STRESS INTENSITY FACTOR IN A TAPERED SPECIMEN

Liu Xue-Hui and F. Erdogan

LEHIGH UNIVERSITY
Bethlehem, Pennsylvania

Grant NGR 39-007-011
April 1985
STRESS INTENSITY FACTOR IN A TAPERED SPECIMEN

by

Liu Xue-Hui* and F. Erdogan
Lehigh University, Bethlehem, PA 18015

Abstract

In this paper the general problem of a tapered specimen containing an edge crack is formulated in terms of a system of singular integral equations. The equations are solved and the stress intensity factor is calculated for a "compact" and for a "slender" tapered specimen, the latter simulating the double cantilever beam. The results are obtained primarily for a pair of concentrated forces and for crack surface wedge forces. The stress intensity factors are also obtained for a long strip under uniform tension which contains inclined edge cracks.

1. Introduction

The main objective of this paper is to provide a solution for a tapered specimen containing an edge crack by using an integral equation technique. The geometry of the specimen is shown in Fig. 1 where the dimensions H, B, l, m, n, and θ are arbitrary. By choosing the relative dimensions properly one may simulate either the tapered compact tension specimen (Fig. 1) or the tapered double cantilever beam specimen (Fig. 2). Even though the results are given only for two types of loading shown in Figures (1a) and (1b), the formulation of the problem is quite general and any arbitrary loading on the crack surfaces or on the inclined boundaries, for example, can easily be taken into account. Of course, the problem can also be solved by using a finite element method. Because of its practical importance the rectangular specimen having an edge crack has been studied rather widely (see, for example, [1] and the articles by Bowie, Isida, and Wilson in [2]). The general problem was also discussed in a recent article [3].

*Current address: Institute of Structure Strength, Northwestern Polytechnical University, Xian, Shaanxi, The People's Republic of China
2. Formulation of the Problem

We will first consider the general crack problem for an infinite strip described in Fig. 3. It will be assumed that \(y=0 \) is a plane of symmetry and the location \((m,n)\) of the concentrated force \(P \) and the crack surface tractions are arbitrary. For the purpose of deriving the integral equations one may express the stress state at a point \((x,y)\) in the strip as follows:

\[
\sigma_{ij}(x,y) = \sigma_{1ij}(x,y) + \sigma_{2ij}(x,y) + \sigma_{3ij}(x,y) + \sigma_{4ij}(x,y) + \sigma_{5ij}(x,y), \quad (i,j=x,y)
\]

where the stress components \(\sigma_{1ij} \) are associated with an infinite plane containing a crack along \((y=0, a<x<b)\), \(\sigma_{2ij} \) and \(\sigma_{3ij} \) are associated with a plane having a crack along \((c<r<d, e)\) and \((c<r<d, -e)\), respectively, \(\sigma_{4ij} \) relate to an infinite plane without any cracks under concentrated forces \(P \) at \(x=m \), \(y=\pm n \), and \(\sigma_{5ij} \) are associated with an infinite strip. The total stress state \(\sigma_{ij} \) must satisfy the following boundary conditions (Fig. 3):

\[
\sigma_{xx}(0,y) = 0, \quad \sigma_{xy}(0,y) = 0, \quad (0<y<\infty), \quad (2)
\]
\[
\sigma_{xx}(H,y) = 0, \quad \sigma_{xy}(H,y) = 0, \quad (0<y<\infty), \quad (3)
\]
\[
\sigma_{xy}(x,0) = 0, \quad (0<x<H), \quad (4)
\]
\[
\sigma_{yy}(x,0) = p_1(x), \quad (a<x<b), \quad (5)
\]
\[
\sigma_{\theta\theta}(r,e) = p_2(r), \quad (c<r<d), \quad (6)
\]
\[
\sigma_{r\theta}(r,e) = p_3(r), \quad (c<r<d), \quad (7)
\]

where \(p_1 \), \(p_2 \) and \(p_3 \) are known functions and where it is assumed that because of symmetry only one half \((y>0)\) of the domain needs to be considered.

We now define the following unknown functions:

\[
g_1(x) = \frac{3}{a} [u_y(x,0^+)-u_y(x,0^-)], \quad (a<x<b), \quad (8)
\]
\[
g_2(r) = \frac{3}{a} [u_\theta(r,\epsilon^+0)-u_\theta(r,\epsilon-0)], \quad (c<r<d), \quad (9)
\]
\[g_3(r) = \frac{3}{r} [u_r(r, \theta+0) - u_r(r, \theta-0)], \quad (c<r<d) \]
\[g_4(r) = \frac{3}{r} [u_\theta(r, \theta+0) - u_\theta(r, \theta-0)], \quad (c<r<d) \]
\[g_5(r) = \frac{3}{r} [u_r(r, -\theta+0) - u_r(r, -\theta-0)], \quad (c<r<d) \]

where \(u_x, u_y \) or \(u_r, u_\theta \) are the components of the displacement vector referred to \(x,y \) or \(r, \theta \) coordinates, respectively (Fig. 3). The stress state associated with an infinite plane containing a symmetrically loaded crack on the \(x \) axis may then be expressed as

\[\sigma_{1ij}(x, y) = \int_a^b G_{ij}(x, y, t, 0) g_1(t) dt, \quad (i, j=x, y) \]

where the kernels \(G_{ij} \) are given in Appendix A. The stresses associated with edge dislocations of densities \(g_2 \) and \(g_3 \) distributed along \((c<r<d, \; \theta = \text{constant}) \) are given by

\[\sigma_{2ij}(x, y) = \int_c^d G_{ij}(x, y, x_0, y_0) [g_2(r_0) \cos \theta + g_3(r_0) \sin \theta] dr_0 \]

\[+ \int_c^d H_{ij}(x, y, x_0, y_0) [g_3(r_0) \cos \theta - g_2(r_0) \sin \theta] dr_0, \quad (i, j=x, y), \]

where \(G_{ij}(x, y, x_0, y_0) \) and \(H_{ij}(x, y, x_0, y_0), \; (i, j=x, y) \) are again given in Appendix A, and

\[x_0 = r_0 \cos \theta, \quad y_0 = B + r_0 \sin \theta \]

