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ABSTRACT

Rayleigh-Ritz methods for the approximation of the natural modes for a class of

vibration problems involving flexible beams with tip bodies usin_ subspaces of

piecewise polynomial spline functions are developed. An abstract o_erator theoretic

formulation of the eigenvalue problem is derived and spectral proverties

investigated. The existing theory for spline-based Rayleigh-Ritz methods anDlied to

elliptic differential operators and the approximation properties of interpolatory

splines are used to argue convergence and establish rates of convergence. An examnle

and numerical results are discussed.
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I. Introduction

Recently there has been a surge of interest in the use of continuum models to study

the dynamics, stability, and control of vibratin_ structures. This trend has been

especially apparent with regard to large flexible spacecraft. Often an important tool

in these studies is the structure's natural vibrational frequencies and correspondin_

mode shapes.

A class of structures which is playing an ever increasing role in these studies is

the one which consists of flexible beams with tip bodies. We have investigated the use

of piecewise polynomial spline-based Rayleigh-Ritz-Galerkin schemes for the

approximation of the natural modes for the transverse vibration of structures of this

type.

It is often the case in engineering practice that in using the Raylei_h-Ritz method

to determine the natural modes of a complex structure the approximating subspaces of

trial functions are chosen as the span of a finite number of mode shapes for a related,

but more easily analyzed, structure. In our investigation, which was motivated by one

such instance of this (see [18]), we observed that the sDline-based schemes were

computationally attractive and yielded significant increases in accuracy and

stability. In addition these benefits were achieved for relatively low orders of

approximation.

Although we treat a relatively specific structure, it is not difficult to see how

our results would extend to a more general class of problems. Mathematically, we have

proven few new results, but rather have modified and applied several existin_ ones

which have appeared throughout the literature. The system which describes the

transverse vibration of a flexible beam with tip body is a hybrid of ordinary and

partial differential equations. In section 2 we call upon the well known product space

theory for functional differential equations to develop an aporopriate abstract

operator theoretic formulation for the ei_envalue problem and to establish relevant
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spectral results. In section 3, the Rayleigh-Ritz method and the associated

convergence theory for the approximation of eigenvalues and ei_enfunctions of elli_tic

differential operators as developed in [2], [3], and [14] are discussed in the context

of the present problem. In section 4 we outline the application of these results to

spline-based methods in the spirit of the treatment in [15]. In section 5 an example

and numerical results are discussed.

Notation is standard throughout. The Sobolev space of functions _ defined on the

interval (a,b) for which Dk-l_ is absolutely continuous with Dk_ € L2 is denoted by

Hk(a,b). The usual Sobolev inner products and norms are denoted by <'''>k and l.lk

respectively. The spectrum, point spectrum, and continuous spectrum of a linear

operator T are denoted by _(T), _p(T), and _c(T). For X _ P(T), the resolvent set

of T, the resolvent of T at X is denoted by Rx(T).

2. Formulation of the elgeuvalue problem and spectral results

We consider a long, slender, flexible beam of length g having spatially varyinff

linear mass density 0 and flexural stiffness E1 which is clamped at one end and free

at the other with a rigidly attached tip body. The mass properties of the tip body are

assumed to be: mass m centered at a distance c from the tip of the beam and directed

along the longitudinal axis of the beam and moment of inertia J about its center of

mass (see Fig. 2.1).
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Figure 2.1

Letting u(t_x) denote the vertical displacement of the beam at time t > 0 at

position x € [0,£] and assuming small deformations (lu(t,x) l << £), the Euler-

Bernoulli theory for the transverse vibration of a flexible beam yields the equation

(see [4], [18])

(2.1) p(x)D_u(t,x) + D2El(x)D2u(t'X)xx - Dx°(X)DxU(t'x) = 0

where c denotes the internal tension which results from externally applied, temporally

invariant, axially directed loading. Elementary Newtonian mechanics can be used to

derive the boundary conditions which describe the motion o[ the end of the beam with

the tip body. Translational and rotational equilibrium respectively yield the two

boundary conditions at x = £ given by (see [4],[18])
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(2.2) mD2tu(t,_) + mcD_Dxu(t,_) - DxEl(_)D2u(t,g) + a(_)DxU (t,_) = 0

and

(2.3) mcD2tu(t,_) + (J+mc2)D2DxU(t,_)+ El(_)D2u(t,_)+ c_(_)DxU(t,,°) = 0.

At the clamped end, x = 0, we have zero displacement and zero slope as _iven by the

geometric boundary conditions

(2.4) u(t,0) = 0

and

(2.5) DxU(t,0) = 0

respectively.

Remark If the center of mass of the tip body were not directed along the lon_itudinal

axis of the beam, that is, the tip body had a non-zero mass center offset, the

resulting set of equations would be nonhomogeneous. Consequently a classical

eigenvalue problem for the natural modes of vibration would not result. We do note,

however, that by employing a suitable transformation of the parameters c and J the

homogeneous part of the resulting equations can be put in the form of (2.1)-(2.5)

(See [18]).

