt (2.2.1 )
£9

where:

2 KRu_ = B (2.2.2)
B m~

o

Therefore differentiation with respect to time (*) becomes

differentiation with respect to UB ( )':
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JL = <"> • "R — = "B ( >' (2.2.3)
dt dT

Several nondimensional mass parameters arise in the

normalization scheme. The comparison of diagonal and off-diagonal

inertia terms in the equations of motion yields mass coupling

ratios n expressing the relative magnitude of the inertial

coupling terms. A ratio of mass matrix diagonal entries p, which

expresses the relative mass of the blades and the disk, also

appears. As defined below, the mass coupling parameter for

interaction between disk translational motion and blade one nodal

diameter vibration is tiTB (i.e. u Translation Blade) [9].

Note the dependence of tiTB on the square of the cosine of the

effective stagger angle angle a. The inertial coupling between

disk pitching and blade one nodal diameter vibration is npB

(i.e. n Pitch Blade). This term depends on the square of the

sine of the stagger angle. The ratio of mass matrix diagonal

elements that arises naturally from this normalization scheme is

the ratio of the blade modal mass to the disk pitch moment of

inertia, p. These nondimensional inertia terms are defined

below:

N. 2 2 N. 2 . 2
m2 cos a fflj sin a

UPB
Ip

p =T.

The disk translation-pitch inertial coupling term HTP,

defined below, is nonzero due to the choice of a coordinate

system centered at the centroid of the disk, and not at the

center of mass of the system. Note that the expression for

reduces to the square of the offset of the center of mass from

the disk centroid normalized by the fundamental length scale d
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_sL
UTP MI

The effects of rotation yield two nondimensional

parameters, the Southwell coefficient l as defined in eqn.-(2.1.9)

and the nondimensional rotor speed

m 2
8 - cos ct

Applying the normalization scheme to the stiffness matrix

in the equations of motion (2.1.7) yields nondimensional

frequency ratios and a stiffness coupling parameter. The

frequency ratios UX/UB and Uy/uB, defined below, quantify

the relative proximity of the uncoupled shaft translational

vibrational frequency to the natural frequency of a cantilevered

blade. The frequency ratios un/u)B and UJ./UB express the

proximity of the uncoupled shaft pitching frequency to the blade

frequency. For a^ symmetric shaft these ratios are:

KxR KyR
M /UV\2 M

~
"B

p
2 ~ I / ~ 2

UB VUB "B

A shaft translation-pitching stiffness coupling parameter

k also appears in the nondimensionalization. The parameter

k appears in a manner that is analogous to the parameter

\i^p, which arises due to the fact that the origin of the

coordinate system is centered at the disk centroid and not the

center of mass of the system. This stiffness coupling k

arises because the origin of the coordinate system does not
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coincide with the axial location of the shear center. The shear

center is defined as the point along the rotor centerline where

the application of a transverse force does not result in any

pitching deflection of the rotor, and the application of a

pitching torque does not result in any transverse deflection.

For a system in which the shaft stiffness is symmetric with

respect to the x and y directions as seen in fig. 2.1, the

nondimensional stiffness coupling parameter is defined:

2 2
K K

K „ K „ K „ K
xR nR yR CR

Applying this nondimensionaliztion scheme to the equations

of motion (2.1.7) yield the nondimensional equation set (2.2.4).

Also, the uncoupled zero nodal diameter cosine and n>1 nodal

diameter sine and cosine blade modes nondimensionalize to:

t>0 + M + * ( -7 )2 ] b0 = 0 (2.2.5)
B

an + [ 1 + H ( J )
2 ] a =0 (2.2.6)

^ + [ 1 + I ( £/ ] bn = 0 (2.2.7)
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Thus, for a symmetric rotor, there are nine nondimensional

parameters in the full problem:

Uip inertial term coupling disk translation and

disk pitching motion

UTB inertial term coupling disk translation and

blade displacement

UPB inertial term coupling disk pitching and

blade displacement

p ratio of blade modal mass to disk pitching

moment of inertia

k stiffness term coupling disk translation and

disk pitching

ux/UB ratio of rotor uncoupled disk translational

frequency at Ji=0 to isolated blade frequency at ft=0

ratio of rotor uncoupled disk pitching

frequency at n=0 to isolated blade frequency at n=0

nondimensional rotor speed

t. Southwell coefficient

The numerical values of these parameters for the MIT AE rotor are

given in Appendix A. Typical values of some of these parameters

for various generic types of turbomachinery are given in [9].

Den Hartog's analysis of a bladeless cantilevered rotor

[7] can be thought of as a special case of the present model. His

model describes the motion of a massive disk on a massless shaft

using a rotating coordinate system with its origin located at the

centroid of the disk. Shaft mass imbalance is therefore not

included. Of course, blade flexibility effects are also not

included. A further simplification is introduced by the use of a

coordinate system rotating not at the rotor speed fl, but at the

asynchronous whirl rate u. This transformation reduces the

problem to one of only two degrees of freedom: a radial disk
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deflection and a disk coning angle.

The Den Hartog approach to the simplified rotor yields only

three nondimensional parameters: the "disk" effect D, the

elastic coupling E, and the nondimensional speed S. In

terms of the present nomenclature (for a symmetric rotor) they

correspond to:

"x "y

D = "B = UB (2.2.8)

"B "B

(2.2.9)
^
k =

0_
U B

2 2

K K
xnR = ycR

K „ K K „ K
xR pR yR ^R

_ (2.2.10)
U)x
UB

The whirl frequencies of the Den Hartog model are the four

roots of the characteristic polynomial:

F"- 2*S»F3+ _D ^ 1 F2 - _2*S F - ; =0 (2.2.11 )
D« (E>1) E - 1 D« (E-1)

where F is the nondimensional frequency:

F = S ( 2 . 2 . 1 2 )
ux
UB

Equation (2.2.11) is well known and has been used extensively in

the design of cantilevered rotors. For a complete treatment of

the dynamics of a bladed disk - shaft system, the fully coupled

set of equations (2.2.4) should be considered. This higher order
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model is required when the interaction criteria, discussed

below, indicate appreciable interactions between the bladed disk

vibration and the shaft whirling motion.

The normalized equations of motion (2.2.4) yield a

convenient form for the evaluation of the criteria for

interaction between the bladed disk dynamics and the shaft

whirling motion. The basic question to be addressed is: under

what circumstances is the interaction between the blade motion

and the disk rigid body motion sufficient to warrant solving the

fully coupled equations of motion. If the interactions are weak,

then the bladed disk vibration and shaft-disk whirl problems may

be solved as two simpler analyses. The propensity for

interaction between the two motions is determined by the

proximity of the shaft translation and pitch mode frequencies to

the uncoupled blade frequency [9].

The procedure for assesing the strength of the interaction

requires a knowledge of the uncoupled blade natural frequency and

the uncoupled shaft natural frequencies (i.e. the frequencies of

the shaft assuming the blades are rigid). An estimate of the

shaft natural frequencies can be obtained by solving the 4x4

shaft motion submatrix in the upper left hand corner of eqn.

(2.2.4). The resulting coupled shaft translation / pitch

frequencies are ui and u2 , respectively. Therefore the

criteria for propensity of interaction will be determined by the

value of the two ratios: UI/UB and UIZ/UB being close to

unity.

In the simple case of a rotor with relatively weak

translation-pitch coupling, the frequencies ui and u2 can be

approximated by considering only the diagonal elements of the

equations of motion. For a symmetric rotor with only disk

translational degrees of freedom, the ratio of the disk to blade

natural frequencies as a function of rotation rate is [9]:
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SL
" (2.2.13)

and for a rotor with only pitch degrees of freedom, the ratio of

the disk to blade natural frequencies is:

i 2 J
) "2

.(§;)'
(2.2.14)

In gas turbines, the blade frequency ug is usually

higher than the shaft-disk coupled translation/pitch frequencies

ui and <j2 [9]. This implies that the uncoupled blade natural

frequency is usually above the first two shaft critical speeds.

In the case of the MIT AE rotor, the shaft stiffness and disk

inertia are such that the pitch dominated mode is higher than the

translation dominated mode. Hence, in this case, U2/UB is the

relevant parameter for the propensity of interaction criteria.

Note that the denominator of the UZ/UB expression, eqn.

(2.2.14), contains the term: Kn/ua)2- Since in gas turbine

blading the Southwell coefficient i is usually greater than one,

the interaction criteria 102/103 decreases with increasing

rotor speed. Therefore, if the shaft-disk pitch and blade

frequencies are well separated at zero rotation speed, then the

modes will tend not to interact at higher rotor speeds. This

effect can be seen schematically in fig. 2.3.

The magnitude of the interaction between the blade motion

and the shaft whirl can be quantified by the degree of coupling

between them. The influence of the coupling magnitude criteria

UIB and UPB are discussed by Crawley and Mokadam [9], -The

degree of coupling is also dependent on the ratio of the blade

modal mass to the rotor pitching moment of inertia p. The
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inertial coupling terms appear in eq. (2.2.4) as N/2»PuTB and

N/2«puPB.
 Tne Stron9 dependence of these terms on the cosine

and sine of the effective stagger angle a is seen from the

definitions of HTB and upB> respectively. If the stagger

angle a is zero, then the blade motion-disk translation inertial

coupling parameter U-JQ is maximized and the blade motion-disk

pitch inertial coupling parameter IIPB is zero. If a is equal to

90° , then ypB is a maximum and UTB is zero.

The term in the equations of motion (2.2.4) that indicates

the magnitude of the gyroscopic coupling is:

^ v
The stiffness matrix in eq. (2.2.4) shows centrifugal coupling

between the disk rigid body motion and blade displacement in the

destiffening form:

12 2 ^ N , a 2 N
— \ T PUTn and - — \ — puua > 2 TB u > 2 PB
Q B

These terms describe the magnitude of stiffness coupling and,

like the inertial and gyroscopic coupling magnitude criteria,

they have an implicit dependence on blade .stagger angle.

The equations of motion of rotating flexible shaft-rigid

disk-flexible blade rotor have been presented. They are expressed

in both dimensional and nondimensional form. The relevant

nondimensional parameters have been identified and their

importance in determining the degree to which the bladed disk

dynamics and the shaft whirling motion are coupled was explored.

The subsequent chapters of this report will be concerned with

identifying the system constants in the equations of motion for

the MIT Aeroelastic Rotor and with the results of a series of

experiments performed on the rotor to verify the analytical

formulation.



3. Experimental Facilities

In order to experimentally document the bladed disk-shaft

dynamic interaction of a typical fan, an extensive set of

experiments were conducted, and the results compared with the

model presented in Chapter 2. The experiments were carried out on

the MIT Aeroelastic (AE) Rotor installed in the MIT Slowdown

Compressor Facility of the MIT Gas Turbine Laboratory, which is

depicted in fig. 3.1. The dynamics of the MIT AE bladed disk

assembly have been documented by Crawley [8], The use of this

facility for transient testing of compressor stages for

performance and aeroelastic response has been well documented

[6,10]. Mokadam [5] also discussed the use of this facility for

high speed rotor whirl testing in vacuum as a complementary

facility to the low speed Whirl Spin Rig.

3.1) Rotating Assembly

An extensively instrumented rotor, the MIT AE rotor, was

mounted in the test section of the Facility as seen in fig. 3.2a.

The rotor is aerodynamically typical of modern high bypass ratio

fans with: a blade hub to tip ratio of 0.5, a blade aspect ratio

of 2, a design pressure ratio of 1.6, and axial and tip Mach

numbers of 0.5 and 1.2 respectively. The structure and dynamics

of the rotor has been fully described by Crawley [8] and Mokadam

[5]. The rotor is cantilevered in the test section at the front

of a shaft supported by two forward angular contact thrust

bearings and a single rear spring loaded angular contact bearing.

Flexible couplings forward and aft of the rotor-shaft system

dynamically isolate the system from the forward slip rings and

rear drive motor. The rotor was installed in the Slowdown

Facility together with the forward slip ring assembly in order to

be able to monitor the 23 blade piezoelectric blade root

displacement transducer signals. A smaller rear set of slip rings

32
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carried disk accelerometer and blade strain gage signals.