Similarly, for the crack lying along \((c<r<d, -\theta) \) we have

\[\sigma_{3ij}(x, y) = \int_c^d G_{ij}(x, y, x_0, y_0) [g_4(r_0) \cos \theta - g_5(r_0) \sin \theta] dr_0 \]

\[+ \int_c^d H_{ij}(x, y, x_0, y_0) [g_5(r_0) \cos \theta + g_4(r_0) \sin \theta] dr_0, \; (i, j=x, y), \]

(16)
\[x_0 = r_0 \cos \theta, \quad y_0 = -r_0 \sin \theta. \] (17)

The stresses due to a pair of concentrated forces \(P \) and \(-P\) (per unit thickness) are given by (Fig. 3)

\[\sigma_{4ij}(x,y) = P \cdot Q_{ij}(x,y,m,n), \quad (i,j=x,y) \] (18)

where the functions \(Q_{ij} \) are given in Appendix B.

Finally, by using Fourier transforms and the symmetry of the problem, the stresses in an infinite strip \(0 < x < H, \quad -\infty < y < \infty \) may be expressed as

\[\sigma_{5xx}(x,y) = -\frac{4u}{\pi} \int_{-\infty}^{\infty} \left[\left(\alpha(A_1 + xA_2) + \frac{1+\kappa}{2} A_2 \right) e^{-\alpha x} \right. \]

\[+ \left[\alpha(A_3 + xA_4) - \frac{1+\kappa}{2} A_4 \right] e^{\alpha x} \cos \alpha y \right] \mathrm{d} \alpha \]

\[\sigma_{5yy}(x,y) = \frac{4u}{\pi} \int_{-\infty}^{\infty} \left[\left(\alpha(A_1 + xA_2) + \frac{\kappa-3}{2} A_2 \right) e^{-\alpha x} \right. \]

\[+ \left[\alpha(A_3 + xA_4) - \frac{\kappa-3}{2} A_4 \right] e^{\alpha x} \cos \alpha y \right] \mathrm{d} \alpha \]

\[\sigma_{5xy}(x,y) = -\frac{4u}{\pi} \int_{-\infty}^{\infty} \left[\left(\alpha(A_1 + xA_2) + \frac{\kappa-1}{2} A_2 \right) e^{-\alpha x} \right. \]

\[- \left[\alpha(A_3 + xA_4) - \frac{\kappa-1}{2} A_4 \right] e^{\alpha x} \sin \alpha y \right] \mathrm{d} \alpha \], (19a-c)

where \(A_1, \ldots, A_4 \) are unknown functions of \(\alpha \).

If we now substitute from (13)-(19) into (1), use the homogeneous boundary conditions (2) and (3), invert the Fourier transforms and evaluate the resulting infinite integrals, we obtain the unknown functions \(A_1, \ldots, A_4 \) in the following form:

\[A_i(\alpha) = \frac{3}{\pi} \sum_{k=1}^{\infty} \int_{0}^{\infty} B_{ik}(\alpha, t) g_k(t) \mathrm{d} t + PC_i(\alpha), \quad (i=1, \ldots, 4), \]

\[a_k, b_k, c_k, d_k = \text{constant}, \quad k=2,3 \] (20)
where the symmetry properties
\[u_\theta(r, \theta+0) - u_\theta(r, \theta-0) = u_\theta(r, \theta+0) - u_\theta(r, \theta-0), \]
\[u_r(r, \theta+0) - u_r(r, \theta-0) = -[u_r(r, \theta+0) - u_r(r, \theta-0)] \quad (21a,b) \]
have been used. The explicit expressions of \(A_i \) may be found in Appendix C.

We now observe that the boundary condition (4) is satisfied by the assumed symmetry and from (9)-(12) and (21) we have
\[g_4(r) = g_2(r), \quad g_5(r) = -g_3(r). \quad (22) \]

The three remaining boundary conditions (5)-(7) may then be used to determine the unknown functions \(g_1, g_2 \) and \(g_3 \). Thus, by substituting from (13)-(20) into (5)-(7) and by using (22) we obtain the following system of integral equations to determine \(g_1, g_2 \) and \(g_3 \)
\[\frac{b_j}{a_j} \int_{a_j}^{b_j} h_{ij}(s,t)g_j(t)dt = p_i(s) + P h_i(s), \quad (i=1,2,3; \quad j=1,2,3) \quad (23) \]
where \(h_{ij}, (i,j=1,2,3) \) and \(h_i, (i=1,2,3) \) are known functions and may be expressed in terms of infinite integrals of the following form by using the information given in the appendices A, B and C:
\[h_{ij}(s,t) = \int_0^{\infty} K_{ij}(s,t,\alpha)d\alpha, \quad (i,j=1,2,3) \quad (24) \]
\[h_i(s) = \int_0^{\infty} K_i(s,\alpha)d\alpha, \quad (i=1,2,3) \quad (25) \]

For the crack problem shown in Fig. 3, by separating singular part of the kernels \(h_{ij} \) through an asymptotic analysis, it can be shown that the main diagonal elements of \(h_{ij} \) have Cauchy type singularities. That is, for \(\alpha \to \infty \) if we let