The natural frequencies and mode shapes for the system described above are

determined by assuming a solution to (2.1)-(2.5) of the form u(t,x) = ei_t_(x). The

2
eigenvalue problem on _ with elgenvalues % =

(2.6) D2EI(x)D2_(x) - Da(x)D_(x) = %p(x)_(x)
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(2.7) -DEI(g)D2_(_) + a(_)D$(_) = X(m_(g) + mcD$(g))

(2.8) El(g)D2_(g) + c_(_)D_(g) = X(mc_(_) + (J+mc2)D$(g))

(2.9) _(0) = 0

(2.10) De(0) = 0

results. In order to study the ei_envalue problem (2.6)-(2.10), we develop an

appropriate abstract operator theoretic formulation.

Define the Hilbert space H = R2 x H0(0,g) with inner product

<(q'¢)' (_'*)>H = qT_ + <$'*>0"

We make the standing assumptions

(HI) p _ C(0,t),p(x)> 0 x € [0,_]

(H2) E1 € C2(0,g), El(x) > 0 x _ [0,_]

(H3) o € CI(0,£)

and of course that m,J,c > 0. The smoothness requirements in (HI), (H2), and (H3)

above can in fact be relaxed. This will be discussed further at the end of the

section.

Define the operators M : H + H, A0 : Dom(A) c H + H and B0 : Dom(B) c H + H by

M(q,@) = (Moq , p@),
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I m mc 1M0 = J+mc 2me _

Dom(A) = {(q,4) _ H : 4 _ H4(0,_), 4(0) = 04(0) = 0, n = (4(_), O6(_))T},

A0_ = ((-DEI(_)D24(g), EI(_)D24(g)) T, D2EID24), _ = ((4(_), O4(g)) T, 4),

Dom(B) = {(0,4) s H : 4 g H2(0,g), 4(0) = D4(0) = 0, n = (4(_), D_(_))T},

B0_ = ((a(£)D4(_), co(_)D4(_)) T, - DAD4).

Defining L0 : Dom(L) c H + H by Dom(L) = Dom(A), L0 = A0 + B0 we consider the

abstract formulation of (2.6)-(2.10) given by

(2.11) L0 = XM 4 s Dom(L).

Since M is invertible, the abstract generalized eigenvalue problem (2.11) is equivalent

to

(2.12) L = _4 4 s Dom(L)

where

-IL0 M-IA0 M-IB0L _ M = + _ A + B,

with

M ,4)= (M ,F4),
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- 1 [J+mc2 -mc 1MOI = ]mm L -mc m •

We investigate the spectral properties of the operator L by first characterizinK

the spectrum of A and then treating B as an A-bounded perturbation. Definin_

the <'''>H - equivalent inner product on H, <'''>M by

<(n,€),($'¢)>M: <M(n,€),(_'$)>H'

it is not difficult to argue that A is densely defined, self adjoint, and positive with

respect to the <'''>M inner product. Consequently A is closed and its

spectrum, E(A), is real with S(A) c (0,=) and S(A) = Ep(A) U _c(&).

I and 2
For each % s C let €% €% denote two linearly independent solutions to

D2EID2¢ - %€ = 0
P

_(0)= 0

D_(O)= 0

C2x2
and define A% € by

I' 2 1
+_(_) €_(_,)

.

Using arguments similar to those which can be found in [21], it can he demonstrated
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that A - %1 is injective/surjective if and only if A% is injective/surjective.

Consequently, since A% is finite dimensional we have the following theorem.

Theorem 2.1 The spectrum of A is discrete. That is E(A) = Ep(A) with k _ E(A) if and

only if det A% = 0.

Moreover, A has compact resolvent.

Theorem 2.2 For each % s P(A), R%(A) is a compact linear operator.

Pf

Let % € P(A) (that is det A% # 0) and suppose that % is not an eigenvalue of the

clamped-clamped beam vibration problem

(2.14) ! D2EID21 = %1
0

(2.15) €(0) = De(O) = ¢(g) = De(g) = O.

Furthermore, let G(x,y; X), 0 _ x, y < g denote the Green's function corresponding to

(2.14), (2.15), and % (see [5]). The operator R%(A) can then be written as the sum

of two bounded operators,

Rx(A) = TI + T2,

where T2 is given by

T2($,_) = ((0,0) T, r_G(.,0; %)_(O)d0)

and T1 has range in the finite dimensional space
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i i
{(_,€) _ H : n = (_(_), D¢(_))T, € =ci€ X + c2¢x}.

H0
Now T2 is essentially an integral operator on (0,£) and as such is compact (see

[7]). The finite rank operator TI is compact from which we may conclude that Rx(A) is

compact being the sum of two compact operators.

Having now shown that Rx(A) is compact for at least one X s P(A), we may

conclude that A is discrete and hence that Rx(A) is compact for all X _ P(A) (see

[7], Vol III, p. 2291).

A straightforward application of the spectral theorem for comDact self adjoint

operators in a Hilbert space (see [20]) yields the following well known result.

Theorem 2.3 _(A) = {Xk}k= I with 0 < X1 < X2 < X3 .... < +_ and Xk + +_ as

k + _. Each Xk is of multiplicity I or 2 and the corresponding set of

eigenvectors, {¢k}_=l c Dom (A), is complete and orthonormal with respect to the

<'''>M inner product. We have

A A A A A

€ = r <€, Ck>Mik , € s Dom (A)
k=l

and if X _ P(A)

<(n,¢), Ck>M ^

Rx(A)(n'¢) = £ Xk - X Ck'k=l

(n,_)_ H.

