HWAHAK KONGHAK

Vol. 20, No. 1, February 1982

総 説

분체의 임도분석 기술의 최근동향

김석호

報 文

(基礎研究)

Carbontetrachloride - Cyclohexane - Benzene 및 Ethanol n-Propanol - n-Heptane 로의 말소

林祥男・郭鉄

기-액 혼수계에서 Spiral wires - Radial plates 충전물의 전동효과

L A Wenzel・김우식

화분배양 및 포도당 유기배양에 의한 최적 에타올 발효

박성훈・최치웅

혈관근육세포내에서의 Na⁺ 및 K⁺ 이온의 이동 현상에 대한 동역학적 해석

이원홍

(工程設計 및 開發)

원환(Annular)형 유동층내에서의 황질관으로부터 황 및 산화질 흡수

강응유영태・김상돈

化学工学 教育

S1단위와 그 사용방법

화학공학 학위 취득자 명단

제 20호

제 1호

한국화학공학회
Recent trends in the Particle Size Analysing Techniques

Suk-Ho Kang
Department of Chemical Engineering,
Yeungnam University, Gyongsan 632, Korea

요 약

분석의 입도분석기술이 최근 10년 전에 비교해 볼 때, 다른 과학 분야와 마찬가지로 대단한 발전을 가져왔습니다.
분석기술이 발달한 이유는 희재자원의 석유, 친연가스의 고갈, 또는 산유국 독점으로 새로운 에너지 대체개발의 필요성이 대두됨으로써 지난 반세기동안 개발에 동참해 왔던 석탄 고체자원의 개발에 새로운 관심을 쏟고 있습니다.

ABSTRACT

Recent advances and developments in the particle-sizing technologies were briefly reviewed in accordance with three operating principles including particle size and shape descriptions. Significant trends of the particle size analysing equipments recently developed show that compact electronic circuitry and rapid data-processing system were mainly adopted in the instrument designs. Some newly developed techniques characterizing the particulate system were also introduced.

1. 서 론

 최근 분석의 입도 분석기술은, 10년 전1에 비하여, 다른 과학분야의 발전과 마찬가지로 대단한 발전을 이룩하였습니다.
분석기술이 발달한 이유는 첫째 유해자원의 석유, 친연가스의 고갈, 또는 산유국독점으로 인한
세로운 대체에너지의 개발의 필요성이 대두됨으로써 지난 반세기동안 개발에 동참하였던 석탄 등 고체자원의 개발에 새로운 관심이 쏟겨졌기 때문입니다.
또 다른 이유는 전자공학기술의 발달로 인하여 모든 분석장치의 성능이 보다 정밀해졌고, 측 정데이터 처리가 신속하게 되어서 그에 따른 새로운 분석기술의 개발이 필요하게 된 것이다.
문체의 관리한 모든 자언한화는 구성원자의 크기, 즉 입도와 그 분포에 의하여 결정된다. 분체의 입도 및 그 분포는 관학의 처리, 각각 분산 제품의 점, 요소체제의 분포, 메인트의 내구성 등에 중요한 영향을 미친다. 분체의 분류를 나누고 분체의 분류, 즉 전보기길도, 현상명의 해품, 기준, 분산체의 효율성, 화학물성, 속도, 자온, 투명도에도 결정적 역할을 한다. 이에 따라 분체입도가 여러 가지 문제, 현상습관문제, 자연자원의 활용등의 분야까지 다루고 있으며, 우리에서 도 양에까지 직접 혹은 간접으로 진은 간체가 있음을 명확하다.

이러한 바가지 질문에 대답함으로써 측정방법, 기기, 예상되는 결과나 알고 싶은 경로 및 효용 을 미리 예측할 수가 있고 적은 경험이 젊으 로써 원하는 목적을 달성할 수가 있다.