A degree of nonlinearity in the dynamic stiffness behavior

of the shaft support had been observed in the low speed tests

which used angular contact bearings. In order to reduce the

degree of nonlinearity, initial planning called for the use of

alternative bearing types such as Conrad roller bearings.

However, in order to compensate for the thermal growth of the

shaft during testing, the continued use of the spring preloaded

angular contact bearings was indicated. It should be noted that

even with ABEC-7 super precision bearings, the operating DN of

the bearings exceeded their maximum rating for the lubrication

available. The bearings therefore had a short life expectancy

under the high speed test conditions. This required that the time

spent testing at speed be kept as short as possible.

In order to maintain the cyclic bearing loads due to mass

imbalance at a minimum, the rotor assembly was balanced prior to

installation. The assembly was balanced according to ISO Grade

G2.5 Gas Turbine Balancing Specifications, with a residual

imbalance of less than 1 gram-inch in each of two balancing

planes. Any loads due to this small residual imbalance would

appear as steady loads in the rotor frame of reference and as a

once per revolution periodic load in the nonrotating frame of

reference.

With the balanced rotor installed in the test section, the

forward slip ring assembly was then mounted. Considerable effort

was expended to assure that the axes of rotation of the rotor and

the slip ring assembly were aligned.



34

3.2) Instrumentation

The instrumentation associated with whirl testing of the

MIT AE rotor in the Slowdown Facility included instrumentation on

the rotor and on the nonrotating support structure. On the

rotor, piezoelectric displacement transducers and semiconductor

strain gages were used to monitor blade motion and miniature

accelerometers measured accelerations of the disk in the plane of

rotation. Instrumentation associated with the nonrotating frame

of reference included accelerometers to monitor motion of the

bearing support housing, and force transducers to measure the

excitation forces applied to the bearing housing.

The blade piezoelectric displacement transducer

configuration is shown in fig. 3.3. With the forward slip ring

assembly installed, all 23 blade root piezoelectric displacement

displacement transducers could be monitored. The rear set of

slip rings carried signals from the three Bolt, Beranek and

Newman (BBN) Model 501 miniature accelerometers. The three

accelerometers were circumferentially mounted at 120° increments

and were sensitive to motion of the disk in the plane of

rotation. The rear slip rings also carried signals from two

semiconductor blade strain gauges.

The disk accelerometers operated intermittently during

rotating tests and produced noisy signals. Therefore the blade

piezoelectric displacement transducers were used as the primary

indicator of rotor response. In addition to their higher signal

to noise ratio, the blade displacement transducers were sensitive

to both in-plane translation as well as out-of-plane pitching

motion of the disk. The disk accelerometers were only sensitive

to disk in-plane translation motion, a serious limitation for

detecting disk pitch modes. The disadvantage of using the blade

transducers was that for the lower system modes, those well below

the blade first bending frequency, a small amount of blade motion

would occur for a relatively large amount of disk motion. Thus
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the detectibility of disk, motion by monitoring only the blade

response was somewhat impaired.

A proximity sensor mounted in the center body was used as

a tachometer. By sensing the passage of each the 115 teeth of a

gear wheel mounted on the shaft, the tachometer produced a 115

per revolution signal. The tachometer signal was monitored with a

frequency counter located at the rotor motor drive control panel.

During tests, which sometimes lasted up to 200 seconds,

data were recorded using three different methods. The primary

data logging device was a Hewlett-Packard (HP) 3960 FM

Instrumentation tape recorder. This 4 channel instrument recorded

2 channels of forcing input (described in section 3.3) and 2

channels of blade displacement response. With these simultaneous

measurements of input and response, system transfer functions

could be determined. The second method of recording the data was

an Ampex 14 channel FM tape recorder. This recorder was used as a

redundant method of logging the forcing input and blade response

data, as well as the tachometer signal.

After the test, the tape recorded analog data were played

back into an HP 3582 dual channel spectrum analyzer for frequency
>

domain inspection of the data. Graphical records were obtained by

transferring the spectral data from the spectrum analyzer over an

IEEE-488 bus into an IBM Personal Computer.

The third method of data logging was a direct digitization

of up to 32 channels of data during the test. Because of memory

limitations in the A/D system, only 200 ms of data could be

digitized, using at a rate of 5 kHz per channel. This digitized

data provided an instantaneous snapshot of the rotor system state

at a particular speed and forcing frequency. This A/D system,

manufactured by LeCroy Inc. and based on the CAMAC convention,

was controlled by the MIT GTL POP 11/70 computer. Post test

signal processing of the digitized data was also performed on the

11/70 computer.
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3.3). Whirl Excitation System

Some modifications to the test section were required in

order to mount the rotor and whirl excitation actuators in the

Slowdown Compressor Facility. The test section was machined in

order to mount the two Ling 100 Ib electromagnetic shakers on the

casing, circumferentially 90 apart as seen in fig. 3.4a. The

whirl excitation forces were transferred to the bearing housing

of the test section via push rods connected to the shakers as

seen in fig. 3.4b. The whirl excitation system employed in the

blowdown facility was a modification of that used in the low

speed whirl experiment [5].

Some trial and error was necessary in order to develop an

appropriate experimental protocol for the whirl testing. Because

of the potentially nonlinear response of the bearings, and the

frequency shifting phenomena observed in the low speed rig data,

any possibility of using impulsive or broadband excitation was

discarded. Sine dwell type testing would be difficult because of

the expected limited lifetime of the bearings. Therefore a slow

sine sweep was chosen as the best system identification protocol.

Yet there still remained several detailed questions.

Should a pure forward whirl, and then a pure backward whirl

excitation be used, or some combination like a standing wave?

Should the rotor speed be held constant and the excitation

frequency swept, or should the excitation frequency be held

constant and the rotor speed swept?

Due to the rather cumbersome manual control of the rotor

speed, it was decided that it would be held constant, and the

excitation would be swept in a controlled way. To simplify the

data interpretation, a pure forward or backward whirl excitation

would be used. The increased operator workload of the high speed

testing required that the forcing sweep be automated. A Wavetek

Model 184 sweep function generator supplied a linearly sweeping
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signal between two preset frequency limits over a fixed duration.

This frequency sweeping signal served two functions. It supplied

the command signal to shaker #1 as shown in fig. 3.4a. It also

supplied the phase and frequency reference signal to a Wavetek

Model 186 phase lock sweep function generator. The phase lock

generator would track the frequency of the input reference signal

and would output a signal with the required predetermined phase

shift. The output of the phase lock generator served as the

command signal for shaker #2. The phase difference between the

two signals was monitored with a Wavetek Model 750 phase meter.

It was the preset phase angle that determined whether the

excitation would excite either forward or backward whirl.

The outputs of the two function generators were input to

two dedicated Altec Model 9440A 800 Watt amplifiers. The output

of the amplifiers were passed through impedance matching

transformers to the Ling Model 420 100 Ib. shakers as seen in

fig. 3.4a.

The shakers pushed on the bearing housing of the rotor

through push rods instrumented with PCB Piezotronics Model 208

force transducers. The force transducers provided a direct

measurement of the excitation force applied to the bearing

housing. Due to air convection cooling and space considerations,

the shakers were mounted on the outside of the test section

casing. In order to apply the excitation forces to the bearing

housing in the vacuum of the test section, dynamic 0-ring seals

isolated the segment of the pushrod inside the vacuum from that

attached to the shaker as seen in fig. 3.4b.

Diametrically opposed to the push rod contact points on

the bearing housing were two Endevco Model 7701 high sensitivity

piezoelectric accelerometers. These allowed for a direct

measurement of the response of the bearing housing centerbody to

the applied excitation and other rotor dynamic loads.

Following the labelling convention shown in fig. 3.4b, the
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forcing applied to the nonrotating bearing housing is of the

form:.

F = F sin u t
N1 FN

F = F sin ( u t + <{, ) (3.3.1)
N2 FN

If the phase of the force applied by shaker #2 leads the force

applied by shaker #1 by 90 degrees dj> = 90°), then a clockwise

rotating resultant force vector is produced. Since the rotor

turns in the counter-clockwise direction, the resultant force

vector rotates in the opposite direction or backwards with

respect to the rotor. For a shaker forcing frequency UFN, the

rotor senses this excitation at a shifted frequency UFR- Tne

magnitude of the frequency shift is the relative angular speed

between the nonrotating structure and the rotor, fl. Since the

rotor and the rotating force vector generated by the shakers

rotate in opposite directions, the frequency shift in excitation

sensed by the rotor is additive. The rotor is then excited with a

backward whirl force at the frequency:

u = u + B (3.3.2)

This corresponds to curve 1 in fig 3.5 which illustrates the

forcing frequency shift as a function of rotor speed.

If the force applied by shaker 12 lags the force applied

by shaker #2 by 90 degrees (<J> = -90°), then a counterclockwise

rotating resultant force vector is produced. In the case where

the force vector is rotating faster than the rotor (o)FN>fl), the

force vector is seen in the rotor reference frame to rotate in

the direction of rotor rotation. This excites forward whirl and

is sensed by the rotor at the frequency:
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u = UpjY - fl . (3.3.3)

This forcing condition corresponds to curve 2 in fig. 3.5.

The other possible forcing condition with $ = -90° occurs

when the rotor is turning faster than the rotating force vector

(J5>UFN^- Tne f°̂ ce vector then seen in the rotor reference

frame to rotate opposite to the direction of the rotor rotation.

This excites backward whirl and is sensed by the rotor at the

frequency:

u_ = Q - u . (3.3.4)

This forcing condition corresponds to curve 3 in fig. 3.5. Thus,

by controlling the shaker excitation frequency UFN and phase

angle $ of the signal generators, a forward or backward whirl

excitation of known frequency UFR can be created in the rotor

frame of reference.

In this chapter the experimental rig used to perform the

structural dynamic whirl testing on the MIT AE Rotor in the

Slowdown Compressor Facility and the whirl excitation system has

been described. In the following chapters the identification of

the system inertial and stiffness parameters and the results of a

series of rotating whirl tests will be described.



4. Determination of Rotor Structural Properties

The prediction of the dynamic behavior of a rotating

bladed disk on a flexible shaft system depends on an accurate

knowledge of the structural properties of the system. This

chapter describes the procedures employed in estimating and

measuring the inertial and stiffness properties for the MIT AE

rotor.

The system inertial parameters other than blade mass terms

were determined by direct measurement of physical dimensions of

components. Blade modal mass and mass coupling parameters were

determined by calculations from holographic mode shape

measurements. These mass calculations are described in section

4.1 .

The stiffness properties of the system were much more

difficult to determine. Direct static stiffness measurements of

the shaft-bearing system yielded inconsistent results, as

described in section 4.2. The approach finally used in

determining these stiffnesses was to perform modal surveys of the

nonrotating disk-shaft system and fit the dynamic data to a

simple rigid disk-flexible shaft model. This approach is

described in section 4.3.

4.1) System Mass Properties

The mass properties of the shaft-disk system were readily

determined by a knowledge of component geometries and the

material densities. The dimensions of each rotor part was found

by direct measurement or, in some instances, by inspection of the

dimensions on mechanical drawings.

The mass properties of the blades were determined by the

holographic measurement of the blade cantilever bending mode

shape at the midpoint of each grid cell on a 10x20 blade grid.

This data, together with the measurement of the cell volumes were

40
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applied to the integral definitions of mo t ml ( m2, and mj}

given in section 2.1. The resulting inertial properties of the

MIT AE rotor are listed in Appendix A.

4.2) Static Stiffness Tests

Determining the necessary stiffness terms consisted of

determining the blade modal stiffness Kg and the effective

shaft/support translation, pitch, and coupling stiffnesses Kx>

Kn, Kxr). The blade modal bending stiffness Kg was

determined from a knowledge of the isolated blade natural

frequency of 374 Hz, the blade modal mass mo, and the relation:

KB = u* m0 . (2.2.2)

Mokadam [5] describes attempts to measure effective

bearing and shaft flexibilities of the low speed whirl spin rig

by the application of static in-plane forces and out-of plane

moments. These measurements entailed the use of dial gauges to

measure the resulting small deflections. Subsequent tests

involved the use of more sensitive inductive proximity sensors.

