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ABSTRACT

The two major objectives satisfied in this investigation

include the development of an improved semi-empirical model for

microwave backscatter from vegetation and the acquisition of a

complete set of canopy attenuation measurements as a function of

frequency, incidence angle and polarization. The semi-empirical

model was tested on corn and sorghum data over the 8-35 GHz

range. The model generally provided an excellent fit to the data

as measured by the correlation and rms error between observed and

predicted data. The model also predicted reasonable values of

canopy attenuation. The attenuation data was acquired over the

1.6 - 10.2 GHz range for the linear polarizations at approximately

20° and 50° incidence angles for wheat and soybeans. 	 An

attenuation model was proposed which provided reasonable agreement

with the measured data.
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NOWNCLATURE

SY.^. UN_ 	ITS DESCRIPTION

A -- empirical constant

B -- empirical constant

C -- empirical constant

C1,C2,C3 -- designation for corn fields 1,
2, and 3, respectively

I

C -- factor obtained from t-distribution
for confidence-interval calculations

!L^ C(f,e) -- empirical constant, which is a
function of frequency and angle of

r; incidence

D -- empirical constant

dz m incremental path length through
canopy

E -- empirical constant

I-
e dB rms error

F. el,e2,e3 dR rms error for fields 1, 2, and 3,
respectively

f GHz frequency

h m canopy height

HH -- horizontal transmit, horizontal
receive

HV -- horizontal transmit, vertical 	 receive

-- symbol used to designate imaginary
part of a complex number

k
m"1

wave number (2w/a)

^i kc -- confidence-interval limit

L m correlation length

r

-1

LA dB loss from model A

IIi_J

U
ix



d8 stalk absorption loss as a function
of incidence angle for horizontal
polarization

dB stalk absorption loss as a function
of incidence angle for vertical
polarization

M2/M2 leaf area index

dR loss from model R

dR loss from model C

dB two-way canopy loss as a function
of frequency and incidence angle

dB loss frrA model n

-- layers 1, 2, and 3 combined

kg/m2 canopy leaf water content

kg/m2 canopy whole-plant water content

kg/m2 canopy stalk water content

gm/cm3 volumetric soil moisture

-- plant or plant-part volume fraction
of water

% plant or plant-part moisture

-- number of leaves per plant

-- number of samples

-- complex index of refraction for
extraordinary wave

-- real part of ne

-- imaginary part of ne

-- complex index of refraction for
ordinary wave

-- real part of no

Lat(e,h)

Lst(9,v)

LAI

LB

LC

LC(f,O)

LD

L123

MPHLEAF

MPHPLANT

MPHSTALK

MSVOL

MV

MW

N

n

ne

n'
e

n"e

no

n'
0

n"0



nV --	 imaginary part of complex index of
refraction for vertically
polarized wave

p --	 empirical constant

Q --	 appi ri c.0 constant

R --	 empirical constant

r --	 correlation coefficient j

Rhh --	 Fresnel reflection coefficient for
horizontal polarization

rl ,r2 ,r3 --	 correlation coefficient for fields 1,
a

2, and 3, respectively

S --	 empirical constant

s --	 sample standard deviation

S17VV50 --	 radar backscattering coefficient (c°)
at 17 Mz, VV polarization, 50°

S1,S2,S3 --	 designation for sorghum or soyhean
yfields 1, 2, and 3, respectively

tz mm	 leaf thickness

vz -•	 volume fraction of leaves in canopy

VH --	 vertical transmit, horizontal 	 receive

vst --	 volume fraction of stalks in canopy

VV --	 vertical transmit, vertical	 receive

W1,W2 --	 designation for wheat fields 1 and 2,
respectively

A

x unit vector in x-direction

A

y --	 unit vector in y-direction

w
z --	 unit vector in z-direction

zl ,z2 m	 end points of path through canopy

r. --	 dielectric constant vector

cc, -•	 real part of canopy dielectric
constant

xi
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eC --	 imaginary part of canopy dielectric
constant

ee --	 extraordinary wave dielectric
constant

e^ --	 leaf dielectric constant

e^ --	 real part of et

E^ --	 imaginary part of et

E^ --	 leaf dielectric constant at L-band

--	 leaf dielectric constant at C-band

ex --	 leaf dielectric constant at X-band

eo --	 ordinary-wave dielectric constant

CLpst •-	 primary-stem dielectric constant at
L-band

ccpst --	 primary-stem dielectric constant at
C-band

exst -•	 primary-stem dielectric constant at
X-band

erA --	 random leaves' dielectric constant

er, --	 real part of ert

e0 --	 real part of ert

ers --	 random stalk dielectric constant

ers --	 real part of ers

erMs --	 imaginary part of ers

A --	 secondary-stem dielectric constant at
L-band

cc
sst -•	 secondary-stem dielectric constant at

C-band

ex
sst --	 secondary-stem dielectric constant at

X-band

A
t •-	 stalk dielectric constant at L-band

Est --	 stalk dielectric constant at C-band
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ESL

M
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EX
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IC 
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j	 ao

_	 go
Qo
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T

-- stalk dielectric constant at X-band

-- stalk dielectric constant

•- ' real part of Est

-- imaginary part of Est

•- x-component of dielectric constant
vector

-- y-component of dielectric constant
vector

-- z-component of dielectric constant
vector

Nepers/m absorption coefficient

Nepers/m extinction coefficient

Nepers/m scattering coefficient

dB/m canopy-attenuation coefficient

dB/m leaf-attenuation coefficient

dB/m primary-stem attenuation coefficient

dB/m secondary-stem attenuation
coefficient

d6/m stalk-attenuation coefficient

-- albedo

m wavelength

m free-space wavelength

kg/m3 vegetation density

m surface standard deviation
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1.0 INTROWTION

A little over a century ago, mankind had to ref upon direct,Y 9	 Y P

on-the-ground observations to acquire the kinds of information

useful in resource-management; as a result, such management was

extremely limited in scope. Over the first eighty years of this

century, aerial photography proved to be quite valuable to

resource managers, and it is still a legitimate form of remote

i'
sensing today. But it was with the launching of satellites

	

i	

carrying onboard visible- and infrared-sensors in the 197O's

	

!	 that the science of remote sensing was revolutionized. Spaceborne

sensors were able to provide high-resolution imagery of even the

most remote parts of the Earth. Naturally, any satellite-based

image contains a large quantity of information. Therefore,

advances in digital-computer technology and digital image-

processing techniques have been necessary and have led to the

increased use of the resulting information 13y resource managers.

Promising research is continuing in this'vital aera.

Unfortunately, visible and infrared sensors--especially

visible sensors--have some serious limitations. For example,

cloud cover renders visible sensors useless and severely degrades

the performance of infrared devices. In addition, visible

sensors can be operated only during daylight hours and areP	 Y	 9

	

j	 affected by sun-angle. For this reason,'much research is

currently directed toward the development of microwave remote

	

U	 sensing systems, both active and passive, capable of supplementing

1
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the data provided by visible and infrared sensors. Microwave

systems may be operated either day or night, under clear-sky or

cloudy conditions, and over a very wide range of frequencies.

The present study is devoted to increasing the understanding of
	 . a

the responses of such systems--specifically active microwave

or radar systems--to vegetation. An increased understanding of

these responses will help to discover microwave remote sensing

applications, not only in agriculture and food production, but

also in water-resource management, energy utilization, conserva-

tion, and production.

Ir
	

1.1 Agricultural Applications

Agricultural resource management encompasses two major

tasks: The first involves the discrimination and classification

of crop species, which can ultimately provide an estimate of the

acreage planted for each type of crop, and the second concerns

monitoring crop growth and vigor, which in conjunction with

acreage estimates, will allow forecasts of yield.

The problem of discrimination and classification has been

studied extensively using radar alone (Bush, 1976a) and

combining radar data with Landsat data (Eyton, 1979; Li, 1980).

The results of these investigations indicate that radar and

Landsat data are complementary in nature and that classification

3



TABLE 1. Sources of Dry Weight and Protein Intake
on a Worldwide Basis (Adapted from Evans, 1975)

Dry Matter M	 Protein x

1R.2 17.5
17.7 12.3
15.5 13.1
7.6 6.2
5.5 3.9
5.1 0.6

4.4 3.2
2.6 1.5
2.3 0.4

2.9 0.0
2.0 0.0

2.8 8.9
1.1 2.5
0.9 1.9
1.0 2.9

1.9 4.2

1.7 0.7

3.5 7.7
1.9 6.7
0.3 1.3
1.1 4.5

100.0% 100.0%

Wheat
Rice
Corn
Barley
Sorghum and Millet
Other Cereal Grains

Potatoes
Sweet Potatoes and Yams
Cassava

Sugar Cane
Sugar Beets

Soybeans
Peanuts
Peas
Beans

Vegetables

Fruit

Milk
Meat
Eqgs
Fish

4
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Table LA World Production of Edible Dry Matter and Protein

Dry Matter	 7
(metric tons x 10 )

Protein	 6
(metric tons x 10 )

Ceral grains
Wheat 27.5 32.9
Rice 26.7 23.2
Maize 23.5 24.7

Barley 11.4 11.6

Sorghum/millet 8.2 7.4
Others' 7.6 1.1

104.9 100.9

Starchy roots
Potato 6.6 6.0

Sweet Potato and Yams 3.9 2.9

Cassava 3.4 0.8
13.9 9.7

Sugar Crops
Cane 4.3(sugar) -

Beet 3.0 -
7.3

Legunes and Oil Seeds
Soybean 4.2 16.7

Peanuts 1.6 4.8

Peas 1.3 3.5

Beans 1.5 5.4

Cotton-seed (2.0) (7.2)
-fibre (1.1) -

(3.5) (12.4)

Others 10.2 35.6

Vegetables 2.8 8.0

Fruit 2.5 1.3

Animal Products
Milk 5.2 14.5

Meat 2.8 12.6
Eggs 0.5 2.5
Fish 1.7 8.5

10.2 38.1

152.8 193.6

5



accuracies of the order of 95% appear to be feasible when multi-

date information 1s obtained.	
it
x

The second task, i.e., the monitoring of crop growth and

vigor and the estimation of yield, 1s not well understood. This 	
1

limited understanding can be enhanced, however, by the development

of improved mathematical models relating the microwave response to

plant physiological changes. Models may range from simple linear 	 (^

regression analyses on microwave and ground-truth data to complex

theoretical models based upon Maxwe y l's equations. A middle-of-

the-road approach is the semi-empirical model, which is based upon

electromagnetic theory but is generally simple, utilizing easily

measured ground-truth parameters.

Electromagnetic models may be used in conjunction with

evapotranspiration models developed by agronomists (Hodges, 1977; 	 it
i

Kanemasu, 1977) to predict yield.	 In addition, microwave

measurements and models may provide data on crop disease or stress,

and may provide valuable inputs to the hydrological models used in

water-resource management. 	 L

(I
1.2 Advantages of Microwave Sensors 	 ^ ^^

The ability to penetrate cloud cover and to operate

Independently of solar radiation distinguishes microwave sensors

from their visible and infrared counterparts.	 In addition to

these advantages, microwave sensors can effectively control the

"roughness" of the target under study by a change to wavelength;

this property allows studies of target structure that are not

possible in the visible and infrared regions. In addition, active

6
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U Microwave sensors have the ability to control the polarization of

the illumination and to Make cross-polarized Measurements that

often provide information not available in like-polarized data.

L^

	

	
The Earth's atmosphere and ionosphere are not transparent to

electromagnetic radiation at all wavelengths. An "optical window"

extends from approximately 5 THz to 800 THz and a "radio window"

extends from about 30 MHz to 300 GHz.	 The remainder of the

	

spectrun is essentially useless for satellite-based remote sensing	 f̂

(	 purposes. Even these "windows" are not totally clear, since the
l

optical window contains many gaseous absorption lines, and the

radio spectrum is obstructed by a few oxygen and water-vapor lines

near the upper end.

Much of the interest in microwavi sensors results from their

ability to penetrate cloud cover. On the average, a very large
i

portion of the Earth experiences 50% or greater coverage by clouds

during the year. Since neither the visible nor the infrared

sensors can penetrate this cloud cover, temporal data on crops is

extremely difficult to obtain. This problem is critical-, since

plants may undergo some rather dramatic physiological changes

within a period of a few days.

i	 Although rainfall can degrade the performance of microwave

sensors, it	 is actually the cloud cover associated with it that

renders optical and infrared sensors useless. 	 In fact, rainfall

is not a major problem, since precipitation rates high enough to

produce significant attenuation	 are	 in	 evidence	 only	 a	 small

fraction of the time available for observation of vegetation.

0
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In addition to the ability of microwave sensors to operate

effectively day or night under most weather conditions, thp ► have

the unique ability to sense changes in target roughness and

dielectric constant. It is this capability that provides the most

promise in monitoring the growth and vigor of agricultural crops. 	

l

1.3 Prior Research

	

Some of the earliest scattering experiments on vegetation
	 i

were conducted at Ohio State University in the late 19SO's and

1960's (Cosgrlff, 1960; Peake, 1971). Data were collected from a

wide variety of agricultural and cultural ter-jets by using a

truck-mounted Doppler radar. The radar was capable of operating

in thw X (10 GHz), Ku (15.5 GHz), and Ka (35 GHz) bands and could

measure backscattering from a 0• incidence angle (nadir) to an 800

incidence angle. The absolute calibration of this early Ohio

State data is somewhat suspect when compared to more recent

measurements (Bush, 1976b), but its precision is still estimated

r
to be about t 1 dB. Unfortunately, this series of experiments.

lacked adequate ground-truth support and was temporally incomplete

for the purpose of monitoring crop development over an entire

growing season.	 Despite these limitations, the Ohio State

experiments are significant in that they launched the study of

vegetation by means of microwaves and provided the basis for more

detailed investigations.

In 1968, a program designed to investigate the radar

backscattering from vegetation, crops, and soils was initiated to

The Netherlands (deLoor, 1974). Initial measurements used a 75-

'	 8
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meter television tower as a platform for an X-band pulse-radar

system. Because of the height of the tower and the locations of

the agricultural fields of interest, data were limited to high

Incidence angles (;o 80 0). - Despite these limitations, the

experiments provided some insight into the statistics of radar

backscattering from agricultural crops and, what is more

Important, provided evidence that crops may undergo significant

changes in backscattering response over a growing season. 	 In
i

1973, the group constructed a short-range FM-CW radar system that

could be moved on rails along a series of test plots. This system

was capable of taking data over an incidence-angle range from 20°

to 750 with HH, HV, and VV polarization. This system has been

used to acquire a considerable amount of data on crops (deLoor,

1982). The Dutch have also been active in vegetation dielectric

constant investigations (de Loor, 1983) and modeling (Hoekman,

1982).

In 1974 and 1975, a group from the Soviet Union conducted

experiments on vegetation using a K-band imaging radar

(Basharinov, 1976). This series of experiments, although lacking

adequate ground truth, noted significant changes in the

backscattering coefficient over a growing season and specifically

noted a large increase in the backscattering coefficient of winter

wheat at approximately the "heading" stage of growth.	 The

exper`menters also reported an inverse relationship between the

backscattering coefficient and the "productivity of green mass."

The productivity of green mass apparently refers to the wet

biomass of the vegetation, measured in kilograms per square

9



meter.	 The Soviets have also reported backscattering data

acquired over the 0.8-cm to 30-cm range of wavelengths, as well as

laboratory measurements of microwave absorption and scattering of

Isolated vegetative elements (Shutko, 1981).

A study conducted by the Agricultural Engineering Department

at Ohio State University (Story, 1968; Story, 1970), unrelated to

the previously discussed backscattering measur es at program,

concluded that the attenuation by wheat heads is many times

greater than the attenuation by stalks, and that transverse

magnetic (VV) attenuation is more than twice as great as

transverse electric (HH) attenuation. These results suggest that

the wheat head should be considered individually as a

scattering/absorption element in detailed modeling studies.

Measurements of the temporal response of rice have been

completed in India at the Communications Area Space Applications

Centre in Ahmedabad (Calla, 1979). The Indian group utilized a

fixed X-band (9.4 GHz) CW radar system. This study is significant

because rice is one of the world's most important crops, and

because few, if any, data are available on its backscattering

response. There is no information available on the precision of

these data, which is of concern because spatial or frequency

averaging was apparently not used; it is likely, however, that

fading was reduced somewhat in this data set by time-averaging.

In addition, some of the data are also questionable because the

cross-polarized data are at times much greater in magnitude than

the like-polarized data.

10 0
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ii	 There has been considerable interest in the microwave remote

sensing of vegetation in Canada in recent years. This activity

f'	
has been concentrated at the University of Guelph and the Canada

Centre for Remote Sensing in Ottawa (CCRS). A major interest has

been the use of synthetic-aperture radar (SAR) imagery for crop

discrimination purposes (Brisco, 1978; 1979; 1980).	 A joint	 r

ii
	 experiment was conducted in Melfort, Saskatchewan by CCRS and the

University of Kansas in 1983. A major objective of the experiment

was to calibrate SAR imagery using ground-based backscattering

measurements.

There is intense interest in the microwave remote sensing of

vegetation in West Germany.	 The German Aerospace Research

Establishment (OFVLR) has conducted vegetation studies using both

ground-based system: (Sieber, 1979; Graf, 1978) and synthetic-

	

aperture airborne systems (Sieber, 1983). The radar and ground- 	 r

	

truth data acquired by this group are both extensive and of high 	 j

quality.	 The West Germans were also deeply involved in the

European Spacelab mission (Schlude, 1978), in which an X-band

imaging radar system was carried aboard the STS-9 Space Shuttle

flight. Although a malfunction prevented the acquisition of data

1-	 during this flight, future flights are expected to provide

valuable vegetation data. 	 It should be noted that the West

Germans and the University of Kansas worked jointly on a project

to calibrate the X-band imagery with ground data and active

calibrators; however, the Spacelab's radar malfunction prevented

the successful completion of this effort.

11
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There has also been significant activity in microwave remote

sensing in France (Lopes, 1979; LeToan, 1982). The French have

recently completed an in-depth study of the backscattering

characteristics of wheat (.Huet, 1983) and its attenuation

properties (Lopes, 1983). The backscattering study covered the

years 1980, 1981, and 1982 and included both winter wheat and

spring wheat. The attenuation measurements presented are quite

significant in that they are the first reliable data on the

attenuation of wheat, and they illustrate the importance of

polarization on attenuation.	 The measurements, however, were

conducted in a laboratory setting, were limited to one frequency,

and were conducted at an incidence angle of 90° only. The French

work is of very high quality and includes extensive data on the

seasonal variab'.lity of ground-truth parameters.

Undoubtedly, the most extensive measurement program on the

radar backscattering response of vegetation was conducted in the

United States at the University of Kansas (Ulaby, 1981). In the

late 1960's, studies were directed toward demonstrating that

panchromatic techniques were useful in the reduction of fading and

that additional information could be obtained by measuring over an

octave of bandwidth (Waite, 1970). The radar system used in this

series of measurements was a pulse-type system with the carrier

frequency continuously varied from pulse to pulse. The pulses

were averaged after detection to reduce fading. This program

stimulated interest in the development of a ground-based, mobile

system with angular, frequency, and polarization agility. 	 The

first such system was constructed in 1971 (Mo, 1974) and :•-.;Is used

12



[	 to collect agricultural data near Eudora, Kansas, in the 4- to 8-

GHz range. The system's calibration was suspect, unfortunately,
ff

!	 and all data had to be reported with respect to a field of corn.

In 1972, the system was redesigned and calibrated against a

Luneberg lens rather than against a metallic sphere. The lens

provided a much-improved calibration technique because of its

large radar cross-section and its relative insensitivity to

orientation. Using this improved system, data were again acquired

II	 in the Eudora region during the 1972 growing season.
1.

Analysis of these data revealed that the moisture in the soil

Iunderlying the various crops had a significant influence on the

backscattering response, especially at the lower frequencies and

angles of incidence (Ulaby, 1975a).	 This result was the first

indication that crop-monitoring studies should be conducted at

higher frequencies and angles of incidence to eliminate the

effects of soil-moisture variations. 	 In 1973, the 4- to 8-GHz

system was redesigned to allow 2 - 8-GHz operation and an 8- to

18-GHz FM-CW radar system was constructed. 	 Some data were

collected in 1973 (U1 aby, 1975b) , but it was in the 1974 growing

season that the first sets of temporally complete data were

acquired on a wide variety of crops ( corn, wheat, milo, soybeans,

and alfalfa). Also in 1974, diurnal experiments were conducted in

the 2- to 8-GHz range. One major conclusion reached from the 1974

experiments was that diurnal effects are minimized at frequencies

above 8 GHz and that incidence angles of 40° or higher and

(!	 frequencies of 8 GHz or greater minimize any response to soil

moisture.	 The temporal data acquired (Bush, 1975c,d; Ulaby,

(	 13
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1975c) revealed that the two economically important crops, corn

and wheat, exhibited substantial changes in the backscattering

coefficient, a°, over a growing season and thus held promise for

'	 monitoring applications. Among the other crops studied, alfalfa

displayed significant changes in a° over the growing season, but

milo (sorghum) and soybeans did not. A large number of technical

reports and papers have resulted from analysis of these data

(Bush, 1975a,b,c,d; Ulaby, 1975c; 1976). Agricultural data were

again acquired In the 8- to 18-GHz range during the 1975 and 1976

growing seasons. Acquisition of these data greatly enlarged the

available database on agricultural crops, which allowed enhanced	 :l

statistical (Ulaby, 1979x), row-direction (Ulaby, 1979b), and

classification (Eyton, 1979) studies to be performed. In 1977 and

1978, the emphasis in radar data acquisition shifted toward snow

and soil-moisture applications, while analysis continued on the

available agricultural database.