이러한 문제를 시도하는 방법은 여러 가지가 있으며지만 이 총론에서는 5개 분문에 나누어 입 자의 형상 및 입도분포에 대하여 먼저 가정하고 계수적 방법, 유체역학적 방법, 관측적 방법, 꼭으로 틀가지 세부적 특수한 문해방법의 원리와 기술학통을 소개하고자 한다.

2. 단일입자의 형상과 입도 및 분말의 입도 분포

구형이나 속성의 같은 규칙적 형상을 가진 입자의 형상을 표시하는 방법은 없으나 최근의 관심은 표면의 스케이 하에 형성된 입자의 형상 을 어떻게 수치로 표사할 수 있는가에 관심이 있다. 입자의 형상을 수치로 표시할 수는 기존의 네 가지 측면으로 구별되었는데, (1) 단일입자의 목표를 평가하는 방법, (2) 수학적 기법으로 형상 을 표시하는 방법, (3) 입자특성수를 수질적 단말 으로 표시하는 경우 그리고, (4) 분말고속의 별도특성을 측정하는 방법 등이 있다(Table 1) 그러나 입자의 형상만을 입자크기와 구분하여 분별로 다룰수는 없으므로 형상과 크기는 둘을 따로 구분하여 측정하고 입자의 형상과 입자크기 표시가 수 있는 방법은 다음과 같이 네 가지로 구분될 수 있다. 즉

(1) 구 상방입도

입자를 어려 기준 파라메터에 비교하여 구형 입자에 상당한다고 생각하는 경우이다. 이때 입 자의 크기 즉 입도는 구형입자에 상당하는 적정 으로 정의된다. 여기서 기준파라메터는 파스, 절 면이, 또는 Stokess적정을 결정하는 모양속도 중 어느 파라메터나 기준이 될 수 있다. 입양속도를 파라메터로 하는 경우에는 같은 Stokess적정을 가지는 입자이더라도 입자 Reynolds 수가 클레와 작을 때에 따라서 적정이 각각 또는 크게 측정되므로 주의를 요한다."

(2) 동계적 평균입도

입자의 방향으로 흐르는 입체방향과 전자분석방향으로 평균할 때 입자 주의 방향에서의 평균방향의 선분의 길이를 결정하고 그 길이의 동계적 평균치로써 입도를 표시하는 방법이다. 오래전부터 잘 알려진 표시법에는 Martin 입도, Feret 입도 등이 있는데, 그 외에도 계수적방 법에 소요되는 측정시간 이나 동계처리를 단축수행하는 것들이 개발

화학공학 제20권 제1호 1982년 2월
Table 1. Shape parameters related with particle size descriptions

<table>
<thead>
<tr>
<th>particle size</th>
<th>shape parameter</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_s \times x_p)</td>
<td>(s_{eq} = x_s \times x_p)</td>
<td>equivalent size</td>
</tr>
<tr>
<td>(x_s \times x_p)</td>
<td>(s_{vol} = x_s^2 \times x_p)</td>
<td>equal vol sphere</td>
</tr>
<tr>
<td>(x_s \times x_p)</td>
<td>(s_{surf} = x_s \times x_p)</td>
<td>equal surf. fric.ity</td>
</tr>
<tr>
<td>(y_{pg})</td>
<td>(\psi_{pg} = 1)</td>
<td>mean proj-circle</td>
</tr>
<tr>
<td>(\tau_{St})</td>
<td>-</td>
<td>Stokes velocity</td>
</tr>
<tr>
<td>(\tau_{eta(Re)})</td>
<td>-</td>
<td>settling rate at a given Re</td>
</tr>
<tr>
<td>(x_s^2 \sigma)</td>
<td>(\psi_{eta}^2 \times x_s)</td>
<td>(\psi_{eta} = \sqrt{x_s})</td>
</tr>
<tr>
<td>(\tau_{eta(Re \times 10^3)})</td>
<td>(\psi_{eta(Re \times 10^3)} \times x_s)</td>
<td>(\psi_{eta(Re \times 10^3)} = \psi_{eta} \times 10^3)</td>
</tr>
</tbody>
</table>

![Fig. 1-a. Various descriptions of a mean particle size for a given sample powder](image1)

Fig. 1-a. Various descriptions of a mean particle size for a given sample powder

Fig. 1-b. Difference between various particle size descriptions.