-5-
\(K_{ij}(s,t,\alpha) \rightarrow K_{ij}(s,t,\alpha) \) \hspace{1cm} (26)

we find

\[
\int_0^\infty K_{ii}(s,t,\alpha) d\alpha = \frac{2\mu}{\pi(1+\kappa)} \frac{1}{t-s}, \ (i=1,2,3)
\] \hspace{1cm} (27)

and the kernels \(h_{ij} \) may be expressed as

\[
h_{ij}(s,t) = \frac{2\mu}{\pi(1+\kappa)} \delta_{ij} + k_{ij}(s,t), \ (i,j=1,2,3)
\] \hspace{1cm} (28)

where the functions \(k_{ij} \) are bounded within the closed interval \(a_j \leq (s,t) \leq b_j \), \((j=1,2,3) \). From the definitions given by (8)-(10) and from Fig. 3 it is clear that the density functions \(g_j(t) \), \((j=1,2,3) \) must satisfy

\[
\int_a^b g_1(t) dt = 0, \int_a^c g_2(t) dt = 0, \ (k=2,3)
\] \hspace{1cm} (29)

Referring to, for example, [4], it is known that the solution of the system of singular integral equations may be expressed as

\[
g_1(t) = \frac{F_1(t)}{\sqrt{(t-a)(b-t)}}, \ (a<t<b), \hspace{1cm} (30)
\]
\[
g_k(t) = \frac{F_k(t)}{\sqrt{(t-c)(d-t)}}, \ (k=1,2; c<t<d). \hspace{1cm} (31)
\]

The Modes I and II crack tip stress intensity factors may then be defined by and evaluated from the following relations:

\[
k_1(a) = \lim_{x \to a} \sqrt{2(a-x)} \sigma_{yy}(x,0) = \frac{2\mu}{1+\kappa} \lim_{x \to a} \sqrt{2(x-a)} g_1(x), \hspace{1cm} (32 \ a,b)
\]
\[
k_1(b) = \lim_{x \to b} \sqrt{2(x-b)} \sigma_{yy}(x,0) = \frac{2\mu}{1+\kappa} \lim_{x \to b} \sqrt{2(b-x)} g_1(x), \hspace{1cm} (32 \ a,b)
\]
\[
k_1(c) = \lim_{r \to c} \sqrt{2(c-r)} \sigma_{\theta\theta}(r,\theta) = \frac{2\mu}{1+\kappa} \lim_{r \to c} \sqrt{2(r-c)} g_2(r), \hspace{1cm} (33 \ a,b)
\]
\[
k_2(c) = \lim_{r \to c} \sqrt{2(c-r)} \sigma_{r\theta}(r,\theta) = \frac{2\mu}{1+\kappa} \lim_{r \to c} \sqrt{2(r-c)} g_3(r), \hspace{1cm} (33 \ a,b)
\]
\[k_1(d) = \lim_{r \to d} \sqrt{2(r-d)} \sigma_{\theta \theta}(r, \theta) = -\frac{2}{1+i\kappa} \lim_{r \to d} \sqrt{2(d-r)} g_2(r), \]
\[k_2(d) = \lim_{r \to d} \sqrt{2(r-d)} \sigma_{r \theta}(r, \theta) = -\frac{2}{1+i\kappa} \lim_{r \to d} \sqrt{2(d-r)} g_3(r). \]

The functions \(h_i(s), (i=1,2,3) \) and the kernels \(h_{ij}(s,t), (i,j=1,2,3) \) may be evaluated in terms of \(G_{ij}, \ H_{ij}, \ Q_{ij} \), \((i,j=x,y) \), and \(A_i \), \((i=1, \ldots, 4) \) in a straightforward manner. However, the manipulations and the resulting expressions are quite lengthy and will not be reproduced in this paper.

We also note that in obtaining the integral equations from the crack surface boundary conditions (6) and (7), the stress state \(\sigma_{ij}(x,y), (i,j=x,y) \) as given by (1) is substituted into
\[
\begin{align*}
p_2(r) &= \sigma_{\theta \theta}(r, \theta) = \sigma_{xx}(x,y)\sin^2 \theta + \sigma_{yy}(x,y)\cos^2 \theta - 2\sigma_{xy}(x,y)\sin \theta \cos \theta, \\
p_3(r) &= \sigma_{r \theta}(r, \theta) = [\sigma_{yy}(x,y) - \sigma_{xx}(x,y)]\sin \theta \cos \theta + \sigma_{xy}(x,y)(\cos^2 \theta - \sin^2 \theta),
\end{align*}
\]
\[x = rc \cos \theta, \ y = B + rs \sin \theta, \ (\theta = \text{constant, } c < r < d). \]

For the case of "edge" cracks, i.e., for \(a=0 \) or \(c=0 \), the asymptotic analysis would show that the singular parts of the kernels \(h_{ij}(s,t) \) are generalized Cauchy kernels. That is, as shown, for example, in [5] the singular parts contain, in addition to the standard Cauchy kernels, terms that become unbounded as the variables \(s \) and \(t \) approach zero simultaneously and as a consequence at the end point \(t=0 \) the density functions \(g_i(t) \), \((i=1,2,3) \) become bounded (see, also [3]). The integral equations were solved by using the technique described, for example, in [6] (see also, [5]).