In 1979 and 1980, the University of Kansas conducted joint

vegetation	 experiments	 with	 Kansas	 State	 University's

r	 Evapotranspiration Laboratory, which is associated with its
i

Agronomy Department. The Kansas State group has been active in

the development of evapotranspiration models for use in

hydrological applications and crop-yield forecasting (Kanemasu,

1974; 1976; 1977; Brun, 1972; Hodges, 1977). 	 Kansas State had

used Landsat data as input to the evapotranspiration models but

,j	 had experienced considerable difficulty in obtaining cloud-free

data over a growing season,	 The group therefore was quite

interested in the pot &•:cial of microwave remote sensing, which led

14
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to the ,point experiments. The data were acquired over the 8- to

35-GHz range on a number of test plots of corn and sorghum and on

two commercial wheat fields (Eger, 1982; Wilson, 1984).

During the period from 1981 to 1983, the radar systems were

re-designed to make them more mobile, so that an increased number

of data sets could be acquired on a given day. The systems were

limited to L- through X-bands to correspond to the operational

systems planned for the late 1980's and early 1990's.	 In

addition, a radiometer system was constructed to acquire passive

microwave data. During this period,data were acquired on a number

of crops near Lawrence, Kansas, and in 1983, the joint experiment

with the Canadians was conducted. A number of special experiments

including flooding, screening, defoliation, and attenuation were

also conducted during this period. In 1984, L-, C-, and X-band

data were acquired on a number of test plots producing small

grains, and attenuation measurements were conducted on wheat and

soybeans.

As this review indicates, interest in the microwave remote

sensing of vegetation is global and has been increasing rapidly in

recent years.	 The availability of the Space Shuttle to carry

Iimaging radars will certainly vastly increase our knowledge in

this area but will not eliminate the requirement for additional,

detailed ground studies such as those described in this review.

1.4 Objectives of the Investigation

LThe investigation reported herein has two major objectives.

The first is to develop an improved semi-empirical model (or

Li
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models) to describe the observed backscattering response of

vegetation in terms of easily measured ground-truth parameters. The

second objective, closely related to the first, is to obtain data on

the attenuation experienced by a microwave signal as it propagates

through a vegetation canopy as a function of its frequency,

polarization, and angle of incidence.

The semi-empirical model will be based upon high-quality data

(corn and sorghum) acquired near Manhattan, Kansas. The data set is

characterized by backscattering data with extensive spatial

averaging to reduce fading, accurate calibration, and frequent

observations over the growing season. The ground-truth information

is also of high quality.	 In addition, the ground truth was

carefully edited and "smoothed" using a polynomial curve-fitting

routine. The objective was to postulate a model that would provide

a good fit to the data as measured by the correlation coefficient

between the observed and predicted data as well as a small root-

mean-square (rms) error between the observed and predicted data

points. Also, the model would provide a reasonable estimate of the

attenuation through the vegetation canopy.

The objective of the attenuation measurements was to obtain an

understanding of vegetation attenuation as a function of frequency,

polarization, and incidence angle for its own scientific value as

well as to provide data for testing semi-empirical and theoretical

models. Although some limited attenuation measurements have been

made in the past, this will be the first data set to demonstrate

frequency, polarization, and angular dependence.

16
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iii 2.0 EXPERIMENT DESCRIPTION

The backscattering data analyzed and modeled in this

investigation were acquired in 1979 and 1980 during a joint

experiment conducted near Manhattan, Kansas by the University of

Kansas and Kansas State University. The complete set of 1974 data

is available in a technical memorandum (Wilson, 1984), and

selected 1979 and 1980 data are available in a technical report

(Eger, 1982; U1aby, 1983).

The attenuation data to be analyzed and modeled in this

investigation were acquired by the University of Kansas in 1984 at

a site east of Lawrence, Kansas.

2.1 1979 Backscattering Measurements

	The 1979 backscattering measurements were conducted at the	
a

	

Kansas State University agronomy research fields located
	

I

approximately 14 km south of Manhattan near a small community

called Ashland.	 University-owned research plots were used to

study corn and sorghum; two privately owned fields adjacent to the

research plots were used to study wheat.

The twelve test plots, each approximately 15 m x 60 m, or

900 m2 , were planted with varying densities of corn and sorghum

(six each).	 The two wheat fields used were several acres in

extent, although only a limited area of each was used for data

collection.

The spring/summer growing season was unusually wet for

Central Kansas, and all crops were generally healthy and vigorous.

I P
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Ground-truth data for this experiment were acquired by Kansas

State University.	 Ground truth was taken simultaneously with

radar data.	 Table 2 -summarizes the ground-truth parameters

measured.

The active microwave system used to acquire data for this

study was the University of Kansas MAS 8 - 18135-scatterometer

system. The MAS 8-18/35 was a low-power microcomputer-based, FM-

CW radar capable of operation over the 8- to 18-GHz range as well

as at 35.6 GHz. This truck-mounted system was mobile and had its

own source of electrical power. Acquired data were recorded on a

standard data cartridge for subsequent transfer to larger computer

systems. The system (Ulaby, 1979c) was modified prior to this

study for single-antenna operation over the 8 - 18-GHz range

(Wilson, 1980).	 The accuracy and precision of the MAS 8-18/35

have been investigated and reported previously (Stiles, 1979).
.- 1

Key system specifications are given in Table 3.

The choice of sensor combinations for this study was greatly

influenced by prior work at the University of Kansas. To minimize

the response to soil-moisture variations, angles of incidence

greater than 30° and frequencies greater than 8 GHz were chosen.

This choice of system parameters also minimized any response to

crop row-direction effects.	 Data were taken using the three

linear polarizations. Table 4 summarizes the sensor combinations

used in the experiment.

Fifteen independent spatial samples were taken at 30° and

500 , whereas ten samples proved more than adequate at 700.

18
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TABLE 2. Ground-Truth Parameters

Leaf Area Index

Plant Wet Weight

Plant Dry Weight

Plant Density

Plant Height

Plant Growth Stage

Leaf Water Potential

Yield

Soil Moisture

Solar Radiation

Temperature

Precipitation

Wind Speed

Spectral Reflectance



TABLE 3. MKS 8-18/35 System Specifications

Radar Type FM-C W

Modulating Waveform Triangular	 -

Frequency Fange 8-18 and 35.6 GHz

FM Sweep 800 MHz

Transmitter Power 10 dBm

Intermediate Frequency 100 kHz

IF Bandwidth 10 kHz

Antennas

Maximum Height

Above Ground 20 m

8-18 GHz Feed 4-18 GHz Quad-ridged
Horn

8-18 GHz Reflector 45.1 cm Diameter

35.6 GHz Scalar Horn

Polarization HH, HV, VV, RR, RL, LL

Incidence Angle Range 0° (Nadir) to 80°

Calibration

Internal Delay Line

External Luneberg Lens

20
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TABLE 4. Sensor Combinations

FREQUENCY

8.6 GHz
13.0 GHz
17.0 GHz
35.6 GHz

POLARIZATION

NH

HV
VV

INCIDENCE ANGLE

30°
50°

70°

^i
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A "standard" data set consisted of the above number of

independent spatial samples at each of the four frequencies for

each polarization. Thus, 180 data points were obtained at 30 0 and

500 , with 120 data points at 70", for a total of 480 data points

per standard data set.

A "diurnal" data set consisted of fifteen independent spatial

samples at 50° at the above frequency and polarization

combinations, or 180 data points. A diurnal data set was repeated

periodically throughout the day from before dawn to after dusk.

Table 5 summarizes the microwave data acquired in this

experiment.

2.2 1980 3ackscattering Measurements

The 1980 backscattering measurements were also conducted on

the Kansas State University research fields. In 1980, however,

data were acquired on corn and sorghum only.

The 1980 test plots were increased in size to approximately

30 m x'60 m or 1800 m2 .	 Three plots were planted in corn and

three in sorghum. As in 1979, planting densities varied between

plots.

The summer growing season in 1980 presented a sharp contrast

to that of 1979 in that it was dry and was one of the hottest

summers on record; irrigation was required to maintain the crops.

Ground-truth data were again acquired by Kansas State

University. In 1980, sampling techniques were improved, and the

data were expanded to include plant parameters both by layers and

22
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TABLE S. 1979 Microwave Data Acquired

WHEAT

24 Standard Data Sets
32 Diurnal Data Sets

CORN

40 Standard Data Sets
20 Diurnal Data Sets

SORGHUM

40 Standard Data Sets
20 Diurnal Data Sets

TOTAL DATA POINTS - 74,880



=7777

by parts. In addition, the ground-truth data were "smoothed" by a

polynomial curve-fitting routine.

Increasing the number of data sets per field represented a

significant improvement over the 1979 experiment. Because of the

large number of fields, incidence angles, and frequencies in 1979,

only about six data sets per field were acquired for corn and

sorghum.	 In 1980, the number of fields was reduced and the

angular data limited to 500 , so that approximately 25 data sets

per field were obtained.

In 1980, improvements were also made in the microwave data-

collection effort. The number of spatial samples in 1979 was set

at 15 because of the limited test-plot width and because of time

limitations.	 In 1980, since the size of the plots had been

	

increased and since the only angle of incidence used was 50 0 , the	 ;f

number of spatial samples was increased to 25 to further reduce

measurement uncertainty. Also in 1980, external calibration was

performed on the system on all but five of the measurement days.

These changes significantly improved the calibration and precision

of the 1980 backscattering measurements as compared to 1979.

2.3 1984 Attenuation Measurements

The 1984 attenuation measurements were conducted by the

University of Kansas on privately owned fields located

approximately 6 km east of Lawrence, Kansas.

Two crops were studied: 	 winter wheat and soybeans. The

spring and early summer growing seasons were quite wet, which

resulted in healthy and vigorous crcps. Ground truth for this

24



n

z

• experiment was acquired both by layer and by part. 	 The ground-

truth measurements are tabulated in Append-ix B.

The system used for data acquisition consisted of L-, C-, and

iX-band radars (1.55 GHz, 4.75 -GHz, and 10.2 GHz) mounted on a boom

truck (used only as a transmitter) and a receiver at ground level

i mounted	 on	 a	 "sled."	 The	 sled	 was	 designed	 to	 be	 pulled	 in

. synchronicity with the boom truck over fiberglass rails by means

of	 a	 system	 of	 ropes	 and	 pulleys.	 Figure	 1	 illustrates	 the

-	 l setup.	 The receiving antennas consisted of an L-band microstrip

i
patch antenna and a 4- to 18-GHz quad-ridged horn for C- and X-

bands.	 The	 C-	 and	 X-band	 antennas	 were	 followed	 by	 battery-

powered amplifiers with approximately 25 dB of gain. 	 The detector

was a wide-dynamic-range power meter driving a chart recorder.

The rails, each approximately 6 meters long, were placed in

the vegetation canopy at locations corresponding to approximately

24° and 56° incidence angle for wheat and 16 0 and 520 for

soybeans. Vegetation was cleared at each end of the test strip so

the free-space power could be measured and then used as a

reference.	 A wheat decapitation experiment and a soybean

defoliation experiment were conducted in addition to these

"standard" experiments.

Attenuation measurements were made at the indicated angles,

at L, C, and X-band, and for HH and VV polarization. Limited data

i	 were acquired for HV and VH polarization. The recordings were

digitized, and a mean attenuation was calculated (relative to free

space) along with its associated 99% confidence interval. Repeat-

ability tests were conducted for all sensor combinations, and

25
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Figure 1.	 Configuration used to measure canopy attenuation.
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it was found that the measurements were generally repeatable

within 1 dB and, in most cases, within a fraction of a dB. The

attenuation data are tabulated in Appendix B.

3.0 ANALYSIS OF BACKSCATTERING DATA

The 1979 backscattering experiment was significant in that it

provided the first 35-GHz data on vegetation over a full growing

season and served as the basis for an analysis of a number of

overall vegetation backscattering characteristics. It was also

valuable in that it was the first data set to include both active

microwave data and leaf area index. 	 The 1979 data set was,

however, of limited value in modeling because of the small number

of data sets taken per field.

The 1980 backscattering experiment was designed to correct

the shortcomings of the 1979 experiment and to provide a very high

quality data set for corn and sorghum, i.e., one suitable for

modeling studies.

A preliminary analysis of the 1979 and 1980 data sets has

already been completed ("Eger, 1982) and includes temporal data for

both years; thus, that information will not be repeated in this

report. The emphasis here will be to present results that have

not yet been published.

The statistical analysis was accomplished with the aid of the

1979 versions of the Biomedical Computer Programs, P-series (BmnP-

79).	 These programs were developed at the Health Sciences

Computing Facility at the University of California at Los Angeles

27
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(Dixon, 1979).	 The Health Sciences Computing Facility was

sponsored by NIH Special Resources Grant RR-3.

The BMDP routines used to examine the statistics of the

microwave data were BMDP-2D, 8MDP-5D, and BMDP-6D. RMDP-2n counts

and lists distinct values for each variable in the analysis. It

computes univariate statistics including the mean, median,

standard deviation, skewness, and kurtosis. BMDP-2D also plots a

histogram for each variable. 	 BMDP-5D was utilized to provide

histograms in a format much improved over that in BMOP-20. BMDP-

60 displays one variable against another in a scatter plot. It

computes and prints the equations of the simple linear regression,

relating each variable to the other, and indicates the places at

which the regression lines intersect the frame of the plot. BMDP-

AR, a nonlinear regression routine, was used in the modeling

studies.

In addition to BMDP, a number of FORTRAN routines were used

to calculate other statistics and provide special plots not

available with BMDP.

3.1 Calibration, Accuracy, and Precision

The MAS 8-18/35 system used in these experiments utilized

both internal and external calibration techniques. 	 Internal

calibration was achieved by periodically switching a coaxial delay

line in place of the antenna(s). Power measurements in the delay-

line mode were taken every few minutes during a measurement

session and were used to remove short-term fluctuations in

oscillator power and any other component variations.

:i
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External calibration was achieved by measuring the return
A.

from a Luneberg lens of known cross-section periodically
9

3
throughout the measurement period (Ulaby, 1979c). In 1979, "lens

sets" were taken approximately once per week; in 1980, lens sets

were taken on the day of each data set--except for five dates.

After each lens set, a "sky-noise" measurement was taken to

determine the system noise floor. Noise-floor data were used to

ensure that all data points used in the analysis had an adequate

signal-to-noise ratio.

Previous studies (Stiles, 1979) concluded that the accuracy

of the MAS 8-18/35 was of the order of t 2.6 dB.

Measurement precision is a function of the number of

independent samples obtained (Stiles, 1979). In the MAS 8-18/35,

independent samples are obtained by frequency averaging as well as

by spatial averaging. The total number of independent samples is

determined by the product of these two terms. The number of

independent samples may also be calculated empirically from the

data. It is estimated that the 90% confidence interval for the

1979 data is approximately ± 1.0 dB, whereas for the 1980 data it

is t 0.5 d8.

3.2	 1979 Backscattering Data

The complete analysis of the 1979 data included consideration

of	 each	 plot	 or field	 individually, various	 combinations	 of

fields/plots	 of	 the	 same	 crop,	 and	 all crops	 combined.	 Al 	 of

these	 cases	 were analyzed	 at	 all	 of the	 various	 frequency,

polarization,	 and angular combinations. Since the 1979 data will

I
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not be used for modeling purposes in this investigation and

because a preliminary analysis has been reported previously (Eger,

1982; Brakke, 1981), the emphasis here will be on overall

vegetation characteristics.

Figure 2 is a histogram for all 1979 crops combined at

35.6 GHz, VV, 30% expressed in dB.	 This distribution is

approximately normal, as expected. Figure 3 is a histogram of the

same data expressed in real units (m2/m2 ). This distribution is

approximately log-normal, again as expected. These distributions

are similar to those observed in the much larger agricultural data

base maintained at t;ie University of Kansas (Ulaby, 1979a).

Dynamic range is an important consideration in the design of

an operational, active microwave remote-sensing system. If the

microwave response to changes in plant parameters can be masked by

system fluctuations and/or errors, there is little hope of

acquiring meaningful data. Figure 4 illustrates that the dynamic

range of all 1979 crops combined increases as the frequency is

increased, especially for VV polarization.

It is possible that an operational microwave remote-sensing

system could be designed to have a multi-frequency capability.

This multi-frequency capability could be useful in monitoring

vegetation, if additional information were gained by using

additional frequencies. 	 To investigate this consideration,

frequency decorrelation plots were produced for each linear

polarization.	 Figures 5, 6, and 7 illustrate that significant

additional information may be obtained by operating at two or more

^J
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i I

I

frequencies for HV and VV polarization but that there would be
t

little advantage to such an arrangement for HH polarization.

Anotherossible design consideration for an operationalP	 9	 P

system would he multi-angle capability. In spite of the possible

advantages in remotely sensing soil moisture, Figures 8, 9, and 10

ll	 illustrate that little additional information on vegetation would

be obtained from such an arrangement.

If a microwave system is to be used as a day/night sensorY

then it is important to investigate any possible diurnal
i

vegetation response that may corrupt acquired data or require
i

1	 correction.	 Figure 11 illustrates the results of a diurnal

experiment on wheat.	 Figure 12 is a similar plot for corn, and

LI 	 experiments wereFigure 13 is for sorghum.	 The corn and sorghum ex9	 9	 ^	 9	 P

1	
conducted over a three-day period, as a result of system

f

problems.)	 These plots indicate that the three crops studied 	 i

exhibited minimal diurnal responses. These plots are typical of

the complete data set.

3.3 1980 Backscattering Data

In the 1980 data analysis reported here, the emphasis will be

l	 on the relationships among the various ground-truth parameters and

r l	the relationship betwegn ground truth and selected backscattering

11	
data. All data used in this analysis appear in Appendix A.

Figures 14 and .15 illustrate that the whole-plant water

content expressed in kgjm 2 is highly correlated with the stalk

l	 water content, expressed in kg/m 2 .	 The correlation coefficient

for corn is 0.94 and for sorghum it is 0.97.

;M

37	

n



Y

`11
rle ► N .NI•at	 t	 IMU	 me 94414 	 l	 1MtY	 rN •.er. q►tf.n.•....•....•....•....•....•....•	 ..... ..	 •	 .• ....	 ...	 ....	 ....	 ....	 .... • n '

•.

/	 NNI••,	 •/	 /	 at" NNMN../VN.N.* w11 1
—pop.—.e,	 •	 NNNN•N••.I

;/ NMM••I•.N•MIMN•I•f.I.N11 I• I INM• •IN•M
.It •	 /• Pa.=NI•N

► • • IIM NIN•NI N.••	 N. 11• IN• I•	 II• /N•I'
_rMIN ••N/ N 1	 J

/	 I • 	••..I►.NN	 M	 ►NI /I	 I
/	 •	 N.M I

•	 /• II M N

• / • N•MI	 •
I 
I N /

•t• 	 •

-te	 j	 • /	 j

M	 ^►
'!-Ii:l:IS.e ti:S^i^.i:s.erts.e:te.e	

hNS:ii -

JONG
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Figures	 16	 and	 17	 show	 reasonable	 correlation	 between	 leaf ^l

water	 content	 (kg/m2 )	 and	 stalk	 water	 content	 (kg/m 2 ),	 but	 notes,

the	 spread	 at	 low	 values	 of	 water	 content	 for	 corn	 and	 at

intermediate values	 for sorghum.	 The correlation coefficient 	 for fl

(corn is 0.86;	 for sorghum it	 is 0.84. ,

Figures	 18 and	 19 demonstrate reasonable correlation between 11

leaf	 area	 index	 (m 2 /m 2 )	 and	 stalk	 water	 (kg/m 2 ),	 but	 there	 is	 a

^l
significar,t	 "spread"	 at the lower end for corn and at 	 intermediate

values	 for	 sorghum.	 The	 correlation	 coefficients	 are	 0.80	 for
CJL1

corn and 0.94 for sorghum.

The	 in	 Figures	 20	 21	 indicate that	 theplots	 and	 correlation

between	 leaf water	 (kg/m2 )	 and whole-plant water	 (kg/m 2 )	 are 0.83

for	 corn	 and	 0.89	 for	 sorghum.	 Note,	 however,	 the	 tao distinct

clusters	 of	 data	 points	 for	 corn	 in	 the	 lower	 half	 of	 the	 plot; ^1

1this effect	 is not evident	 n the sorghum plot.

Figures	 22	 and	 23	 illustrate	 leaf	 area	 index	 (m2 /m 2 )	 versus

whole-plant	 water	 content	 (kg/m 2 ).	 For	 corn	 the	 correlation	 is

0.79,	 and	 for	 sorghum	 it	 is	 0.94.	 The two distinct	 clusters	 are

again evident	 n the corn plot.
1^

Leaf	 area	 index	 (m 2 /m 2 )	 and	 leaf	 water	 content	 (kg/m2)

correlate	 at	 a	 level	 of	 0.93	 for	 corn	 (Figure	 24)	 and	 0.90	 for
1

sorghum (Figure 25). The "spread" appears greater for corn than

for sorghum; however, the scales on the plots differ, therefore it

is similar for both crops.