The operator B is densely defined with Dom (A) c Dom (B) and symmetric (B c B*)

with respect to the <'''>M inner product. Furthermore, hypotheses (HI) - (H3) and the
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Sobolev interpolation inequalities for intermediate derivatives (see [I]) can be used

to argue that B is A-bounded with A-bound 0 (see [I0]). That is, for all

s > 0 sufficiently small there exist constants = and 8, independent of _ for which

(2.16) IB$1M < _-II$I M + 8cIA$1M, $ € Dom (A).

It follows from (2.16) that L = A + B is self adjoint (see [I0]) and therfore closed.

Since A is self adjoint and positive it is m-accretive and as such satisfies

1
IR-I(A)[M _ Re-----_

and

IAR__(A)IM _ I

for all _ _ C with Re _ > 0. These estimates imply that

-I -Ias

as IR_I(A) IM + BslAR_%(A) IM _ _--+ 8s < 1

for _ chosen sufficiently small and all _ s C with Rel > 0 sufficiently larKe. We

may conclude therefore (see [I0], page 214, Theorem 3.17) that there exists a

constant y such that {_ g C : Rel < y} c P(L) with RI(L), % s P(L), compact.

It is not difficult to argue that

(2.17) y • -4a8.

As was the case with A, the spectral properties of L are easily characterized

using the spectral theorem for compact self adjoint operators on a Hilbert space.

Indeed, the conclusions of Theorem 2.3 are valid with A replaced by L and with the
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exception of the fact that the spectrum of L is bounded below by -4_8 rather

than 0.

The smoothness assumptions in (HI) - (H3) can be relaxed to p, El, o € L (0,£)

with E1 bounded away from 0 and a defined at £ by turning to a weak formulation.

Define the space

= H 2V {(_,_) € H : _ _ (0,£), _(0) = D_(0) = 0, n = (_(£), D_(£)) T}

with inner product

<_I' _2>V = <D2_I ' D2_2>0

where _i = ((_i (_)' Dii(_)) T, _i ), i = 1,2. The usual dense embeddings Vc Hc V'

hold with the injection V _H compact. Oefine the bilinear forms on V x V

a(_, _)= <EID2_, D2_>0

A

b(¢,_) = co(g)D¢Cg)O*(g) + <oDe, O4> 0

and

I , = a , +b , •

The form a(.,.) is V-elliptic (see [17]) while the form I(.,.) is V-H-elliptic.

Indeed recalling (2.17) we have

2
I(_,_) + 4c_BI_12M_ 61_IV

for $ E V. The forms a(.,.), b(...), and I(.,.) are related to the operators A, B,
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and L defined earlier in the usual manner. Consider the form a(.,.). Usln_ the Riesz

Theorem define the operator AI : Dom (AI) c H + H by

Dom (AI) = {$ E V : The map _ + a(_,$) is continuous on

V with respect to the I"I norm on H},

A A

a((F,_) = <AI$,$> M, (_ _ Dom (AI) , _ _ V.

It can be shown that

Dora (AI) : {$ _ V : EID2_ _ HZ(0,_)}

and if E1 is sufficiently smooth, that Dom (AI) = Dom (A) and AI = A. In addition if

the <'''>M inner product is interpreted as the duality pairin_ between V and V' then

A1 can be extended to an operator A1 s L(V,V'). Similar correspondences exist between

the form b(.,-) and the operator B and the form I(-,-) and the operator L.

The weak form of the eigenvalue problem (2.12) is given by

Standard results (see [17], page 78, Corollary 7D) yield the existence of a set of

orthonormal (with respect to the <'">M inner product) eigenvectors

A

{_k}k= 1 c Dom (AI) c V which are complete in H and a correspondinK set of eigenvalues

{%k}_= I which satisfy -4aB < %1 < %2 .... < _ with %k + +_ as k + _.
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3. Approximation and Convergence - The Rayleigh-Ritz - Galerkin Method

Since the addition of a constant multiple of the identity to an operator simply

translates the spectrum by the same constant value, we assume throughout, without loss

of generality so far as approximation is concerned, that L is positive. For (2.17)

implies that the operator L 1 _ L + 4_8I satisfies

<LI ' >M = <L '@>M + 4aB< , >M > -4a8<@, >M + 4aB< '@>M = O.

The Rayleigh-Ritz method for the approximation of the ei_envalues and eigenvectors of a

positive self adjoint operator is based upon their characterization as the extrema and
A

critical values (stationary points) of the Rayleigh quotient. For _ € V, _ # 0 define

We note that for _ g Dom (L) and _ g V we have I( , ) = <L , >M and that V is the
I

closure of Dom(L) in V with respect to norm I_IL-= (I(_,_))2-- on V.
The

oo

eigenvalues {Xk}k= 1 and corresponding eigenvectors {_k}k=l can then be characterized

by (see [9], [22])

t* A * ^^>.(3.1) Xk = min{R ] : i _ V, € 0, <O,Oj = 0, j = 1,2,...,k-I} = R k1.