3. Numerical Results

The first numerical example considered is described by the insert in Fig. 4, namely a long strip containing two symmetrically located inclined edge cracks. Rather extensive results for parallel cracks may be found in [3]. For a given \(B/H \) ratio (of 0.2) the normalized stress intensity factors are given in Table 1. In this example, the relative crack length \(\ell \) and the angle \(\theta \) are the variables. Table 1 shows the results for a uniform tension.
away from the crack region. In this case the crack surface tractions for the perturbation problem are the input functions in the integral equations (23) and are given by

\[p_2(r) = -\sigma_0 \cos^2 \theta, \quad p_3(r) = -\sigma_0 \sin \theta \cos \theta. \quad (36) \]

The special case of this problem for \(\theta = 0 \) was studied in [3] and are also calculated here for comparison. It may be observed that for small values of \(\varepsilon \), \(k_2(d) \) is negative and, as pointed out in [3], would force the cracks to grow away from each other. However, for relatively large values of \(\theta \), \(k_2(d) \) becomes positive. This means that for such angles the cracks tend to grow toward each other or, they tend to orient themselves more nearly perpendicular to the direction of the external load. This, of course, is the physically expected result. Theoretically, if the Mode II stress intensity factor \(k_2(d) \) is zero, momentarily the crack would be expected to grow in its current plane. Table 1 implies that for a given crack length \(\xi/H \) the value of \(\theta = \theta_0 \) corresponding to \(k_2(d) = 0 \) can be calculated. For \(B/H = 0.2 \) the calculated values of \(\theta_0 \) are shown in Fig. 4.

Table 2 shows the results for three edge cracks of equal length in a long strip under uniform tension \(\sigma_0 \) away from the crack region. In this case too the results for \(\theta = 0 \) agree with those given in [3].

Tables 3-5 show the results for a tapered "compact" specimen containing an edge crack \((a=0, b=\xi) \). The stress intensity factor given in Table 3 correspond to a uniformly pressurized crack shown in Fig. (1a) for \(B/H = 0.2 \) and \(B/H = 0.48 \). Tables 4 and 5 give the stress intensity factors for a pair of concentrated forces and crack surface wedge forces, respectively.

The stress intensity factor for a "slender" tapered specimen (or the tapered double cantilever beam specimen) described in Fig. 2 is given in Fig. 5. The figure indicates that for \(B/H = 0.1 \) one could have a "constant k" regime only for \(\theta = 30^\circ \) and \(0.15 < \xi/H < 0.4 \). For the double cantilever beam specimen an approximate value of the stress intensity factor may also be obtained by using the following energy balance relation (Fig. 2):

\[\frac{\partial}{\partial L} (U-V) = \frac{\pi k_1^2(b)}{E^1}, \quad (37) \]
where \(L \) is the length of the "beam" (Fig. 2), \(U \) is the work of the external forces \(P \), \(V \) is the strain energy, \(E' = E \) for plane stress, and \(E' = E/(1-\nu^2) \) for plane strain. By using the beam theory and by taking into consideration the energy due to the transverse shear as well as the bending stresses, for the specimen shown in Fig. 2 the stress intensity factor may be estimated as follows:

\[
 k_1(b) = \frac{P(\frac{12}{\pi h_0})^{\frac{1}{2}}}{\sqrt{F}}
\]

(38)

where the shape factor is calculated to be

\[
 F = \frac{L^2}{h_0^2} + \frac{1+\nu}{5}
\]

(39)

for \(\theta = 0 \) and

\[
 F = \frac{h_0}{h_0+Ltane} \left(\frac{1+\nu}{5} + \frac{1}{\tan^2 \theta} \right) - \frac{h_0^2(h_0+2Ltane)}{\tan^2 \theta(h_0+Ltane)^2}
\]

(40)

for \(\theta > 0 \) (Fig. 2). A limited comparison of the stress intensity factors obtained from the elasticity and the beam theories is shown in Table 6. Considering the simplicity of the beam solution, one may observe that the agreement between the two results is fairly good. However, one may also observe that the beam theory gives consistently smaller values than that obtained from the elasticity solution. Physically, this is not really surprising. As Fig. 2 indicates, the constraint of the actual specimen is less than that of the pair of cantilever beams. Consequently an end condition which is more realistic than the built-in end of a cantilever beam would give a greater stress intensity factor.

References

Acknowledgement. This work was supported by NASA-Langley under the Grant NGR 39-007-011 and by NSF under the Grant MEA-8414477 and was completed when the second author was an Alexander von Humboldt Senior U.S. Scientist Awardee in Freiburg (i. Br.), Germany.
Table 1. Modes I and II normalized stress intensity factors in a long strip under uniform tension \(\sigma_0 \) which contains two symmetrically located inclined edge cracks, \(B/H = 0.2 \), \(c=0 \), \(a=b \) (Fig. 3).

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(\ell/H)</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_1(d) / \sigma_0^{\sqrt{\ell}})</td>
<td>0°</td>
<td>1.1101</td>
<td>1.2123</td>
<td>1.4693</td>
<td>1.8967</td>
<td>2.5980</td>
<td>3.8235</td>
</tr>
<tr>
<td></td>
<td>5°</td>
<td>1.1149</td>
<td>1.2343</td>
<td>1.5071</td>
<td>1.9576</td>
<td>2.6960</td>
<td>3.9936</td>
</tr>
<tr>
<td></td>
<td>10°</td>
<td>1.1058</td>
<td>1.2358</td>
<td>1.5128</td>
<td>1.9647</td>
<td>2.7002</td>
<td>3.9974</td>
</tr>
<tr>
<td></td>
<td>15°</td>
<td>1.0831</td>
<td>1.2169</td>
<td>1.4870</td>
<td>1.9210</td>
<td>2.6201</td>
<td>3.8559</td>
</tr>
<tr>
<td></td>
<td>30°</td>
<td>0.9408</td>
<td>1.0521</td>
<td>1.2531</td>
<td>1.5591</td>
<td>2.0314</td>
<td>2.8337</td>
</tr>
<tr>
<td>(k_2(d) / \sigma_0^{\sqrt{\ell}})</td>
<td>0°</td>
<td>-0.0323</td>
<td>-0.1083</td>
<td>-0.1694</td>
<td>-0.2280</td>
<td>-0.2937</td>
<td>-0.3597</td>
</tr>
<tr>
<td></td>
<td>5°</td>
<td>0.0319</td>
<td>-0.0266</td>
<td>-0.0642</td>
<td>-0.0854</td>
<td>-0.0880</td>
<td>-0.0463</td>
</tr>
<tr>
<td></td>
<td>10°</td>
<td>0.0953</td>
<td>0.0551</td>
<td>0.0416</td>
<td>0.0526</td>
<td>0.1087</td>
<td>0.2302</td>
</tr>
<tr>
<td></td>
<td>15°</td>
<td>0.1560</td>
<td>0.1333</td>
<td>0.1422</td>
<td>0.1875</td>
<td>0.2822</td>
<td>0.4631</td>
</tr>
<tr>
<td></td>
<td>30°</td>
<td>0.3032</td>
<td>0.3188</td>
<td>0.3697</td>
<td>0.4603</td>
<td>0.6047</td>
<td>0.8460</td>
</tr>
</tbody>
</table>