Figures 26 and 27 plot rad-- backscattering in real units

(m2 /m2 ) at 17.0 GHz, VV polarization,and 50° incidence angle

46

^J



47

in I

m

►At[	 13	 11r1N411 eG•TT[ e ►lnfq

1.008

.4754 f
11

;

1

1

1

:

r
1

6PAO

I

21

12•'
IF	 ' 1

.see4 :

'
1	 .1

1	 1

.37Se ►:

t	 t
t	 i	 1

1	 1
1

:
•
•

.
.t 49e4	 :

'

1

t l 	t	 I I •

1)	 1

;AAA : ...	 ...	 ... ..	 .... :

e w e 1,8	 s,e 1.^ 4,e 5.e	 e,e

Cn.- 1.4444 wM1T•^r
, 1 4

I	 2 late
I7 R/V,	 nrG n15^/flr
.A55 n e	 rn a Set	 •r•

I TMI
•4e1t

er7 ^^'
^1^4oi

:.1224T	 .41.05 .214A4	 rn 	 .^71a7.1!• .^7Me
11 •• t.rl r.	 7 r►MST.Ir rr••114 VUtT M IF	 s vn1/lrur

Figure 16. Leaf water content (kg/m 2) versus stalk water content

(kg/m 2) for 1980 corn.

r
0

IN



.f40

.see

.21A

1

ij
P,C[ 13 l MO^M lt,Tf[e KnT1

[.7! j•...•.............. ....•....•..:.•....^...:•....•....•....••

:

1.fs

1.10
M	 T
p

N 1.2s

11
r

	

	 r
1.eo

1i	 1

»^	 ^^ •:e g o	 .ssee'	 .fnoe	 I.o^o	 1..ne	 1,TSe	 ,loe
tne• .eel:	 ^MlTOIK

I	 IT9	 .A Y	 e[CR(<1lTnM LTM(	 e1! M!,

T	 :Slit%	
.
3
3:041 rT• 1 ^O.S.r• .13 1e	 4 1140.3341	 •	 .04 34	 :O^e00

Y,RIAOLF	 f •PMSTAter V[Rl111 V,e1,PLE	 S •1PM1[ ,r

Figure 17. Leaf water content (kg/m 2 ) versus stalk water content
(kg/m 2) for 1980 sorghum.

48



49

V 4

r•ct 12 11Mf1rAn SCATT14 *LOTS

°.11

^ 1
z	 ;

1	 '

11 ,

L	 1	 1	 ^
•	 1	 1I

l	 11
•	 1
•	 1

	

it	 •

ll 1
•	 1	 •

I: w 	i	 1	 1	 1	 1
'	 1	 1 1
•	 l	 i

1.t	 ^	 1	 1	 1	 '

'	 1

1	 •

•	 1	 •

M• ^^ 1OPM1T•L•
corn

	

a l
A
i"n^l^i ::•i ii i: T o 1 ;:me	 •,sii^i

r^aT^rl r 	7 ^•rNaT•lK VIHU11 v•RT& OLF	 t L•I

Figure 18. Leaf area index (m 2/M2) versus stalk water (kg/m 2 ) for

1980 corn.



WWMqW-
-

NC[ It CrOPO RCATT[R PtMT8

+:ts

•:se

t LTs

M^	Re r:... • 	.I1.e	 .1...	 ,,.te	 1....	 1.7^.	 7•tee

an
C0.•1

1.^^

•^I.I 	

CCC3
	 1i

M((
2

1MlT^L n

Y R.3i^7 R^ii311 r. ;.7tt2i^.^•7•I R R[2i^i^

^eRleRl[	 1 ww.te^K VIR^Ii! VeR,^111[	 . Le,

ll

!1

!J

lj

11

Ll

Figure 19. Leaf area index (M 2/M
2) versus stalk water (kg/m 2 ) for

1980 sorghum.

L^

U

50	 ]^



51

V

rww^/,.

PACE to B*D/An 1C&TTQR PLMT1

1.121 •

AM

t:ee^

^	 t
1	 11

	

:tSen :	 1t
w	 1	 11	 ;

C	 ^	 1	 1 t	 tl111
A	 1	 a

.SAO" 1	 1	 Il

	

.	 t	 .t	 1

	

.3750 :	
1	 1 1	 t	 ^	 :

1

.2000 : 1	 1	 t

^	 1	 .

.12Se

	• 	 11	 •

8.000

0.8 
.Sam 

1 : n 1 ^ 	 7.e	 7,0	 e.A	 S.0	 A.0

	

40CAR. IA114	 M/N/t ANT

of ^M	 ST.n[V	 *PC S gTn4 lR	 /1r	 Rr M7.

i !
S S.n^ r• R nrirn.r• ;003 b^A

41044 .^1l1R. .• .134 7..V# :131! t s

	

VARtA0LC	 a MINN.^Mt V/RgI19 V. R 1 04RLE	 1 W/NICAr

Figure 20. Leaf water (kg/m 2) versus whole-plant water (kg/m2)

for 1980 corn.



f

fl

it

a

r	 : n

I'

PACE	 16	 6MOI6O AGATTER PL"T!

x.25	 i••'..+::::•.•.:•::::+.:..•..:.• ....•.::.^::.:+:..: +....+.:..+.

:

I.TS

x

M	 '
i
if

	

I.;S

i t
I	 :

.750	 :	 it121 t

1

.560	 :	 1
t

•	 1	 1
•	 t

1

•
11

t

1

•
•

1	 2	 1

p i p e	 :	 ?	 T
'

.1^b'^Tno
	 ''";.t:AO	

1.33'
+...^:i

tn•^•a^..
;.. +...i.b^..•.

n.op
Mn 	 At 2. 2.A0 x.50	 4.20
Culls	 .6111

PFAR

Y 	 a03j	 !T 0 114	 ><MRti'q	 00

MrPHPLAMY

^ TIj•A1 +Etj^i}.eebl	 r•	 ,^165 ► •Y• .10631 .0161!1
VARTARLE	 A N►Mry ,ArT VCNSIVI VAIITAIILE	 S MPKE1i

`I	

it

Figure 21. Leaf water (kg/m 2) versus whole-plant water (kg/m2)
for 1980 sorghum.

52

t

r	 ,
n

^	 t



e. 2

s:•

L

t	 s:e

t:e

t:2

MR
w^

n
^i

PAGE	 9 NORIA" 1t4TTER IL/1TS

! .R •

e.A •

RR	 •
cAng .

A
7*RS	 h/MPONT

1W4	 IT.AEV.	 RFGRF•11TRN LINE	 " M7.
x	 2.67 R	 1.^OA0 ra .11 1 1^ ♦r• ,6;AS/	 e^et.

I.17^A	 I.SOR? rR .AI,SSII^x ♦ • sSISO	 .AS110
VSRIAPLF	 A M/MILANT VERS111 V40114LE	 a Lot

Figure 22. Leaf area index (m 2/M2) versus whole-plant water

(kg/m 2) for 1980 corn.

1	 ZJ

F
R

rl

1 
U

r
	

53

II



54

PM

4

[aS[ N "W"060 SCATT[O O OTS

6.71 i^....•........^....^....^....^....^....^...

•;eo

S;2S

L ^.SO

t 7,75

7;ee

:; a
t.^e

:no

o; Ao

t^	 ^•77ti^ee 

' 7	 .7Ae	 I:.o^i.33 2.to^^•j^'.•...;:i^'.•.::}.8S'.•.
2.Ae	 7.50	 a.2oSR.	

MPHPLANT
r	 MFa

2N2zz	
!1 f► [Y	 •/C •FASTflM l j NR	 .ffS MS.
^iSISe ri i.544401^ ;f^eia^	

♦ t
vastaAf,^	 wM^^aN1 v[.^f^! vi . tae^[	 . LAt

ni

11

r1

JJ^z

I

I

Figure 23. Leaf area index (m 2/m 2 ) versus whole-plart water
(kg/m 2) for 1980 sorghum.
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Il versus	 leaf	 area	 index	 (m 2 /m 2 ).	 The correlation	 is	 0.69	 for corn

and 0.70 for sorghum.

Leaf	 water	 (kg/m 2 )	 versus	 radar	 backscattering	 ( m2 /m 2 )	 dt

17.0	 GHz,	 VV,	 500	is	 illustrated	 in	 Figures	 28	 and	 29.	 The

correlation is a modest 0.58 for corn and 0.70 for sorghum.

Figures	 30	 and	 31	 provide	 plots	 of	 radar	 backscattering

(m2 /m2 )	 at	 17.0	 GHz,	 VV,	 50°	 versus	 whole-plant	 water	 (kg/m 2).

The correlations are 0.41 for corn and 0.75 for sorghum.

The	 correlation	 of	 stalk	 water	 (kg/m2 )	 with	 radar

backscattering	 ( m2/m2 )	 at	 17.0 GHz,	 VV,	 50°	 is given in Figures 32

and	 33.	 Corn	 correlates	 at	 a	 level	 of	 0.37,	 whereas	 sorghum

correlates at 0.67.

Figures	 34	 and	 35	 illustrate	 the	 correlation	 between	 radar

backscattering	 ( m2/m2 )	 at	 17.0	 GHz,	 VV,	 5no	and	 volumetric	 soil

moisture	 (gm/cm 3 ).	 Corn	 shows	 little	 correlation	 at	 -0.06,	 andI ^

sorghun shows a slight negative correlation at -0.45.

Tables	 6	 and	 7	 summarize	 the	 results	 of	 this	 regression

analysis.

f, To	 summarize,	 it	 is	 evident	 that	 all	 plant	 parameters	 are

correlated	 to	 each	 other.	 This	 indicates	 that	 a	 simple	 model

using	 any	 one	 of	 these	 parameters	 should	 provide	 reasonable

^j

u

results.	 The	 results	 of	 the	 regressions	 against	 backscattering

data	 seem	 to	 indicate,	 however,	 that	 certain	 parameters	 perform

' better,	 depending	 upon	 crop type.	 The	 best	 overall	 single	 para-

meter for a model	 covering both crops is leaf area index.

IAlthough the plant parameters are correlated with each other,

it is reasonable to use more than one parameter in a more complex

t59
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TABLE 6.	 Summary of Regression Analysis for 1980 Corn
I1

i
MPHPLANT MPHLEAF MPHSTALK LAI MSVOL S17VV50

I	 I

MPHPLANT -- 0.83 0.94 0.79 -- 0.41
^l

MPHLEAF 0.83 -- 0.86 0.93 -- 0.58 11

MPHSTALK 0.94 0.86 -- 0.80 -- 0.37 .

LAI 0.79 0.93 0.80 -- -- 0.69
^I

_	 MSVOL -- -- -- -- -- -0.06 (I

t	 I

S17VV50 0.41 0.58 0.37 0.69 -0.06 --

Il

TABLE 1.	 Summary of Regression Analysis for 1980 Sorghum

,i
I

^

MPHPLANT MPHLEAF MPHSTALK LAI MSVOL S17VV50

MPHPLANT -- 0.89 0.97 0.94 -- 0.75 -1

MPHLEAF 0.89 -- 0.84 0.90 -- 0.70

!^MPHSTALK 0.97 0.84 -- 0.94 -- 0.67

LAI 0.94 0.90 0.94 -- -- 0.70

MSVOL -- -- -- -- -- -0.46

S17VV50 0.75 0.70 0.67 0.70 -0.46 --

F-
f
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Cj model,	 since	 each	 additional	 parameter	 adds	 additional

'I
information, which should result in an improved mathematical

description of the process. In addition, although soil moisture

showed little or even a slightly negative correlation with the
^I

radar data, it too should be included in the modeling effort.

1
1	 This analysis indicates that soil moisture is not important over

most of the growing season, but other studies have shown that it

can be quite significant either very early or very late in the

season because of low canopy attenuation during these periods.

f^

I1	 4.0 BACKSCATTERING RESPONSE MODELING

The microwave response to vegetation may be modeled using

various levels of mathematical	 sophistication.	 The most

Celementary approach is via a simple linear regression; a slightly

more complex method involves the use of multi ple linear

regressions. These methods are totally empirical and thus require

C

no knowledge of the details of the target-sensor interaction.

Empirical models are often developed by users of remote-sensing

data . The advantage of empirical models is that they are simple

and delineate a straightforward relationship between the observed

l-	 microwave response and a given ground-truth parameter. The dis-

advantage of empirical models is that they provide little under-

standing of the nature of the target-sensor interaction; moreover,

they often do not provide good fits to the observed data.

(1	

At the other end of the modeling spectrum, one may utilize

LJ	 electromagnetic scattering theory, based upon Maxwell's equations,

to develop a rigorous solution to the target-sensor interaction

U69
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it
problem (Ulaby, 1984a; Fung, 1977, Fung, 1979). The theoretical

models for scattering from a vegetation volume are relatively

complex mathematically and require ground-truth inputs that are

difficult	 (and expensive) . to obtain.	 Theoretical	 models

contribute greatly to the understanding of the physical processes

involved in vegetation scattering, but they are of limited value

to users of remote-sensing data.

A middle-of-the-road approach to vegetation modeling is

represented by the semi-empirical model. A semi-empirical model

is based upon macroscopic physical principles and commonly

measured ground-truth parameters. Such a model is developed with

one or more constants whose value is determined by fitting the

model expression to the observed microwave and ground-truth data

using non-linear regression techni^ues. 	 Semi-empirical models

provide insight into the nature of the target-sensor interaction

and are of value to users of microwave remote sensing data, since

they are based upon easily measured ground-truth parameters. The

semi-empirical approach to modeling is the basis for the material

presented in this section.

4.1 Review of Previous Approaches

One of the first efforts to model the backscattering response

of vegetation was conducted at C'Mo State University (Peake,

1959), where wheat and grass were modeled as a collection of lossy

dielectric cylinders.

In contrast, the initial approach made by the University of

Kansas was to model the vegetation canopy as a homogeneous

ri
ii
lI

L1

I7

II	 ^.
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dielectric slab.	 The dielectric constant of the slab was

calculated from a mixing formula for air and vegetation.

An improved semi-empirical model was subsequently developed

at the University of Kansas by treating the vegetation as a water

cloud (Attema, 1978). Portraying vegetation as a water cloud was

justified by the fact that the dielectric constant of dry

vegetation (Carlson, 1967) differs little from that of air (1.5

vs. 1.0), whereas the dielectric constant of free water is

considerably higher.	 In this model, the vegetation canopy is

modeled as a cloud characterized by its volumetric water

content.	 The assumptions inherent in this model are that the

cloud representing the vegetation consists of identical water

particles uniformly distributed throughout the space according to

a Poisson process, that only single scattering needs to be

considered, and that the only significant variables are cloud I

height and cloud density.	 Cloud density is assumed to be

proportional to the volurr , :tric water content of the canopy. The

cloud model has been tested on numerous data sets including the

1979 and 1980 data acquired near Manhattan, Kansas (Eger, 1982;

Ulaby, 1983) and has yielded satisfactory although not spectacular

(	 results.	 I
The Dutch have extended the basic cloud model to a multilayer

approach (Hoekman, 1982) and have generated improved results. The

Dutch model was tested on a wide variety of crops including beets, 	 r

potatoes, peas, winter wheat, summer wheat, barley, and oats.

A recent approach to semi-empirical modeling, developed

I
primarily for soil-moisture applications, uses the theoretical
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models for surface scattering and the cloud model for the

vegetative cover (Mo, 1984).

Work has continued at the University of Kansas on semi-

empirical modeling and alternate approaches have been developed

that give reasonable fits to the observed data (Ulaby, 1984b;

Allen, 1984).

The obvious questions that arise in this review are: 	 Which

model is best? By what criteria should such models be compared?

As illustrated in Section 3.3, plant parameters are highly

correlated with each other, so it is possible to generate a number

of different semi-empirical	 models using basically similar

physical reasoning. It is common to judge such models by criteria

such as the correlation between observed and predicted data and

the rms error between observed and predicted values.	 These

criteria are not sufficient, however. One essential criterion is

that the canopy attenuation calculated from the model must be

realistic. Since few independent canopy-attenuation measurements

have been reported to date, a major objective of this

investigation is to expand knowledge in this area. 	 Attenuation

data are presented in Section 5.

4.2 A Semi-Empirical Vegetation Model

This section presents an alternative approach to the semi-

empirical modeling of a vegetation canopy designed to bridge the

gap between the semi-empirical approach and the theoretical

approach. The model is derived from recent work at the University

'-1
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Ii
of Kansas.

A theoretical model for scattering by a lossy volume over a

surface via the radiative transfer approach is available in the

literature (Ulaby, 1984a). In the case of a vegetation canopy the

volume is treated as having no definable upper surface. 	 The

result is in the form of a matrix equation that is too complex for

most users of remote-sensing data, including many individuals

whose interest is in semi-empirical modeling.

Although the model is mathematically complex, it consists of

only three basic components, as follows:

o	 0	 0	 0
total	 °surface + °volume + ainteraction'

In general, the surface term is a function of its dielectric

constant and its surface roughness, characterized by the surface

height standard deviation	 a and the surface correlation

length L.	 The three theoretical models used for surface

scattering (depending upon surface roughness) are the Small-

Perturbation Model, the Kirchhoff Scalar-Approximation Model, and

the Kirchhoff Stationary-Phase-Approximation Model. Because the

surface term is negligible over the majority of the growing season

in most vegetation canopy situations, we may avoid the theoretical

models and use a simple relationship for c osurfact:

surface 
3 C(f,e) - LC (f,e) - MSVOL

where C is a constant that is a function of the frequency f and
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the incidence angle e, and L
C
 is the two-way canopy loss that is

also a function of frequency ari incidence an g le, and MSVOL is the

volumetric soil moisture.

The volume term can be simplified greatly by assuming that

losses due to scattering and absorption are polarization

independent, that all scattering within the volume behaves in a

Rayleigh phase manner, and that only single scattering is

considered. Under these conditions, the model simplifies to:

'jI

VV	
°HH = 0.75 w[1 - exp(-2T sece)] core

where w is the single-scattering albedo and T is the optical

depth.	 This is exactly equivalent to the cloud model discussed

previously.

A slightly more complex and accurate model may be obtained by

assuming that the volume may be characterized by its albedo and

optical depth, while including products and higher powers of w

and T. The model is of the form:

^VV = a0
H ' P w(1 + QwT + R(WT) 2)

•(1 - exp(-S T sece)) cose

where P, Q, R, and S are constants. This model was fitted to the

full theoretical model for the single-scattering case using non-

linear regression to obtain the following result (Allen, 1984):
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a0 ' 0
0	 0.742 w(1 + 0.536 WT - 0.237(wT)2)

	

VV	 HH
• (1 - exp( -2.119 T sece)) cose

the rms error associated with this fit was 0.174 dB, and the

correlation coefficient was 0..9;)9. The limits on this model are

8.4 0 49484.5°; 0„14 T42.2; 0.014w40.5.

The interaction term turns out to be negligible for VV

polarization with the above limits but of some significance for HH

	polarization.	 Using techniques similar to those used in

develo ping the volume term, the interaction term becomes (Allen,

1984):

0
aintVV
	

0

a0 ° 1.924 w[1 + 0.924 WT + 0.398(wT)2]
int HH

-[1 - exp( -1.925 T sece)] [exp( -1.372 T1.12 
sece)]

• exp[-0.836(ka) 2 cose IR hh 1 2 cose

where k = 2n/a, a is the surface standard deviation and Rhh is the

Fresnel Reflection Coefficient for horizontal -ilarization. 	 The

rms error associated with this fit was 0.233 dB and the

correlation coefficient was 0.999. The limits of this model are

8.4 0 < 0 4 62.7 0 ; 0.1 4 T 4 2.2; 0.01 4 w 4 0.5; 0.1 4 ka < 0.9.

Although these models are of theoretical interest, they still

do not include ground-truth parameters that easily can be measured

in the field.	 The semi-empirical models to be used in this
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investigation will be derived by postulating relationships between	 I
the alhedo, w and the optical depth, T and ground-truth	 l

I

parameters.	 'I

Optical depth is defined as (Ulaby, 1982)

T	 f 
z2 

K dz	 l•z	 e	 ;1

1

where Ke is the extinction coefficient and dz is an increment of

path length through the vegetation canopy. Extinction in a volume

is the result of scattering and absorption. Sources of extinction

in a vegetation canopy include the leaves, fruit, and stalks. For

the purposes of this model, it will be assumed that the only

significant sources of extinction are scattering from leaves,

absorption by leaves, and absorption by stalks.	 It will be

further assumed that leaf scattering is proportional to leaf area

index, leaf absorption is proportional to leaf water content, and

stalk absorption is proportional to stalk water content. These

assumptions lead to the following form for the optical depth, T:

T = A - LAI + B • MPHLEAF * D • MPHSTALK

where A, B, and D are constants, LAI is leaf area index (m2/1n2),

MPHLEAF is leaf water content (kg/m 2 ) and MPHSTALK is stalk water

content (kg/m2).

Tne albedo is defined as (Ulaby, 1982)



where K s is the scattering coefficient.	 Based on the above

assumptions for optical depth, the albedo is

W , A - LAI
T	 -

j	 The albedo and optical depth are each a function of frequency.

The two-way canopy loss required in the surface term as a function

of optical depth is

L C = exp(-2 T secs) .

The surface term becomes

a°	 - C - MSVOL - [exp(- 2 T sece)J.
surface

The model, to be referred to as Model A, is summarized as follows

for VV polarization:

T = A - LAI + B - MPHLEAF + D - MPHSTALK

A - LAI
W =

T

°VV , 0.742 W(1 + 0.536 WT - 0.237(WT)2)

- (1 - exp ( -2.119 T sec e) ) cos o + C

7'
P

WIV



- MSVOL • exp(-2.0 T sece).

For HH polarization, the following assumptions were made:

T - A • LAI + B • MPHLEAF (no stalk term)

A • LAI
T

(ko) 2 - C

lRhhl2 - D • MSVOL.

To keep the number of constants reasonable, the stalk-absorption

term is not specifically included in this version; furthermore, it

should be negligible for HH polarization. (ko) 2 is assumed to be

a constant because it depends upon surface roughness (which is

essentially constant for the test data). 	 JRhh12 is assumed to be

proportional to soil moisture, since it is a function of

dielectric constant, and dielectric constant increases with

incr.:asing soil moisture.

Model A for HH polarization becomes:

oHH - 0.742 w[1 + 0.536 WT - 0.2'j7( WT )2]

• [1 - exp(-2.119 T secs)] cose

+1.924 w [1 + 0.924 WT + 0.398(10T)2f
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• [1 - exp(-1.925 T sece)j

• [exp(-1.372 
T1.12 

sec6) J

	

[exp(-0.836 • C	 cose)j

^'	 • D • MSVOL • cose

r	
+E • MSVOL • exp(-2 T sece).