Both series of tests displayed large scatter, low repeatibility

and pronounced nonlinearity in the translation and pitch

stiffnesses. These effects can be attributed to the difficulty

of measuring the small resultant displacements and to the complex

kinematics of angular contact ball bearings under the various

loading states. When fitted to a straight line in order to

approximate a linear stiffness, the data yielded compliance

coefficients one or two orders of magnitude different from those

required to reproduce the dynamic behavior of the system given

the known mass properties. Further uncertainty would result in

extrapolating the measurements taken on the low speed spin rig to

the Slowdown Compressor Facility.

A different approach to determining the stiffnesses of the

shaft-bearing system was therefore required. Dynamic nonrotating
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modal surveys were seen as the most accurate possible method of

measuring the effective stiffness coefficients of the MIT

Aeroelastic (AE) rotor as mounted in the Slowdown Compressor

Facility.

4.3) Nonrotating Dynamic Stiffness Determination

The technique employed in determining the dynamic

stiffness properties was to calculate the effective stiffnesses

for the system in the Slowdown Facility given the known mass

properties and the measured shaft-disk natural frequencies and

mode shapes. In the analysis necessary to back calculate these

stiffnesses, the blades were assumed to be rigid bodies fixed to

the disk hub. As a result, the data were fit to a model of a

simple rigid disk on the end of a symmetric cantilever shaft as

shown in fig. 4.1a. Let the two system degrees of freedom be

defined as the in-plane translation of the disk (qx) and the

out-of-plane pitching of the disk about its diameter (qn), as

shown in fig. 4.1(a). With rigid blades, the homogeneous system

equations of motion would then be:

M S

S I.

II

q
X

qn

+

K K
x xri

K KL xp p J

q
X

qn

(4.3.1)

The testing for the two modes of the simplified system

described by eq. (4.3.1) was accomplished by placing Endevco

model 2222c miniature piezoelectric accelerometers on various

points of the rotor while sweeping the excitation frequency of

the electromagnetic shakers. The system resonances were noted as

the frequencies at which the response peaked and the phase

shifted abruptly through 90° during the forcing sweep.

In the modal testing, two shaft-disk modes were found, and

are sketched in figures 4.1b and 4.1c. A certain degree of system
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asymmetry was present, that is, the frequencies measured when the

disk was excited in the x direction were not exactly identical

with those measured in the y direction. These asymmetrical

structural properties resulted in pairs of modes at similar but

not identical frequencies but with approximately the same

eigenvector. For the purposes of the fit of the nonrotating

dynamic model of eq. (4.3.1) to the system stiffnesses, the

system was assumed to be symmetric, and averages of the paired

frequencies were used.

The low frequency mode was seen at 222 ± 5 Hz (the range

representing the degree of asymmetry) and was characterized by a

predominant disk rigid body translation motion in phase with disk

pitching. The higher mode was found at 325 ± 5 Hz and consisted

of a larger degree of disk rigid body pitching motion out of

phase with disk translation. The experimentally measured modal

vectors were determined to be:

0.123 m

1.00 rad

-0.054 m

1.00 rad

A good test of the consistency of the experimentally observed

mode shapes is to calculate their degree of orthogonality with

respect to the "known" mass matrix. The experimental mode shapes

were not strictly orthogonal with respect to the mass matrix of 2

DOF model. However, the normalized degree of nonorthogonality

defined below, was on the order of 3%

( (Yi^tMHY,} )2
- - :— = 0.03 (4.3.2)

where YI and Y2 are the measured modal vectors, and M is the
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mass matrix given in eq. (4.3.1).

With the two system modal frequencies and one independent

modal vector (the other modal vector being redundant due to the

need to satisfy the orthogonality condition) the three unknown

stiffness terms in eq. (4.3.1) can be determined. The stiffness

values that were determined by the fit ot" the nonrotating data to

the simplified 2 DOF model are:

m r8.10N/m -5.29 N 1 ,
J [SY.M. 1 .05 Nm J

These stiffness values were subsequently used in the equations of

motion to predict the behavior of the MIT Aeroelastic rotor

system as a function of rotor speed.

In order to more thoroughly investigate the presence of

asymmetries in the rotor and its mounting structure, nonrotating

forced response sweeps were performed with the rotor shaft at

various angular positions, and with the forcing vector directed

at various angles. A useful feature of having two shakers which

are mounted 90° apart on the circumference of the test section is

that the vector sum of the shaker forces could be directed

through the rotor center line at an arbitrary angle. This was

accomplished by the proper selection of force amplitude and phase

angle for each shaker. Note that this procedure was different

than the whirl excitation scheme described in section 3.3. In

that case the shakers were driving at equal forcing amplitudes

and a ±90° relative phase angle.

The asymmetries could have been present in either the

rotating assembly or in the nonrotating structure, or some

combination of both. In order to determine if asymmetries were

present in the nonrotating structure, forcing sweeps were

performed with the resultant force vector acting at various

angles with respect to top dead center of the test section.

However the shaft was always rotated by the same amount as the
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change in the forcing direction angle in order to maintain a

constant relative angle between the shaft position and the

forcing line of action. Since the forcing line of action was

always constant relative to the rotor, any asymmtries in the

nonrotating support structure would be apparent. Except when the

direction of the applied force vector coincided with a

nonrotating system principal direction, the response transfer

function exhibited behavior typical of mistuned oscillators. The

response shows showed two neighbouring peaks in the vicinity of

the slightly different system frequencies. This indicates that

there existed two principal directions for the stiffness of the

nonrotating structure. The natural frequencies associated with

each principal stiffness direction was slightly different.

The procedure for testing for asymmetries in the rotating

system was more straight forward. The force application direction

was maintained constant with respect to the nonrotating

structure, while forcing frequency sweeps were performed at

various rotor angular positions. Only a slight degree of

asymmetry was detected in the rotating structure. This is to be

expected since the rotating structure is an axisymmetric

precision assembly while the rotor support structure consists of

welded struts, casings, and supports that were not necessarily

designed for elastic isotropy.

Response amplitude plots for disk motion as a function of

forcing frequency are shown in fig. 4.2. These plots show the

behaviour of the nonrotating disk pitch mode at constant load

direction and rotor position. Figure 4.2a depicts the mistuned

oscillator-type response for a forcing direction and rotor

position that do not correspond to the principal directions of

the system. Figure 4.2b shows the system behavior for a forcing

direction aligned with one of the principal directions on the

nonrotating structure and a rotor position aligned with a

principal direction of the rotating system. The response
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transfer function curve of fig. 4.2b indicates a single peak,

more typical of the the response of a single degree of freedom

system than that of fig. 4.2a

4.4) Numerical Model of a Whirling Rotor

As a method of predicting the natural frequencies of

whirl of the MIT AE rotor in the Slowdown Compressor Facility,

the equations of motion (2.1.7) were solved using with the

experimentally determined mass and stiffness properties. The set

of equations (2.1.7) are of the form:

[M]{x} + [GJ{x} + [K]{x} = Q (4.4.1)

Describing the system in state vector form:

{x}
(4.4.2)

the normal modes were assumed to be of the form:

{y} = U) eXt (4.4.3)

Upon substitution in eq. (4.4.1), the equations of motion are

then in standard eigenproblem form:

[D] {())}=— {<)>} (4.4.5)

where:

[D] (4.4.5)

The system of equations (4.4.4) were solved using the well

known EISPACK [11] library of matrix eigensystem solution

subroutines. The entries of the dynamic matrix [D] depend on the

rotation speed ft, therefore the normal modes and frequencies were

determined as a function of n. The behavior of the predicted

system natural frequencies as a function of rotor speed is shown
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in fig. 4.3a. The frequencies calculated from the equation are

referred to the rotating frame, i.e. the rotor fixed coordinate

system. The transformed natural frequencies, as they would appear

in the nonrotating frame are shown in fig. 4.3b. Note that the

forward and backward whirl curves still refer to whirl direction

as viewed in the rotor frame. The shaft stiffnesses determined by

the simple 2 DOF model fit of section 4.2 were used as well as

the inertial properties listed in Appendix A.

The predicted system behavior depicted in fig. 4.3 was

seen to differ from the experimentally observed natural

frequencies when the rotor was not rotating (ft = 0). The low disk

rigid body translation dominated mode which was experimentally

observed at 222 Hz was calculated by the model to occur at 219

Hz. The high disk rigid body pitching dominated mode was

experimentally observed at 325 Hz and was calculated at 315 Hz.

The blade one nodal diameter mode was experimentally observed at

388 Hz and was predicted to occur at 408 Hz. These discrepancies

can be seen by noting the experimentally observed frequencies in

fig. 4.3a. The primary reason for the discrepancy between the

observed and predicted fj = 0 natural frequencies is due to the

fact that the stiffness parameters input to eq. (4.4.4) were

determined by fitting the experimental disk rigid body dominated

mode dynamic data to a 2 DOF model which did not include blade

flexibility effects, eq. (4.3.1).The blade cantilever frequency

of 374 Hz and the observed disk rigid body pitch dominated mode

frequency of 325 Hz are in too close proximity to ignore the

flexibility of the blades in the high disk mode motion. As a

result the subsequent inclusion of blade flexibility in the

system equations of motion (4.4.4) depresses the fj = 0

frequencies for the two lower modes which primarily consist of

disk translation and pitch motion, while increasing the blade one

nodal diameter frequency. The disk pitch mode was in closer

proximity to the blade cantilever mode for fl = 0 than was the
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disk translation mode. Hence the inclusion of the blade

flexibility effects in the model depressed the disk pitch mode

more than the disk translation mode.

Since the elements of the stiffness matrix were chosen to

best fit the nonrotating modes, it was decided to further refine

the fits using the full system model. This refinement will be

done in two steps. First only the support stiffnesses will be

modified, and later both the support and blade stiffnesses will

be modified.

In order to obtain a more refined fit for the support

stiffnesses, the measured frequencies used in the earlier fit;

were precompensated. This precompensation for the decrease in

the frequency of the pitch mode predicted by eq. (4.4.4) was

achieved by changing the dynamic data input to the 2 DOF

stiffness fit from the experimentally measured values of 222 Hz

and 325 Hz to 222 Hz and 335 Hz.

A second discrepancy in the prediction of the system

natural frequencies shown in fig. 4.3a is the high rotor critical

speed (defined as the point of intersection of the low forward

whirl branch with the u = 0 axis). This point is experimentally

known to occur in the vicinity of ft = 215 Hz. In order to

precompensate for this difference, the coupling stiffness Kx_

was reduced by 35% from that predicted in section 4.2. The

resultant Kx and Kn for a value of KXn chosen to be 35%

less than the value used in fig. 4.3 was then calculated from

eq. (4.3.1). The decrease in KXn corresponds to a decrease in

the stiffness coupling parameter k from 0.331 to 0.164. The

2 DOF system stiffness matrix for the precompensated system is

then:

m = I"'47 N/m '3'44 N 1 io61 J |OVM 1.32 Nm[5.47
SYM.

This is approximately the best fit to the Q = 0 data that can be
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made without modifying the blade stiffness.

The resultant system natural frequency behavior as a

function of rotor speed is shown in figures 4.4a and 4.4.b. The

effect of using the precompensated 2 DOF stiffness data in the

full 6 DOF whirl model is a slightly better agreement for the

disk pitch and translation modes at zero rotation speed. The

n = 0 disk translation mode is then predicted to occur at 220 Hz,

which is in better agreement with the experimentally determined

frequency of 222 Hz than the prediction using the baseline fit.

Also, the ft = 0 disk pitch mode was predicted to appear at 317 Hz

which agrees more closely with the measured mode at 325 Hz.

However, the nonrotating blade one nodal diameter mode is further

raised from 408 Hz, the prediction using the baseline stiffness

fit shown in fig. 4.3a, to 416 Hz in fig. 4.4a. This error in

predicting the n = 0 blade one nodal diameter mode prompted

another attempt to better fit the nonrotating data.