-11-
Table 2. Normalized stress intensity factors in a long strip under uniform tension σ_0 which contains three edge cracks of equal length; $B/H = 0.2$, $c=0$, $a=0$, $d=b=l$ (Fig. 3).

<table>
<thead>
<tr>
<th>θ</th>
<th>ℓ</th>
<th>$k_1(b)/\sigma_0 \sqrt\ell$</th>
<th>$k_1(d)/\sigma_0 \sqrt\ell$</th>
<th>$k_2(d)/\sigma_0 \sqrt\ell$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>0.01</td>
<td>1.1100</td>
<td>1.1149</td>
<td>0.0005</td>
</tr>
<tr>
<td></td>
<td>0.11</td>
<td>0.7923</td>
<td>0.9849</td>
<td>-0.1080</td>
</tr>
<tr>
<td></td>
<td>0.21</td>
<td>0.8311</td>
<td>1.1134</td>
<td>-0.1740</td>
</tr>
<tr>
<td></td>
<td>0.31</td>
<td>0.9929</td>
<td>1.3656</td>
<td>-0.2398</td>
</tr>
<tr>
<td></td>
<td>0.41</td>
<td>1.2902</td>
<td>1.7747</td>
<td>-0.3251</td>
</tr>
<tr>
<td></td>
<td>0.51</td>
<td>1.8205</td>
<td>2.4480</td>
<td>-0.4452</td>
</tr>
<tr>
<td>5°</td>
<td>0.01</td>
<td>1.1102</td>
<td>1.1091</td>
<td>0.0592</td>
</tr>
<tr>
<td></td>
<td>0.11</td>
<td>0.8089</td>
<td>0.9987</td>
<td>-0.0485</td>
</tr>
<tr>
<td></td>
<td>0.21</td>
<td>0.8618</td>
<td>1.1394</td>
<td>-0.1031</td>
</tr>
<tr>
<td></td>
<td>0.31</td>
<td>1.0481</td>
<td>1.4080</td>
<td>-0.1462</td>
</tr>
<tr>
<td></td>
<td>0.41</td>
<td>1.3874</td>
<td>1.8432</td>
<td>-0.1950</td>
</tr>
<tr>
<td></td>
<td>0.51</td>
<td>1.9915</td>
<td>2.5624</td>
<td>-0.2485</td>
</tr>
<tr>
<td>15°</td>
<td>0.01</td>
<td>1.1112</td>
<td>1.0625</td>
<td>0.1727</td>
</tr>
<tr>
<td></td>
<td>0.11</td>
<td>0.8566</td>
<td>0.9815</td>
<td>0.0745</td>
</tr>
<tr>
<td></td>
<td>0.21</td>
<td>0.9466</td>
<td>1.1265</td>
<td>0.0388</td>
</tr>
<tr>
<td></td>
<td>0.31</td>
<td>1.1886</td>
<td>1.3947</td>
<td>0.0283</td>
</tr>
<tr>
<td></td>
<td>0.41</td>
<td>1.6102</td>
<td>1.8251</td>
<td>0.0355</td>
</tr>
<tr>
<td></td>
<td>0.51</td>
<td>2.3360</td>
<td>2.5372</td>
<td>0.0764</td>
</tr>
<tr>
<td>30°</td>
<td>0.01</td>
<td>1.1136</td>
<td>0.9145</td>
<td>0.3049</td>
</tr>
<tr>
<td></td>
<td>0.11</td>
<td>0.9488</td>
<td>0.8573</td>
<td>0.2227</td>
</tr>
<tr>
<td></td>
<td>0.21</td>
<td>1.0913</td>
<td>0.9707</td>
<td>0.2113</td>
</tr>
<tr>
<td></td>
<td>0.31</td>
<td>1.3933</td>
<td>1.1781</td>
<td>0.2393</td>
</tr>
<tr>
<td></td>
<td>0.41</td>
<td>1.8832</td>
<td>1.5011</td>
<td>0.3059</td>
</tr>
<tr>
<td></td>
<td>0.51</td>
<td>2.6784</td>
<td>2.0131</td>
<td>0.4375</td>
</tr>
</tbody>
</table>
Table 3. Normalized stress intensity factor $k_1(b)/\sigma_0\sqrt{\alpha}$ in a tapered specimen containing an edge crack and subjected to uniform crack surface pressure (Fig. 1a).