L^

r$

	 Model A was tested extensively using VV polarization on the

1980 data set describedreviousl . The model was also tested

	

P	 Y

using HH polarization at 17.0 GHz. The model was fitted to the

backscattering and ground-truth data using the BMDP-AR non -linear

regression routine (Dixon, 1979). The constants in the model were

r	 determined by combining all fields of either corn or sorghum. The

model was then used to generate predicted co values for each

individual field.	 These co values were compared to observed

values by calculating the correlation coefficient (r) between

predicted and observed data as well as the rms error (e).

Additionally, plots of predicted and observed data were

analysis aregenerated.	 All of the relevant data for this anal9	 Y

available in Appendix A.
I

Table 8 summarizes the Model A constants at 8.6 GHz, 13.0

LGHz, 17.0 GHz, and 35.6 GHz for corn. In addition, constant

C'_ - D'...
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TABLE 8. Model A Constants for 1980 Corn

Crop	 Frequency (GHz)	 Polarization	 A	 8	 C	 0

Corn 8.6 VV 0.09 0.83 1.05 0.09

Corn 13.0 VV 0.14 1.35 1.32 n.03

Corn 17.0 VV 0.15 1.26 0.97 0.03

Corn 35.6 VV 0.14 0.50 0.88 0.14

Corn 10.2 VV 0.11 1.02 1.15 0.07

(interpolated)

^i

i



n

values were obtained by interpolation for 10.2 GHz for use in a

later section (4.5) on model attenuation.

The correlation between observed and model-predicted corn

data is summarized in Table 9,

Table 10 presents the rms errors in dB for each corn

field/frequency combination.

Figures 36, 37, 38, and 39 are plots of c o predicted versus

c° observed for a selected corn field at each of the four

frequencies utilized in the study.

Figure 40 illustrates the importance of the soil moisture

term as compared to the vegetation term for a selected corn field

at 8.6 GHz. This term is of some importance early in the growing

season, of minor importance throughout most of the season, and

quite important at the very end of the measurement period. It

should be noted that 1980 was a very hot and dry year, and soil

moisture values were generally quite low (Appendix A). A wetter

growing season would have increased the contribution of the soil

moisture term.

Table 11 summarizes the Model A constants obtained for 1980

sorghum. Table 12 illustrates the co^ --lation coefficients, and

the rms errors are tabulated in Table 13.

f.	 Figures 41, 42, 43, and 44 graphically illustrate the

observed- versus- predicted backscattering response for 1980

sorghum. In general, the model provided a sligW y inferior fit

for sorghum as compared to corn.

Model A for HH polarization includes the soil-vegetation

interaction term. This term is negligible for VV polarization,

1	
81



TABLE 9. Model A Correlation Coefficients for 1980 Corn

Crop
i

Frequency (GHz) Polarization rl r2 r3

j

Corn 8.6 VV 0.87 0.87 0.86
ft

Corn 13.0 VV 0.93 0.69 0.92

Ccrn 17.0 VV 0.93 0.78 0.94

Corn 35.6 VV 0.96 0.82 0.95
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TABLE 10. Model A RMS Errors for 1980 Corn

Crop	 Frequency (GHz)	 Polarization	 el (dB)	 e2 (dB)	 e3(dB)

Corn 8.6 VV 0.66 0.78 0.93

Corn 13.0 VV 0.45 0.92 0.69

Corm 17.0 VV 0.66 0.96 0.69

Corn 35.6 VV 0.63 0.88 0.58

i
r
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Figure 36. Observed versus predicted seasonal response for 1980
corn at 8.6 GHz, VV polarization, 500 ; correlation is
0.87,and rms error is 0.66 dB.
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Figure 37. Observed versus predicted seasonal response fcr 1980
corn at 13.0 GHz, VV polarization, 50°; correlation is
0.93, and rms error is 0.45 dB.
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Figure 38. Observed versus predicted seasonal response for 1980
corn at 17.0 GHz, VV polarization, 500 ; correlation is
0.94, and rms error is 0.69 dB.
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Figure 39. Observed versus predicted seasonal response for 1980
corn at 35.6 GHz, VV polarization, 50°; correlation is
0.95,and rim error is 0.58 dB.
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Figure 40. Comparison of model soil-moisture term to model
vegetation term and total predicted 0 for 1980 corn
(Cl) at 8.6 GHz, VV polarization, 500.
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TABLE 11. Model A Constants for 1980 Sorghum

Crop	 Frequency (GHz) Polarization 	 A	 B	 C	 0

Sorghum 8.6 VV 0.13 1.61 0.00 0.14

Sorghum 13.0 VV 0.15 1.45 0.00 0.15

Sorghum 17.0 VV 0.14 1.02 0.00 0.21

Sorghum 35.6 VV 0.11 0.33 0.32 0.40

I
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TABLE 12. Model A Correlation Coefficients for 1980 Sorghum	 i

Crop Frequency (GHz) Polarization rl r2

i

r3

Sorghum 8.6 VV 0.95 0.41 0.54

Sorghum 13.0 VV 0.91 0.65 0.80

Sorghum 17.0 VV 0.95 0.61 0.78

Sorghum 35.6 VV 0.88 0.72 0.90

i

1	 Y
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TABLE 13. Model.A RMSS Errors for 1980 Sorghum

Crop	 Frequency (GHz)	 Polarization	 el (dB) e2 (d6) e3(dB)

Sorghum 8.6 VV 1.10 1.36 1.08

Sorghum 13.0 VV 1.07 1.19 0.78

Sorghum 17.0 VV 0.95 1.40 0.90

Sorghum 35.6 YV 1.16 1.26 0.63

91 
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Figure 41. Observed-versus-predicted seasonal response for 1980
sorghum at 8.6 GHz, VV polarization, 500 ; correlation
Is 0.95,and rms error is 1.10 dB.
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Figure 42. Observed-versus- predicted seasonal response for 1980
sorghum at 13.0 Gliz, VV polarization, 50°; correlation
is 0.91,and rms error is 1.14 dB.
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Figure 43. Observed-versus-predicted seasonal response for 1980
sorghum at 17.0 GHz, W polarization, 50°; correlation
Is 0.95, and rms error is 0.95 dB.
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Figure 44. Observed-versus-predicted seasonal response for 1980
sorghum at 35.6 GHz, VV polarization, 50°; correlation
is 0.90,-nd rms error is 0.63 dB.
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but is normally of some significance for HH polarization;

therefore, it was included in the model. The model also differs

from the form for VV polarization in that a stalk -absorption term

was not specifically included. This term was eliminated to reduce

the number of constants in the model, which can be justified on

the basis that a horizontally polarized wave should undergo little

absorption by a vertically oriented stalk.

Table 14 summarizes Model A constants for HH polarization at

17.0 GHz, which was the only frequency studied. 	 Table 15

tabulates the correlation coefficients, and Table 16 lists the rms

errors. The only crop considered at HH polarization was corn.

Table 17 compares the magnitude of the volume, interaction,

and soil (surface) terms for 17.0 GHz with HH polarization. It is

notable that both the soil and the interaction terms are 15-20 dR

below the level of the vegetation terms, which indicates that they

are of minimal significance. It should be noted, however, that

1980 was a very hot and dry year and that these levels are

depressed compared to more moist conditions. Further, the soil

term is important very early in the growing season when there is

minimal biomass and late in the season after vegetation has dried.

Figure 45 illustrates the seasonal response of observed

versus predicted backscattering data at 17.0 GHz with HH

polarization. The fit of these data is similar to that obtained

for VV polarization.

Table 18 summarizes the individual contributions to the

optical depth term by leaf scattering, leaf absorption and stalk

absorption, as well as total optical depth and albedo for a

`I

d

^i
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TABLE 14.	 Model A Constants for 1980 Corn

C
at 17.0. GHz, HH Polarization

r'.

Crop Frequency (GHz)	 Polarization	 A R C	 n F

C

Corn 17.0	 HH	 0.11 1.2a 0.00	 0.86 0.86

L!
TABLE 15.	 Model A Correlation Coefficients for

1980 Corn at 17.0 GHz, HH Polarization

L

Crop Frequency (GHz)	 Polarization rl r2	 r3

C Corn 17.0	 HH 0.87 0.78	 0.93

C '
TABLE 16.	 Model A RMS Errors for 1980 Corn at

17.0 GHz, HH Polarization

C-
Crop Frequency (GHz)	 Polarization el(dR) a?(dR) e3(dR)

Lit

Corn 17.0	 HH 0.76 0.93 0.64

L
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TABLE 17. Comparison of the Volume, Interaction,
and Soil (Surface) Terms at 17.0 GHz,

VV Polarization

Frequency

	

Date	 Crop	 (GHz)	 Polarization	 avol (dB)	 aint (dB)	 coso il(dB)

	

170	 Corn	 17.0	 HH	 -8.9	 -25.7	 -23.6

	

204	 Corn	 17.0	 HH	 -7.5	 -24.8	 -27.7
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Figure 45. Observed-versus-predicted seasonal res ponse for 1980
corn at 17.0 GHz, HH polarization, 500 ; correlation is
0.93, and rms error is 0.64 dB.
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TABLE 18. Contribution to Optical Depth by Leaf
Scattering, Leaf Absorption, and Stalk Absorption;
Total Optical Depth and Albedo for Corn Field C3

on Date 204, U:I ng Model A

Frequency
Crop (GHz) Polarization

Tis T-ta
Tsa	 T	 w

Corn 8.6 VV 0.39 0.71 0.28	 1.38	 0.28

Corn 13.0 VV 0.59 1.17 0.09	 1.85	 0.32

Corn 17 0 VV 0 63 1 09 0 09	 1 81	 0 35	 !

Corn	 35.6	 VV	 0.60	 0.42	 0.44	 1.46	 0.41

p:
F '^	 100



n=

selected field of 1980 corn at mid-season (Day of Year [also

referred to as Day, Date, or Julian Date] 204). Figure 46 is a

plot of the seasonal variation in optical depth and albedo for a

different 1980 corn field. . Note the "plateau" region of the

optical depth and note that the albedo remains constant at

approximately 0.3 until the end of the growing season. All data

are for VV polarization.

Table 19 provides a tabulation identical to Table 18, except

that it is for sorghum on the same mid-season date (204). These

data are also for VV polarization.

	

=	 4.3 Additional Semi-Empirical Models

Although Model A is attractive because it can be tied

directly to a theoretical model based upon electromagnetic

scattering theory, other semi-empirical approaches can yield

good fits.

The following model, developed at the University of Kansas

(Allen, 1984), will be referred to as Model R:

Cy °, A[1 - exp(-B • LAI/h)] [1 - exp(-2 • E 	 LAI sece)] cose + C

L.

	

^-	 MSVOL[exp(-2 • E • LAI sece)] + D

• MPHSTALK[exp(-2 • E • LAI sece)]

where h is the canopy height.

This model was tested on the 1980 corn data and produced a

l ^!
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Figure 46. Seasonal variation of albedo and optical depth for
1980 corn (C1) at 8.6 GHz, VV polarization, 50°.
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TABLE 19. Contributir	 , Optical Depth by Leaf

Scattering, Leaf Absorpti.041, and Stalk Absorption;

Total Optical Depth and Albedo for Sorghum Field S1

on Date 204, Usi ng Model A

Frequency
Crop	 (GHz)	 Polarization	 T LS	 T ita	 T sa	 T	 ^'

Sorghum 8.6 VV 0.67 1.64 0.25 2.56 0.26

Sorghum 13.0 VV 0.78 1.73 0.27 2.51 0.31

Sorghum 17.0 VV 0.72 1.41 0.37 2.13 0.34

Sorghum 35.6 VV 0.56 1.05 0.71 1.61 0.35

103



error.	 Table 20 summarizes the model constants, and Table 21

tabulates the correlation coefficients and rms errors for all

fields combined. Note that this model is primarily driven by leaf

area index, although a stalk term is included.

A model developed at NASA/JPL (Paris, 1984) was also tested

using the 19SO-corn data. This model introduces a new variable,

N, i.e., the number of leaves per plant, into the model expres-

sions. N is determined from the growth stage of the crop and is

tabulated in Appendix A along with the other corn ground truth.

Model C is

B
Qo,	 A • LAI • N	 (1 - exp(-2 - C • MPHLEAF • sece)]

2 - MPHLEAF - sece

+ (D + E - MSVOL] - (exp(-2 - C - MPHLEAF - sece)].

Table 22 summarizes the constants obtained by fitting the

model to the 1980 corn data, and Table 23 gives the correlation

coefficients and rms errors for all fields combined. Again, the

model provides a good fit to the 1980 data.

In an effort to improve Model C, a stalk term was added to

the expression, which will be referred to as Model D:

Qo ,	 A - LAI B • N	 [1 - exp(-2 • C	 MPHLEAF - sece)]
2 - MPHLEAF secs

+ D • MSVOL • [exp(-2 • C • MPHLEAF • sece)]

+ E - MPHSTALK - (exp(-2 - C - MPHLEAF - sece)].
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C,? TABLE 20.	 Model B Constants for 1980 Corn

Frequency
Crop (GHz) Polarization A	 B C n E

r
^r

Corn 8.6 YV 0.23	 2.05 0.19 0.03 0.45

Corn 13.0 VV 0.28	 2.09 0.18 0.04 0.47

^.
Corn 17.0 VV 0.31	 2.36 0.23 0.03 0.41

^f

Corn 35.6 VV 0.40	 1.35 O.1J 0.04 0.43

105
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TABLE 21. Model B Correlation Coefficients

and RMS Error for all Fields Combined for 1980 Corn

Frequency
Crop 	 (GHz)	 Polarization	 r.,	 r.,	 e(dR)

corn 8.b VV 0.85 0.94 0.89 0.71

Corn 13.0 VV 0.93 0.89 0.94 0.68

Corn 17.0 VV 0.91 0.88 0.91 0.73

Corn 35.6 VV 0.94 0.91 0.93 0.61



TABLE 22. Model C Constants for 1980 Corn

Crop
Frequency

(GHz) Polarization A B C 0 E

Corn 8.6 VV 0.11 1.03 0.68 0.07 0.04

Corn 13.0 VV 0.11 0.94 1.10 0.07 0.00

Corn 17.0 VV 0.18 1.25 2.17 0.01 0.23

Corn 35.6 VV 0.17 1.08 1.17 0.07 0.00

r

r

r
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TABLE 23. Model C Correlation Coefficients

and RMS Error for all Fields Combined for 1980 Corn

Frequency
Crop (GHz) Polarization rl r2 r3 e(d8)

Corn 8.6 VV 0.81 0.86 0.83 0.81

Corn 13.0 YV 0.89 0.82 0.90 0.85

Corn 17.0 VV 0.93 0.86 0.94 0.89

Corn 35.6 VV 0.93 0.87 0.91 0.73
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j
Note also that the soil-moisture term has been simplified in this

model to reduce the number of constants.

i
Table	 24	 illustrates	 the	 constants	 derived	 by	 fitting	 this

model	 to	 the	 1980	 corn	 data, and	 Table	 25 gives	 the correlation

^f all	 fields combined. 	 A comparisonoefficients	 and rms error	 or a	 p

of Tables 21 and 23 indicates that the addition of the stalk term

{{
l

improves an already good fit to the data.

4.4	 Model Comparisons

Table 26 provides a comparison of the average correlation for

all	 fields	 and	 frequencies	 and	 the	 average	 rms	 error	 for	 all

r
fields	 and	 frequencies	 for	 the	 four	 models	 studied.	 Although

1 there	 are	 slight	 differences	 in	 performance,	 the	 results	 are

( nearly	 identical.	 As	 previously	 indicated,	 this	 is	 a	 result	 of

the high	 correlation	 between the various ground—truth parameters

I
I used in these models.

The four models must be compared on the basis of the canopy

attenuation they predict,	 however,	 before they can be considered

valid.	 Canopy attenuation is the subject of the next section.

4.5 Canopy Attenuation from Models

The four models discussed in this section each have a two-way

l	 canopy attenuation of the form

LC = exp(-2 T secs)

F]

C,
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TABLE 24. Model 0 Constants for 1980 Corn

Frequency
Crop	 (GHz)	 Polarization	 A	 B	 C	 D	 E

Corn	 8.6	 VV	 0.10	 1.05	 1.49	 0.26	 0.06

,I

Corn	 13.0

Corn	 17.0

VV 0.11 0.97 1.67 0.24 0.07

VV 0.12 1.00 1.59 0.31 0.07

Corn	 35.6	 VV	 0.17	 1.11	 1.79	 0.16	 0.08
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TABLE 25. Model 0 Correlation Coefficients

and RMS Error for all Fields Combined for 1980 Corn

Frequency
Crop (GHz) Polarization r1 r2 r3 e(dR)

Corn 8.6 VV 0.83 0.90 0.85 0.76

Corn 13.0 VV 0.91 0.85 0.85 0.91	 +^

Corn 17.0 VV 0.93 0.86 0.91 0.69

Corn 35.6 VV 0.94 0.92 0.92 0.67	 r
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TABLE 26. A Comparison of the Average Correlation

and RMS Error for the Four Models Studied

Model A	 Model B	 Model C	 Model D

Correlation (r)	 0.88	 0.91	 0.88	 0.89	 k

RMS Error (e)	 0.14 dB	 0.68 dB	 0.82 dB	 0.16 dR

i
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n

or in dB,

LC (dB) - 4.343 (2 T sec 8).

The models differ in their expressions for the optical depth, T,

however:

Model A: T - A - LAI + B - MPHLEAF + D - MPHSTALK

Model B: T - E - LAI

Model C: T - C - MPHLEAF

Model D: T - C - MPHLEAF .

The constants are derived from fitting the models to the data, and

thus the values for "C" in Models C and D differ.

Table	 27	 provides	 a	 comparison	 of the two-way	 canopy

j	 attenuation	 calculated	 from the	 four models for a	 selected	 1980
I

corn field on a mid-season date (204).	 Note that Models A, B, and

`	 D are in reasonable agreement with respect to the general	 level	 of

attenuation over the frequency range considered but that Model	 C

1.	 predicts a much	 lower attenuation, except	 at 17.0 GHz where it	 is

similar to the others.L
The	 only	 way	 the	 appropriateness 	 of	 these models,	 each	 of

which	 provides a	 good	 fit	 to	 the data,	 can be judged	 is through

comparison to direct canopy attenuation data. Although canopy
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TABLE 27. Comparison of Two-May Canopy Attenuation far

Corn Field C3 on Date 204, Calculated from

Models A, B, C, and 0

Frequency

Crop (GHz) Polarization LA (dB) LR (d8) LC(d8) LO(d,)

Corn 8.6 VV 18.6 25.8 7.8 17.3

Corn 13.0 VV 25.0 26.9 12.8 19.5

Corn 17.0 VV 24.4 23.5 25.3 18.2

Corn 35.6 VV 19.7 24.6 13.6 20.8
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attenuation data are extremely limited, data on corn at 10.2 GHz,

YY polarization are available (Ulaby, 1984c).

The 10.2-GHz data were taken in :982, which was a very wet

year; therefore, the comparison to 1980, which was a very dry

	

year, is not totally appropriate. 	 In addition, data were not

taken at 10.2 GHz in 1980, so model constants had to be

interpolated. Another difference between 1980 and 1982 was canopy

height; specifically, the 1982 corn was taller than the 1980 corn,

due to more favorable moisture conditions.

Figure 47 provides a plot of the canopy attenuation

calculated from Model A on a selected field of 1980 corn, over a

growing season. The attenuation values have been normalized to

dB/meter by dividing by the canopy height. The plot also includes

the direct attenuation measurements from 1982, again normalized to

dB/meter by dividing by the canopy height.

The agreement between these two curves is quite reasonable

during the early part of the growing season, considering that they

represent different fields during different years and were subject

to different environmental conditions. The attenuation difference

during the last part of the growing season, while not excessive,

is most likely due to the fact that the 1982 corn remained green

(and thus more moist), whereas the 1980 corn "browned-out" due to

the hot, dry summer.

This comparison would seem to indicate that Models A, 8, and

0, which exhibit similar attenuation behavior, are reasonable,

whereas Model C is not, because it predicts an unrealistically low

canopy-atter •;ation value.

U	
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Comparing the four models, Model C is the only model without

a stalk attenuation term, which may account for its relatively

poor performance with respect to attenuation. 	 Model D is

essentially the same as Model . C with the addition o f a stalk term,

and it performs well.

The ideal verificatioi for this set of models would be direct

attenuation data at the four frequencies of interest, with a leaf

defoliation experiment to check the various components of

attenuation suggested by Model A.

A complete set of canopy attenuation measurements as a

function of frequency, polarization, and incidence angle for

various crops and various growth stages (and moistures) would be

an extremely valuable tool for individuals interested in the

development of semi-empirical and theoretical vegetation models.

Such a data set would also aid greatly in understanding the nature

of microwave propagation and backscattering in vegetation.

Although it may take several years to accumulate all of the

desired data, the remainder of this rep( , rt documents and attempts

to model the first complete set of attenuation measurements as a

function of frequency, angle, and polarization.
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5.0 ATTENUATION DATA ANALYSIS

As previously discussed in this report, the only vegetation

attenuation measurements to date have been very limited in

scope. Data on vegetation attenuation are essential to validate

semi-empirical and theoretical models and to provide increased

understanding of microwave propa;ation and backscatter. 	 The

measurements reported here constitute the first complete set of

attenuation measurements on vegetation as a funct;on of frequency,

polarization, and incidence angle. The crops chosen for the study

were two economically important crops: wheat and soybeans. In

addition to their economic importance, these two crops are of

scientific interest because of their contrasting structures.