A second approach to precompensating the dynamic stiffness

data follows in a manner similar to the first compensation

scheme. In addition to the to the measures taken in the first

scheme, the blade modal stiffness KB determined by eq. (2.2.2)

was decreased by 19% in order to precompensate for the incorrect

prediction of the ft = 0 blade one nodal diameter modes at too

high a frequency. The results of this final refinement are

plotted in the rotor frame in fig. 4.5a and in the nonrotating

frame of reference in fig. 4.5b. The results of this

precompensated stiffness fit were used as the prediction of the

system natural frequencies of whirl in order to assist in

choosing the correct operating point for the whirl experiments.

The correlation between the predicted and the experimentally

determined frequencies for both the zero rotation speed and those

speeds tested will be discussed in section 5.4. The results of

the three stiffness fits are summarized in Table A.2.

Thus as a result of direct measurement of the inertial
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properties and careful modal surveys of the rotor while not

rotating, a complete set of system parameters have been found.

Solving the system equations of motion with these parameters

yields a reasonable prediction of the nonrotating behavior of

the system and its the critical speed. The parameters are all

internally consistent with the nonrotaing mode shapes, that is

they satisfy the modal orthogonality relationships. In the next

chapter the results of an experimental program of whirl testing

on the MIT AE rotor will be discussed and the predicted and

measured frequencies will compared.



5. Whirl Test Results

A program of experimental testing was carried out to

determine the natural whirl frequencies of the MIT Aeroelastic

rotor installed in the Slowdown Compressor Facility. The tests

involved running the rotor at constant rotational speed while

applying an excitation force phased to excite either forward or

backward whirl. The response of the system was monitored by means

of the blade piezoelectric displacement transducers. Peaks in the

blade response amplitude were found to occur during the constant

amplitude forcing sweeps. These resonant peaks were used to

define the natural frequencies of the system.

The tests were performed at specific constant rotation

speeds for both the forward and backward whirl excitation

phasing. The rotation speeds chosen for study were: ft = 30, 60,

90, 120, 150 Hz (1800, 3600, 5400, 7200, 9000 rpm). The data

obtained up to and including Q = 150 Hz was sufficient to

illustrate the trends of the rotor system natural whirl

frequencies with rotor speed, and to allow for comparison of

predicted and experimental results.

Tests were also carried out at 5 Hz rotation speed in

order to obtain a check of the nonrotating natural frequencies

determined by this procedure with those reported in section 4.3

for n = 0. The natural frequencies at this low speed are only

influenced slightly by the effects of rotation, hence the natural

frequencies determined by the rotating instrumentation (the blade

piezoelectric displacement transducers) were correlatable to the

natural frequencies determined in the nonrotating modal surveys.

The low speed tests were also useful in order to determine the

observability of the modes of the system by the rotating

instrumentation. Note that during the nonrotating modal surveys,

discussed in section 4.3, it was possible to employ many shaft,

disk, and blade mounted accelerometers in addition to the blade

displacement transducers which comprised the rotating

51
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instrumentation.

The technique employed for whirl testing is described in

section 5.1. The verification of the successful excitation of the

rotor in whirl is illustrated for both the forward and backward

whirl case in section 5.2. The reduction of the forcing sweep

data is shown in section 5.3, and the comparison between the

predicted system frequencies and those experimentally measured is

made in section 5.4. Finally, the experimental results are

tabulated in Appendix B.

5.1} Whirl Test Procedure

The rotating whirl tests performed in the Slowdown

Compressor Facility were essentially forced response tests using

a slowly varying sinusoidal sweep technique. The natural modes of

the rotor running at a constant speed were excited by sweeping in

frequency, with the shakers set to force in a fixed whirl

direction (forward or backward). During the development of the

experimental technique single shaker, impulsive, and broadband

excitation techniques were also evaluated. However due to the

complex and possibly nonlinear response, clear interpretation of

the data was best achieved using sine sweeps phased for pure

forward or backward excitation.

An important consideration in devising the experimental

procedure was that the total elapsed time during a test be kept

as short as possible,, especially at high speeds. This was done in

order to minimize the run time on the bearings which, as

previously discussed, were running above their DN rating. Bearing

failures had previously occurred in the blowdown facility and,

given the vigourous nature, of the whirl forcing excitation, such

an event was a major concern. In addition to influencing the test

procedure, this concern for bearing life was what set the choice

of a maximum test speed of » = 150 Hz (9000 rpm). Another

motivation for keeping test times short was to prevent the drive
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motor from overheating. The motor temperature was monitored

during the tests by a thermocouple on its casing.

At the beginning of a test run, the test section of the

Facility was evacuated to a vacuum of approximately 0.1 mm Hg.

During this pump down time the LeCroy A/D system was initialized

and the desired forcing sweep range and sweep rate was set on the

Wavetek Mod. 184 master sweep function generator. The Wavetek

Mod. 186 phase lock slave function generator was set for the

proper phase difference with respect to the Mod. 184 master sweep

generator signal. These excitation signals were input to the two

separate Altec 800W power amplifiers, the gains of which were set

for the desired forcing amplitudes. Typical forcing amplitudes

were measured at 80 Ibf (peak to peak) by the PCB Piezotronics

force transducers.

When the desired vacuum was achieved the test would begin.

The HP 3960 FM recorder and the Ampex FM recorder were set to

start recording and the rotor was brought up to the desired

rotational speed. When the target rotational speed was reached,

the forcing sweep was started. Typically frequency sweep rates

were approximately 1 Hz/s. During the sweep the rotor speed was

maintained constant by manually correcting the motor input power

and monitoring the tachometer. Typically the rotor speed was held

stable within 0.5 Hz during a test run. At a predetermined

forcing frequency during the sweep, the A/D was triggered and 32

channels of data were digitized at a rate of 5 kHz per channel

for 200 ms duration. Of course the FM tape recorders were

recording data during the entire test run. At the end of the

forcing sweep the shaker excitation and the analog recorders were

turned off. The rotor was stopped, and the A/D data was

transferred to the POP 11/70 computer for storage and later

analysis.

After the test the primary data, the 2 force transducer

and 2 blade displacement signals recorded on the HP recorder,
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were played back and inspected on an oscilloscope to ensure that

no loss of the primary instrumentation occurred during the run.

One force transducer and one blade signal were played back into

the HP 3582A spectrum analyzer for blade response amplitude

inspection as a function of forcing frequency. Provided that the

data appearred to be consistent, all the data was archived to

await detailed data reduction. The data reduction procedure will

be discussed in section 5.3.

5.2) Verification of Whirl Excitation Direction

The shaker excitation system described in Section 3.3 was

designed to excite the rotor at any desired frequency and whirl

direction, independent of the rotor speed. There remains the

question of whether this excitation system was successful, and

how pure the forward and backward whirl excitation was. This

excitation process was monitored at four points: at the input to

the shaker amplifiers (the output of the signal generators) by

phase and voltmeters; at the input to the bearing housing

centerbody by the the force transducers; by the response of the

centerbody by two accelerometers; and by the response of the

blades. By analyzing these signals, it will be shown that the

target whirling modes and frequencies were successfully produced

by the shaker system. The presence of the excitation patterns

will first be shown for the forward whirl case, then for the

backward whirl case.

5.2.1) Forward Whirl Excitation Case

As an example of the successful excitation of forward

whirl motion, the case of the rotor turning at fl = 120 Hz (7200

rpm) will be considered. The response of the bearing housing

centerbody will first be examined, then the displacement of the

blades will be shown. The time history of the forces applied to

the bearing housing centerbody are shown in fig. 5.1a. The
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shakers are each applying a sinusoidal force at the frequency

UFN = 449 Hz and are phased such that the force applied by

shaker #2 lags that of shaker #1 by 90°. This corresponds to a

phase angle <j> of -90° in eq. (3.3.1), and therefore a forward

whirl excitation. As can be seen from the excitation system

configuration diagram in fig. 3.4b, this $ = -90° excitation

pattern produces a resultant force vector that rotates at a

frequency of UFN = 449 Hz in the direction of the rotor as

viewed in the nonrotating frame.

The spectral content of the signals from the force

transducers are shown in fig 5.2. The plots, which were produced

by power spectral density (PSD) software on the POP 11/70, are

the frequency domain representation of the signals shown in fig.

5.1a. The plots both show peaks of nominally equal magnitude at

exactly at the forcing frequency of UFN = 449 Hz> Therefore the

force applied to the system by the two shakers exactly follows

the commanded force, i.e. two force components of equal

amplitude, a -90° phase difference, and of a single pure harmonic

content of the desired excitation frequency.

Next the response of the nonrotating bearing housing

centerbody to this excitation will be examined. The acceleration

response of the bearing housing centerbody is shown in fig. 5.1b.

The signal from accelerometer #2 (located diametrically opposite

to shaker #2) lags the signal from accelerometer #1 (located

diametrically opposite to shaker #1) by about 90°. This

indicates that the nonrotating structure did respond to the

excitation force vector, which was rotating in the direction of

the rotor at a speed of UFN as seen in the nonrotating frame.

However note that the response amplitude of accelerometer #1 was

about three times greater than that of accelerometer #2. Thus the

bearing housing centerbody moved along a nominally elliptical

pattern in the direction of the rotor at an inertial angular rate

Of
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Similarly, the power spectral densities of the bearing

housing accelerometer signals are shown in fig. 5.3. A sharp

spike is seen in the PSD of accelerometer #1 at upjg = 449 Hz

while the corresponding spike on the PSD of accelerometer #2 is

only about one ninth the magnitude. This is because the

acceleration amplitude of the two accelerometer signals differed

by a factor of three and the PSD amplitude is proportional to the

square of the signal amplitude. This verifies that the bearing

housing centerbody did respond in a forward whirling motion at a

frequency equal to the excitation frequency, although in an

elliptic rather than circular pattern. The reason for this

preferential direction is suspected to be associated with a

nonuniformity of the centerbody support structure in the Slowdown

Facility. Other peaks in the PSD amplitude traces can be seen at

integer multiples of the rotor speed fl, primarily at UR = Q-

The additional once per revolution response is of course due to

the slight residual imbalance of the rotor exciting the support

structure at the rotation speed.

Having established that the nonrotating centerbody

responds to the whirl excitation at UFN> it remains to be

determined how the excitation is viewed in the rotating system

and how the blades respond. The transformation of forces from

the nonrotating to the rotating system was discussed in section

3.3 and summarized in fig. 3.5. The case being considered is:

shaker phase angle <J> = -90° , shaker excitation frequency UFN =

449 Hz, and a rotor speed of n = 120 Hz (7200 rpm). Since the

inertial forcing frequency up^j is greater than the rotor speed

£5, the rotating assembly should sense a rotating force vector at

a frequency of: UJR = u^-fl = 329 Hz and rotating in the

direction of rotor rotation as viewed in the rotor frame. This

corresponds to a point on curve 2 of fig. 3.5, which is the

forward whirl excitation characteristic. The characteristics to

establish this specific point are shown in fig. 5.4, superimposed
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on the predicted system resonance plot of fig. 4.5a. Thus one

would expect the blades to respond at UFR = 329 Hz in a one

nodal diameter forward whirl pattern.

The time response of the blade piezoelectric displacement

transducers to the excitation pattern are shown in fig. 5.5 in

their correct relative angular positions on the rotor hub. The

signal from blade displacement transducer #1 is repeated after

the signal from blade transducer #23 for reference. These

response signals were recorded simultaneously with the excitation

signals by the LeCroy A/D. By inspection, it can be seen that

the dominant displacement pattern of the blades is a one nodal

diameter mode with a nominal interblade phase angle of: 8 =

360°/23 blades = 15.7° and the sense of the travelling wave is in

the forward whirl direction. Therefore the blades are responsing

to the forward whirl excitation. Note that the signal from blade

displacement transducer #2 is null because its wire insulation in

the forward slip ring assembly was damaged, and the signal was

shorted to ground. Constraints in the Facility test schedule did

not permit a shutdown to remove the slip ring assembly and repair

the wire.