<table>
<thead>
<tr>
<th>θ</th>
<th>0°</th>
<th>10°</th>
<th>20°</th>
<th>30°</th>
</tr>
</thead>
<tbody>
<tr>
<td>B/H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.48</td>
<td>1.2499</td>
<td>1.2164</td>
<td>1.2048</td>
<td>1.1974</td>
</tr>
<tr>
<td></td>
<td>1.9275</td>
<td>1.7748</td>
<td>1.7212</td>
<td>1.6930</td>
</tr>
<tr>
<td></td>
<td>3.0924</td>
<td>2.9123</td>
<td>2.8625</td>
<td>2.8435</td>
</tr>
<tr>
<td>0.2</td>
<td>1.6747</td>
<td>1.5066</td>
<td>1.4194</td>
<td>1.3574</td>
</tr>
<tr>
<td></td>
<td>4.0862</td>
<td>2.7726</td>
<td>2.2798</td>
<td>2.0052</td>
</tr>
<tr>
<td></td>
<td>7.3316</td>
<td>3.9822</td>
<td>3.2527</td>
<td>2.9977</td>
</tr>
<tr>
<td></td>
<td>10.7602</td>
<td>.67785</td>
<td>6.4318</td>
<td>6.3694</td>
</tr>
</tbody>
</table>
Table 4. Normalized stress intensity factor $k_1(b)/(P\sqrt{\ell}/H)$ in a tapered specimen which contains an edge crack and is subjected to a pair of concentrated forces P, $a=0$, $B/H=0.48$, $m/H=0.2$, $n/H=0.32$, (Fig. 1b).

<table>
<thead>
<tr>
<th>θ</th>
<th>ℓ/H</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>2.8736</td>
<td>3.6792</td>
<td>4.5127</td>
<td>5.2761</td>
<td>6.2305</td>
<td>7.8916</td>
<td></td>
</tr>
<tr>
<td>10°</td>
<td>2.8067</td>
<td>3.4466</td>
<td>4.1153</td>
<td>4.8043</td>
<td>5.8059</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20°</td>
<td>2.7201</td>
<td>3.3067</td>
<td>3.9374</td>
<td>4.6296</td>
<td>5.6743</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Normalized stress intensity factor $k_1(b)/(P\sqrt{\ell}/H)$ in a tapered specimen which contains an edge crack and is subjected to concentrated wedge forces P; $a=0$, $B/H=0.48$, $m/H=0.2$, $n=0$ (Fig. 1b).

<table>
<thead>
<tr>
<th>ℓ/H</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>5.3245</td>
<td>5.4715</td>
<td>6.2768</td>
<td>7.8647</td>
<td></td>
</tr>
<tr>
<td>10°</td>
<td>4.9568</td>
<td>5.0104</td>
<td>5.8537</td>
<td>7.5822</td>
<td>11.2294</td>
</tr>
<tr>
<td>20°</td>
<td>4.8228</td>
<td>4.8608</td>
<td>5.7348</td>
<td>7.5170</td>
<td>11.2130</td>
</tr>
<tr>
<td>30°</td>
<td>4.7624</td>
<td>4.7996</td>
<td>5.6917</td>
<td>7.4964</td>
<td>11.2093</td>
</tr>
</tbody>
</table>

Table 6. Comparison of the stress intensity factors $k_1(b)/(P\sqrt{\ell}/H)$ calculated from the elasticity solution and from the beam theory for a slender tapered specimen; $a=0$, $B/H=0.1$, $m/H=0.067$, $n/H=0.05$, $\ell-m=L$, (Fig. 2).

<table>
<thead>
<tr>
<th>θ</th>
<th>L/H</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>10°</td>
<td>Elasticity</td>
<td>9.70</td>
<td>10.40</td>
<td>11.22</td>
<td>11.85</td>
</tr>
<tr>
<td></td>
<td>Beam</td>
<td>8.31</td>
<td>9.59</td>
<td>10.61</td>
<td>11.37</td>
</tr>
<tr>
<td>20°</td>
<td>Elasticity</td>
<td>6.38</td>
<td>6.73</td>
<td>6.89</td>
<td>7.11</td>
</tr>
<tr>
<td></td>
<td>Beam</td>
<td>5.94</td>
<td>6.37</td>
<td>6.61</td>
<td>6.73</td>
</tr>
</tbody>
</table>
APPENDIX A

The Green's functions G_{ij} and H_{ij} for a pair of edge dislocations at the point (X_o, Y_o) in an infinite plane.

\[
G_{xx}(X,Y,X_o,Y_o) = \frac{2\mu}{\pi(1+\kappa)} \frac{X_o-X}{[(X_o-X)^2 +(Y-Y_o)^2]^{3/2}} \tag{A1}
\]

\[
G_{yy}(X,Y,X_o,Y_o) = \frac{2\mu}{\pi(1+\kappa)} \frac{X_o-X}{[(X_o-X)^2 +(Y-Y_o)^2]^{3/2}} \tag{A2}
\]

\[
G_{xy}(X,Y,X_o,Y_o) = \frac{2\mu}{\pi(1+\kappa)} \frac{Y-Y_o}{[(X-O-X)^2 +(Y-Y_o)^2]^{3/2}} \tag{A3}
\]

\[
H_{xx}(X,Y,X_o,Y_o) = \frac{2\mu}{\pi(1+\kappa)} \frac{Y-Y_o}{[(X-O-X)^2 +(Y-Y_o)^2]^{3/2}} \tag{A4}
\]

\[
H_{yy}(X,Y,X_o,Y_o) = \frac{2\mu}{\pi(1+\kappa)} \frac{Y-Y_o}{[(X-O-X)^2 +(Y-Y_o)^2]^{3/2}} \tag{A5}
\]

\[
H_{xy}(X,Y,X_o,Y_o) = \frac{2\mu}{\pi(1+\kappa)} \frac{X-O-X}{[(X-O-X)^2 +(Y-Y_o)^2]^{3/2}} \tag{A6}
\]
APPENDIX B