Wheat is dominated by its vertical stalks, whereas soybean plants

are dominated by their leafy structure. 	 The frequency range

chosen for the study was dictated by the microwave remote sensing

systems planned for orbit in the late 1980's and early 1990's;

thus L-, C-, and X-bands were chosen. The polarizations chosen

for the study were the two linear polarizations, HH and VV,

although some limited measurements were made at HV and VH.

The angles of incidence chosen for the study included a low angle

(160 or 240 ), because of soil-moisture monitoring applications as

well as for scientific interest, and a higher angle (52 0 or 560)

to correspond to likely vegetation-monitoring applications as well

as for scientific interest. The angles of incidence chosen were

also dictated to some extent by the physical conditions prevailing

at the test sites.
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^!	 The attenuation data presented here consist of a number of

r

T-standard data sets, as well as special data sets including cross-

`	 polarized	 attenuation	 measurements,	 a	 wheat	 decapit:,tion

experiment, and a soybean defoliation experiment. The attenuation

data will be modeled in Section 6.

5.1 Calibration, Accuracy, and Precision

As previously discussed, the attenuation data were acquired

by pulling a receiver on a sled in synchronism with boom-truck-

mounted transmitters. The data were captured on a chart recorder

and later digitized and averaged. Figures 48, 49, 50, and 51 are

tracings of actual recordings. These figures include data on both

crops, wheat and soybeans, and provide samples of data at each of

the frequencies, polarizations, and angles used. These recordings

were selected as constituting a representative sample; the

remaining ones were similar in nature. The figures indicate that

even at maximum attenuation, the received signal was In dR to

20 dR above the noise floor. While this noise margin is typical,

in a few cases it dropped to approximately 5 dR. None of she

recordings indicated attenuation saturation due to receiver noise.

The attenuation measurements were calibrated by the simple

procedure of referencing all attenuation to the power measured

under free-space conditions. Free-space conditions were created

by clearing the vegetation from each end of a canopy strip.

Sources of error in this procedure include initial boresight error

i	 from transmitter to receiver, drift off boresight during

horizontal travel, short-term transmitter power fluctuaiiOns, and

i19
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variations in connector loss due to vibration. In addition, error

is associated with digitization and determination of the free-

space reference line. It is estimated that the accuracy of these

measurements is approximately 10%.

The attenuation recordings were digitized at intervals

corresponding to approximately 14 cm in length. 	 This interval

resulted in approximately 45 samples for the 6-meter canopy-strip

length. In many instances, 90 or more samples were obtained by

repeating the measurement. The sampling interval was in excess of

the Nyquist rate necessary to accurately reproduce the somewhat

periodic waveforms. The attenuation data in Appendix B include

a mean attenuation value and the limits for the 99% confidence

interval about that mean.	 The confidence interval limits were

calculated from

k - s c
c 3n

where ± kc are the confidence -interval limits, s is the sample

standard deviation, and n is the number of samples.	 c is a

constant obtained from the t-distribution, depending upon the

confidence level	 chosen.	 This procedure is valid for

distributions that are normal with unknown variance or for other

distributions with unknown variance with a sufficiently large

number of. samples.	 In this case the distributions are

approximately normal, and even if they were not, the number of

samples is large enough to ensure the validity of the procedure.
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The 99% confidence-interval limits ranged from t 0.1 dB, usually

at L-band, to ± 2.4 dB for some X-band measurements.

In summary, the experimental procedure used to acquire these

attenuation data produced an 4ccuracy and precision comparable to

the accuracy and precision found in published backscattering data.

5.2 Angular, Polarization, and Frequency Response of Wheat Data

The wheat measurements were conducted at two widely separated

l	
sites on the same privately owned wheat field. Site W1 was used

l	 for the frequency, angular, and polarization studies, whereas

Site W2 was used for the special decapitation experiment reported

in Section 5.4. All wheat attenuation data and associated ground

truth are available in Appendix B.

Table 28 provides a summary of wheat attenuation measurements

at Site W1 on Dates 135 and 158. 	 The attenuation values are

expressed in dB per meter to allow valid comparisons between the

two sets of angular data, as well as comparisons between data on
i

dates characterized by different canopy heights. The path length

used in these computations is simply the slant-length through the

canopy and is tabulated in Appendix B.

Figure 52 is a plot of the attenuation data in dB per meter

as measured on Date 135. The values of attenuation at 56 0 versus

those at 240 are noteworthy.	 The difference is not due to a

difference in path length, since, the data have been normalized to

dB per meter.

1—i
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TABLE 28. Summary of Wheat Attenuation Measurements

at Si to W1

Frequency (GHz) Polarization Angle (°)

One-Way Canopy

Date 135

Loss	 (dB/m)

Date 158

1.55 VY 24 2.0 1.1
1.55 HH 24 2.5 1.1

4.75 VV 24 2.3 4.7
4.15 HH 24 3.3 3.2

10.20 VV 24 9.4 9.4
10.20 HH 24 7.0 8.1

1.55 VV 56 6.6 3.7
1.55 HH 56 2.1 1.4

4.75 VV 56 24.3 9.4
4.75 HH 56 8.3 3.2

10.20 VV 56 31.9 19.0
10.20 HH 56 28.8 14.1



Whet

E

M

Cw
V
Cw

3s

30

s

0
S	 2	 3	 4	 s	 8	 7	 8	 8	 10	 ti

Frequency (GHz)

Figure 52. Wheat attenuation measurements on Date 135.
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Also noteworthy is the large difference between HH and VV 	 ►

polarization at 560 . The difference is roughly three times at L-

and C-band but is almost equal at X-band. 	 Note also that the

attenuation remains relatively	 flat at 24°, especially from

L-band to C-band. Figure 53 illustrates identical measurements on

Date 158. By Date 158, the wheat plants had dried as compared to

Date 135, and the leaf area index was less than one-half of its

value on Date 135.	 The 24° attenuation value-q were roughly

comparable on both dates, but the 56° values on Date 158 were

depressed considerably from those on Date 135. Figure 54 compares

the 56 0 data on these two dates.

5.3 Angular, Polarization, and Frequency Response of Soybean Data

The soybean measurements were conducted at a single site on a

privately owned field. Site S1 was used for frequency, angular,

and polarization studies and was also used for the special

defoliation experiment reported in Section 5.4. 	 All soybean

attenuation data and associated ground truth are available in

Appendix B.

Table 29 provides a summary of soybean attenuation

measurements at Site S1 on Date 181 and Date 188. As with wheat,

the attenuation values are expressed in dB per meter. The path

length used in the computations is available in Appendix B.

Figure 55 is a plot of the soybean attenuation data on

Date 181, while Figure 56 plots identical measurements on

Date 188. Both plots present attenuation data in d6 per meter.

The data taken on Date 181 illustrate increasing attenuation with
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Figure 53. Wheat attenuation measurements on Date 158.
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Figure 54. A comparison of wheat attenuation on Oates 135 and 158
at 560 incidence angle.
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TABLE 29. Summary of Soybean Attenuation Measurements
at Site Si

.) f

iOne-Way Canopy loss	 (dR/m)

Frequency (GHz)

i

Polarization Angle	 (°) Date 181 nate 188

I

1.55 VV 16 3.3 4.8
1.55 HH 16 1.1 1.5

4.75 VV 16 5.8 7.0
4.75 HH 16 4.4 6.7

(.	 10.20 VV 16 9.6 14.4
10.20 HH 16 10.2 20.2

1.55 VV 52 2.7 3.3
1.55 HH 52 0.7 0.9

4.75 VV 52 14.3 12.7
4.75 HH 52 5.7 4.0

10.20 VV 52 19.7 16.0
I	 10.20 HH 52 13.3 15.5
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Figure 55. Soybean attenuation measurements on Date 181.
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frequency and minimal angular difference between 16 ° and 52%

except for VV data at C-band and X-band. Note again that the

difference in path length is not reflected in these plots, since

they are in d8 per meter. The data illustrated in Figure 56 are

generally similar to those in Figure 55, except for X-band, HH,

16 0 , which is nearly twice the value measured approximately one

week earlier. This data point should be considered questionable.

although no errors were apparent in either the measurement process

or the digitization. The ground truth as tabulated in Appendix R

is similar for both dates.

5.4 Special Attenuation Experim,3nts

In addition to the primary objective of obtaining data on the

frequency, polarization, and angular attenuation characteristics

of vegetation, a number of special experiments were conducted at

the two test sites. These experiments included cross-polarized

attenuation measurements, a wheat decapitation experimer.;, and a

soybean defoliation experiment.

Cross-polarized data were taken on wheat on three dates. On

Date 135, VH data were taken at C-band, 560 , at site W1; on

Date 150, VH and HV data were taken at C-band, 560 , at site 142;

and on Date 158, X-band HV data were taken at 56 0 , at site W1. In

referring to cross-polarized measurements, the first letter refers

to the transwAt polarization, whereas the second refers to receive	 r

polarization. HV polarization therefore means that a horizontally

polarized EM wave was transmitted and was subsequently received

with a vertically polarized antenna. The cross-polarized
1
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0
F measurements are tabulated in Table 30. The data in Table 30 are

presented in dB per meter.	 The data show the interesting

characteristic that cross-polarized attenuation is lower than the

attenuation measured for like polarization in all cases.	 This

characteristic is most likely the result of depolarization by the

canopy, which partially compensates for the attenuation by the

canopy. Although these data are of theoretical interest, it is

not apparent that they are of any practical value.

A special wheat-head decapitation experiment was conducted at

Site W2. This experiment, conducted at a 56° angle of incidence,

consisted of attenuation measurements at each frequency and

polarization for a normal strip of wheat and for the same strip

with the heads sheared off (to obtain a uniform height, some stalk

below the head was also removed). The data for this experiment

are tabulated in Table 31. The data indicate that decapitation

reduced attenuation in. all but the case of L-band, VV (which

showed a slight increase).	 However, the decapitation process

reduced the average canopy height from 1.11 m to 0.10 m and the

path length from 1.59 m to 0.86 m. 	 Table 31 also gives

attenuation expressed in dB per meter. When the attenuation is

expressed in this fashion, an increase is observed following

decapitation. Although this result may seem puzzling at first, an

examination of the wheat canopy reveals that the upper portion

(containing the head) is less dense than the lower portion

(containing leaves) at this growth stage. The removal of the less

dense head portion of the canopy leaves only the lower section,

which provides greater attenuation when expressed on a per-

`	 135



TABLE 30. Summary of Cross-Polarized Measurements
of Wheat and Corresponding Like-Polarized

Measurements

Frequency One-Way Canopy Loss (dB/m)

(GHz) Polarization Angle	 (°) Date 135 Date 150 Date 158

4.75 VV 56 24.3 11.3 --
4.75 HH 56 8.3 1.9 --
4.75 HV 56 -- 0.3 --
4.75 VH 56 4.5 0.8 --

10.20 VV 56 -- -- 19.0
10.20 HH 56 -- -- 14.1
10.20 HV 56 -- -- 10.4

I
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meter basis.	 It should be noted that this experiment was

conducted at a growth stage during which the head was still quite

moist (82.2% H20) and that different results might have been

obtained after the head had dried and hardened.

A special soybean defoliation experiment was conducted at

Site S1. This experiment, conducted at a 52° angle of incidence,

consisted of a "standard" set of attenuation measurements for the

non-defoliated canopy strip and a second set of measurements with

all leaves removed from approximately one-half of the length of

the canopy strip. 	 Figure 57 is a recording of the partially

defoliated strip at X-band, HH polarization. Note the dramatic

decrease in attenuation for the defoliated section. Table 32 is a

tabulation of the soybean defoliation data. 	 Note that for VV

polarization, the removal of the leaves made almost no difference

in the attenuation value measured, thus indicating that they are

of minor importance.	 At X-band, VV, however, the leaves do

contribute to the attenuation, as the data illustrate.	 For HH

polarization,	 the leaves appear to be very significant

contributors to attenuation at all frequencies but especially at

X-band. The results of this experiment can be explained by the

predominantly horizontal orientation of the soybean leaves and the

predominantly vertical orientation of the primary stem; the

secondary stems tend to be oriented approximately randomly. The

results of this experiment are significant in that they

demonstrate that leaf and stem characteristics may be separated by

means of microwave measurements.
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6.0 ATTENUATION MMELIN6

The attenuation measurements presented in the previous

section help to fill a void in experimental data.	 These

measurements will assist those involved in modeling the

backscattering response in order to develop and validate both
f,y.

semi-empirical and theoretical models. These measurements can

also contribute to the understanding of the nature of microwave

propagation through a vegetation canopy. 	 The most effective

means of gaining this understanding is to postulate mathematical

models and to check their output against measured attenuation

data. Reasonable agreement between observed and predicted data

is a good indication that a model describes the physical process

adequately.

The results presented in this section will be rough

iapproximations only, not simply because of experimental error,

or because of the possible inapplicability of the models but

because there is a lack of dielectric data on the two crops

studied.	 Dielectric data on other vegetation have, however,

been greatly expanded recently (Ulaby, 1984c) and useful

estimates of the dielectric properties of wheat and soybeans may

be derived from these measurements.

is

6.1 Dielectric Properties of Vegetation

A vegetation canopy is a dielectric mixture consisting of
!

discrete dielectric inclusions such as leaves, stalks, fruit,

Cetc., distributed in a host nwterial such as air. 	 Since the

dielectric inclusions are often comparable to a wavelength in

141



the microwave portion of the spectrum, the canopy is an

inhomogeneous anisotropic medium. 	 Propagation through such a

medium is subject to absorption and scattering loss.

Absorption, often described by the volume absorption

coefficient Ka , and scattering, usually described by the volume

scattering coefficient Ks , are functions of polarization,

incidence angle, dielectric constant, volume fraction, and

canopy geometry.

The dielectric constant of a vegetation canopy cannot be

measured directly; therefore, the usual approach to the

estimation of its dielectric properties involves dielectric

mixing models (Ulaby, 1984a). 	 All of the dielectric mixing

models assume dielectric inclusions much smaller than a

wavelength in a host medium. 	 Since this condition is often

violated at microwave frequencies, the result is only an

approximation. Many dielectric mixing models assume a geometry

(needles, disks, etc.) that may not accurately describe the

vegetative inclusions.	 In addition, mixing models require the

volume fraction of the inclusion, which is difficult to estimate

accurately. Despite all of these limitations, it is possible to

compute a reasonable value for the canopy dielectric constant

and to estimate the volume absorption coefficient, Ka from:

2 ,r e^	 2 n Ell
K a	

a 3e'	 a
o c	 o

Simple models for calculating the volume scattering coefficient

of a vegetation canopy have not been developed, but this is not

1

a

4
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a serious drawback in this analysis, since at the frequencies of

interest loss will primarily be due to absorption.

The dielectric properties of a canopy element such as a

[ .	 leaf or a stalk are governed by the dielectric properties of the

dry vegetative material and the properties of the vegetative

fluid.	 The dielectric; constant of dry vegetative material9

differs little from that of air, so the dielectric constant of

I	 any vegetative material is dominated by the properties of its

L .	fluid. Vegetative fluid has properties similar to water with an

r

equivalent NaCl salinity of approximately 10 0 / 00 to 15 0/00.

The dielectric constant of this fluid, and therefore the

dielectric constant of the vegetative part, will be a function

of its fluid salinity (especially at the lower frequencies), its

temperature, the fraction of "bound" water, and the volume

fraction of water in the plant part. The volume fraction of

water in alant m	 is related to itsP	 ( v)	 ravimetric moisture9

content (mw ) by the vegetation density Pv:

my = mw P  .

Empirical formulas that may be used to estimate pv have been

recently reported (Ulaby, 1984c) as follows:

Corn Stalks: pv - 0.75 % + 0.25

Corn Leaves: pv n 0.64 % + 0.17

Wheat Stalks: pv - 0.76 mw + 0.20

Wheat Leaves: pv = 0.76 mw + 0.20
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The recently available data on the vegetative dielectric

constant (Ulaby, 1984c) are presented as plots of the real and

Imaginary parts of the dielectric constant as a function of the

volume fraction of water, m v .	 Data are available on wheat

heads, leaves, and stalks from 7.6 GHz to 8.4 GHz and on corn

leaves and stalks over the following frequency ranges: 1.1 GHz

to 1.9 GHz, 3.5 GHz to 6.5 GHz, and 7.6 GHz to 8.4 GHz. All

reported measurements were made with a sweep-oscillator

waveguide network-analyzer systerm.	 i

For purposci of this report, the dielectric properties of

wheat at the frequencies of interest will be extrapolated from

the reported measurements of wheat for X-band and will be

estimated from reported measurements of corn for L-band and C-

band. For soybeans, dielectric data will be estimated from corn

data for all frequencies.

6.2 Vertical Stalk Absorption Loss Model

The model to be used to estimate the absorption loss of

vertical stalks of vegetation is the uniaxial crystal model

developed at the University of Kansas (Ulaby, 1984x). The model

applies to a canopy of thin vertical stalks whose diameters are

much smaller than the wavelength A. where a = X
0 //0--v is the

wavelength in the stalk material with relative permittivity

Est.	 The applicability of this model therefore depends upon

stalk diameter, stalk water content, and the signal wavelength

ao . Although the model will not be strictly applicahle at the

E
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I higher frequencies used in this study, it will be used to

provide an estimate of stalk absorption loss.

The uniaxial crystal model assumes a dielectric slab

containing thin parallel cylinders oriented along the z-axis.

The slab is therefore an anisotropic dielectric medium with

*	 w	 w	 ^.e=xex+yey+zez.

Because of azimuthal symmetry, e x = ey ,	 The dielectric

components e x and e z can be related to the dielectric constants

of the inclusions by dielectric mixing formulas. 	 In addition,

since ex and c  are associated with the propagation of a so-

called "ordinary wave," and c z is associated with the pro-

pagation of an "extraordinary wave" in the dielectric slab, it

is convenient to use the notation c x = C  = Co , and cz = ce -

The Polder-Van Santen/de- Loor dielectric mixing formula (Ulaby,

1984x) for needles (stalks) oriented along the z-axis in air is

an appropriate mixing formula, as follows:

ex = Cy = c = 1 +
2 v st	 ( est - 1)

o
(est +

1)

ez 
= C 
	 1 + vst (es*

The real and imaginary parts of these expressions are

	

(cst	 (est + 
	 + (est)2

e0 = 1 + 2 vSt[	

(cSt + 1)2 + (est)2

r^
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N

ell =	 Est Est

1) 2 	2^	 N

(Est +	 + (Est )

c'	
1 + vst(Est - 1)

N =	 NEe	
vst Est '

In these expressions the stalk dielectric constant is

Est =Est	Est 
• and vst is the volume fraction of stalks in

the canopy. The uniaxial crystal model is normally developed in

terms of the complex indices  of refraction:

n = n' -i n"0	 0	 0

ne = n' -	 ne

The model requires:

no	 Im{ro}

ne	 1 Im{re } .

For a vertically polarized wave propagating in a uniaxial

crystal, the index of refraction is

nv = n0 cos 2 e + ne singe.

The stalk absorption loss for this vertically polarized wave is

^l
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4 A n" h sece
Lst (9,v) - exp(	 ^v	 )

Q

where h is the canopy height and 9 is the angle of incidence.

For horizontal polarization the stalk absorption loss is

4 * n" h sece
Lat (9,h) - exp(	 ) .

0

Expressed in dB, the model becomes

Lst	
4.343 (47) nvh 	 sece

a ( 9 v )'	 a
0

4.343 (4x) n" h sece

Late _h)	 Q

0

6.3 Random-Leaf Absorption Loss Model

A reasonable approximation to use im deriving a leaf

absorption loss model is to assume that the leaves are randomly

distributed within the canopy and that interactions between

leaves can be ignored. Under these conditions, the Polder-Van

Santen/deLoor dielectric mixing formula for thin circular disks

(leaves) in air may be used to obtain a complex dielectric

constant (ert) of the equivalent isotropic medium

2 vE rt l+ 3̂  (Et - 1) (2+ 1̂ ) =1+-3
t 

2v
1 	 X	 1	 N	 1	 N

	

+ =(E 	 3 E^) er, - J Eric

n
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r

The leaf absorption coefficient K a is

2n c l,	 2n 2 v R eR	 4wv R eR
Ka • a0 	 = ao ( 3 ) = 3 

ao

The leaf absorption loss is

4-ff v e" h sec e
L1 (e) M exp(Ka h secs) - exp(	

3 R	X 	
).

0

In terms of leaf area index the expression becomes:

4n e" t secs LAI
La (e)	 exp(	 t 3 I	 )

0

where t R is the mean leaf thickness and LAI is the leaf area

index. In dR the expression is

4.343 (47) e" t secs LAI

La (0) -	 aR 
R

0

^I
i^

I	

.3

6.4 Random Stalk Absorption Loss Model

Some vegetation canopies include primary or secondary

stalks that are approximately randomly oriented. The absorption

coefficient and absorption loss for such a canopy may be derived

in a fashion similar to that for random leaves. The Polder-

Van Santen/deLoor mixing formula for random needles (stalks) in

air gives the following complex dielectric constant (e rt ) of the

equivalent isotropic medium

v
St St	 St

(e	 -1) ( 5 +e )
=	 11

e 	 +
m	

,

rs	 1	 3 (1+e ) 	ers-^ ers'
St
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The random stalk absorption coefficient Ka is

2n e"
1C
	 rs

a	 ao

The random stalk absorption loss is

2n e" h sece
Las e) - exp(Ka h sece) - exp(	 as	 ).