In order to determine the frequency content of the blade

response, the power spectral density of a typical blade

displacement transducer (#9) is shown in fig. 5.6. A large peak

is seen at the frequency of the excitation in the nonrotating

frame of 449 Hz (all blade signal frequencies are referred to as

frequencies observed in the rotor frame). Response is also seen

at the target forcing frequency: UFR = "FN~S ~ 327 Hz- A

small peak is also seen at the frequency at which backward whirl

would be sensed in the rotating frame: upN+ft - 571 Hz. Two

possible mechanisms for the appearance of these undesired whirl

response frequencies are: responses stemming from asymmetries in

the bearing support structure and amplitude differences between

the two shaker forces during the excitation sweep.
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For a rotor system with stiffness asymmetries in both the

nonrotating structure and in the rotating assembly, the resulting

equations of motion expressed in any coordinate system will

involve periodic coefficients. The forced response or

nonhomogeneous solutions to periodic forcing inputs can be seen,

by Floquet or harmonic balance methods [12], to involve

frequency components shifted from the forcing frequency by

harmonics of ft . For a forward whirl excitation, a symmetric

linear system would respond at the freqency of excitation

-ft ) , but a nonsymmetric system would also respond at:

, upfj, <->FN+n ' etc> • Although the system asymmetries

were relatively weak in the rotating structure and slightly more

apparent in the nonrotating structure, this effect may be the

cause of the unexpected response frequencies.

Blade frequency response shifts due to amplitude

differences in the shaker output forces are readily explained

within the realm of linear theory. Consider a forcing input to

the bearing housing centerbody with a fractional amplitude

difference 2e between each shaker:

F = (He) f

FN2 = (1-e) f sin(UFNt+4>)

For the case of forward whirl with UFN * ̂  and * = "90° > the

>
rotor senses the following excitation pattern:

F__ = f sin(u _-n)t + ef sin(u +fl)t
R I rN FN

FR2 = - f cosdo^-flH + ef cos(uFN+n)t

Therefore a component of backward whirl of magnitude ef

and frequency up-N^ exists in the rotor excitation as sensed

in the rotating frame. Thus a response is to be expected at this

frequency if the shakers are not producing equal force

amplitudes, or in an analogous manner, the bearing centerbody

does not respond with equal receptance to a symmetric excitation



59

pattern. It was shown in fig. 5.1b that the centerbody responded

with unequal amplitudes in the two orthogonal directions in spite

of the nominally equal excitation amplitudes. Therefore a

possible mechanism for the blade response at the undesired whirl

frequency, the frequency corresponding to backward whirl, is the

unequal response amplitude of the bearing housing centerbody to

the forward whirl excitation.

In the power spectral density plot of the displacement

response of blade 19, shown in fig. 5.6, it is evident that the

blade is also responding at harmonics of the rotor speed n. The

response at integer "engine" orders is quite significant, with a

large PSD spike at 2n = 244 Hz and smaller spikes at: 1n = 122

Hz, 3fl = 366 Hz, and 4fl = 483 Hz. The origin of this excitation

is somewhat uncertain. It is certainly due to some interaction of

the rotating and nonrotating frames since it clearly occurs at

multiples of the rotor speed. It could be due to bearing noise or

a complex interaction of the rotor imbalance with the nonuniform

nonrotating centerbody support structure.

The overall conclusion is that the forward whirl

excitation is indeed sensed by the rotor, but due to

nonuniformity of the support and the presence of additional

excitation sources, the signal-to-noise ratio of the desired

response of the blade compared to the total response is not good

(clearly less than one in this case). Therefore in the data

reduction process, great care must be taken to identify the

response associated with each excitation source. Then only the

response associated to the desired whirl direction should be

considered in the determination of the system resonances.
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5.2.2) Backward Whirl Excitation Case

In a procedure parallel to that of the previous

subsection, the results of a backward whirl excitation will be

traced from the shakers, through the bearing housing centerbody,

and ultimately to the blade response. The particular case of a

rotor speed n = 60 Hz (3600 rpm) run will be discussed to

illustrate the backward whirl response. The shaker input signals

are instantaneously commanding a backward whirl excitation at

"FN = 29° Hz> Tne time history of the force transducer signals

as logged by the A/D system are shown in fig. 5.7a. The shakers

are phased such that the force exerted by shaker #2 leads that of

shaker #1 by 90°. This corresponds to a phase angle $ = 90° as

defined in eq. (3.3.1) and a backward rotating force vector as

viewed in both the nonrotating and rotor frames. The spectral

content of the shaker force transducer signals are shown in fig.

5.8. A pair of sharp peaks are seen at the forcing frequency of

<TN = 290 Hz. The two peaks are of nominally equal amplitude,

indicating again that a pure uniform force vector is produced by

the excitation system.

The acceleration response of the bearing housing

centerbody to the applied shaker forcing is shown in fig. 5.7b.

The signal from accelerometer §2 is seen to nominally lead that

from accelerometer #1 by 90". Upon inspection of the excitation

system layout shown in fig. 3.4b, the vector sum of the two

acceleration vectors (and hence displacement vectors), is seen to

rotate in a direction opposite to that of the rotor. The two

acceleration signals are of similar amplitude, thus the bearing

housing centerbody executes a nominally circular backward

whirling motion. The power spectral density of the accelerometer

signals is shown in fig. 5.9, where again a relatively clean

response at UFN = 29° Hz is seen- Note that the slight

difference in excitation force amplitude between shaker fH and #2

is reflected by a consistent slight difference in centerbody
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response amplitude (fig. 5.9), in both cases the 2 direction

responding with slightly less amplitude than in the 1 direction.

This is an indication that at this frequency, the centerbody

support structure is approximately symmetric.

The frequency and sense of the excitation must again be

transformed to the rotor frame. In this case the force vector

applied by the shaker system rotates at an angular rate of UJ-N

= 290 Hz opposite to the direction of rotor rotation, viewed in

the nonrotating frame. Following the discussion of section 3.3,

for a rotor speed Q = 60 Hz, the rotor should sense an applied

force vector rotating opposite to the direction of rotor rotation

at an angular rate of upN+ft = 3^0 Hz> as viewed in the rotor

frame. This corresponds to a point along curve 1 of fig. 3.5, the

force transformation summary plot.

The simultaneous time response of the blade displacement

transducers can be seen in fig. 5.10. The blades are shown in

their correct relative angular position on the rotor hub with the

signal from blade transducer #1 repeated after that of blade

transducer #23. The blades are executing a one nodal diameter

motion with a nominal interblade phase angle of 8 = -15.7°,

corresponding to a backward whirl motion. A typical blade

displacement signal PSD, specifically for blade #12, is shown in

fig. 5.11. The PSD clearly shows that the blades are responding

at a frequency of upR = 350 Hz, which corresponds to backward

whirl excitation. Comparison of fig. 5.11 and fig. 5.5 indicates

that the backward whirl motion was excited in a more pure manner

than was the forward whirl motion.

Further inspection of fig. 5.11 reveals the presence of

peaks in the PSD of the blade response at frequencies other than

the excitation frequency U^R. These peaks are of relatively low

amplitude compared to the response forced at UFR- One low

amplitude PSD spike is seen at the rotor speed: 1ft = 60 Hz, which

is excited by the mechanisms discussed in section 5.2.1. Two
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other peaks are also seen, one at 386 Hz and another with a

higher amplitude at 406 Hz. It will be seen in section 5.3 that

these two response frequencies correspond to the n = 60 Hz one

nodal diameter blade forward and backward whirl natural

frequencies, respectively. The response observed at these system

natural frequencies are probably due to broadband background

noise excitation. The response of the backward whirl mode at 406

Hz is of the greater amplitude and its effect can be seen as a

beating signature on the time response of the blades. By

contracting the time scale on a single trace of fig. 5.10, this

beating can be seen. This is shown in fig. 5.12, where the

response of blade displacement transducer #12 is shown with a the

time axis contracted by a factor of four in comparison to the

axis in fig. 5.10. The beating is due to the proximity of the

forcing frequency UFR = 350 Hz to the natural frequency of the

one nodal diameter backward whirl mode (UBB^ °^ 40^ Hz ^or a

rotor speed of 60 Hz. The envelope of the beating signal has a

frequency of:

which agrees well with the graphically measured beat frequency of

29 Hz.

Therefore it can be seen that the signal-to-noise ratio of

the backward whirl blade response compared to blade response at

other frequencies is on the order of ten, much greater than that

obtained for the forward excitation case. Therefore the

excitation system is seen to be very effective at selectively

exciting backward whirl response and somewhat less effective for

forward whirl.
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5.3) Whirl Spectral Data

In order to determine the natural frequencies of whirl for

the rotor at speed, the signals recorded on the HP 3960 recorder

were analyzed in the frequency domain. Two of the four recorder

channels were the force transducer signals representing the

controlled excitation applied to the system. The two other

channnels were two of the blade piezoelectric displacement

transducers which represented the response of the system to the

shaker input,. These tape recorded signals were the most useful of

the data because they were continuous records of the input to and

the response of the rotor system. In contrast, the A/D data

provided only a "snapshot" of the rotor state at one instant-

aneous forcing frequency. By transforming the tape recorded data

into the frequency domain, the system transfer functions could be

inferred as a function of rotor speed and whirl direction. These

peaks in the blade response transfer functions were used to

define the natural frequencies of the rotor.

5.3.1) Spectral Data Reduction Scheme

The transformation of the data to the frequency domain was

achieved by playing back the tape recorded data into the HP 3582A

spectrum analyzer. The spectrum analyzer performs fast Fourier

transforms (FFT) upon its input and provides graphical display of

the FFT magnitude record on its video display. The FFT record

could also be read from the spectrum analyzer over an IEEE-488

bus into an IBM Personal Computer for storage and subsequent

plotting. Since the spectrum analyzer had only two channels,

only one force transducer and blade displacement transducer

signal were transformed into the frequency domain.

This procedure allowed for an input-output transfer

function to be constructed by plotting the relevant peak in the

FFT of the blade displacement response as a function of the

forcing frequency. For a particular blade response FFT, the
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corresponding excitation frequency was determined from a

simultaneous FFT of the force transducer signal. As discussed in

section 3.3 and summarized in fig. 3.5, there is a frequency

shift in the excitation sensed by the rotating assembly compared

to the forcing frequency exerted on the nonrotating bearing

housing. Therefore the system excitation, which is measured in

the nonrotating frame of reference by the force transducers, must

be shifted in the frequency domain in order to determine the

spectral content of the forcing input to the rotating system.

The frequency domain data reduction scheme is summarized

in fig. 5.13. For a particular test case the rotor speed n and

the whirl excitation phase angle 41 are held constant. The forcing

frequency is swept at a relatively low rate in comparison to the

frequencies being excited. Therefore during a data sampling

window for the spectrum analyzer, the forcing frequency UFN was

essentially constant. This is illustrated in fig. 5.13a where the

time record of the shaker output is shown. A simultaneous sample

of the blade response signal over the same sample window is shown

in fig. 5.13b. The force transducer signal of fig. 5.13a is

transformed by the spectrum analyzer into the FFT plot of fig.

5.13c. The forcing FFT plots are typically characterized by a

single clean peak at the shaker forcing frequency of up^j and,

since the amplitude of the forcing is maintained constant during

a sweep, the amplitude of the FFT peak is constant over the

sequential sample windows. The corresponding blade response FFT

is shown in fig. 5.13d. In the example shown, the case of forward

whirl excitation is depicted, therefore the desired response is

expected at UFR = "FN~n• A9a^n tne frequency components of

the blade signals are referred to the rotor frame and the

frequency components of the force transducer signals are with

respect to the nonrotating or inertial frame. As discussed in

section 5.3 there are other frequency components in the blade

response, specifically at harmonics of the rotor speed,
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and the undesired whirl direction (in this case at

As the window over which the FFT samples are taken is

shifted along the time axis of figures 5.13a and 5.13b, the

forcing frequency increases according to the sweep rate commanded

by the function generators at the time of the test. By

sequentially performing FFT's on the shaker force and blade

response signals, the spectral cascade plots of figures 5.13e and

5.13f are produced. The cascade plot of the shaker forcing input,

fig. 5.13e, shows the sweeping forcing frequency UFN as a clean

frequency component peak that translates along the frequency axis

according to the sweep rate. The desired blade response frequency

component, in this example the forward whirl component at UFR =

UFN-Q , also translates along the frequency axis of the cascade

plot of fig. 5.13f. The amplitude of the blade frequency

component corresponding to the target response of forward whirl

is then plotted as a function of excitation frequency UFR>

referred to the rotor frame. Since the amplitude of the

excitation was constant over a sweep, a blade response transfer

function such as fig. 5.13g can be constucted by plotting the

amplitude of the Fourier component at UFR versus the excitation

frequency UFR- The peaks in the transfer function are assumed

to correspond to natural frequencies of the rotor system, at the

given set of rotor speed and whirl phasing conditions.