There exist other characterizations of the spectrum equivalent to (3.1) which are often

more useful for computational and theoretical purooses (see [14]).
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For each N = 1,2,... let VN denote a finite dimensional subspace of _ with

-^N-kN The classical Raylei_h-Ritz methnd
VN c V, dim VN = kN and VN = span i_k}k= I.

consists of determining the extrema and critical values of R[.] over VN. Requirin_

that the first variation of R[-] vanish over VN results in the matrix generalized

eigenvalue problem

(3.2) LNv N = %_NvN

whe re

and

^ ^N i,j = 1,2, , kN.
[MNlij = <_N, _j>M ""

The matrices LN and MN are real, symmetric, and positive definite. Let

I i
m _ m

cN = (MN) 2 LN(M N) 2 .

Then the generalized eigenvalue problem (3.2) is equivalent to the standard ei_envalue

problem

c%"-- N

I

where wN = (MN)2 vN. The matrix CN is real, symmetric, and Dositlve definite. It has

N kN N N xN and kN corresDondin_
kN positive eigenvalues {Xk}k=l , 0 < XI < _2 _ "'" < kN
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N kN
eigenvectors {Wk}k=1 which can be chosen to be orthonormal,

N,T N i,j = 1,2,...,k N.
wi) wj : _ii

N kN ^N.k N

The {%k}k=l are known as the Reyleigh-Ritz approximate ei_envalues and {Ik}k=l,

kN

.i_l J)i_i the corresponding Rayleigh-Ritz approximate ei_envectors of L. The

^N-kN

@k}k=l are orthonormal in H with respect to the <'''>M inner product,

^_ _>M , N-T N N , N,T N _ij
= = _W.) W. =

<4 , kvi) M vj z ]

i,j = 1,2,...k N.

The weak formulation (2.18) is the basis for the Galerkin method. It leads to the

finite dimensional eigenvalue problem which consists of findinK SN s VN and %N that

satisfy

^ ^ N>M ^N(3.3) I(_N, _N) = %N <iN, $ , lh _ VN.

For the problem considered here, the Galerkin equations (3.3) and the Raylei_h quotient

characterization (3.1) both lead to the same matrix generalized ei_envalue problem.

The convergence theory for the Rayleigh-Ritz method for the approximation of the

spectrum of self adjoint elliptic differential operators is well documented in the

literature. Convergence results for the ei_envalues and ei_envectors of Sturm-

Liouville systems can be found in [2]. These ideas were then extended to apply to more

general problems and improved upon in [3] and [14]. Althou_h the operators L0 and M

are not precisely of the form of those considered, it is not difficult, however, to

argue that the formulation we have employed renders the existin_ convergence theory

directly applicable.
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Let pN : V . VN denote the orthogonal projection of V onto VN with respect to

the <.,->L inner product on V defined by < , >L = I(,0). Assume that the suhsDaces

VN have the property that

lim IPN$ - $IM = 0 $ £ V.
N+_

Theorem 3.1 (Eigenvalue Error Estimate). Let k be a fixed positive integer with

N_
k _ kN. Then the sequence {%k}N=1 converges to %k from above, there exists a

positive number N such that for all N >

k
^ 2

IpNIj - Sj IL
N j=l

)tk _ )tk _ _'k + k 1
^ 2 212

(I - ( _ [pN,j _ i[M)
j=l

and hence

%k < %k + ,_ ^ 2
j=l

with yN + 1+ as N + =.

Theorem 3.2 (Eigenvector Error Estimates). Suppose %k is of multiplicity

mk + i, mk = 0 or i and k + mk < kN. Then:

(i) If mk = 0 (lk is simple) there exist positive numbers y and N depending only uDon

k for which

^N ^ pN kIIk - IklL _ YI - klL
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for all N > N.

^

(ii) If mk = I (%k is of multiplicity 2), let i be any element in

span{_k, _k+l } and let _N be the orthogonal projection of _ onto

^N ^N

span{_ k , Ik+l } with respect to the <'''>M innerproduct. Then, there exist

positive numbers y and N depending only upon k for which

1 k+l
^ D ^

I_N _IL _ _I_I2 _ IpW_j D _jlL
j=k

for all N > N.

In the next section we describe a particular class of schemes which are based upon

choosing the VN as subspaces of spline functions. We use Theorems 3.1 and 3.2 to_ether

with the approximation properties of splines to establish convergence and estimate

rates of convergence•

4 Spline Approximations

N N
For each N = 1,2 ... let _ denote a partition of [0,£], _ : 0 = x0 < xI < x2

•.. < xN = £ and let hN = max (xi - - xi_ I) and gN = min (xi - Xi_l).
Ni=l,2,... ,N i=I,.. ,n

For m = 1,2 ... let S(m, _ , z) denote the order 2m (degree 2m- I) polynomial spline

N RN-I
spaces corresponding to the partition _ and the node incidence vector z

(see [19]). Recall that S(m,_ N, z) c H2m-_(0,_) where I _ _ - max zi _ m
N-I i=1,2,... ,N-I

N
and dim S(m, _ , z) = 2m + n(N, z) where n(N, z) - zi •

i=l

Of particular interest in practice are the followin_, two special cases:
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(I) z = (m,m,...,m). In this case S(m,_ N,z) = Hm(_N), the Hermite spaces,

dim H (N) = m(N+l) and H (N) c Hm(0,_).
m m

(2) z = (I,i,...,I). In this case S(m,_ N,z) = Sm(_N), the standard polynomial soline

spaces, dim Sm(_N) = N - 1 + 2m and Sm (_N)c H2m-l(0'_)"