0

This expression is equivalent to the expression for the

absorption loss of random leaves except that in this case a

simple expression for ens in terms of 0 is possible but not as

accurate. The expression in dB is

Lrs( )
	 4.343 (2w) e'" h sece

a e =
0

6.5 Wheat Attenuation Model

Wheat will be modeled as vertical stalks having random

leaves. It will be assumed that there is no interaction between

the stalks and the leaves, so that the attenuation for each may

be calculated separately and then summed to obtain the total

canopy attenuation.	 Based upon the wheat-head decapitation

experiment reported in Section 5.4, the head will be considered

part of the stalk, and the total canopy height will be used in

all computations. This approximation is valid for this set of

measurements (in which the head is quite moist) but may not be

valid for situations in which the head has dried, and loss due

149

{

1



to scattering increases.	 Accurate modeling of the dry wheat

head may require the development of a scattering-loss model.

Table 33 summarizes stalk and leaf gravimetric water

content (mw ), density (P.), and the volume fraction of water

(mv ) for the three dates on which data were available for

wheat.	 A complete set of ground-truth data is available in

Appendix R.	 As discussed in Section 6.1, dielectric data are

available as a function of the volume fraction of water m y and

frequency for corn and wheat (Ulaby, 1984c). Tale 34 provides

a summary of the estimated dielectric constants of wheat stalks

and leaves as derived from the published data. The subscripts

on the e's in the table indicate either stalks (st) or leaves

(R), and the superscripts indicate microwave band (L, C, or X).

Other ground-truth information necessary to the stalk model

includes plant density and stalk diameter. 	 The leaf model

requires leaf thickness and leaf area index. 	 Roth models

require wavelength, angle of incidence, and canopy height. All

pertinent data are available in Appendix B.

In Tables 35 to 37, the output of the models is compared to

measured data. Attenuation data are presented in dR per meter

for both calculated and measured values. The subscripts on the

K's refer to stalks (st), leaves (R), or canopy (c).

The uncertainty (t) associated with each model-calculated

attenuation value was determined by assuming that in the worst

case, stalk diameter and leaf thickness could only be determined

within t 20% and that density, dielectric constant, and leaf

area index could be determined within t 10%.

I

j
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TABLE 33. Summary of Wheat Stalk and Leaf
Moisture Data

DATE STALK mw STALK o„ STALK mv LEAF mW LEAF Pv LEAF m.

135 0.85 0.84 0.71 0.80 0.81 0.65

150 0.67 0.71 0.47 0.55 0.62 0.34

158 0.76 0.78 0.59 0.64 0.69 0.44
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TABLE 34. Sumeary of Estimated Wheat Leaf and
Stalk Dielectric Constants

i

	

Date	 Cst	 Cst	 est	 ER	 eR	 ER

yy

	135	 34-j4	 40-j15	 30-j15	 42-j1,5	 30-j10	 23-j13	 a
I

	

150	 16-j2	 21-j5	 18-j9	 20-j7	 12-j3	 9-j4

	

158	 27-j3	 30-j10	 24-j11	 27-j10	 17-j5	 14-j7
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The worst-case uncertainty associated with the measured value

Includes the t 10% estimated accuracy error plus the precision

estimate.

An examination of the data reveals overlapping between the

observed and predicted values, in most instances. For the cases

in which values do not overlap, sources of error not included in

the uncertainty calculations may be responsible.	 These

potential errors include the canopy-height measurement and the

condition that the inclusions in the mixing models must be small

compared to a wavelength (which was violated).

6.6 Soybean Attenuation Model

The soybean canopy will be modeled as vertical stalks

representing the primary stems, random stalks representing the

secondary stems, and random leaves. As with wheat, it will he

assumed that there is no interaction between parts, so that

attenuation values first may be calculated separately and then

summed to obtain the total canopy attenuation.

Table 38 summarizes the primary-stem gravimetric water

content (mw ), density (Pv ), and volume fraction of water (mv).

Tables 39 and 40 provide identical information for the secondary

stems and leaves.	 The density values were computed from the

empirical relationship developed for corn given in Section 6.1,

since	 an	 equivalent	 relationship	 for	 soybeans	 is	 not

available. A complete set of ground-truth data is available in
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TABLE 38. Summary of Soybean Primary-
Stem Moisture Data

Date	 Primary-Stem mw 	Primary-Stem o„	 Primary- Stem m.

181 0.88 0.91 0.80

188 0.79 0.84 0.66

TABLE 39. Summary of Soybean Secondary-
Stem Moisture Data

	

IF

Date	 Secondary-Stem mw	 Secondary-Stem 
P.	

Secondary-Stem mv

	181	 0.91	 0.93	 0.85

	

188	 0.82	 0.87	 0.71
a

[	 TABLE 40. Summary of Soybean Leaf-Moisture Data

^-	 Date

1	 181

r	
188

L

Leaf mw	 Leaf P.	 Leaf m.

	

0.78	 0.67	 0.52

	

0.72	 0.63	 0.45
e
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Appendix B..	 The estimated dielectric constants tabulated in

Tables 41, 42, and 43 were derived from the published data for

corn. The subscripts on the c's in the table headings indicate

primary stem (pst), secondary stem (sst) or leaves (t); the

superscript indicates the microwave band (L, C, X).

Additional ground truth necessary for the primary stem

model includes plant density, stem length and stem diameter.

The secondary stem model requires plant density, stem diameter,

mean number of stems per plant, and mean stem length. The leaf

model requires leaf thickness and leaf area index. A11 models

require wavelength, canopy height and angle of incidence.	 All

necessary data is available in Appendix B.

The output of the models is compared to measured data in

Tables 44 and 45. Attenuation data is presented in dB per meter

for both calculated and measured values. The subscripts on the

K 's refer to primary stems (pst), secondary stems (sst), leaves

(L) and canopy (c).

The uncertainty (t) associated with each model calculated

attenuation value was determined by assuming that in the worst

case the primary and secondary stem diameters and the leaf

thickness could only be determined within ± 20% and that the

density, dielectric constant, secondary stem length, and leaf

area index could be determined within t 10%. As with wheat, the

worst-case uncertainty associated with the measured value

includes both the t 10% estimated accuracy error plus the

precision estimate.

a



Oor

TABLE 41. Sumeary of Estimated Soybean
Primary-Stem Dielectric Constants

Date	 Epst cc ex epst

181	 42-j6 48-j21 46-j23
188	 31-j3 38-j14 30-j15

TABLE 42. Summary of Estimated Soybean
Secondary-Stem Dielectric Constants

Date	 EL cc
 Esst

Ex

181	 45-j7 51-J24 50-j25
188	 35-j4 40-j15 35-j18

TABLE 43. Summary of Estimated
Soybean-Leaf Dielectric Constants

	

Date	 cs	 es	 es

	

181	 32-j12	 22-j1	 20-j9

159

0



41^ N
O O
+1 +1

n n
N O

10 1C

+1 +1

10 N

01 O
V"

W `
cc

Y

N .-• %Q N

N rr M N
+1 +1 +1 M

M1l^ 1.. M
Q V; 01 M
r-•	 rr .^

G C •-• O

+1 +1	 +1 +1
CV) r+ cc W
M r-4 	 qr

w

8
O

11
w

!o

1
d
ad
C
O

N N
C

L

u cr ^

•
i
W
J

J E
W \

m

J E
W \

^t
Y

E\
J C
W Cv

H
Y

E\J m
Lai
v

d

W
J ^

0
^ v

Z
O
H
N

J
O
a

W N
d
W ^.
CC
W

1^ 1C P.O :w r-4 M 1n 01 ON ^+ Q ► O
.--^ •-+ 119 e	 M r-i N rr	 c;	 1D M• •--•	 r-•N W"
+1 +1	 +1 +1	 +1 +1	 +1 44 	+1 +1	 +1 +1
1n^ \1` 1CN Ir 01 01 01 MM• •	 • •	 • •	 • •	 • •	 • •
c'ViM ^f^ MR Rr(n 64 CO N M

N lV 	 4w N

^e 1n 11'1 00 n^ 00 NN
rr r• NN	 V-4 P" MM 00

M M +1 M +1 +1 +1 +1 +1 M +1 +1
N N 1p 1D	 1n 119 1l^ 1%.	 10 1C
M M 1n 119 to10 M M 1p 10 tC 0

r-r 0-6	 .-• .--1

N cV 01 01 M M N N r" V+ C co
CO _:1: 44 00 NN 44
+1 +1	 +1 +1	 +1 +i	 +1 +1	 +1 +1	 +i +1

Cl! -:-: nf^ NN MM NN
. 	. .	 . .	 . 

C
.
	

. .	 . .
OC NN vet OC NN 1n 119

.-•O 1^%0 0J0 10C coo 01O. .	 . .	 . .	 . .	 .	 . .
OC 00 .-•O CO 10

.
 0 MO

+1 +1	 +1 +1	 +1 +1	 +1 +1	 +1 +d	 +1 +1
.-•000 qrO coo 00 00. •	 • .	 . .	 . .	 . .	 . .
00 .-•O NO 00 GGO 010

10 1C /C 10 %C 1O N N N N N N•^ w-4	 •••	 •-4 ."	 i0 11)	 1n 1n	 119 1n

> a >i zoi ai si

1n u9 1n 1n O O 1n 1n 1n 1n co1n 1n	 N 10 1n 1- P^ 
N1%• •	 • •	 • •	 • •	 • •	 • •

.41: ^^ 00	 r 00
.-y .--4	 rr rr

01C
d
CL
.o
L
d
O

1
C
O
C

0
C
A

L

N
^O

E

c
.o

O
Z
M

160



A

^c
O•r•
M

^.1

L

M N
C

IL

A

N `uo
*• w

4w

W

P
I

^I

!I

u

Ci

^ 40 Lin	 CC 4w u: M N h N 1^. •	 . .	 • •	 • •	 . .
W	 OO P-4 NM CC NC M cv
\	 +7 +1 +1 +1 +1 +1 +/ +1 +1 +1 +i M^ m

W

^ v	 O u9 ph 4wN CV)	 h0 C`
i 1LU	 ^ ^-+ h IG ^ C c^ ► O ti ^! ^C Ilf.-•

cc N CC C ,••^ M ^..^
J E	 •-+ •^1 M N a h •..^ •-1 IC M u9 h

^	 +1 M M +1 +1 +1 +1 +1 +044 +/ +1
.^ •^  	 p MELI	 • •	 • •	 • •	 • •	 • •	 •NN Lg;	 MN NN Ou9 N

P-4;^-• •.r

Ch C1 h h P-1 .-, O O C; a u9 u9
W \	

sf	 .^• •-1 •-O	 4 Q
Qam	 M +1 +1 +1 +1 M +1 M +1 +/ +1 +1

L̂	 00 hh ow Ow NN
>t• •	 • •	 • •	 •N N M

• 
M
• 

pt pt N N

E	 .^-^ ^-+ .-^ Q. O^ .-• .^ 	 N N	 o O
W	 C O ...^ .-• N N C O .^ .r ri M

r.r	 +1 M +1 +1 +1 +1 M +1 +1 +1 	 +1 M

O C ^-+ ...^ M rf C O .-..+ M M

^ 00 ^f0 O^ NC ^O plpE	 •
J o\C	 00 OO .rO G O cnO 1^ O 	 pl
Lai

i	

* +1 +1 +1 M+1 +1 +1 +1 +1 M +1	 •C-v	
d^+ O O ^p O a -4 M O	 Oh	 O .• •	 aN	 • •	 • •	 • .	
0>a 0C 00 .r C O O ^O 00 ._

.r	 L

W	 p
J ^	 1

O	 %D 10 ID	 %Q %C N N N N N N	 C•"• r.	 ~ .ti	 •'• "'^	 1[^	 tl'f 119	 U9 In	 cC

N
O	 C
a.•	 o0

N

JO	 .v
CL

y	 vc

	

u9 u9 In In	 o um In In u9 0 0W N	 In In h h	 N u9 kn h h

O	
N NS	 • •	 •

W	 S49

161

i



Examination of the data reveals overlappingin between the

observed and predicted values in all but three instances. The

f	 sources of potential error that are not accounted for are the same

as those indicated for wheat..

The model output is also relatively consistent with the

defoliation experiment, which demonstrated that the primary and 	 f

JC

secondary stems were much more important in VV polarization than

In HH polarization.

7.0 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

The two major objectives of this investigation were to

develop an improved semi-empirical model for the backscattering

from vegetation and to obtain data on the frequency, angular, and

polarization responses of attenuation resulting from vegetation

canopies. Both of these objectives were accomplished, as were a

number of supporting objectives.	 Although the results may

contribute to the body of knowledge in the field of microwave

remote sensing and microvave propagation, they also point to the 	 i

need for additi onal work in these areas.	 This section will

provide a brie, ,ummary of the conclusions that may be drawn from

this work and will suggest directions for additional research

efforts.

7.1 Conclusions

The 1979 backscattering measurements were significant in that
8

they were the first to include leaf area index as a ground-truth
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Pi	 parameter and were the first backscattering measurements made at

P
35 GHz over an entire growing season. The data acquired, however,

were not suitable fo; detailed modeling efforts. In spite of this

drawback, several key conclusions can be drawn from the data. The

data demonstrated that dynamic range increases with frequency over

the 8 - 35-GHz range, and that dynamic range is greatest for VV

polarization.	 Another conclusion that may be drawn from these

data is that VV and HV polarization decorrelate with frequency

much faster than HH polarization over the 8 - 35-GHz range. The

data also showed that angular decorrelation is minimal from 300 to

70° over the 8 - 18-GHz range. Diurnal experiments on the 1979

data showed that such variations are not important for corn,

sorghum, or wheat over the 8 - 35-GHz range. The most important

contribution of the 1979 experiment, however, was L'a provide the

experience necessary to design an improved experiment in 1980,

which would produce high-quality data suitable for modeling

studies.

Analysis of the 1980 data revealed relationships between key

plant parameters over a growing season. Especially important was

the fact that many of these parameters are highly correlated with

each other. The study also demonstrated that leaf area index was

the best single parameter to use in modeling studies (at 17 GHz).

The semi-empirical model developed in this study provides a

direct link to more complex theoretical models, but it is

relatively simple mathematically and u'6'ili;.es commonly measured

ground-truth parameters. The model also provides an estimate of

the loss due to leaf and stalk absorption and leaf scattering.

I
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Because of the high correlation between plant parameters, it was

shown that alternate models could also provide good fits to the

data. It was demonstrated, however, that a good fit is not the

only criterion to be met in , judging the performance of a model;

equally important is the prediction of a realistic value for

canopy attenuation.

Data on canopy attenuation as a function of frequency,

incidence angle, and polarization have been the missing link in

modeling studies.	 The 1984 attenuation experiment was a first

step toward forging that link. The data acquired on wheat and

soybean attenuation will not only provide those who have an

interest in modeling with a check on the validity of the-,r models,

they will also contribute greatly to the understanding of

microwave propagation through a vegetation canopy. 	 The

attenuation models proposed in this study provided outputs that

were in reasonable agreement with measured values, which is an

indication that a basic understanding of the processes involved is

achievable.

7.2 Recommendations for Future Work

As indicated previously, there is a continuing need for

additional ground-based studies to complement the data acquired by

satellite systems.

Ire the area of the modeling of backscattering, the proposed

model, as well as alternative models, need to be tested on a wide

^i

R	 variety of crops, and the data acquired must be of a quality

comparable to the 1980 data utilized in this study. Work should
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also continue on improving the performance of semi-empirical

models.	 One possible means of improvement would he to utilize

ground-truth data taken both by layer and by part in both the

proposed model and the alternate models.

Simultaneously with the acquisition of backscattering data

for the modeling studies, attenuation data should be acquired on

the same fields as a function of frequency, angle, and

polarization. These data would provide direct validation for the

(	 backscattering models developed and would enlarge the available

1	 attenuation data base, which would lead in turn to increased
	 .r

I	 understanding.	 Also, to aid in our understanding of the

propaection of microwaves through vegetation, additional data are

needed on the dielectric properties of vegetative parts.

Dielectric mixing models that are fully applicable to vegetative

l	 parts at microwave frequencies would also be useful. Work should

[	 also continue on the development of improved attenuation models,

since the ones utilized in this investigation are only marginally

applicable at the frequencies of interest.

r	In summary, much work remains to he done. Satellite-based

sensors will provide additional data, which will in turn suggest

f
more detailed ground studies.

1.f5
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1980 CORN 8.6 8Hz VV C1
Model A

r - 0.87 rms error - 0.66 dB A - 0.09 B - 0.83 C - 1.05 0 - 0.09

DATE co(dB) J(dB) LAI MPHLEAF MSVOL MPHSTALK N

168 - 9.94 - 9.58 0.97 0.18 0.04 0.24 6
170 - 9.07 - 9.52 1.17 0.24 0.03 0.33 6
176 - 8.84 - 8.14 1.77 0.40 0.22 1.03 7
178 - 8.37 - 8.69 1.96 0.44 0.13 1.28 8
182 - 8.68 - 8.94 2.33 0.51 0.07 1.79 11
190 - 7.82 - 8.20 3.41 0.61 0.12 2.58 13
192 - 8.81 - 8.37 3.37 0.62 0.09 2.71 14
196 - 8.37 - 8.61 3.31 0.64 0.04 2.87 15
198 - 8.75 - 8.35 3.30 0.65 0.33 2.91 16
204 - 9.55 - 8.63 3.24 0.65 0.12 2.90 16
206 - 9.96 - 8.69 3.21 0.65 0.08 2.87 16
k10 - 9.85 - 8.71 3.09 0.63 0.10 2.76 16
213 - 9.73 - 8.87 2.96 0.62 0.05 2.66 16
221 -10.04 - 9.19 2.41 0.56 0.10 2.34 16
225 -10.28 - 9.52 2.05 0.53 0.10 2.17 16
231 - 9.34 - 9.49 1.46 0.47 0.25 1.92 16
240 -12.50 -12.90 0.56 0.35 0.05 1.56 16
247 -11.41 -10.86 0.06 0.22 0.19 1.31 16

A2
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1980 CORN 8.6 GHz VV C2
Model A

r - 0.87 m error - 0.78 dB A - 0.09 B - 0.83 C n 1.05 0 - 0.09

DATE 00(dB) J(dB) LAI MPHLEAF MSVOL MPHSTALK N

168 -10.36 - 9.73 0.84 0.17 0.05 0.29 6
170 - 8.82 - 9.95 1.00 0.23 0.03 0.36 6
176 - 7.88 8.40 1.51 0.38 0.23 1.04 7
178 - 8.01 - 9.12 1.68 0.42 0.12 1.28 8
182 - 8.12 - 9.40 1.99 0.49 0.06 1.72 11
190 - 7.53 - 8.40 3.05 0.57 0.10 2.36 113
192 - 8.27 - 8.57 3.02 0.58 0.06 2.46 14
196 - 7.61 - 8.72 3.01 0.59 0.03 2.57 15
198 - 7.69 - 8.5E 2.99 0.60 0.16 2.60 16
204 - 8.20 - 8.74 2.83 0.59 0.14 2.57 16
206 - 9.06 - 8.85 2.75 0.58 O.1i 2.54 16
210 - 8.63 - 9.02 2.56 0.56 0.09 2.44 16
213 - 8.15 - 9.23 2.42 0.54 0.05 2.36 16
217 - 8.63 - 9.11 2.29 0.51 0.11 2.24 16
221 - 9.34 - 9.38 2.01 0.48 0.09 2.11 16
225 - 9.67 - 9.80 1.70 0.44 0.08 1.98 16	 i
231 - 9.15 - 9.39 1.18 0.38 0.24 1.80 16
240 -11.90 -13.13 0.44 0.28 0.06 1.56 16
247 -11.10 -10.52 0.03 0.18 0.20 1.40 16
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1980 CORN 8.6 LIZ	 VV C3
Model A

r 0.86	 rnis error = 0.93 dB A = 0.09 B = 0.83	 C 1.05	 D 0.09

DATE 00(dB) O(dB) LAI MPHLEAF MS40L MPHSTALK	 N	 !	 `
r.

c
165 -10.30 - 8.61 0.94 0.18 0.11 0.42 5
168 - 9.68 - 9.27 1.35 0.31 0.05 0.44 6
170 - 8.64 - 9.17 1.63 0.39 0.04 0.63 6
171 - 9.05 - 9.17 1.78 0.43 0.04 0.74 6
176 - 8.36 - 8.40 2.49 0.59 0.24 1.40 7
178 - 8.36 - 8.55 2.77 0.64 0.19 1.67 8
182 - 7.98 - 8.62 3.27 0.73 0.11 2.20 11
189 - 7.65 - 7.96 4.46 0.33 0.25 2.8E 11
190 - 7.64 - 8.04 4.45 0.84 0.19 2.95 13
192 - 8.67 - 8.16 4.42 0.86 0.14 3.05 14
196 - 8.12 - 8.33 4.36 0.87 0.04 3.17 15
198 - 8.62 - 8.21 4.33 0.88 0.43 3.20 16
204 - 8.34 - 8.32 4.24 0.86 0.23 3.15 16
206 - 9.74 - 8.40 4.14 0.85 0.13 3.10 16
210 - 9.49 - 8.57 3.86 0.82 0.09 2.98 16
213 - 9.61 - 8.74 3.57 0.80 0.10 2.88 16
217 -10.09 - 8.65 3.14 0.75 0.49 2.73 16
220 - 9.74 - 9.13 2.75 0.72 0.27 2.61 16	 #
221 -10.00 - 9.37 2.62 0.71 0.17 2.56 16
225 -10.24 - 9.95 2.06 0.65 0.16 2.40 16
231 - 9.70 -10.24 1.23 0.56 0.33 2.16 16 1

240 -13.50 -15.32 0.26 0.40 0.06 1.80 16
247 -10.92 -11.08 0.08 0.25 0.21 1.54 16
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1980 CORN 13.0 GHz	 VV C1
Model A

Ci r - 0.93	 rms error - 0.45 dB A - 0.14 B - 1.35	 C - 1.32	 0 - 0.03

DATE 000(dB) ap(dB) LAI MPHLEAF MSVOL MPHSTALK	 N

168 - 8.64 - 8.50 0.97 0.18 0.04 0.24 6
170 - 8.28 - 8.48 1.17 0.24 0.03 0.33 6
176 - 7.33 - 7.65 1.77 0.40 0.22 1.03 7