(3) 벤터 표시법

공간에 존재하는 3차 다형 입자의 표면을 여려개의 기본요소로 나누어서 어느 일의 암릴로 모으거나 각 요소를 연결하는 위치벡터를 사용하여 입자의 형상과 입도를 결정하려는 시도가 있다. 이 방법은 아직 구체적으로 이용되고 있지 않으나, 분쇄입자의 특성을, 특히 형상을 수학적 기법으로 표시하는 새로운 연구들이99-222 객에 상당한 관심을 끌고 있다.

입자의 형상은 입도측정에도 중요하지만 입자의 운동도 또한 영향을 미치는 경우가 4천에서 언급될 수 있다.

세론에서 입한함마가 같이 분쇄는 크기가 다른 단일입자의 접합체로서 동일 평형이더라도 그 입도포도는 그 제조과정에 따라 다르게 되며, 또 동일한 시료분쇄의 평균 입자크기를 표시하는데는 여러가지의 방법이 있게 된다. 즉 입자 크기별로 측정되는 분쇄입자의 개수 \((r \neq 0)\), 길이 \((r = 1)\), 면적 \((r = 2)\), 부피 또는 질량 \((r = 3)\)에 따라서 입도분포가 달라지게 되고 그 결과로 결정되는 평균입도의 값도 달라진다(Fig. 1a, b).

HWAHAK KONGHAK Vol. 20, No 1, February 1982
이론적으로는 어떤 점을(예: 질량) 기준으로 삼은 입도분포상선을 얻으므로 다른 차원(예: 개수) 기준의 입도분포신선으로 환산할 수 있는 근거는 마련되어 있다. 20 즉, \(r = 0, 1, 2, 3 \) 또는 3원 도수분포함수 \(n_i(x) = \frac{dN_i(x)}{dx} \)의 \(k \) 번 모양의 \((k = 0, 1, 2, 3) \) 다음과 같이 정의하면,
\[
M_{n,r} = \int_{\min}^{\max} x^{n} n_r(x) dx
\]
일반적으로
\[
M_{n,r} = M_{n,0} \cdot \frac{M_{n,r}}{M_{n,r}}
\]
로 부터 입의 분포함수 모양을 구할 수 있고 그 평균입도는 다음과 같이 계산할 수 있다.
\[
x_{\text{min}} = \frac{1}{n} M_{n,r}
\]
식 (3)에서 \(k = 1, r = 0 \)일 때 순수정밀도가 모 양이고 \(k = 2, r = 0 \)일 때 기하정밀도, \(k = 3, r = 0 \)일 때, 부가 또는 평균정밀도를 구할 수 있다. 또 \(k = 3, r = 2 \)일 때 Sauter 평균입도라고 부르는 면적-부피의 비에 상당하는 입도를 구할 수 있다. Sauter 입도는 중점단계의 중점 을(예: 전하계)의 평균입도가 나타나는데 주로 쓰인다.

이와같은 모양의 계산에 의해 체계의 표면적을 계수분포신선으로부터 이론적으로 구할 수 있음은 물론이다. 이러한 이론적 모양구형입자 부가 가정한 경우에 생성하는 식인며, 비구형입자의 경우에는 형성계수로 모형해야 할 필요가 있다.

입도분포 및 평균입도를 계산하는 이론의 발견은 필사적이고 신속한 측정과 측정 data의 신속한 처리가 가능한 분석장치의 개발을 촉진시킨 것이다.