Because each test is performed at a constant shaker phase

angle <s>, then only three of the six system modes should be

excited by the forcing sweep. The modes that are excited are

those with mode shapes of whose direction correspond to that of

the whirl excitation. Also, because each test is performed at a

constant rotor speed, the transfer function plot occurs along a

constant speed (vertical) line in a system response plot such as

fig. 4.3. This is shown for the forward whirl case in fig. 5.13h,

where the transfer function is overplotted as a vertical trace on

the system natural frequency plot. The peaks of the transfer
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function plot define the system natural frequencies for those

particular test conditions. By varying the rotor speed and

performing tests with the shakers phased for both forward and

backward whirl, the experimental system natural frequency (in the

rotor frame) plot can be constructed. This data reduction scheme

will be applied to the forward whirl excitation data, then to the

backward whirl excitation data in the next two subsections. The

results of the data analysis will be overplotted on a system

natural frequency plot and tabulated in Appendix A.

5.3.2) Forward Whirl Spectral Data

The spectral response data from the forward excitation

tests will be examined by analyzing the HP 3960 tape recorder

data according to the procedure outlined in the previous

subsection. The data will be presented in the form of cascade

plots of the blade response power spectral density as in fig

5.14. Each trace on the cascade plot corresponds to a single

excitation frequency UFR> which is referred to the rotor frame.

All of the traces on a given cascade plot are for the same rotor

speed and whirl phasing. The range of experimentally applied

excitation frequencies for some of the forward whirl data are

graphically shown as vertical bars on the predicted system

frequency plot shown in fig. 5.27.

The cascade plot of fig. 5.14 depicts the blade spectral

response for the case of a rotor speed of fi = 30 Hz, forward

whirl shaker phasing, and an excitation frequency range of

"FR = 365 to 397 Hz< This ran9e of excitation is in the

neighbourhood of the blade one nodal diameter forward whirl mode

at this speed and is graphically shown on the system frequency

plot of fig. 5.27. The traces of the cascade plot of fig. 5.14

show that the blade response contains a dominant frequency

component at the desired response, UFR> and a smaller response

at UFN* The response peak at UFR is a maximum for the
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excitation frequency trace of upR = 379 Hz and tne signal-to-

noise ratio of the desired response frequency component is about

four for that trace. Upon inspection of the data at smaller

intervals of excitation frequency, a more precise location

of the blade one nodal forward whirl mode at n = 30 Hz is found

to be at 378 Hz. This provides one data point for the system

natural frequency plot of fig. 5.37.

The cascade plot of fig. 5.14 is summarized in the system

transfer function plot of fig. 5.15. The plot depicts blade

response amplitude as a function of forcing frequency UFR f°r a

constant forcing amplitude, rotor speed, and whirl phasing

direction. Only the two higher forward whirl modes are shown,

since the disk rigid body translation mode appears below the

frequency range of fig. 5.15. The resonant peak for forward whirl

blade one nodal diameter motion at 378 Hz is very sharp

indicating that the observability of the blade modes is

relatively much greater than that of the disk rigid body modes.

In fact the blade response to the disk forward whirl rigid body

pitching modes has such a low signal-to-noise ratio that it was

very difficult to determine the experimental natural frequencies

of this mode. Therefore this mode does not appear in the

experimental data overplot on the system natural frequency plot

of fig. 5.37. As will be seen in this section, the disk forward

whirl rigid body translation modes were discernable only after

careful inspection of the data because of the poor signal-to

noise ratio of the blade response at that frequency range.

The difference in amplitude within the transfer function

plots such as fig. 5.15 is primarily because the sensors used to

monitor the system response were piezoelectric displacement

transducers The transducers are specifically sensitive to blade

motion, hence blade displacement modes are more observable than

the disk rigid body translation and pitching modes. This

difference in the observability of the blade displacement and
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disk rigid body motion will be apparent in all the rotating data,

and it will affect the ability to detect the disk rigid body

modes with a high degree of certainty.

The cascade plot of blade response for the case of:

forward whirl excitation, rotor speed Q = 60 Hz (3600 rpm), and

excitation frequency range of upR = 130 Hz to 172 Hz is shown

in fig. 5.16. The rotor operating point and excitation range

corresponding to this cascade plot are sketched on the system

frequency plot of fig. 5.27. This cascade plot contains many

frequency components other than the target forced response at

UFR = UFN~^' Tne sPectra show response peaks at the

frequencies up^ and at upjj+Q > tne frequency at which a

backward excitation would appear. These undesired response peaks

are often of larger amplitude than the desired forward whirl

response, indicating that a poor signal-to-noise ratio was

achieved. Harmonics of the rotor speed ft also appear, with the

fourth harmonic response approaching 30% of the amplitude of the

forward whirl forced response. In spite of the difficulty in

attaining a pure forward response pattern, a peak in the forward

whirl cascade plot is seen on the trace corresponding to the

excitation frequency UFR = 15° Hz- Further analysis of the

tape recorder data indicate that the exact position of the peak

response occurs between the spectrum traces of UFR = 144 Hz and

150 Hz, specifically at UFR = 146 Hz. Therefore this is the

natural frequency of the disk rigid body translation mode at a

rotor speed of Q = 60 Hz.

The cascade plot corresponding to the same operating

conditions (forward whirl and n = 60 Hz) as fig. 5.16, but at the

higher excitation frequency range of UFR = 374 Hz to 402 Hz is

shown in fig. 5.17. This excitation frequency range is in the

neighbourhood of the blade one nodal diameter forward whirl mode.

The response of the blade is seen to be much cleaner than in fig.

5.16, with the peaks corresponding to UFR being the only
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significant ones and the response amplitudes are of much higher

amplitude as can be seen in the transfer function plot of fig.

5.18. In the cascade plot of fig. 5.17, the resonance peak can be

seen on the UFR = 386 Hz trace. This corresponds exactly with

the peak on the transfer function plot which was determined at

much finer intervals of excitation frequency. Therefore the blade

one nodal diameter forward whirl mode is seen to occur at a

frequency of 386 Hz, in the rotor frame of reference. Again,

this higher response amplitude of the blade one nodal diameter

modes is due to their higher observability than the disk rigid

body dominated modes.

Another example of a cascade plot in the neighbourhood of

the disk rigid body translation dominated mode is shown in fig.

5.19. This plot corresponds to the case of forward whirl

excitation of the rotor at a speed near n = 90 Hz, specifically

91.3 Hz. The spectral content of this cascade plot is similar to

that seen in fig. 5.16, the previous forward whirl cascade plot

in the vicinity of a disk rigid body dominated mode. The

response at the target forward whirl frequency is seen to occur

at a slightly lower amplitude than the responses at cjpjj and

UFN+Q. There is also an appreciable amplitude of response at

harmonics of the rotor speed. Therefore a poor signal-to-noise

ratio was achieved in driving the target response frequency. The

forward response does peak in the vicinity of the 112 Hz trace,

specifically at upR = 114 Hz. therefore the disk forward whirl

rigid body disk transaltion mode at a rotor speed Q = 91.3 Hz is

determined to be 114 Hz in the rotor frame of reference. The

blade response transfer function plot for this case of a rotor

speed ft = 90 Hz (91.3 Hz) and forward whirl phasing is shown in

fig. 5.20.

Forward whirl response cascade plots for the rotor speed

of ft = 120 Hz and the excitation ranges of upR = 73 Hz to 99 Hz

and <jpR = 444 Hz to 468 Hz are shown in figures 5.21 and 5.22
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respectively. Figure 5.21 depicts the blade spectral response in

the neighbourhood of the disk rigid body translation dominated

mode. As is typical of the lower disk modes, the response at the

undesired response frequency UFN is of larger amplitude

relative to the target response frequency <JFR = <JFN~^' Also>

harmonics of the rotor speed n appear in the spectral content of

the blade response. These undesired response frequencies combine

to result in a poor signal-to-noise ratio. The peak in the

response at upR is seen in the vicinity of the 85 Hz trace.

Further inspection at smaller excitation frequency increments

yields a resonant frequency for the forward whirl disk rigid body

translation dominated mode of 84 Hz, as seen in the transfer

function plot of fig. 5.23. Figure 5.22 depicts the response in

the vicinity of the blade one nodal diameter forward whirl mode.

In addition to the response at UFR, a significant response at

the third and fourth harmonics of the rotor speed are seen. The

spectra indicate a resonance in the neighbourhood of UFR =

456Hz, and upon closer inspection the one nodal diameter forward

whirl blade mode is seen at 454 Hz as shown in the transfer

function of fig. 5.24. This resonance is also seen to be excited

by broadband background excitation during the experiment as can

be seen on the upR = 476 Hz trace of fig. 5.22.

The disk rigid body translation dominated mode cascade

plot for the forward whirl, a = 150 Hz case is shown in fig.

5.25. It can be seen from the plot that the signal-to-noise ratio

of the desired response is decreased by the presence of frequency

components at UFN anc^ at ^ ' T^e Pealc response at the forward

frequency is seen near UPR = 62 Hz. The transfer function

corresponds to this range of excitation frequency is seen in fig.

5.26, where the more precise location of the forward whirl disk

rigid body translation mode is seen at 60 Hz.

The operating points for the spectral response data to

the forcing sweeps are all depicted graphically in fig. 5.27.
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The correlation of the experimentally determined natural

frequencies to those predicted by the model developed in

Chapter 2 will be discussed in Section 5.4.

5.3.3) Backward Whirl Spectral Data

The cascade plot spectral data and blade response

transfer function results of some of the backward whirl tests

will be be presented in this subsection. The operating point and

excitation range that corresponds to each cascade plot will be

overplotted on a system natural frequency plot in fig. 5.36.

The cascade plot for the case of: backward whirl

excitation, a rotor speed n = 5 Hz, and an excitation in the

range of the disk rigid body pitching mode is shown in fig. 5.28.

The spectral content of each of the traces is essentially a pure

backward whirl response at upR
 = upN+n • Tne resonant peak is

seen to occur in the vicinity of the UFR = 332 Hz trace.

Further analysis of the tape recorded data at smaller excitation

frequency increments show a peak response at upR = 331 Hz. The

cascade plot for the excitation range in the vicinity of the

blade one nodal diameter backward whirl mode is seen in fig.

5.29. Again, a relatively pure blade spectral response is seen

with the one nodal diameter blade mode resonant peak occuring in

the vicinity of 389 Hz.

The cascade plots for the Q = 60 Hz backward whirl disk

rigid body translation and one nodal diameter blade modes are

shown in figures 5.30 and 5.31, respectively. The spectra contain

evidence of undesired response at upN-fl an<^ WFN> ^ut the

target backward whirl response at upR = "pN+fl occurs at a

much improved signal-to-noise ratio compared to the desired

response obtained for the forward whirl excitation case. The

cascade plot in fig. 5.30 indicates that the resonant frequency

for the disk rigid body translation mode occurs in the vicinity

of UPR = 279 Hz. Upon a more detailed inspection of the tape
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data, an identical natural frequency is obtained. Figure 5.31

indicates that the blade one nodal diameter natural frequency

appears in vicinity of <jpR = 405 Hz> which is very close to

the frequency of 406 Hz obtained upon a more detailed inspection

of the data. The blade response transfer function for the n =

60 Hz backward whirl case is shown in fig. 5.32.

The cascade plots for the highest rotor speed tested,

Si = 150 Hz are shown in figures 5.33 and 5.34. Both plots show

relatively pure backward whirl forced response with negligible

amplitudes of response at cjpN' In tne ran9e of tne frequency

scales used in the figures, the forward whirl frequency UFN~^

response noise does not appear, but it is also of negligible

amplitude. However in both figures there is evidence of a small

amplitude response at harmonics of the rotor speed fl. Figure

5.33, which corresponds to the excitation range for the disk

rigid body translation dominated mode, indicates that the

resonant frequency occurs in the vicinity of 365 Hz. A more

detailed inspection of the tape recorded data indicates that the

more precise location of the mode is at 364 Hz. The excitation

range spanned by the response traces in fig. 5.34 includes the

blade one nodal diameter mode, whose natural frequency is seen to

occur near 461 Hz. A more detailed data reduction indicates that

the mode actually occurs at 462 Hz. The blade response transfer

function for the ft = 150 Hz case is shown in fig. 5.35.