E^ 178 - 7.34 - 7.91 1.96 0.44 0.13 1.28 8
182 - 7.75 - 7.92 2.33 0.51 0.07 1.79 11
190 - 7.01 - 7.12 3.41 0.61 0.12 2.58 13
192
196

- 7.11
- 7.22

- 7.25
- 7.42

3.37
3.31

0.62
0.64

0.09
0.04

2.71
2.87

14
15

198 -	 7.38 - 7.36 3.30 0.65 0.33 2.91 15
204 - 8.01 - 7.50 3.24 0.65 0.12 2.90 15
206 - 7.83 - 7.53 3.21 0.65 0.08 2.87 16

C1 210 - 8.05 - 7.58 3.09 0.63 0.10 2.76 16
213 - 8.53 - 7.70 2.96 0.62 0.05 2.66 16
221 - 8.98 - 8010 2.41 0.56 0.10 2.34 16
225 - 9.19 - 8.45 2.05 0.53 0.10 2.17 16
231 - 8.48 - 8.81 1.46 0.47 0.25 1.92 16
240 -11.61 -11.80 0.56 0.35 0.05 1.56 16

l

247 -10.73 -10.32 0.06 0.22 0.19 1.31 16

1.

l:

Q, A5



1980 CORN 13.0 6Hz VV C2
Model A

r - 0.69 rms error - 0.92 dB A - 0.14 B - 1.35 C - 1.32 D - 0.03

DATE	 co(dB)	 J(dB)	 LAI MPHLEAF	 MSVOL	 MPHSTALK N

168 - 9.51 - 8.71 0.84 0.17 0.05 0.29 6
170 - 7.54 - 8.90 1.00 0.23 0.03 0.36 6
176 - 6.74 - 7.95 1.51 0.38 0.23 1.04 7
178 - 7.31 - 8.32 1.68 0.42 0.12 1.28 8
182 - 7.04 - 8.35 1.99 0.49 0.06 1.72 11
190 - 6.28 - 7.32 3.05 0.57 0.10 2.36 13
192 - 6.63 - 7.44 3.02 0.58 0.06 2.46 14	 -^
196 - 6.71 - 7.53 3.01 0.59 0.03 2.57 15
198 - 7.00 - 7.49 2.99 0.60 0.16 2.60 16
204 - 7.69 - 7.66 2.83 0.59 0.14 2.57 16
206 - 7.73 - 7.74 2.75 0.58 0.11 2.54 16	 j

210 - 7.69 - 7.89 2.56 0.56 0.09 2.44 16
213 - 8.09 - 8.03 2.42 0.54 0.05 2.36 16
217 - 8.53 - 8.00 2.29 0.51 0.11 2.24 16
221 - 8.73 - 8.26 2.01 0.48 0.09 2.11 16	 j
225 - 8.70 - 8.64 1.70 0.44 0.08 1.98 16
231 - 9.00 - 8.67 1.18 0.38 0.24 1.80 16	 -i
240 - 9.42 -11.91 0.44 0.28 0.06 1.56 16
247 - 9.75 - 9.65 0.03 0.18 0.20 1.40 16

z
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1980 CORN 13.0 6Hz VV C3
Nodel A

r - 0.92 rim error - 0.69 dB A - 0.14 B - 1.35 C - 1.32 D - 0.03

DATE 00(dB) J(dB) LAI MPHLEAF MSVOL MPHSTALK N

165 - 9.31 - 7.79 0.94 0.18 0.11 0.42 5
168 - 8.94 - 8.40 1.35 0.31 0.05 0.44 6
170 - 7.95 - 8.34 1.63 0.39 0.04 0.63 6
171 - 8.44 - 8.32 1.78 0.43 0.04 0.74 6
176 - 7.63 - 7.86 2.49 0.59 0.24 1.40 7
178 - 7.84 - 7.85 2.77 0.64 0.19 1.67 8
182 - 7.71 - 7.73 3.27 0.73 0.11 2.20 11
189 - 7.50 - 7.05 4.46 0.83 0.25 2.88 11
190 - 7.28 - 7.10 4.45 0.84 0.19 2.95 13
192 - 7.49 - 7.17 4.42 0.86 0.14 3.05 14
196 - 7.20 - 7.30 4.36 0.87 0.04 3.17 15
198 - 8.43 - 7.30 4.33 0.88 0.43 3.20 16
204 - 8.23 - 7.34 4.24 0.86 0.23 3.15 16
206 - 8.10 - 7.39 4.14 0.85 0.13 3.10 16
210 - 7.86 - 7.54 3.86 0.82 0.09 2.98 16
213 - 8.13 - 7.72 3.57 0.80 0.10 2.88 16
217 - 8.77 - 7.90 3.14 0.75 0.49 2.73 16
220 - 8.52 - 8.26 2.75 0.72 0.27 2.61 16
221 - 8.37 - 8.43 2.62 0.71 0.17 2.56 16
225 - 9.45 - 9.03 2.06 0.65 0.16 2.40 16
231 -10.44 - 9.83 1.23 0.56 0.33 2.16 16
240 -12.70 -14.54 0.26 0.40 0.06 1,80 16
247 -11.02 -10.50 0.08 0.25 0.21 1.54 16

Al



1980 CORN 17.0 6Hz VY C2
Model A

r - 0.93 rms error - 0.66 dB A - 0.15 B - 1.26 C - 0.97 D - 0.03

DATE co(dB) op°(dB) LAI MPHLEAF MSVOL MPHSTALK N

168 - 9.54 - 8.30 0.97 0.18 0.04 0.24 6
170 - 7.76 - 8.20 1.17 0.24 0.03 0.33 6
176 - 7.90 - 7.44 1.77 0.40 0.22 1.03 7
178 - 6.83 - 7.59 1.96 0.4A 0.13 1.28 8
182 - 6.91 - 7.55 2.33 0.51 0.07 1.79 11
190 - 6.65 - 6.75 3.41 0.61 0.12 2.58 13
192 - 6.87 - 6.88 3.37 0.62 0.09 2.71 14
196 - 6.71 - 7.04 3.31 0.64 0.04 2.87 15
198 - 7.10 - 7.00 3.30 0.65 0.33 2.91 16
204 - 6.98 - 7.12 3.24 0.65 0.12 2.90 16
206 - 7.37 - 7.15 3.21 0.65 0.08 2.87 16
210 - 8.25 - 7.20 3.09 0.63 0.10 2.76 16
213 - 7.96 - 7.31 2.96 0.62 0.05 2.66 16
221 - 8.68 - 7.72 2.41 0.56 0.10 2.34 16
225 - 9.09 - 8.09 2.05 0.53 0.10 2.17 16
231 - 8.39 - 8.59 1.46 0.47 0.25 1.92 16
240 -12.65 -11.59 0.56 0.35 0.05 1.56 16
247 -11.27 -11.27 0.06 0.22 0.19 1.31 16

1

i

i
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1980 CORN 17.0 GHz VV C2
Model A

r - 0.78 rms error - 0.96 dB A - 0.15 B - 1.26 C - 0.97 U - 0.03

DATE 00(dB) J(dB) LAI MPHLEAF MSVOL MPHSTALK N

168 - 8.39 - 8.59 0.84 0.17 0.05 0.29 6
170 - 7.41 - 8.65 1.00 0.23 0.03 0.36 6
176 - 6.82 - 7.78 1.51 0.38 0.23 1.04 7
178 - 6.89 - 8.02 1.68 0.42 0.12 1.28 8
182 - 6.25 - 7.98 1.99 0.49 0.06 1.72 11
190 - 6.84 - 6.95 3.05 0.57 0.10 2.36 13
192 - 6.62 - 7.06 3.02 0.58 0.06 2.46 14
196 - 6.37 - 7.15 3.01 0.59 0.03 2.57 15
198 - 6.23 - 7.13 2.99 0.60 0.16 2.60 16
204 - 6.26 - 7.29 2.83 0.59 0.14 2.57 16
206 - 7.26 - 7.37 2.75 0.58 0.11 2.54 16
210 - 8.01 - 7.52 2.56 0.56 0.09 2.44 16
213 - 7.87 - 7.65 2.42 0.54 0.05 2.36 16
217 - 8.26 - 7.65 2.29 0.51 0.11 2.24 16
221 - 8.44 - 7.91 2.01 0.48 0.09 2.11 16
225 - 8.01 - 8.31 1.70 0.44 0.08 1.98 16
231 - 7.34 - 8.58 1.18 0.38 0.24 1.80 16
240 - 9.48 -11.84 0.44 0.28 0.06 1.56 16
247 -10.40 -10.72 0.03 0.18 0.20 1.40 16
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1980 CORN 17.0 GHz W C3
Model A

r - 0.94 rim error - 0.69 dB A - 0.15 B - 1.26 C - 0.97 D - 0.03

DATE co(dB) O(dB) LAI MPHLEAF MSVOL MPHSTALK N

165 - 8.97 - 7.81 0.94 0.18 0.11 0.42 5
168 - 8.91 - 8.11 1.35 0.31 0.05 0.44 6
170 - 7.96 - 7.99 1.63 0.39 0.04 0.63 6
171 - 8.05 - 7.95 1.78 0.43 0.04 0.74 6
176 - 7.07 - 7.51 2.49 0.59 0.24 1.40 7
178 - 6.86 - 7.47 2.77 0.64 0.19 1.67 8
182 - 6.78 - 7.32 3.27 0.73 0.11 2.20 11
189 - 6.22 - 6.66 4.46 0.83 0.25 2.88 11
190 - 6.53 - 6.71 4.45 0.84 0.19 2.95 13
192 - 7.19 - 6.78 4.42 0.86 0.14 3.05 14
196 - 7.08 - 6.90 4.36 0.87 0.04 3.17 15
198 - 7.15 - 6.91 4.33 0.88 0.43 3.20 16
204 - 7.63 - 6.95 4.24 0.86 0.23 3.15 16
206 - 7.90 - 7.00 4.14 0.85 0.13 3.10 16
210 - 8.29 - 7.14 3.86 0.82 0.09 2.98 16
213 - 8.49 - 7.31 3.57 0.80 0.16 2.88 16
217 - 8.64 - 7.52 3.14 0.75 0.49 2.73 16
220 - 8.75 - 7.87 2.75 0.72 0.27 2.61 16
221 - 8.12 - 8.03 2.62 0.71 0.17 2.56 16
225 - 8.68 - 8.63 2.06 0.65 0.16 2.40 16
231 - 8.81 - 9.61 1.23 0.56 0.33 2.16 16
240 -14.50 -14.48 0.26 0.40 0.06 1.80 16
247 -12.42 -11.38 0.08 0.25 0.21 1.54 16

A10



1980 CORN 36.6 GHz VV C1
Model A

r - 0.96 rms error - 0.63 dB A - 0.14 B - 0.50 C - 0.88 D - 0.14

DATE 000(dB) op(dB) LAI MPHLEAF MSVOL MPHSTALK N

168 - 7.79 - 7.82 0.97 0.18 0.04 0.24 6
170 - 7.05 - 7.56 1.17 0.24 0.03 0.33 6
176 - 6.62 - 6.59 1.77 0.40 0.22 1.03 7
178 - 7.24 - 6.88 1.96 0.44 0.13 1.28 8
190 - 6.33 - 6.36 3.41 0.61 0.12 2.58 13
192 - 6.48 - 6.51 3.37 0.62 0.09 2.71 14
196 - 6.34 - 5.70 3.31 0.64 0.04 2.87 15
198 - 6.70 - 6.62 3.30 0.65 0.33 2.91 16
204 - 7.64 - 6.76 3.24 0.65 0.12 2.90 16
206 - 7.39 - 6.79 3.21 0.65 0.08 2.87 16
210 - 6.60 - 6.82 3.09 0.63 0.10 2.76 16
213 - 8.16 - 6.92 2.96 0.62 0.05 2.66 16
221 - 7.80 - 7.28 2.41 0.56 MO 2.34 16
225 - 8.77 - 7.63 2.05 0.53 0.10 2.17 16
231 - 8.41 - 8.03 1.46 0.47 0.25 1.92 16
240 -12.53 -11.28 0.56 0.35 0.05 1.56 16
247 -11.84 -11.34 0.06 0.22 0.19 1.31 16

All



1980 CORN 35.6 6Hz VV C2
Model A

r - 0.82 rms error - 0.88 dB A - 0.14 B - 0.50 C - 0.88 D - 0.14

•	 DATE ca( dB) C^ (dB) LAI MPHLEAF MSVOL MPHSTALK N

168 - 9.24 - 8.16 0.84 0.17 0.05 0.29 6
170 - 8.35 - 8.04 1.00 0.23 0.03 0.36 6
176 - 6.65 - 6.94 1.51 0.38 0.23 1.04 7
190 - 6.57 - 6.54 3.05 0.57 0.10 2.36 13
192 - 6.24 - 6.67 3.02 0.58 0.06 2.46 14
196 - 6.34 - 6.78 3.01 0.59 0.03 2.57 15
198 - 6.70 - 6.74 2.99 0.60 0.16 2.60 16
204 - 7.12 - 6.90 2.83 0.59 0.14 2.57 16
206 - 7.00 - 6.99 2.75 0.58 0.11 2.54 16
210 - 7.41 - 7.14 2.56 0.56 0.09 2.44 16
213 - 7.40 - 7.29 2.42 0.54 0.05 2.36 16
217 - 7.60 - 7.27 2.29 0.51 0.11 2.24 16
221 - 6.72 - 7.56 2.01 0.48 0.09 2.11 16
225 - 7.13 - 7.98 1.70 0.44 0.08 1.98 16
231 - 7.76 - 8.23 1.18 0.38 0.24 1.80 16
240 - 8.78 -11.84 0.44 0.28 0.06 1.56 16
247 -11.12 -11.32 0.03 0.18 0.20 1.40 16
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1980 CORN 35.6 6Hz VV C3

Model A

r - 0.95 rms error - 0.58 dB A - 0.14 B - 0.50 C - 0.88 D - 0.14

DATE co(dB) j(dB) LAI MPHLEAF MSVOL MPHSTALK .	 N

165 - 7.83 - 7.40 0.94 0.18 0.11 0.42 5
168 - 7.19 - 7.28 1.35 0.31 0.05 0.44 6
170 - 6.44 - 7.06 1.63 0.39 0.04 0.63 6
171 - 6.39 - 7.01 1.78 0.43 0.04 0.74 6
176 - 6.43 - 6.46 2.49 0.59 0.24 1.40 7
178 - 5.95 - 6.52 2.77 0.64 0.19 1.67 8
189 - 5.58 - 6.01 4.46 0.83 0.25 2.88 11
190 - 6.06 - 6.07 4.45 0.84 0.19 2.95 13
192 - 5.80 - 6.16 4.42 0.86 0.14 3.05 14
196 - 5.46 - 6.30 4.36 0.87 0.04 3.17 15
198 - 6.40 - 6.27 4.33 0.88 0.43 3.20 16
204 - 7.64 - 6.33 4.24 0.86 0.23 3.15 16
206 - 6.20 - 6.39 4.14 0.85 0.13 3.10 16
210 - 6.84 - 6.53 3.86 0.82 0.09 2.98 16
213 - 7.08 - 6.69 3.57 0.80 0.10 2.88 16
217 - 7.21 - 6.80 3.14 0.75 0.49 2.73 16
220 - 7.37 - 7.18 2.75 0.72 0.27 2.61 16
221 - 7.90 - 7.36 2.62 0.71 0.17 2.56 16
225 - 8.27 - 7.95 2.06 0.65 0.16 2.40 16
231 - 7.70 - 8.76 1.23 0.56 0.33 2.16 16
240 -13.00 -14.02 0.26 0.40 0.06 1.80 16
247 -12.12 -11.54 0.08 0.25 0.21 1.54 16
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i

1980 SORGHU14 8.6 GHz	 W S1
Model A

r - 0.95	 rms error - 1.10 da A - 0.13 6 -	 1.61 C - 0.00	 D - O.14

DATE 00^dB) j(dB) LAI MPHLEAF MSVOL MPHSTALK

168 -12.50 -11.93 0.38 0.05 0.16 0.01
170 -11.50 -10.39 0.66 0.11 0.06 0.10
176 -10.30 - 8.97 1.49 0.28 0.26 0.45
178 -10.10 - 8.89 1.72 0.34 0.19 0.58
182 - 9.34 - 8.41 2.46 G„45 0.07 0.84
190 - 9.30 - 8.17 3.65 0.68 0.08 1.30
192 - 8.63 - 8.14 3.92 0.74 0.06 1.40
196 - 9.40 - 8.11 4.41 0.84 0.04 1.56
198 - 9.65 - 8.10 4.62 0.89 0.03 1.63
204 - 9.18 - 8.14 5.12 1.02 0.18 1.78
206 - 9.54 - 8.17 5.23 1.05 0.11 1.82
210 - 9.42 - 8.21 5.38 1.11 0.08 1.87
213 - 8.89 - 8.27 5.42 1.14 0.05 1.88
221 - 9.86 - 8.44 5.21 1.15 0.11 1.87
225 - 9.68 - 8.52 4.96 1.11 0.08 1.84
231 - 9.46 - 8.61 4.42 0.99 0.30 1.76
240 - 9.11 - 8.53 3.40 0.68 0.06 1.58

i
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1980 SORGHUM 8.6 GHz VV S2
Model A

r - 0.47 rms error - 1.36 dB A - 0.13 B - 1.61 C - 0.00 D - 0.14

DATE	 000(dB)	 J(dB)	 LAI MPHLEAF	 MSVOL	 MPHSTALK

168 -12.80 -12.45 0.32 0.03 0.14 0.05
170 -11.30 -12.17 0.44 0.12 0.06 0.11
176 -10.42 -10.87 1.07 0.36 0.23 0.50
178 -10.40 -10.41 1.36 0.43 0.20 0.60
182 -10.29 - 9.72 1.94 0.54 0.12 0.76
190 - 9.50 - 8.85 2.96 0.68 0.08 0.99
192 -10.20 - 8.71 3.15 0. 70 0.05 1.02
196 - 9.53 - 8.51 3.44 0.73 0.04 1.06
198 - 9.35 - 8.45 3.52 0.74 0.03 1.08
204 - 8.87 - 8.41 3.55 0.74 0.13 1.09
206 - 9.82 - 8.45 3.48 0.73 0.06 1.08
210 - 8.87 - 8.62 3.24 0.70 0.07 1.06
213 - 9.29 - 8.83 2.98 0.68 0.05 1.05
217 - 9.69 - 9.24 2.54 0.63 0.04 1.01
221 -10.20 - 9.85 2.04 0.59 0.11 0.98
225 - 9.60 -10.70 1.54 0.53 0.09 0.94
231 - 9.16 -12.36 0.90 0.45 0.28 0.87
240 - 8.83 -12.18 0.74 0.32 0.09 0.77
247 -10.53 -11.96 0.65 0.23 0.21 0.67
254 - 9.69 -11.68 0.58 0.15 0.08 0.56

I
R
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1980 SORGHUM 8.6 GHz VV S3
Model A

r - 0.54 rms error n 1.08 dB A n 0.13 B - 1.61 C - 0.00 D - 0.14

DATE 00(dB) j(dB) LAI MPHLEAF MSVOL MPHSTA!.K

168 -14.20 -11.59 0.45 0.08 0.17 0.07
170 -10.37 -11.36 0.58 0.15 0.08 0.16
171 -10.12 -11.25 0.65 0.18 0.07 0.20
176 -10.40 -10.72 1.04 0.33 0.26 0.42
178 - 9.57 -10.51 1.22 0.38 0.14 0.51
182 -10.00 -10.31 1.53 0.48 0.08 0.65
189 - 9.26 - 9.18 2.51 0.63 0.10 0.82
190 - 8.80 - 9.21 2.55 0.64 0.09 0,84
192 - 9.27 - 9.31 2.58 0.68 0.06 0.87
196 - 9.28 - 9.52 2.61 0.73 0.03 0.90
198 - 8.97 - 9.62 2.61 0.75 0.03 0.91
204 - 9.08 - 9.91 2.54 0.80 0.16 0.92	 -^
206 -10.22 -10.01 2.50 0.81 0.09 0.91
210 -10.30 -10.19 2.40 0.81 0.09 0.90
212 - 9.41 -10.27 2.33 0.81 0.08 0.89	 j
213 - 9.60 -10.31 2.30 0.80 0.07 0.88
217 - 9.85 -10.45 2.15 0.77 0.04 0.85
221 - 9.44 -10.55 1.99 0.73 0.08 0.82	 i

(^

224 - 8.98 -10.60 1.86 0.68 0.13 0.80
225 - 9.01 -10.61 1.82 0.66 0.11 0.79
231 - 8.26 -10.56 1.56 0.53 0.29 0.73
240 - 8.75 -10.07 1.20 0.30 0.07 0.66	 .E
247 -10.02 - 9.32 0.99 0.12 0.21 0.59

r
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i SORGHUM 13.0 GHz VV S1
Model A

r - 0.91 rms error n 1.07 dB A n 0.15 B - 1.45 C - 0.00 D - 0.15

DATE 00(dB) ap(dB) LAI MPHLEAF MSVOL MPHSTALK

168 -11.40 -11.11 0.38 0.05 0.16 0.01
170 -10.19 - 9.55 0.66 0.11 0.06 0.10
176 - 9.83 - 8.09 1.49 0.28 0.26 0.45
178 - 9.17 - 8.00 1.72 0.34 0.19 0.58
182 - 8.19 - 7.51 2.46 0.45 0.07 0.84
190 - 8.50 - 7.26 3.55 0.68 0.08 1.30
192 - 8.50 - 7.23 2.92 0.74 0.06 1.40
196 - 7.83 - 7.20 4.41 0.84 0.04 1.56
198 - 8.56 - 7.19 4.62 0.89 0.03 1.63
204 - 8.20 - 7.22 5.12 1.02 0.18 1.78
206 - 8.46 - 7.25 5.23 1.05 0.11 1.82
210 - 8.12 - 7.30 5.38 1.11 0.08 1.87
213 - 8.37 - 7.35 5.42 1.14 0.05 1.88
221 - 8.70 - 7.50 5.21 1.15 0.11 1.87
225 - 9.20 - 7.58 4.96 1.11 0.08 1.84
231 - 7.90 - 7.67 4.42 0.99 0.30 1.76
240 - 8.25 - 7.62 3.40 0.68 0.06 1.58