The Green's functions Q_{ij} due to a pair of concentrated forces P acting at the points (m,n) and $(m,-n)$ in an infinite plane.

$$Q_{xx}(x,y,m,n) = \frac{1}{2\pi(1+\kappa)} \left\{ \frac{y-n}{(x-m)^2+(y-n)^2} \ln \frac{4(x-m)^2}{(x-m)^2+(y-n)^2} \right\}$$

$$- \frac{y+n}{(x-m)^2+(y+n)^2} \ln \frac{4(x-m)^2}{(x-m)^2+(y+n)^2} \right\} , \quad (B1)$$

$$Q_{yy}(x,y,m,n) = \frac{1}{2\pi(1+\kappa)} \left\{ \frac{y-n}{(x-m)^2+(y-n)^2} \ln \frac{4(x-m)^2}{(x-m)^2+(y-n)^2} \right\}$$

$$- \frac{y+n}{(x-m)^2+(y+n)^2} \ln \frac{4(x-m)^2}{(x-m)^2+(y+n)^2} \right\} , \quad (B2)$$

$$Q_{xy}(x,y,m,n) = \frac{1}{2\pi(1+\kappa)} \left\{ \frac{x-m}{(x-m)^2+(y-n)^2} \ln \frac{4(x-m)^2}{(x-m)^2+(y-n)^2} \right\}$$

$$- \frac{x-m}{(x-m)^2+(y+n)^2} \ln \frac{4(x-m)^2}{(x-m)^2+(y+n)^2} \right\} . \quad (B3)$$
APPENDIX C

The functions $A_i(\alpha)$, $(i=1, \ldots, 4)$.

\[A_i(\alpha) = \sum_{j=1}^{4} E_{ij}(\alpha) R_j(\alpha), \quad (i=1, \ldots, 4) \] \hfill (C1)

\[R_i(\alpha) = F_i(\alpha) + G_i(\alpha) + H_i(\alpha) + P_i(\alpha), \quad (i=1, \ldots, 4) \] \hfill (C2)

\[F_1(\alpha) = \int_{a}^{b} C_{11}(\alpha,t) g_1(t) dt, \]

\[G_1(\alpha) = \int_{a}^{c} \left[C_{12}(\alpha,r_0) g_2(r_0) + C_{12}(\alpha,r_0) \tan g_3(r_0) \right] \cos \delta d r_0, \]

\[H_1(\alpha) = \int_{c}^{d} \left[C_{13}(\alpha,r_0) g_3(r_0) - C_{13}(\alpha,r_0) \tan g_2(r_0) \right] \cos \delta d r_0, \]

\[P_1(\alpha) = C_{14}(\alpha) P, \] \hfill (C3)

\[F_2(\alpha) = \int_{a}^{b} C_{21}(\alpha,t) g_1(t) dt, \]

\[G_2(\alpha) = \int_{c}^{d} \left[C_{22}(\alpha,r_0) g_2(r_0) + C_{22}(\alpha,r_0) \tan g_3(r_0) \right] \cos \delta d r_0, \]

\[H_2(\alpha) = \int_{d}^{e} \left[C_{23}(\alpha,r_0) g_3(r_0) - C_{23}(\alpha,r_0) \tan g_2(r_0) \right] \cos \delta d r_0, \]

\[P_2(\alpha) = C_{24}(\alpha) P, \] \hfill (C4)
\[F_3(\alpha) = \int_a^b C_{31}(\alpha, t) g_1(t) \, dt, \]

\[G_3(\alpha) = \int_c^d \left[C_{32}(\alpha, r_0) g_2(r_0) + C_{32}(\alpha, r_0) \tan g_3(r_0) \right] \cos \theta_0 \, \cos \theta_0', \]

\[H_3(\alpha) = \int_c^d \left[C_{33}(\alpha, r_0) g_3(r_0) - C_{33}(\alpha, r_0) \tan g_2(r_0) \right] \cos \theta_0 \, \cos \theta_0', \]

\[P_3(\alpha) = C_{34}(\alpha) P, \quad \text{(C5)} \]

\[F_4(\alpha) = \int_a^b C_{41}(\alpha, t) g_1(t) \, dt, \]

\[G_4(\alpha) = \int_c^d \left[C_{42}(\alpha, r_0) g_2(r_0) + C_{42}(\alpha, r_0) \tan g_3(r_0) \right] \cos \theta_0 \, \cos \theta_0', \]

\[H_4(\alpha) = \int_c^d \left[C_{43}(\alpha, r_0) g_3(r_0) - C_{43}(\alpha, r_0) \tan g_2(r_0) \right] \cos \theta_0 \, \cos \theta_0', \]

\[P_4(\alpha) = C_{44}(\alpha) P, \quad \text{(C6)} \]

\[C_{11}(\alpha, t) = -\frac{1}{\kappa+1} \alpha e^{-\alpha t}, \]

\[C_{12}(\alpha, r_0) = -\frac{1}{\kappa+1} (\alpha x_0 e^{-\alpha x_0} \cos \theta_0), \]

\[C_{13}(\alpha, r_0) = \frac{1}{\kappa+1} e^{-\alpha x_0} (\alpha x_0+1) \sin \theta_0, \]