The blade response has been examined in the frequency

domain for both forward and backward whirl excitation. In general

it was evident that it was possible to excite a more pure

backward whirl response compared to that obtained for forward

whirl. The regions of excitation discussed in section 5.3 where

outlined on the system frequency plots of figures 5.27 and 5.36.

From these data and the other tests whose data were not detaied

specifically, the experimentally determined system frequency plot

of fig. 5.37 is obtained. The experimental natural frequencies
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are overplotted on those predicted by the 6 DOF model described

in Chapter 2. The correlation between the experimental and

predicted results will be examined in the next section.

5.4) Correlation of Experimental Results with the Model

Predictions

In this section the correlation between the system

natural frequencies that were experimentally determined and

those predicted by the analytical model of chapter 2 will be

discussed. The agreement between the experimental and the

predicted and experimental results is reasonable and shows the

correct trends in dynamic behaviour, given the uncertainty in

characterizing the system stiffness parameters required as input

for the model.

The system natural frequencies determined by the 6 DOF

model of eqn. (2.1.7) have been used as a prediction of the

dynamic behaviour of the shaft-bladed disk system. The most

refined stiffness fit, that is the fit that correlated best with

the nonrotating modal data, was used as input to the system

equations of motion (2.1.7). These stiffness data are tabulated

in column (c) of Table A.2. The inertial properties of the rotor,

which are listed in Appendix A, were also used. The resultant

rotor dynamic behavior is shown in fig. 5.37. The comparison

between the ft = 0 natural frequencies predicted by the model with

the improved stiffness fit of fig. 5.37 and the experimentally

measured frequencies are shown in Table 5.4.1.
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Table 5.4.1 Comparison of fl = 0 Predicted and

Experimental Natural Frequencies

Mode Predicted Measured

Low Disk Translation Dominated

High Disk Pitch Dominated

Blade One Nodal Diameter

222.5 Hz

311 .3 Hz

394.5 Hz

222 Hz

325 Hz

388 Hz

It can be seen that the high disk pitch mode is predicted to

occur at a frequency lower than that measured. It can also be

seen that the ft = 0 blade one nodal diameter mode is predicted at

a higher frequency than that measured. The disk translation mode

is predicted accurately by the model however.

The correlation between the predicted and measured dynamic

whirling behaviour of the MIT Aeroelastic rotor at speeds up to

ft = 150 Hz (9000 rpm) can be seen from fig. 5.37. The measured

blade one nodal diameter natural frequencies correlate well with

the predicted modes at low speeds, in spite of the offset between

the two at zero rotor speed. At rotor speeds above approximately

90 Hz, the experimental blade modes correlated less well and were

higher than those predicted by the model. This is an indication

that the blade centrifugal stiffening effects were underestimated

in the model. The measure of this blade centrifugal stiffening,

the Southwell coeficient t which is listed in Appendix A as 1.93,

is probably too low. Another feature of the blade modes that is

apparent in fig. 5.37 is the slight split in the blade forward

and backward whirl natural frequencies. This would not be

predicted in a conventional rigid shaft model.

The difficulty in obtaining a good signal-to-noise

ratio for the forward whirl disk rigid body response led to

difficulties in determining the forward whirl disk rigid body

pitch modes above a rotor speed of 30 Hz. Therefore only the

Q = 0, 5, 30 Hz forward whirl disk rigid body pitch modes are

indicated on fig. 5.37. The backward whirl disk rigid body



75

pitching modes were excited with a much greater signal-to-noise

ratio. The correlation between the experimental natural

frequencies for the backward whirl disk rigid body pitch modes

with the predicted frequencies indicates that the measured modes

occur at higher frequencies than those predicted by the model.

This is partially due to the { 5 = 0 predictions being lower than

the measured frequency, as seen in Table 5.4.1. However the

degree of centrifugal stiffening of the pitch mode seems to also

be underestimated by the model. The experimental data also

indicates that the degree of interaction between the backward

whirl disk rigid body pitching motion and the blade forward whirl

one nodal diameter motion is underestimated by the model. No

such interaction, of course, would be predicted by a

conventional rigid shaft model.

The agreement between the experiment and the model for the

disk rigid body translation mode is very good for low speeds.

However at higher rotor speeds, the split of the disk translation

modes is underestimated by the model. This is because the ft = 0

disk pitch and translation modes are more closely spaced in the

model prediction than in the experimental case. Therefore the

interaction between the disk translation and pitch modes is

overestimated in the predictions of the model. The result of this

is to predict the backward whirl mode at too low a frequency and

the forward mode at too high a frequency. The experimental

forward whirl disk translation data indicates that the model

predicts a critical speed (the intersection of the forward whirl

curve with the n axis) that is too high, specifically around

235 Hz. Extrapolation of the experimental data indicates an

actual critical speed of approximately 215 Hz.

Therefore the results of the experimental forced whirl

testing correlate reasonably well with the model given the

uncertainty of the input parameters to the prediction. The

physical coupling phenomena predicted in the model are clearly
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exhibited in the experimental results.



6. Conclusions

A series of rotating whirl tests have been performed in

the vacuum of the MIT Slowdown Compressor Facility on the MIT

Aeroelastic Rotor, which is structurally typical of modern high

bypass ratio cantileverd turbofan stages. The test section of

the Facility was modified to install an electromagnetic shaker

whirl excitation system. This arrangement allowed for dynamic

testing of the rotor at at arbitrary rotor speed, direction of

whirl excitation, and excitation frequency. Using the 23 blade

piezoelectric displacement transducers as the primary response

monitoring instrumentation, the rotor was excited at speed with

an excitation pattern of constant whirl direction and slowly

sweeping frequency. The frequencies at which the driven response

attained a maximum amplitude were found as the rotor natural

frequencies.

In order to predict the natural frequencies of the MIT AE

Rotor as installed in the Facility, the analytical model of

Mokadam [5] was modified to include the effects of the system

center of mass not coinciding with the disk centroid for a

massive shaft. The structural properties of the rotor were then

required in order to use the model to predict the system dynamic

behavor. The inertial properties of the system were calculated

by careful measurements and the use of holographic blade mode

shape determination. Attempts to measure the shaft and support

structure stiffnesses by static loading and displacement

measurement were unsuccessful. The results of the static tests

showed large scatter and nonlinearity, probably due to the use of

angular contact ball bearings in the rotating assembly.

Therefore the shaft and support structure stiffnesses were

determined by a series of nonrotating dynamic testing of the low

shaft-disk dominated modes. The resulting dynamic data and

inertial parameters were fit to a simple 2 DOF model of a rigid

77
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bladeless disk in order to calculate the effective stiffnesses of

the system. The resulting stiffnesses were then further fit to

the full 6 DOF whirl analytical model in order to obtain the best

possible fit to the nonrotating dynamic measurements.

With the benefit the predicted natural frequency

information, the rotating whirl tests were carried out. Slow

sweeps of excitation frequency were performed at constant rotor

speed and whirl direction and the resulting blade displacement

data were analyzed in the frequency domain and the following

results were observed:

1 . The whirl excitation system was successful in forcing the

target whirl response directions. However, the backward

whirl motion was excited at a much greater signal-to-noise

ratio than the forward whirl motion. The response of the

system also included response at harmonics of the rotor

speed n, at the inertial forcing frequency up^' anc^ at

^

untargeted whirl direction.

2. The dynamic behavor of the rotor followed the general

predictions of the analytical model. In the rotor frame of

reference the disk rigid body translation dominated mode

shows the split into forward and backward whirl legs, the

forward whirl curve apporoaching a zero frequency static

divergence at the rotor critical speed. The rigid body

pitch dominated modes also showed some splitting with

increasing rotor speed due to the small component of

translation in their eigenvectors. The blade one nodal

diameter modes exhibited centrifugal stiffening but with

a slightly stronger dependence on rotor speed than

predicted, this indicates that the Southwell coefficient

may have been underestimated.

3. The degree of interaction observed between the bladed

disk modes was seen to be stronger in the experimental

results than predicted by the model. This is probably due
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to the uncertainty associated with the determination of

the shaft and support structure stiffness properties.

The nonrotating modal surveys performed in order to

determine the stiffness properties revealed that the nonrotating

support structure for the rotor did exhibit stiffness asymmtries.

The rotating assembly was found to be symmetric in its dynamic

behavior, as would be expected of a precision axlsymmetric

structure. The asymmetry in the nonrotating assembly could be in

part responsible for the rotor whirl response at the inertial

forcing frequency up-N an<^ at tne undesired whirl direction

frequency.

Finally the nondimensionalization of the equations of

motion yielded the relevant parameters for evaluating the

propensity for, and magnitude of interactions between the

bladed-disk and the shaft-disk dynamics. Consideration of a

rotor with only translation or pitch disk degrees of freedom

yields the result that the effect of the Southwell coefficient

being greater than one (as it is in gas turbine blading) is to

decrease the propensity for interaction of the shaft-disk modes

with the bladed-disk modes with increasing rotor speed.
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Appendix A: Structural Properties of the MIT Aeroelastic Rotor

i) Dimensional Parameters

The inertial properties of the entire shaft-disk-blading

assembly with respect to a coordinate system shown in fig. 2.1

and a system center of mass offset from the disk centroid as

shown in fig. 2.2b are:

M = total mass of rotor assembly = 25.4 kg

S = axial mass imbalance = -0.741 kg»m

Ip = total rotor moment of inertia for

pitching about a disk diameter = 0.297 kg»m2

The holographically measured blade first bending mode

shape [5] along the blade midchord line y(r), was determined

as a fourth order polynomial fit:

Y (r) = c0 + ct r + c2 r + c3 r + c^ r*

A careful process of laying out a grid on the blade surface and

measuring the vloume of each resulting grid cell yielded a

fourth order fit to the blade spanwise mass distribution along

the midchcrd line:

|f = d0 + d,r H- d2r
2 + d3r

3 + d, r< [ 3- j

The coefficients c^ and d^ of the fits are tabulated in

Table A.I.
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Table A.1 Polynomial Fit Coefficients"1'

co

Cl

C2

C3

en

Mode Shape

-6.8104

1.0519

-5.5161

9.4717

1.3225

Coefficients

* 10-1
* 10-i cm"1

* 10~3 cm"2

* 10-5 cm"3

* 10"s cm'4

Mass Distribution Coefficient

do 4.1730 *

di -3.1294

dz 1 .1123 *

d3 -2.0470 *

di 1 .1887 *

101 g/cm

g/cm2

10"i g/cm3

10"3 g/cm1*

10"' g/cm5

t for r in [cm].

From their integral definitions given in Chapter 2 and the

fits shown above, the blade inertial properties are calculated:

mo = blade modal mass = 1.43 * 10"3 kg*m2

mi = blade consistent mass

coupling disk pitch =2.41 * 10"' kg«m2

mz = blade consistent mass

coupling disk translation = 1.01 * 10"2 kg«m

mo = blade mass foreshortening = 3.70 * 10"' kg»m2

The stiffness parameters of the system were fit with

various degrees of sophistication. These fits are tabulated in

Table A. 2. Column (a) of the table corresponds to the shaft and

support structure stiffness fit to the simple 2 DOF model of

eq. (4.3.1) using the uncompensated nonrotating modal data. The

resulting behavior of the system natural frequencies at speed

for this "baseline" fit areshown in the rotor frame in fig. 4.3a

and in the nonrotating frame in fig. 4.3b.