3. 계수측정방법 (Counting methods)

이 방법은 분쇄입자차재의 크기를 단일입자마 다 적정 측정하는 방법과 입자의 영상을 해상하는 간접적 방법으로 대체된다. 21 어느 경우에나 측정요소에 따라 입자가 들어왔는지를 적어도 한양적으로 하여, 특이 크기를 측정하고 측정된 입자의 수를 해석하게 된다.

입자의 영상의 크기를 측정하는 간접적 방법은 22-25 간단한 관찰미경을 이용하여 100배경 도 확대된 사진에 의존하는 방법과 100배경도 확 대된 전자현미경 사진을 이용하는 방법이 포함된다. 입자의 영상해석은 단일원의 또는 아레 전체에서 사용된 분석방법이다. 영상해석의 수단을 사진에선 TV 화면으로 교체하고 microcomputer의 도움으로 counting을 수행하는 Quantimet는 이 방법에 의한 대표적 분석장치라고 할 수 있다.

그 외에도 photoscans, 25 Spectrophotometer의 36 개발이 활발하다. 이를 장치 (Table 2)는 입자의 영상해석에 필요한 시각. 인력의 절약에 큰 공헌을 하고 있지만 영상을 인수할 수 있는 시 표지를 제공하고, 적당한 분산자를 사용하여 각 입자가 위치치 않도록 분산시키고, 가능한 한 입자의 모양과 동일한 영상을 얻을 수 있도록, 상당한 주의가 사용법적경에 필요하다. 36, 37, 38

이러한 시료준비과정은 측정결과의 신뢰성에, 즉 시료가 모질단을 대표할 수 있는 가를 판단하는데, 결정적인 역할을 한다.

계수측정법의 다른 한 가지는 일부자재가 측정공세에 적절 오류되는 직접측정법이다. 직접 적으로 측정공세에 단일 입자가 분산된체속에 설려서 측정공세에 보정이 이루어지지만 측정된 입자가 단일입자로 계수화되어야 한다. 측정공세에는 전자차 또는 전자차가 부적되고 이속에 오류가 되어 입자의 수와 크기가 진정한 값과는 다를 수 있다. 이에 대한 반대로 간접적 방법으로 측정하여 전기적 신호로 전환하고 신호의 진폭과 동등수에 의하여.

| Table 2. Manufacturers of Particle Image Analyser |
|---------------------------------|----------------|
| Name | Manufacturer |
| TGZ 3 | Zeiss |
| Quantimet | Imanco |
| Classimat | Leitz |
| TAS-System | Carl Zeiss |
| Mikro-Videomat | VEB Carl Zeiss |
| Epiquant | Joyce Loebli Ltd |
| Magiscan | Kontron |
| MOP | Bausch & Lomb |
| Omnicon | Imagelyzer |
|imagelyzer | Hamatsu |
입자의 크기와 수를 결정하게 된다. 이때의 계산은 본문으로 가능할 경우에도 있고, 입도가 알레진 시료를 이용한 결정계를 통하여 장치특성을 미리 결정하여야 하는 경우도 있다.

입자의 크기와 분포를 측정하는데 사용되는 전자장의 반응량은 세 가지로 구분할 수 있다. 첫째, 전장의 세기가 입자의 존재로 인하여 변하는 Coulter Counter의 원리, 둘째, 전자파의 세기가 변하는 장치적원리, 그리고 유체학적 입의 세기가 영향을 받는 경우이다. 후자의 두 가지는 다음과에서 별도로 상세하게 논의하기로 한다. 그리고 여기에서는 Coulter counter의 원리와 그 발전에 대하여 언급하였다. 42-45

管理中心Fig. 2. 같이 전장은 지식한 백의 한 부분에 둔 구현구명을 둔하여 입자가 통과할 때, 측정구명의 작용하고 있는 전류의 세기가 또는 저항의 변화량을 측정하여 입도를 결정하는 장치이다. 측정원 시료분량은 전기전자성 백색 속의 영감이 없이 간 분산된 것에서 망막에서 다른 채로 얻어서 이동되어야 한다. 측정구명 무기네에 한계의 입자가 들어오면 일정한 저항 R0가 알려지게 된다. 저항의 변화 ΔR은 입자부의 전압에 비례하여 ΔR/R0 = V/V의 관계가 성립한다.