For m _ 2 let sO(m,_N,z) = {s g S(m,_ N,z): s(0) = Ds(0) = 0} and define

vN(z) = {€ = ((€(£), Oi(£)) T, _): + g S0(m,w N,z)}.
m

Then kN (z) = dim vN(z) = 2(m-l) + n(N,z) and since m > 2, V_(z) c V. For k > 2m m

define

Vk = {(n,¢) € H: € € Hk(0,_), €(0) = D$(0) = 0, n = (_(_), D_(g))T} •

Then Vk c V, Vk+ 1 c Vk, k = 2,3,... and V2 = V.

In order to simplify notation, we suppress showing explicit deDendence on z with

the understanding that the spaces VN and the interpolation and pro_ection operatorsm

defined below do in fact depend upon the choice of the node incidence vector.

Define the interpolation operators I Nm,k : Hk(0'_) + S(m'_S' z) by lettin_
N

Im,kq_ denote the unique element in S(m,_rNz) (see [19|) which satisfies

DJ(¢ - l_,k¢)(xi) = 0 0 < j < rain(k-l, zi-l)
0<i<N

DJlN,k!(Xi ) = 0 min(k-l, zi-l) < j < zi-I
0 < i < N

= VN
where z0 zN --m. For m > 2 define _m,k : Vk + n by
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N N

where _ = ((i(Z), D@(£)) T, b) € Vk and bm = Im,kb.
N=

If the sequence of partitions {7 }N=I satisfies the uniformity condition

h N
--_ < x for some T _ I independent of N and lim hN = 0 we have the followin_ error
g N+_
estimates.

Theorem 4.1 For m = 2,3,..., k = 2,3,... 2m and _ = ((i(Z), D@(_)) T, b) _ Vk

(i) lJN,k _ -_[V ' y(hN)k-21Dk_10

and

A

(ii) [_q _ - _Iv + 0 as N + _, _ _ V2 = V' m,2

where y is a constant independent of N.

Pf

Statement (i) is a direct consequence of standard spline interpolation error

estimates (see [19]). To argue the validity of (ii) let _ € V. Then for

_ H3(0,£)

_ ^ ^ I@mN b12 _ Ibm- 2 @m- _12 2i,j, m,2d _ _ d#lv < _ N _N I + I N + I_!' - _1

Nwhere _m = I ,2@. Now (see [19])

N N N (b - _))I < yID2(_ - V_)l0 _ Ylb - #I2I_'m-_m12 ¢ YID2(I ,2 0

and therefore
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^ ^ N(4.1) I ,2i - ilv < (i + Y)[! - 412 + I_m - 412•

Corresponding to z and INm,2 = Im,2(Nz) there exists a _ and _Nm,3 = ~Nlm,3(_) such that

iN
m,2_ = YNm,3_" Therefore

(4.2) I_N - 4{ 2 = IIN,96 - 4{ 2 = I_N 3_ - 412 < YlhNID3_bl--' 0"

The estimates (4.1) and (4.2) together with the density of H3(0,£) in H2(0,£) and the

fact that lim hN = 0 yield the desired result.

Let pN : V + VN denote the orthogonal projection of V onto VN computed withm m m

respect to the <'''>L inner product. Arguments similar to those found in [15]

together with the interpolation error estimates given in Theorem 4.1 can be used to

verify

Theorem 4.2 If € = ((1(£), D!(£))T,!) _ Vk with 2 < k < 2m then

(i) IPmN¢- _IM < y(hN)klDk!l0,

(ii) IP € - ilL < y(hN)k-21 I0 and IP i - IIL + 0 as N + = if k=2,

N k-j
(iii) IDJ(im - !)10 _ y(h N) IDk!l0 , j=0, i, 2 and

ID2(!_ - !)10 + 0 as N + _ if k=2,

1

(iv) [DJ(! N - €)1_ < y(hN) k ] 2 IDkil0 ' j=0,1,

where pN $=m ((IN(£)' DIN(£))T' iN) and y is a constant which is independent of

and N.
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Theorems 3.1, 3.2 and 4.2 yield the following elgenvalue and eigenvector error

estimates (see [15]).

^ N,m ^N,m
Theorem 4.3 Suppose Xi is simple and _i e Vk" Let Xi and _i denote respectively

the ith Raylelgh-Ritz approximate elgenvalue and eigenvector for L computed over VN
m

where N and m have been chosen so that kN = dim VN > i. Then
m m

_ _ 0+
.N,m %i + as N + = if r=2,(i) 0 < %N,m ki < y(hN)2(r-2) and Ai

_N,m $11L < y(hN)r-21Dr_il0 and I_ N'm ^(li) [_i - - ¢i[L + 0 as N + _ if r=2,

^N,m r
(iii) I_i - _ilH _ y(h N) IDr_il0 ,

(iv) [DJ(@_ 'm - _i) l0 < y(hN)r-J[Drlil0 , j=0,1,2 and

2- N,m
ID (li - _i)10 + 0 as N + = if r=2,

1

(v) [Dj . N,m
(_i - _i)[- < Y(hN)r j- _ [Drli[0, j=0,1

^ _ .N,_.tN,m N,m(£) D_ ,m(£))T @i ) Y is awhere _i = ((¢i (£)' Dii(£))T _i ) €i = ((li

constant which is independent of N and r=min(k, 2m). If _i is of multiplicity 2, we