The stiffness data in column (b) of Table A.2 corresponds

to an improved fit using some information resulting from the

ft = 0 frequency predictions of the 6 DOF model. The shifting in the
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predicted disk frequencies that occurs when the blade effects are

included with the full model is precompensated for by using the

frequencies of 222 Hz and 335 Hz as input to the 2 DOF model

instead of the experimentally observed values of 222 Hz and

325 Hz. The resulting translation / pitch stiffness coupling term

calculated by the 2 DOF fit is decreased by 35% and the 2 DOF

characteristic equation is again solved to find the corresponding

transaltion and pitch stiffnesses, the blade stiffness remains

uncompensated in this fit. The resulting system natural

frequencies predicted by the model using this fit is shown in

the rotor frame in fig. 4.4a and in the nonrotating frame in

fig. 4.4b.

A further improvement in the fit between the

experimentally measured frequencies and those predicted by the

model is presented in column (c) of Table A.2. This fit was

obtained by: precompensating the measured nonrotating natural

frequencies as in the column (b) case, decreasing the resulting

stiffness coupling by 30%, calculating the corresponding

translation and pitch stiffnesses, and decreasing the blade

modal stiffness by 19%. The resulting dynamic behavior of the

system is shown in the rotor frame in fig. 4.5a and in the

nonrotating frame in fig. 4.5b.
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Table A.2 Stiffness Fits for the MIT AE Rotor

Stiffness Parameter

KxR- KyR MO' N/m]

KCR- V MO* N.m/rad]

KxnR- -
Ky£R MO6 N/rad]

KB [103 N«m]

a

8.10

1.05

5.29

7.90

b

5.47

1.32

3.44

7.90

c

5.68

1 .40

3.70

6.43

ii) Nondimensional Parameters

The nondimensional inertial parameters for the MIT AE

Rotor as defined in section 2.2 are:

H = 0.073 n

p = 0.0048

0.021

UpB = 0.054

The centrifugal stiffening of the blade, or Southwell

coefficient is:

i = 1.93 -

The nondimensional stiffness parameters for the three stiffness

fit cases are listed in Table A.3:

Table A.3 Nondimensional Stiffness Parameters

Stiffness Parameter

0 /0 , 0 /ux r> y a

U C /U B , un /uB

k

a

0.759

0.798

0.331

b

0.624

0.897

0.164

c

0.636

0.924

0.172
1



Appendix B: Experimental Natural Frequencies

Table B.1 lists the natural frequencies of the disk
translation dominated mode, disk pitch dominated mode, and the
blade one nodal diameter (1ND) mode for both forward and
backward whirl as a function of rotor speed.

Table B.1 Experimental Natural Frequencies

Rotor Speed
[Hz]

0

5

30

60

91.3

120

150

Translation
Mode [Hz]

FW

217

188

146

114

84

60

BW

222

228

253

279

313

339

364

Pitch Mode
[Hz]

FW BW

325

320 331

295 349

373

384

410

424

Blade
[Hz]

FW

388

390

378

386

399

442

450

1ND

BW

389

393

406

424

445

462

FW = forward whirl mode, BW = backward whirl mode
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:Fig. 2.1 Coordinate system for the whirl equations of motion
for an N bladed shroudless fan cantilevered on a
flexibe shaft.
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Z -<-

MASSLESS SHAFT

Fig. 2.2a System center of mass location for eq. (2.1.5)

MASSIVE SHAFT

Fig. 2.2b System center of mass location for eq. (2.1.7)
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ROTOR SPEED

Fig. 2.3 Dynamic behavior of the uncoupled disk translation
mode (ui)i disk pitch mode (uj>, and blade mode
as a function of rotor speed.
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Blade

SIGNAL OR
EXCITATION

PIEZOELECTRIC
CRYSTAL
ASSEMBLY

Fig. 3.3 Blade root attachment detail showing piezoelectric
displacement transducer.
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ROTOR SPEED

FN1 - F sin &>f||t

Fig. 3.5 Summary plot of the whirl excitation transformation
from the inertial to the rotor frame.
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a)

KXT}

b)

222 Hz Mode

Predominately
Translation

c)

325 Hz Mode

Predominately
Pitch

Fig. 4.1 Nonrotating shaft-disk modes of the of the MIT AE Rotor.
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b) forcing direction and rotor position do coincide
with system principal axes.

Fig. 4.2 Disk response amplitude as a function of forcing
frequency in the neighborhood of the disk pitch
mode.
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EXPERIMENTALLY
OBSERVED
FREQUENCIES

50. 100. 150. 200.

ROTOR SPEED Q (Hz)

250, 300

Fig. 4.3a System natural frequencies in the rotor frame
predicted using stiffness parameters in Table A.2(a).
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EXPERIMENTALLY
OBSERVED
FREQUENCIES

°Q 00 50. i:3. 150. 200.

ROTOR SPEED D (Hz)

250. 300.

Fig. 4.3b System natural frequencies in the nonrotating frame
predicted using stiffness parameters in Table A.2(a)
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EXPERIMENTALLY
OBSERVED
FREQUENCIES

BW

'-00. ISO. 200.

ROTOR SPEED Q (Hz)

Fig. 4.4a System natural frequencies in the rotor frame
predicted using stiffness parameters in Table A.2(b).
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Fig. 4.4b System natural frequencies in the nonrotating frame
predicted using stiffness parameters in Table A.2(b).
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EXPERIMENTALLY
OBSERVED
FREQUENCIES

100 150 200

ROTOR SPEED Q (Hz)

250

Fig. 4.5a System natural frequencies in the rotor frame
predicted using stiffness parameters in Table A . 2 ( c ) .
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EXPERIMENTALLY
OBSERVED
FREQUENCIES

ISO. 200. 250.

ROTOR SPEED Q (Hz)

300.

Fig. 4.5b System natural frequencies in the nonrotating frame
predicted using stiffness parameters in Table A.2(c)
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<p = -90°

8".
TIME (MS)

b)

8".
TIME (MS)

Fig. 5.1 Time history of the shaker force transducer signal (a)
and bearing housing acceleration response (b) for the
case of: forward whirl excitation, UFN = 449 Hz»
fl = 120 Hz.



104

O)

II
u.
3

a
OLU

•09S •OOh '09i 'o'a

O

M

C
•H

W

u
3

ia
c

0<
u

0)
<t

II

35

'09S -oa'h -ooh -091 ' s

O
OUJ

n
01

(0
c
0)
-o

o
0)
aia

0)

o
a,



105

O)
*fr
t
II
zu_

3

•8ti •Oh •91

a
OUJ
nice

O

ID

<0
c

0)

O

a>
O
O
10

TJ

J8

C
<u
u

m

*<fr

cc
uj
X
o C!

•9S •8h •Ofi •91

0]
0)

W
C
V

T3

2
4->
O
IV •a «-
ia •

in
M
a) •
» !j>
0 -H
a <M

CO

If)

o>
•H
Cu



106

t

o
<N

o
in

-CM

>* -3

C!
Q
LU

ffi
CO

cc
o
I-oa:

oin

o
o
00

-f-
o
o
(O

o
o
t

o
o

C
•H

•a -
0) N
•P X
C
0) O1
w ^r

a, ii
<a 2
4-1 PL,

0) C
JC O

0 <o
+J +J

•H
01 O
C X

•H <U
T3
C H
O V4a -H
U) J=

M -O

0 (0 N

P O CTi
Hj in (N
P n
w ••

<J-I II
c o
o on

•H 0) Cu
P W 3

•H N
o . x
X —
0) • O

m (N

O
oi

01
•H

CJ1 II

(ZH> UJ^ HOlOd Nl AON3n03dd NOI1V1IOX3



107

= 15.7°

'0. 10. 15. 20.
TIME (MS)

25.

BLADE

1

30.

Fig. 5.5 Simultaneous displacement time histories of all blades
showing one nodal diameter forward travelling wave
pattern. Case of: forward whirl excitation, UFN = 449 Hz'

UFR = 329 Hz.
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POWER SPECTRflL DENSITY OF BLflOE 9 OISPLflCEHENT
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to.
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0.10 0.20 0.30 O.UO
FREQUENCY (KHZ)

0.50 0.60

Fig. 5.6 Power spectral density of blade #9 displacement. Case
of: forward whirl excitation, UFN = 449 Hz, n = 120 Hz,

= 329 Hz.
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'o.oo 4.00 8.00 12.00 16.00
T I M E (MS)

20.00 24.00 28.00

4. 12. 16.00 20.00 21.00 28.00 32.
T I M E (MS)

Fig. 5.7 Time history of the shaker force transducer signal (a)
and bearing housing accelerometer (b) for the case of:
backward whirl excitation, UFN = 290 Hz, n = 60 Hz.
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BLADE

20.
TIME (MS)

Fig. 5.10 Simultaneous displacement time histories of all blades
showing a one nodal diameter backward whirl travelling
wave pattern. Case of: backward whirl excitation,

UFN = 290 Hz, fl = 60 Hz, UFR = 350 Hz.
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Fig. 5.11 Power spectral density of blade IH2 displacement. Case
of: backward whirl excitation, UFN = 290 Hz, n = 60 Hz,

290 Hz.
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c)

o

o
X
UJ

d)

FFT

e) I/

EXCITATION FREQUENCY RESPONSE FREQUENCY w.

Fig. 5.13 Spectral data reduction scheme showing discrete Fourier
transformation of the temporal excitation and response
at discrete intervals of excitation frequency,
construction of cascade plots, and determination of the
system natural frequencies. The particular case shown is
for forward whirl excitation.
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Fig. 5.13 continued
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Fig. 5.14 Blade displacement spectral cascade plot for:
fl = 30 Hz, forward whirl excitation of the blade 1ND
mode, excitation frequency range UFR = 365 to 397 Hz.
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Fig. 5.15 Blade response transfer function for: fl = 30 Hz,
forward whirl excitation.
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Fig. 5.16 Blade displacement spectral cascade plot for:
Jl =60 Hz, forward whirl excitation of the disk
translation mode, excitation frequency range
130 to 172 Hz.
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Fig. 5.17 Blade displacement spectral cascade plot for:
n =60 Hz, forward whirl excitation of the blade 1ND
mode, excitation frequency range U = 374 to 402 Hz-
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Fig. 5.19 Blade displacement spectral cascade plot for:
(1 = 90 Hz, forward whirl excitation of the disk
translation mode, excitation frequency range
96 to 133 Hz.
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Fig. 5.20 Blade response transfer function for:
forward whirl excitation.

= 90 Hz,
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Fig. 5.21 Blade displacement spectral cascade plot for:
n = 120 Hz, forward whirl excitation of the disk
translation mode, excitation frequency range
73 to 99 Hz.
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Fig. 5.22 Blade displacement spectral cascade plot for:
fl = 120 Hz, forward whirl excitation of the blade 1ND
mode, excitation frequency range UFR = 444 to 4^8 Hz-
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Fig. 5.23 Blade response transfer function for: fl = 120 Hz,
forward whirl excitation, low mode.
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Fig. 5.24 Blade response transfer function for: fl = 120 Hz,
forward whirl excitation, high mode.
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Fig. 5.25 Blade displacement spectral cascade plot for:
f} = 150 Hz, forward whirl excitation of the disk
translation mode, excitation frequency range
46 to 76 Hz.
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Fig. 5.27 Forward whirl excitation sweep ranges overplotted
on the predicted system natural frequency plot.
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Fig. 5.28 Blade displacement spectral cascade plot for:
fl = 5 Hz, backward whirl excitation of the disk
pitch mode, excitation frequency range <jpR =

322 to 342 Hz.
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Fig. 5.29 Blade displacement spectral cascade plot for:
ft = 5 Hz, backward whirl excitation of the blade
1ND mode, excitation frequency range
370 Hz to 398 Hz.
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Fig. 5.30 Blade displacement spectral cascade plot for:
n =60 Hz, backward whirl excitation of the disk
pitch mode, excitation frequency range <JFR =

267 to 293 Hz.
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Fig. 5.31 Blade displacement spectral cascade plot for:
n =60 Hz, backward whirl excitation of the blade
1ND mode, excitation frequency range
399 to 421 Hz.
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Fig. 5.34 Blade displacement spectral cascade plot for:
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Fig. 5.36 Backward whirl excitation sweep ranges overplotted
on the predicted system natural frequency plot.
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Fig. 5.37 Summary plot of experimentally determined system
natural frequencies overplotted on the predicted
system natural frequency plot.