이 방법으로 n0(x)와 x2을 얻으면 입도분포의 모멘트식으로부터 m0(x)와 x를 산산한해서 구할 수가 있다. 46 입자가 분산되어 있는 전기전자성 음력은 스균을 세운 마이크로 퍼트로의 압력에 의해서 측정구명을 통해하여 이동하게 된다. 측정구명의 크기에 비하여 입자크기는 매우 작기때문에 장치의 noise 문제는 심각하지 않으나, 구영

이 막혀면 계속 측정이 불가능하기 때문에 이런 현상에 대비한 조작을 취할 수 있는 장치적계도 중요하다고 일반적으로는 입자의 크기가 구멍크기의 2~30%를 유지하도록 되어 있다.

입도분포가 넓은 경우에는 측정구명의 크기가 다른 여러개의 전장등을 교란하여 적은 범위의 입도를 측정할 수 있도록 고안된 장치도 개발되어 있다.

4. 유체학적 원리에 의한 방법

이 방법은 2가지로 구분해서 설명하면 정리 하겠다. 즉, 음력에 분산되어 있는 분쇄물의 작업

으로는 두가지가 구명하는 것으로. 가장에 몰입하는 분쇄

의 이동속도는 결과하여 aerodynamic particle size로 계산하는 경우이다.

가장 혹은 액체에 펴져 있는 물체 입자에 작용하는 힘들은 Table 3과 같이 구분할 수 있다. 이 표에 함께 표시할 수 있지만, 입도 분석에 중요한 영향을 미치는 질량은 입자의 정량 입자의 밀도, 장치의 밀과 입자사이에 결합되는 백 효과, 그리고 입자의 농도가 낮을수록 생기는 간섭효과도 있다. 47

표에 나열된 각 빌린 각 임들은 가장이나 역상의 분쇄

분산계에 공동으로 작용되는 것들이지만, 필수로 있는 field, 분산된 입자의 입도와 그 분포에 따라서 입도분석에 중요한 영향을 미치는 것도 있고 제외될 수 있는 것도 있음은 물론이다.

중앙장내에서 액체속에 펴져 있는 분쇄입자의 크기는 정량로 끈을 측정하고 Stokes 방정식을 이용하면 계산할 수 있다.

이 식은 Rs<0.2밀때만 잘 맞는다.

\[x = \sqrt{\frac{3\mu t}{(\rho - \rho_0)g}} \cdot \frac{h}{t} \]

따라서 정지된 유체(액체는 물)에서 Rs<0.2가 되거나 x<75μm일 때, 정량으로 측정되는 분쇄입자는 200mesh 채로 체결된 등급분에 대하여 뿌어낸 결과를 추계하였다. Rs<0.2이면 측정된 결과는 Rs<0.2밀때보다 작은 수치를 가진다.

HWAHAK KONGHAK Vol. 20, No. 1, February 1982
Table 3. Various forces acting on a particle in the measuring system