^ ^ ^N,m _N,m ^have (i) - (v) above holding with _i replaced by _ and _i by where _ is any
^

elementinspan{i, i+i}and N,mistheorthogonalpro ectionof+ onto
^N ?N,m.

span{_i'm, €i+i _ computed with respect to the <'''>M inner product.

m(N) NRemark When VN is defined using S with _ a uniform partition the L errorm

estimates given in the previous two theorems can be improved. Orders of convergence in

Theorem 4.2 (iv) and 4.3 (v) can be increased by $ .
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5. An Example

We consider the approximation of the natural frequencies for the transverse

vibration of a uniform, cantilevered beam with tip body subject to an axially directed

base thrust. More specifically, we assume that the linear mass density 0 and flexural

stiffness EI are spatially invariant. Furthermore we assume that the beam is acted

upon by a constant, axially directed load P0 > 0 applied to its base inducin_ an

acceleration in the positive x-direction (see fig 2.1). It can be derived (see [18])

that the internal tension a is given by

m+f_ O
x _ _m+(£-x) o_

a(x) =-Po( _ ) =-P0[ _ ,.
re+f0 P

We note that the formulation described above leads naturally to a classical

buckling problem. Indeed, for PO sufficiently large the beam will buckle. The critical

buckling loads, p_r are those values of P0 for which steady state solutions to (2.1) -

(2.5) exist; that is those values of P0 for which _ = 0 is a solution to the

eigenvalue problem (2.6) - (2.10). For the problem stated here, the critical bucklin_

loads can be computed directly as the roots of a transcendental equation involvin£

Bessel functions of the first kind (see [18]).

The B-spline representation for polynomial soline spaces leads to comDutationally

efficient algorithms for the evaluation of the spline functions, their derivatives, and

inner products (see [16]). We considered a scheme using the standard polynomial spline

N hNspaces S (N) defined over the uniform partition _ with = £/N. In this case them

relevant formulas become especially simple.

k 0
For k > 0 let (x-y)_ = (x-y) (x-y)+ where



-23-

x> y .

Define the fundamental B-spline of order 2m (deKree 2m-l) with knots {0,i,2...2m} and

support [0, 2m] by

2m
-2m- - - 2m-1

B (x) = .2m, ,2m-I = _ (-l)J! j|(x-_)+
m 0y £x-y)+ ly=0 j=0

where _y is the forward difference operator on y; 8yf(X,y) = f(x,v+l) - f(x,v). If

we let

BiN'm(x) = Bm(N (x - (i-m)h N)), i=l-m,...,N+m-i

N+m-I The basis splines _N,m for Sm(_ N) are scaled-then Sm(N) = span{B 'm}i=l_m. gi

translates of the fundamental B-spline, Bm, and as such have the desirable property

that their supports, ((i-m)h N, (iqln)hN) are local. A basis for

m(N) _N,m byS (N) = {s € S : s(O) = Ds(0) = O} is easily constructed from the Si

taking linear combinations of basis elements which do not satisfy the boundary

conditions at zero to form basis elements which do. We obtain

S0( N. - N,m N+m-I
m ) = span{Bi }i=l-m+2 " For example, in the case m=2 one Dossible choice for

_N,m is given bythe _i

N,2 N,2 2BNI,2 2BN_2B1 = B0 - _ _

BN,2 N,2
= B_ , j = 2,3,...,N+I.J J
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have vNm = span { 'm}j=l_m+2 . The matrices LN and MN which appear in the generalized

eigenvalue problem (3.2) are given by

(5.1) [LN = E1 _ 2 N,m D2BN,m P0 _ .DRN,mD N,m
]ij fo D Bi ] m+_p fO (m+(_-x)p)'i _j

-mc P0 N,m N,m

m+gp DBi (_)DBj (_)

and

[m mc2_ [BN'm(g)I _ N,m RN,m
(5.2) [MN]ij : [BN'm(_)' DBN'm(_)] mc J+mc LDBN,m(_)j + 0 rO_i i

i,j = l-m+2,...,N+m-l.

N
Since the B-splines are polynomials of degree 2m-I on each subinterval of _ , the

integrals in the above expressions can be computed exactly using a composite Gaussian

Quadrature formula. The efficient evaluation of the B-splines and their derivatives is

facilitated by the fact that the fundamental B-spline satisfies the recurrence

relations

Bm(X) = X2Bm_l(X) + (2x(2m-x) - 2m)Bm_l(X-l) + (2m-x)2Bm_l(X-2)

DBm(X ) = (2m-l)[XBm_l(X) + 2(m-x)Bm_l(X-l) - (2m-x)Bm_l(X-2)]

D2Bm(X ) = (2m-l)(2m-2)[Bm_l(X) - 2Bm_l(X-I ) + Bm_l(X-2)].
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The local support property of the B-splines necessarily implies that the matrices LN

and MN are banded. This can be exploited when (3.2) is solved (see [6]).