\[C_{14}(\alpha) = \frac{1}{4\mu(\kappa+1)} e^{-\alpha \mu(\kappa-1-2\alpha)} \sin \alpha \quad \text{(C7)} \]
\[C_{21}(\alpha, t) = -\frac{1}{\kappa+1} e^{-\alpha t} (1-\alpha t) , \]
\[C_{22}(\alpha, r_0) = -\frac{1}{\kappa+1} e^{-\alpha r_0} (1-\alpha r_0) \cos \gamma_0 , \]
\[C_{23}(\alpha, r_0) = -\frac{1}{\kappa+1} \alpha r_0 e^{-\alpha r_0} \sin \gamma_0 , \]
\[C_{24}(\alpha) = \frac{1}{4\mu(\kappa+1)} e^{-\alpha m} (-\kappa-1+2\alpha m) \sin \gamma , \quad (C8) \]
\[C_{31}(\alpha, t) = -\frac{1}{\kappa+1} \alpha (t-H) e^{-\alpha (H-t)} , \]
\[C_{32}(\alpha, r_0) = -\frac{1}{\kappa+1} \alpha (r-H) e^{-\alpha (r-H_0)} \cos \gamma_0 , \]
\[C_{33}(\alpha, r_0) = \frac{1}{\kappa+1} e^{-\alpha (r-H_0)} [\alpha (r-H_0)+1] \sin \gamma_0 , \]
\[C_{34}(\alpha) = \frac{1}{4\mu(\kappa+1)} e^{-\alpha (H-m)} \kappa-1-2\alpha (H-m) \sin \gamma , \quad (C9) \]
\[C_{41}(\alpha, t) = -\frac{1}{\kappa+1} e^{-\alpha (H-t)} [1-\alpha (H-t)] , \]
\[C_{42}(\alpha, r_0) = -\frac{1}{\kappa+1} e^{-\alpha (H-H_0)} [1-\alpha (H-H_0)] \cos \gamma_0 , \]
\[C_{43}(\alpha, r_0) = -\frac{1}{\kappa+1} \alpha (r-H) e^{-\alpha (r-H_0)} \sin \gamma_0 , \]
\[C_{44}(\alpha) = \frac{1}{4\mu(\kappa+1)} e^{-\alpha (H-m)} [\kappa+1-2\alpha (H-m)] \sin \gamma , \quad (C10) \]

\[x_0 = r_0 \cos \theta \quad y_0 = B + r_0 \sin \theta \quad (C11) \]
\[E_{11}(a) = (2aD^{-1})[4a^2H^2 - (\kappa - 1)(-e^{2\alpha H} - 2\alpha H + 1)] \]

\[E_{12}(a) = (2aD^{-1})[4a^2H^2 - (\kappa + 1)(e^{2\alpha H} - 2\alpha H - 1)] \]

\[E_{13}(a) = (2aD^{-1})[(1 - \kappa)(e^{\alpha H} - e^{-\alpha H}) + 2\alpha H(e^{-\alpha H} - e^{\kappa \alpha H})] \]

\[E_{14}(a) = (2aD^{-1})[(1 + \kappa)(e^{\alpha H} - e^{-\alpha H}) - 2\alpha H(e^{-\alpha H} + e^{\kappa \alpha H})] \quad (C12) \]

\[E_{21}(a) = D^{-1}(-e^{2\alpha H} - 2\alpha H + 1) \]

\[E_{22}(a) = D^{-1}(e^{2\alpha H} - 2\alpha H - 1) \]

\[E_{23}(a) = D^{-1}(2\alpha He^{\alpha H} + e^{\alpha H} - e^{-\alpha H}) \]

\[E_{24}(a) = D^{-1}(2\alpha He^{\alpha H} - e^{\alpha H} + e^{-\alpha H}) \quad (C13) \]

\[E_{31}(a) = (2aD^{-1})[4a^2H^2 + (\kappa - 1)(e^{-2\alpha H} - 2\alpha H - 1)] \]

\[E_{32}(a) = (2aD^{-1})[(\kappa + 1)(e^{-2\alpha H} + 2\alpha H - 1) - 4a^2H^2] \]

\[E_{33}(a) = (2aD^{-1})[(\kappa - 1)(e^{\alpha H} - e^{-\alpha H}) + 2\alpha H(e^{-\alpha H} - e^{\kappa \alpha H})] \]

\[E_{34}(a) = (2aD^{-1})[(\kappa + 1)(e^{\alpha H} - e^{-\alpha H}) - 2\alpha H(e^{-\alpha H} + e^{\kappa \alpha H})] \quad (C14) \]

\[E_{41}(a) = D^{-1}(e^{-2\alpha H} - 2\alpha H - 1) \]

\[E_{42}(a) = D^{-1}(e^{-2\alpha H} + 2\alpha H - 1) \]

\[E_{43}(a) = D^{-1}(e^{\alpha H} - e^{-\alpha H} + 2\alpha He^{-\alpha H}) \]

\[E_{44}(a) = D^{-1}(e^{\alpha H} - e^{-\alpha H} - 2\alpha He^{-\alpha H}) \quad (C15) \]

\[D(\alpha) = e^{2\alpha H + e^{-2\alpha H} - 4a^2H^2 - 2} \quad (C15) \]
Fig. 1 Geometry and loading conditions for tapered "compact" specimen with an edge crack.
Fig. 2 The tapered "slender" specimen or the tapered double cantilever beam.
Fig. 3 General description of the inclined crack problem.
Fig. 4 The angle θ_0 corresponding to zero Mode II stress intensity factor in a long strip containing two inclined edge cracks, $B/H = 0.2$.
Fig. 5 Stress intensity factor $k_1(b)/(P/\sqrt{H})$ in a "slender" tapered specimen shown in Fig. 2; $m/H = 0.067$, $n/H = 0.05$, $B/H = 0.1$.
In this paper the general problem of a tapered specimen containing an edge crack is formulated in terms of a system of singular integral equations. The equations are solved and the stress intensity factor is calculated for a "compact" and for a "slender" tapered specimen, the latter simulating the double cantilever beam. The results are obtained primarily for a pair of concentrated forces and for crack surface wedge forces. The stress intensity factors are also obtained for a long strip under uniform tension which contains inclined edge cracks.
End of Document