<table>
<thead>
<tr>
<th>Forces</th>
<th>more classified</th>
<th>related equation</th>
<th>ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>flow</td>
<td>drag</td>
<td>[F_D = C_D(\text{Re}) \frac{\pi d^2}{8} \rho_1 \nu]</td>
<td>(47)</td>
</tr>
<tr>
<td></td>
<td>buoyant</td>
<td>[F_B = \frac{\pi d^3}{6} \rho_1 \nu (g \text{ or } \tau)^2]</td>
<td></td>
</tr>
<tr>
<td>field</td>
<td>gravity</td>
<td>[F_C = -\frac{\pi d^3}{6} \rho_1 \nu g]</td>
<td>(48)</td>
</tr>
<tr>
<td></td>
<td>centrifugal</td>
<td>[F_C = -\frac{\pi d^3}{6} \rho_1 \nu \tau \omega^2]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>magnetic</td>
<td>[M = H]</td>
<td>(49)</td>
</tr>
<tr>
<td></td>
<td>electrical</td>
<td>[F_E = E \nu]</td>
<td></td>
</tr>
<tr>
<td>inertial</td>
<td>impact</td>
<td>[F_i = -\frac{\pi d^3}{6} \rho_1 \nu \frac{d \nu}{dt}]</td>
<td>(47)</td>
</tr>
<tr>
<td>interparticle</td>
<td>friction</td>
<td>[\text{target eff.} = \frac{V_e^3 \rho_1}{18 \eta}]</td>
<td>(50)</td>
</tr>
<tr>
<td></td>
<td>adhesion</td>
<td>[\text{van der Waals}]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[\text{electrostatic}]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[\text{capillary}]</td>
<td></td>
</tr>
<tr>
<td>diffusional effect</td>
<td>thermophoretic</td>
<td>[P = -D \frac{\partial c}{\partial x}]</td>
<td>(52)</td>
</tr>
<tr>
<td></td>
<td>photophoretic</td>
<td>[D]</td>
<td>(52)</td>
</tr>
<tr>
<td></td>
<td>Brownian</td>
<td>[\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial y^2} - \nu \frac{\partial c}{\partial y}]</td>
<td>(51)</td>
</tr>
</tbody>
</table>

이 방정식으로 수치진단할 수 있는 가장 작은 입도는 \(\rho_1 = 2 \text{g/cm}^3 \)의 경우, \(<1 \mu \text{m} \) 이다. 5 \mu \text{m} 정도만 의미도 침환한 수치가 이어지게 된다. 침환 방정식에서 주어진 사항은 표준액체에 물체농도\(<0.1\%\), 온도\(<\pm 0.5^\circ \text{C}\)로 유지되어야 하며 특히 단일입자가 수속에서 같은 분산체로, 필요한 경우에서는, 분산체를 사용해야 한다.\(^5\) 농도의 영향은 \(C_0 = 10^{-3} \)(-\text{즉 0.1%})에서는 실제침강조도가 단일입자의 침강조도보다 현저 커진다. 침강조도로부터 허드로니시아믹 파티클 인과 그 분포를 계산할 수 있는 data 범위 정리에 관한 사항은 생리약이이고,운하שתמש되는 장치들을 간단히 소개하였다. 그로써 보완된 약은 일상적 침정기기에 대한 설명(11: 안드레아시넷)은 일반적인 장치를 간략하게 비평한다.\(^6\)

상품화되어 있는 침강정은 Bostock(영국), Shimadzu(일본), Satorus(독일) 등이다. 이들은 digital recording 이 가능하고 microprocessor 를 부착하여 data processing 도 가능하다. 침강일 입자를 계산할 수 있도록 정밀한 침강정 장치는 1 C.I(영국), B.C.U.R.A.(본) 등이 있고 strontium 90에서 나오는 \(\beta \) -선을 이용한 장치도 있다. 이들 장치는 모두 분산의 수학적으로 분포모델을 얻는 장치들이다.\(^5\)\(^4\)\(^7\)

누적분포측정은 직접 분포분석으로 알려진 것이 있으며, 직접 분포측정은 양 측정방법으로는 피엘럽, 필드측정법, 랑바르-비어(Lambe rt-Beer) 방법을 이용한 허드로니시아믹 농도측정이 있다.

중심치법으로는 측정기간이 짧기 때문에 이러한 단점을 보완하는, 즉 측정시간을 단축할 수 있는 개발연구가 많다. --그 중에서 1966 년에 발표된 Muta\(^2\)와 Kalshoven\(^5\)의 연구는 침강장법이 사용되는 침정법의 수직 위치를 측정기 간격 동안에 연속적으로 상향조정함으로써 측정에 소요되는 시간을 단축하는 심리이다.
The classifier is used to separate the two-layer mixture into the coarse and fine fractions through the cut size, \(x_t \).