We chose £ = 1.0, p = 2.0, E1 = 1.0, m = 4.0, c = .I, J = .52 and P0 = 2.5 and

solved the generalized ei_envalue problem (3.2) with the matrices LN and MN _iven by

(5.1) and (5.2) respectively for m = 2 (cubic splines), 3 (quintic splines) and 4

(septic splines) and various values of N. The eigenvalue problem (3.2) was solved

using the IMSL routine EIGZS. This routine finds the Cholesky decomposition RN(RN) T of

MN and then uses the QR algorithm to compute the eigenvalues of the transformed matrix

(RN)-ILN(RN)-T. Our results are given in Tables 5.2, 5.3, and 5.4. Recall

that dim(S (N)) = N+2m-3.m

We also computed approximate eigenvalues using the Rayleigh-Ritz method over two

modal subspaces. The spaces were taken to be the span of the first N natural mode

shapes for the corresponding (I) clamped-free beam (m = c = J = PO = 0) and (2)

clamped-free beam with tip body (Po = 0). These results are given in Tables 5.5 and

5.6 respectively.

As an independent basis for comparison, we also computed approximate eigenvalues

by using an iteratlve root finding technique to compute the zeros of the frequency

equation corresponding to (2.6) - (2.10). A numerical integrator was used to find two

appropriate linearly independent solutions to the initial value problem (2.6), (2.9),

(2.10) for a given value of % in each iteration. The frequency equation arises from

the setting to zero of the determinant of a matrix which is similar in form to A% _iven

in (2.13) (see [18]). The first five eigenvalues computed in this manner are given in

Table 5.1 below.
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i Ii

i .0365798

2 9.597101

3 271.624402

4 1934.262208

5 7352.906500

Table 5.1

+i N+ 2 4 8 16 32

1 .0367460 .0365892 .0365804 .0365799 .03657q9

2 9.611071 9.597834 9.597144 9.597104 9.597107

3 279.748161 272.659779 271.677636 271.627567 271.624598

4 2008.349824 1937.362657 1934.430532 1934.272355

5 7808.026186 7406.496727 7355.451937 7353.054424

Table 5.2 - Spllne Scheme -m = 2

.i N+ 2 4 8 16 32

1 .0365798 .0365798 .0385798 .0365798 .0365798

2 9.597110 9.597101 9.597101 9.597101 9.597101

3 271.637063 271.626382 271.624408 271.624403 271.624403

4 2024.194063 1937.055444 1934.264769 1934.262236 1934.262227

5 7730.251147 7358.613802 7353.153706 7352.907163 7352.906727

Table 5.3 - Spllne Scheme - m = 3
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.i N+ 2 4 8 16

1 .0365798 .0365798 .0365798 .0365798

2 9.597101 9.597101 9.597101 9.597101

3 271.624474 271.624406 271.624403 271.624392

4 1935.739405 1934.300633 1934.262216 1934.262210

5 7362.669220 7353.063985 7352.907860 7352.906573

Table 5.4 - Spline Scheme - m = 4

+i N+ 2 4 8 16

1 .0438998 .0391454 .0375638 .0370661

2 20.580764 13.553588 Ii.326133 i0.581254

3 445.668737 340.718106 310.220838

4 3401.i13918 2441.500175 2211.540908

5 9373.564654 8425.737638

Table 5.5 - Clamped Free Modes

.i N+ 2 4 8 16

I .0382750 .0365966 .0365801 .0365608

2 9.609008 9.597279 9.597107 9.571124

3 271.642143 271.624818 270.693532

4 1934.288529 1934.263452 1927.899003

5 7352.912644 7328.632345

Table 5.6 - Clamped Free with Tip Body Modes
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From the tables above it is immediately clear that the spline schemes exhibit

rapid convergence with no apparent deterioration of accuracy for large N. Rapid

Convergence was also observed in higher frequencies (i _ 5) than those shown in the

tables. The cantilever mode based scheme converged very slowly. The cantilever with

tip body modes performed better. However, there is an apparent stability problem when

N becomes large. This is most likely a consequence of the high frequencies involved

(which must be determined as the roots of the transcendental equation det A% = 0) and

the fact that the stiffness matrices LN are full. The cantilever with tip body modes

performed optimally when N = 12. Rapid ei_envalue convergence was also observed with

Hermite spline-based schemes. However these schemes did exhibit some stability

problems when N was large. Their overall performance was inferior to

the Sm(_N) - based methods.

Finally we note that if damping is introduced either into the beam or tip body

dynamics it is likely that the resulting stiffness operator would not be self

adjoint. Consequently the theory presented here would no longer be directly

applicable. However, the results in [8] and [13] or [II] and [12] may well apply

depending upon whether or not the associated resolvent o_erators were compact. We have

not as yet considered the damped problem.



-29-

References

[I] Adams, R.A., Sobolev Spaces, Academic Press, New York, 1976.

[2] Birkhoff, G., C. De Boor, B. Swartz, and B. Wendroff, Rayleigh-Ritz approximation
by plecewise cubic polynomials, SIAM J. Numer. Anal. 3, 188-203, 1966.

[3] Clarlet, P.G., M.H. Schultz, and R.S. Varga, Numerical methods of high order
accuracy for nonlinear boundary value problems III. Eigenvalue problems. Numer.
Math. 12, 120-133, 1968.