The separation curve showing the grade efficiency, \(\phi(x) \), and a separation function, \(K_{sep} \).

Various grade efficiencies can be obtained with different PSA instruments for the samples; 1, 2, 3 and 4.
Table 4 Commercial Instruments classified after major working principles

<table>
<thead>
<tr>
<th>principle</th>
<th>name of instrument</th>
<th>ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>scattering</td>
<td>Optical particle counter</td>
<td>(72)</td>
</tr>
<tr>
<td></td>
<td>Tipton particle analyser</td>
<td>(73)</td>
</tr>
<tr>
<td></td>
<td>Coulter Nanosizer</td>
<td>(74, 75)</td>
</tr>
<tr>
<td></td>
<td>Royco Particle Analyser</td>
<td>(76)</td>
</tr>
<tr>
<td></td>
<td>Laser Interferometers</td>
<td>(77, 78)</td>
</tr>
<tr>
<td></td>
<td>Laser Doppler</td>
<td>(79-83)</td>
</tr>
<tr>
<td></td>
<td>Anemometers</td>
<td></td>
</tr>
<tr>
<td>diffraction</td>
<td>Talbot-Disa</td>
<td>(84)</td>
</tr>
<tr>
<td></td>
<td>CILAS granulometer</td>
<td>(85, 86)</td>
</tr>
<tr>
<td></td>
<td>Malvern Analyser</td>
<td>(87, 88)</td>
</tr>
<tr>
<td></td>
<td>Microtrac</td>
<td>(89-93)</td>
</tr>
<tr>
<td>extinction</td>
<td>HIAC-counter</td>
<td>(94)</td>
</tr>
</tbody>
</table>

Mie's light scattering is a fundamental concept in the field of scattering and is widely used in various applications, including the measurement of particle size distribution. It is based on the Rayleigh scattering theory, which states that the scattering intensity is directly proportional to the fourth power of the wavelength and inversely proportional to the sixth power of the particle size. This theory is used in the analysis of light scattering by particles in a fluid, and it is widely applied in fields such as biology, chemistry, and physics. In this section, we will discuss the applications of Mie's scattering theory in different contexts.

5. Applications of Mie's Scattering Theory

Mie's scattering theory is widely used to study the properties of light scattering by particles in various media. It is a fundamental concept in the field of scattering and is widely used in various applications, including the measurement of particle size distribution. It is based on the Rayleigh scattering theory, which states that the scattering intensity is directly proportional to the fourth power of the wavelength and inversely proportional to the sixth power of the particle size. This theory is used in the analysis of light scattering by particles in a fluid, and it is widely applied in fields such as biology, chemistry, and physics. In this section, we will discuss the applications of Mie's scattering theory in different contexts.

Example Application:

Consider a suspension of spherical particles in a transparent medium. The particles have a size of 1 micron, and the wavelength of the incident light is 500 nanometers. Using Mie's scattering theory, we can calculate the scattering intensity at different angles and compare it with experimental measurements. This will help us understand the scattering properties of the particle suspension and how they affect the transmission and reflection of light.

Conclusion:

Mie's scattering theory is a powerful tool for analyzing the scattering properties of particles in various media. It is widely used in fields such as biology, chemistry, and physics to study the scattering of light by particles and to understand the effects of different parameters on scattering. In this section, we have discussed the applications of Mie's scattering theory in different contexts, and we hope that this will help you understand the importance and significance of this theory in the study of light scattering.
Laser doppler anemometer는 두께의 레이저 광이 교차하는 측정요소를 통과하는 입자의 크기를 측정하는데 사용된다.

그림에 있는 원격에는 입자가 분산되어 있는 유체의 유속을 미리 알아야 한다. 바꾸어 말하면 LDA는 유속을 측정하는 장치로 유속을 측정하기 전에 입자가 유속과 함께 검출부(측정요소)로 통과하게 한다. 검출부는 입구의 광학적 막(optical sieve)과 같은 장치로 보호하는 데 사용된다.