[4] Clough, R.W. and J. Penzien, Dynamics of Structures, McGraw Hill, New York, 1975.

[5] Coddington, E.A. and N. Levinson, Theory of Ordinary Differential Equations,
McGraw Hill, New York, 1955.

[6] Crawford, C., The numerical solution of the generalized ei_envalue problem, Comm.
ACM, 16, 41-44, 1973.

[7] Dunford, N. and J.T. Schwartz, Linear Operators, Parts I, II, IIl, Wiley-
Interscience, New York, 1958.

[8] Fix, G., Eigenvalue approximation by the finite element method, Advances in
Math., 10, 300-316, 1973.

[9] Gould, S.H., Variational Methods for EiKenvalue Problems, University of Toronto
Press, Toronto, 1957.

[I0] Kato, T., Perturbation Theory for Linear Operators, Sprin_er-Verla_, New York,
1976.

[II] Mills, W.H. Jr., The resolvent stability condition for spectra conver£ence with
application to the finite element approximation of non compact operators, SIAM J.
Numer. Anal., 16, 695-703, 1979.

[12] Mills, W.H. Jr., Optimal Error Estimates for the finite element spectral
approximation of noncompact operators, SIAM J. Numer. Anal., 16, 704-718, 1979.

[13] Osborne, J.E., Spectral approximation for compact operators, Math. Comp., 29,
712-725, 1975.

[14] Pierce, J.G. and R.S. Varga, Higher order convergence results for the Raylei_h-
Ritz method applied to eigenvalue problems I.: Estimates relatinK Raylei£h-Ritz
and Galerkin approximations to Ei£enfunctions, SIAM J. Numer. Anal., 9, 137-151,
1972.

[15] Pierce, J.G. and R.S. Varga, Higher order convergence results for the Ravlei_h-
Ritz method applied to eigenvalue problems: 2. Improved error bounds for
eigenfunctions, Numer. Math., 19, 155-169, 1972.

[16] Schumaker, L.L., Spline Functions: Basic Theory, Wiley-Interscience, New York,
1981.



-30-

[17] Showalter, R.G., Hilbert Space Methods for Partial Differential Equations,
Pitman, London, 1977.

[18] Storch, J. and S. Gates, Transverse vibration and buckling of a cantilevered beam

with tip body under axial acceleration, J. Sound and Vibration, 99, 1985.

[19] Swartz, B.K. and R.S. Varga, Error bounds for Spline and L-Spline interpolation,
J. Approx. Theory, 6, 6-49, 1972.

[20] Taylor, A.E. and D.C. Lay, Introduction to Functional Analysis, .John Wiley and
Sons, New York, 1980.

[21] Vinter, R.B., On the evolution of state of linear differential delay equations in
M2: Properties of generators, J. Inst. Math. and Appl. 21, 13-23, 1978.

[22] Weinberger, H.F., Variational Methods for Eigenvalue Approximation, Society for
Industrial and Applied Mathematics, Philadelphia, 1974.









1

I.n,D_t NO NASA CR-172566 [ 2. GOvernment _c_,on No. 3 R_,p,,nt's C_u;og No.

ICASE Report No. 85-22 1
4. Title and Subtitle 5. Repot1 Dire

Spline-based Rayleigh-Ritz methods for the approximation of March 1985

the natural modes of vibration for flexible beams with tip 6. Per4ormlng OrganizationCoO_
bodies

7. Author(s) 8. PerformingOrgan;zationReportNo.

I. Gary Rosen _-??
10. WorkUnit No.

g. Performing Organization Name =nd Address

Institute for Computer Applications in Science "11.ContractorGrantNo.
and Engineering

Mail Stop 132C, NASA Langley Research Center NASI-17070

Hampton, VA 23665 13. TyI_ of Reportand PeriodCover_
12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration 14. Sponsnr;ngAgencyCode
Washington, D.C. 20546 505-31-83-01

15. Supplementary Notes

Langley Technical Monitor: J. C. South, Jr. Additional Support:

Final Report Contract AFOSR-84-0393

Submitted to Quarterly of Applied Mathematics.

16. Abstract

Rayleigh-Ritz methods for the approximation of the natural modes for a class of

vibration problems involving flexible beams with tip bodies using subspaces of

piecewise polynomial spline functions are developed. An abstract operator theoretic

formulation of the eigenvalue problem is derived and spectral properties

investigated. The existing theory for spline-based Rayleigh-Ritz methods applied to

elliptic differential operators and the approximation properties of interpolatory

splines are used to argue convergence and establish rates of convergence. An example
and numerical results are discussed.

17. Key Words (Suggested by Author(s)] 18. Distribution Statement

flexible structures, natural 39 - Structural Mechanics

vibrational _odes, Raleigh-Ritz 54 - Numerical Analysis
methods, spline functions

7nclassified - Unlimited

19. S_urlty _a_if.(ofthisre_rt) 20. SecurityCla_if.(ofthis _} J 21. No. of Pa_$ 22. _ice

Unclassified Unclassified I 32 A03

Forsalebylhe NalionalTechnicallnformationService, Springlield, Vilginia 2216!

NASA-Langley, 1985





• LANGLEY R

3 1176 00520 2206