Fraunhofer 화학 또는 far-field 회절을 이용하면 구형입자의 크기에 반비례하는 동심권의 Airy 회절포를 얻을 수 있기 때문에 이 전리를 이용한 장치의 발전은 매우ungkin하다. 단일정도가 아닌 구형분해도에서는 회절포의 동심권의 지름에 불규칙하게 분산되기 때문에 주어진 시료의 입자분포를 측정하는데는 회전하는 mask-disc와 동일한 입자포의 광학적세기를 단일 입도면 회절포의 세기를 분리하는데, 오작한 matrix 계산이 필요하게 된다.

회절포의 형상에 의한 분석기법에서 아직도 미해결된 부분은 분해요인의 형상이 비구형인 경우에, 이론적 연구와 실험적 시도가 계속되고 있다.

프라운호퍼 회절포를 이용한 시스템에 입자의 두께측정장치는 잘못결과의 분산을 측정하기 위한 Talbot의 특이점이다.

광학적 방법의 다른 한 가지는 두께측정법에, 두께가 알려진 분산분산체에 둘려진 광선 f로 중에서 두께 평균 t를 측정하여 분산...
of extinction coefficient, \(K \), is obtained by applying Kirchhoff’s law to the incident light and the scattered light. The differential scattering cross-section, \(\Delta \sigma \), is given by the following equation:

\[
\frac{\Delta \sigma}{\sigma_0} = \frac{1}{4} \frac{E_{\text{inc}}}{E_{\text{scat}}} K(x) \frac{m^2}{4}
\]

where \(E_{\text{inc}} \) is the incident light intensity, \(E_{\text{scat}} \) is the scattered light intensity, \(m \) is the mass of the particle, and \(x \) is the path length through the medium.

Table 5. Physical principles employed to sense and size particles

<table>
<thead>
<tr>
<th>Physical Principle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image replication</td>
</tr>
<tr>
<td>Electrical resistance change</td>
</tr>
<tr>
<td>Light scattering</td>
</tr>
<tr>
<td>Radiation attenuation, light, ultrasonic, (\beta)-ray, x-ray</td>
</tr>
<tr>
<td>Classification; sieve, elutriation, hydrocyclone, sedimentation</td>
</tr>
<tr>
<td>Fluid flow, permeametry, nozzles, rheology</td>
</tr>
<tr>
<td>Hot wire anemometry</td>
</tr>
<tr>
<td>Electrostatic ion capture</td>
</tr>
</tbody>
</table>

The (sieve) is a method of determining the size distribution of particles by sieving. This method is based on the principle that particles of a certain size will pass through a sieve, while larger particles will be retained. The size of the particles can be determined by comparing the number of particles that pass through each sieve.

The Schonert and Orr method is another method used for particle size determination. This method involves the measurement of the light scattered by a particle when it passes through a laser beam. The intensity of the scattered light is proportional to the square of the particle size.

Another method is the use of an ion trap, where ionized particles are trapped and counted, allowing for the determination of the size distribution of the particles.

Finally, the use of a Coulter Counter is another method used for particle size determination. This method involves the measurement of the change in electrical conductivity when a particle passes through a shear cell, which is proportional to the particle size.

The results of these methods can be used to determine the size distribution of particles in a sample, which can then be used to understand the behavior of the particles in various applications.
References

 Am. Lab. (Jan) 73/86 (1974).
29. Kosten, K., TH Karlsruhe. 1965
30. HWAHAK KONGHAK Vol. 20, No. 1, February 1982
41. Herrmann, H., Chem.-Ing.-Tech. 51(11), 1140/1, (1979).
42. Alliet, D. F., Powder Tech., 13, 3/7(1976)
64. Lange, K., Aufbereitungs-Technik, 21(1) 15(1980).