A17
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1980 SORGHt1M 13.0 6Hz W S2
Model A

r - 0.65 rm error - 1.19 d6 A - 0.15 B - 1.45 C - 0.00 D - 0.15

DATE	 co(dB)	 J(dB)	 LAI MPHLEAF	 MSVOL	 MPHSTALK

168 -12.00 -11.66 0.32 0.03 0.14 0.05
170 -10.65 -11.30 0.44 0.12 0.06 0.11
176 - 9.96 - 9.90 1.07 0.36 0.23 0.50
178 - 9.53 - 9.43 1.36 0.43 0.20 0.60
182 - 8.57 - 8.74 1.94 0.54 0.12 0.76
190 - 8.32 - 7.89 2.96 0.68 0.08 0.99
192 - 8.48 - 7.76 3.15 0.70 0.05 1.02
196 - 8.90 - 7.57 3.44 0.73 0.04 1.06
198 - 8.62 - 7.51 3.52 0.74 0.03 1.08
204 - 7.86 - 7.47 3.55 0.74 0.13 1.09
206 - 8.29 - 7.51 3.48 0.73 0.06 1.08
210 - 7.79 - 7.67 3.24 0:10 0.07 1.06
213 - 8.78 - 7.87 2.98 0.68 0.05 1.05
217 - 7.79 - 8.28 2.54 0.63 0.04 1.01
221 - 9.00 - 8.88 2.04 0.59 0.11 0.98
225 - 8.44 - 9.70 1.54 0.53 0.09 0.94
231 - 8.70 -11.35 0.90 0.45 0.28 0.87
240 - 8.50 -11.23 0.74 0.32 0.09 0.77
247 - 8.99 -11.06 0.65 0.23 0.21 0.67
254 - 9.52 -10.82 0.58 0.15 0.08 0.56
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1980 SORGHUM 13.0 GHz W S3
Model A

r - 0.80 rms error - 0.78 dB A = 0.15 B = 1.45 C - 0.00 D = 0.15

DATE 000(dB) j(dB) LAI MPHLEAF MSVOL MPHSTALK

168 -12.80 -10.76 0.45 0.08 0.17 0.07
170 -10.40 -10.48 0.58 0.15 0.08 0.16
171 -10.19 -10.35 0.65 0.18 0.07 0.20
176 - 9.36 - 9.76 1.04 0.33 0.26 0.42
178 - 8.59 - 9.54 1.22 0.38 0.14 0.51
182 - 8.24 - 9.32 1.53 0.48 0.08 0.65
189 - 8.33 - 8.21 2.51 0.63 0.10 0.82
190 - 8.29 - 8.24 2.55 0.64 0.09 0.84
192 - 8.02 - 8.33 2.58 0.68 0.06 0.87
196 - 7.89 - 8.52 2.61 0.73 0.03 0.90
198 - 7.82 - 8.61 2.61 0.75 0.03 0.91
204 - 8.06 - 8.89 2.54 0.80 0.16 0.92
206 - 8.34 - 8.98 2.50 0.81 0.09 0.91
210 - 8.05 - 9.15 2.40 0.81 0.09 0.90
212 - 8.83 - 9.23 2.33 0.81 0.08 0.89
213 - 8.61 - 9.27 2.30 0.80 0.07 0.88
217 - 8.70 - 9.40 2.15 0.77 0.04 0.85
221 - 9.30 - 9.51 1.99 0.73 0.08 0.82
224 - 8.55 - 9.56 1.86 0.68 0.13 0.80
225 - 9.11 - 9.57 1.82 0.66 0.11 0.79
231 - 8.20 - 9.55 1.56 0.53 0.29 0.73
240 - 8.94 - 9.16 1.20 0.30 0.07 0.66
247 - 8.64 - 8.53 0.99 0.12 0.21 0.59

it	
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1980 SORGHUM 17.0 GHz	 VV S1
Model A

r = 0.95	 rms error	 0.95 dB A = 0.14 B	 1.02	 C 0.00	 D	 0.21

DATE 000(dB) J(dB) LAI MPHLEAF MSVOL MPHSTALK
_f

i

168 -11.60 -11.30 0.38 0.05 0.16 0.01 •^
170 - 9.62 - 9.61 0.66 0.11 0.06 0.10
176 - 9.22 - 7.93 1.49 0.28 0.26 0.45 -'
178 - 8.63 - 7.80 1.72 0.34 0.3q 0.58
182 - 8.43 - 7.27 2.46 0.45 0.07 0.84
190 - 8.26 - 6.98 3.65 0.68 0.08 1.30
192 - 7.70 - 6.94 3.92 0.74 0.06 1.40
196 - 7.83 - 6.89 4.41 0.84 0.04 1.56
198 - 7.94 - 6.88 4.62 0.89 0.03 1.63
204 - 7.29 - 6.88 5.12 1.02 0.18 1.78
206 - 8.10 - 6.90 5.23 1.05 0.11 1.82
210 - 8.30 - 6.94 5.38 1.11 0.08 1.87
213 - 7.96 - 6.98 5.42 1.14 0.05 1.88
221 - 8.26 - 7.12 5.21 1.15 0.11 1.87
225 - 8.20 - 7.20 4.96 1.11 0.08 1.84
231 - 7.98 - 7.32 4.42 0.99 0.30 1.76
240 - 7.94 - 7.39 3.40 0.68 0.06 1.58_!
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1980 SORGHUM 17.0 GHz VV S2
Model A

r - 0.61 rim error - 1.40 dB A = 0.14 B = 1.02 C = 0.00 D = 0.21

DATE 000(dB) J(dB) LAI MPHLEAF MSVOL MPHSTALK

168 -13.00 -11.93 0.32 0.03 0.14 0.05
170 -10.90 -11.33 0.44 0.12 0.06 0.11
176 - 9.09 - 9.62 1.07 0.36 0.23 0.50
178 -10.20 - 9.12 1.36 0.43 0.20 0.60
182 - 9.99 - 8.38 1.94 0.54 0.12 0.76
190 - 7.87 - 7.51 2.96 0.68 0.08 0.99
192 - 8.35 - 7.38 3.15 0.70 0.05 1.02
196 - 8.15 - 7.19 3.44 0.73 0.04 1.06
198 - 7.75 - 7.13 3.52 0.74 0.03 1.08
204 - 7.30 - 7.10 3.55 0.74 0.13 1.09
206 - 7.64 - 7.14 3.48 0.73 0.06 1.08
210 - 8.24 - 7.30 3.24 0.70 0.07 1.06
213 - 7.54 - 7.51 2.98 0.68 0.05 1.05
217 - 7.55 - 7.92 2.54 0.63 0.04 1.01
221 - 8.99 - 8.53 2.04 0.59 0.11 0.98
225 - 8.23 - 9.38 1.54 0.53 0.09 0.94
231 - 7.78 -11.09 0.90 0.45 0.28 0.87
240 - 8.53 -11.12 0.74 0.32 0.09 0.77
247 - 8.90 -11.08 0.65 0.23 0.21 0.67
254 - 8.54 -10.97 0.58 0.15 0.08 0.56

r

C

E
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1980 SORGHlM 17.0 6Hz	 W S3 '6
Model A

r 0.78	 rms error - 0.90 dB A = 0.14 B = 1.02 C = 0.00	 0 = 0.21

i
DATE 00(dB) a0(dB) LAI MPHLEAF MSVOL MPHSTALK

168 -12.50 -10.89 0.45 0.08 0.17 0.07
170 -11.68 -10.47 0.58 0.15 0.08 0.16
171 -10.22 -10.28 0.65 0.18 0.07 0.20	 -
176 - 8.84 - 9.51 1.04 0.33 0.26 0.42
178 - 8.04 - 9.24 1.22 0.38 0.14 0.51
182 - 9.07 - 8.96 1.53 0.48 0.08 0.65	 -;
189 - 8.40 - 7.80 2.51 0.63 0.10 0.82
190 - 8.43 - 7.82 2.55 0.64 0.09 0.84
192 - 8.46 - 7.90 2.58 0.68 0.06 0.87
196 - 7.70 - 8.06 2.61 0.73 0.03 0.90
198 - 7.37 - 8.15 2.61 0.75 0.03 0.91
204 - 7.53 - 8.39 2.54 0.80 0.16 0.92
206 - 7.70 - 8.47 2.50 0.81 0.09 0.91
210 - 7.72 - 8.63 2.40 0.81 0.09 0.901
212 - 7.63 - 8.71 2.33 0.81 0.08 0.89
213 - 7.64 - 8.74 2.30 0.80 0.07 0.88	 -_
217 - 7.91 - 8.89 2.15 0.77 0.04 0.85
221 - 7.95 - 9.01 1.99 0.73 0.08 0.82
224 - 7.85 - 9.08 1.86 0.68 0.13 0.80
225 - 8.11 - 9.10 1.82 0.66 0.11 0.79
231 - 7.91 - 9.16 1.56 0.53 0.29 0.73
240 - 8.72 - 9.04 1.20 0.30 0.07 0.66
247 - 9.18 - 8.74 0.99 0.12 0.21 0.591

J
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1980 SDRGHUM 35.6 6Hz VV S1

Model A

r - 0.88 rm error - 1.16 dB A - 0.11 B - 0.33 C - 0.32 D = 0.40

DATE 00(dB) J(dB) LAI MPHLEAF MSVOL MPHSTALK

168 -11.90 - 9.77 0.38 0.05 0.16 0.01
170 - 9.74 - 9.64 0.66 0.11 0.06 0.10
176 - 8.44 - 7.61 1.49 0.28 0.26 0.45
178 - 8.74 - 7.68 1.72 0.34 0.19 0.58
190 - 8.49 - 7.00 3.65 0.68 0.08 1.30
192 - 7.42 - 6.95 3.92 0.74 0.06 1.40
196 - 8.16 - 6.86 4.41 0.84 0.04 1.56
198 - 7.56 - 6.83 4.62 0.89 0.03 1.63
204 - 7.08 - 6.76 5.12 1.02 0.18 1.78
206 - 7.59 - 6.76 5.23 1.05 0.11 1.82
210 - 8.67 - 6.76 5.38 1.11 0.08 1.87
213 - 7.89 - 6.78 5.42 1.14 0.05 1.88
221 - 8.04 - 6.90 .5.21 1.15 0.11 1.87
225 - 7.98 -	 1.01 4.96 1.11 0.08 1.84
231 - 8.47 - 7.20 4.42 0.99 0.30 1.76
240 - 8.65 - 7.62 3.40 0.68 0.06 1.58

4
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1980 SORGHUM 35.6 GHz VV S2
Model A

r - 0.72 rms error - 1.26 dB A - 0.11 B - 0.33 C - 0.32 D - 0.40

DATE	 00(dB)	 O(dB)	 LAI	 MPHLEAF	 MSVOL	 MPHSTALK
F! t

168 -10.54 -10.49 0.32 0.03 0.14 0.05
170 -11.10 -11.01 0.44 0.12 0.06 0.11
176 - 7.88 - 8.97 1.07 0.36 0.23 0.50
190 - 7.77 - 7.26 2.96 0.68 0.08 0.99
192 - 7.34 - 7.13 3.15 0.70 0.05 1.02
196 - 7.91 - 6.96 3.44 0.73 0.04 1.06
198 - 6.81 - 6.88 3.52 0.74 0.03 1.08
204 - 7.43 - 6.84 3.55 0.74 0.13 1.09
206 - 7.29 - 6.90 3.48 0.73 0.06 1.08
210 - 7.87 - 7.09 3.24 0.70 0.07 1.06
213 - 7.64 - 7.32 2.98 0.68 0.05 1.05
217 - 7.35 - 7.78 2.54 0.63 0.04 1.01
221 - 8.07 - 3.40 2.04 0.59 0.11 0.98
22.5 - 7.33 - 9.3n 1.54 0.53 0.09 0.94
231 - 8.12 -10.54 0.90 0.45 0,.28 0.87
240 - 7.85 -11.24 0.74 0.32 C.09 0.77
247 -10.50 -10.70 0.65 0.23 0.21 0.67
254 - 9.48 -11.30 0.58 0.15 0.08 0.56

A

M
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Li

r-

I 1980 SORGHUM 35.6 6HZ	 W	 S3
Model A

r - 0.90	 rms error - 0.63 dB A - 0.11 B - 0.33	 C - 0.32	 D - 0.40

D ATE o° dB°^ ° dB)	 J( dB) LAI MPHLEAF MSVOL MPHSTALK

168 -10.36 - 9.60 0.45 0.08 0.17 0.07
170 - 9.99 -10.18 0.58 0.15 0.08 0.16
171 - 9.98 -10.12 0.65 0.18 0.07 0.20
176 - 8.08 - 8.71 1.04 0.33 0.26 0.42
178 - 8.24 - 8.84 1.22 0.38 0.14 0.51
189 - 6.86 - 7.46 2.51 0.63 0.10 0.82
190 - 6.39 - 7.47 2.55 0.64 0.09 0.84
192 - 7.08 - 7.53 2.58 0.68 0.06 0.87
196 - 6.66 - 7.64 2.61 0.73 0.03 0.90
198 - 6.79 - 7.69 2.61 0.75 0.03 0.91
204 - 7.53 - 7.80 2.54 0.80 0.16 0.92
206 - 7.53 - 7.89 2.50 0.81 0.09 0.91
210 - 8.07 - 8.02 2.40 0.81 0.09 0.90

C 212 - 8.27 - 8.10 2.33 0.81 0.08 0.89
213 - 7.15 - 8.14 2.30 0.80 0.07 0.88
217 - 7.53 - 8.31 2.15 0.77 0.04 0.85
221 - 8.83 - 8.44 1.99 0.73 0.08 0.82

' 224 - 9.11 - 8.52 1.86 0.68 0.13 0.80
225 - 8.14 - 8.58 1.82 0.66 0.11 0.79

C:
231 - 7.88 - 8.58 1.56 0.53 0.29 0.73

240 - 8.52 - 9.26 1.20 0.30 0.07 0.66

rr
L'

247 - 9.59 - 8.98 0.99 0.12 0.21 0.59

l-:

t

L^
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1980 CORN 17.0 GHz M Cl
Model A

r - 0.87 rms error - 0.76 dB A - 0.11 B - 1.24 C - 0.00 D - 0.86
E - 0.86

DATE	 00(dB)	 j(dB)	 LAI MPHLEAF	 MSVOL	 MPHSTALK N

168 -10.09 - 8.92 0.97 0.18 0.04 0.24 6
170 - 8.42 - 8.87 1.17 0.24 0.03 0.33 6
176 - 8.27 - 7.51 1.77 0.40 0.22 1.03 7
178 - 7.26 - 7.92 1.96 0.44 0.13 1.28 8
182 - 6.95 - 8.02 2.33 0.51 0.07 1.79 11
190 - 6.97 - 7.12 3.41 0.61 0.12 2.58 13
192 - 7.26 - 7.28 3.37 0.62 0.09 2.71 14
196 - 6.93 - 7.50 3.31 0.64 0.04 2.87 15
198 - 6.84 - 7.15 3.30 0.65 0.33 2.91 16
204 - 7.42 - 7.49 3.24 0.65 0.12 2.90 16
206 - 7.96 - 7.57 3.21 0.65 0.08 2.87 16
210 - 8.30 - 7.60 3.09 0.63 0.10 2.76 16
213 - 8.60 - 7.78 2.96 0.62 0.05 7.66 16
221 - 9.71 - 8.11 2.41 0.56 0.10 2.34 16
225 - 9.75 - 8.45 2.05 0.53 0.10 2.17 16
231 - 9.07 - 8.53 1.46 0.47 0.25 1.92 16
240 -12.08 -11.95 0.56 0.35 0.05 1.56 16
247 -10.61 -11.11 0.06 0.22 0.19 1.31 16
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i
1980 CORN 17.0 GHz HH C2

Nodel A

ir - 0.78 reps error - 0.93 dB A = 0.11 B - 1.24 C - 0.00 0 - 0.86
E	 0.86

DATE 00(dB) ap(dB) LAI MPHLEAF MSVOL MPHSTALK N

f	 168 - 9.79 - 9.12 0.84 0.17 0.05 0.29 6
170 - 8.45 - 9.30 1.00 0.23 0.03 0.36 6
176 - 6.60 - 7.79 1.51 0.38 0.23 1.04
178 - 7.24 - 8.34 1.68 0.42 0.12 1.28 8
182 - 6.50 - 8.47 1.99 0.49 0.06 1.72 11
190 - 7.26 - 7.35 3.05 0.57 0.10 2.36 13
192 - 6.78 - 7.50 3.02 0.58 0.06 2.46 14
196 - 6.99 - 7.63 3.01 0.59 0.03 2.57 15
198 - 6.25 - 7.43 2.99 0.60 0.16 2.60 16
204 - 6.48 - 7.61 2.83 0.59 0.14 2.57 16
206 - 7.75 - 7.73 2.75 0.58 0.11 2.54 16
210 - 8.30 - 7.90 2.56 0.56 0.09 2.44 16
213 - 7.75 - 8.11 2.42 0.54 0.05 2.36 16
217 - 8.86 - 7.98 2.29 0.51 0.11 2.24 16
221 - 8.51 - 8.25 2.01 0.48 0.09 2.11 16
225 - 8.57 - 8.65 1.70 0.44 0.08 1.98 16
231 - 7.96 - 8.37 1.18 0.38 0.24 1.80 16
240 - 9.96 -11.85 0.44 0.28 0.06 1.56 16

(	
247

t.

-10.81 -10.55 0.03 0.18 0.20 1.40 16
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r - 0.93	 rms error

1980 CORN

- 0.64 dB

17.0 6Hz	 HH
Model A

A = 0.11	 B -
E	 0.86

C3

1.24	 C - 0.00	 D - 0.86

DATE co(dB) ap(dB) LAI MPHLEAF MSVOL MPHSTALK	 N

165 - 9.39 - 8.03 0.94 0.18 0.11 0.42 5
168 - 9.03 - 8.71 1.35 0.31 0.05 0.44 6
170 - 8.21 - 8.62 1.63 0.39 0.04 0.63 6
171 - 8.51 - 8.60 1.78 0.43 0.04 0.74 6
176 - 7.21 - 7.82 2.49 0.59 0.24 1.40 7
178 - 7.31 - 7.88 2.77 0.64 0.19 1.67 8
182 - 7.10 - 7.84 3.27 0.73 0.11 2.20 11
189 - 6.78 - 7.09 4.46 0.83 0.25 2.88 11
190 - 7.31 - 7.16 4.45 0.84 0.19 2.95 13
192 - 6.88 - 7.26 4.42 0.86 0.14 3.05 14
196 - 7.60 - 7.42 4.36 0.87 0.04 3.17 15
198 - 7.93 - 7.26 4.33 0.88 0.43 3.20 16
204 - 7.99 - 7.38 4.24 0.86 0.23 3.15 16
206 - 8.42 - 7.47 4.14 0.85 0.13 3.10 16
210 - 8.39 - 7.64 3.86 0.82 0.09 2.98 16
213 - 8.57 - 7.81 3.57 0.80 0.10 2.88 16
217 - 8.89 - 7.69 3.14 0.75 0.49 2.73 16
220 - 8.89 - 8.18 2.75 0.72 0.27 2.61 16
221 - 8.96 - 8.42 2.62 0.71 0.17 2.55 16
225 - 9.25 - 8.99 2.06 0.65 0.16 2.40 16
231 - 8.96 - 9.47 1.23 0.56 0.33 2.16 16
240 -14.69 -14.69 0.26 0.40 0.06 1.80 16
247 -11.81 -11.12 0.08 0.25 0.21 1.54 16
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APPENDIX B

Crop Attenuation Data and Associa, ed Ground Truth
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j.

Crop
	

Wheat
Site
	

W1
Julian Date
	

135
Low Angle (24 0 ) Path Length (m)
	

0.69
High Angle (56°) Path Length (m)
	

1.13

99% CONFIDENCE -FREQUENCY ANGLE MEAN ONE-WAY

(GHZ) POLARIZATION (°) CANOPY LOSS (dB) INTERVAL LIMITS (dB)*
i

1.55 VV 24 1.4 t 0.3
1.55 HH 24 1.7 t 0.2

4.75 vV 24 1.6 t 0.5
4.75 HH 24 2.3 t 0.2	 -^

10.20 vV 24 6.5 t	 1.4	
l

10.20 HH 24 4.8 t 1.3

1.55 vV 56 7.4 t 0.3
1.55 HH 56 2.4 t 0.3

4.75 VV 56 27.4 f 0.5	 .i

4.75 HH 56 9.4 t 1.0
4.75 VH 56 5.1 ; 0.2

10.20 vV 56 36.0 t 0.8
10.20 HH 56 32.5 t 0.4

*Does not include estimated t 10% accuracy error.
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Crop	 Wheat
Site	 W2
Julian Date	 150
Low Angle (24 0 ) Path Length (m)
High Angle (56°) Path Length (m)	 1.59

FREQUENCY ANGLE MEAN ONE-WAY 99% CONFIDENCE

(GHz) POLARIZATION (6) CANOPY LOSS (dB) INTERVAL LIMITS (dB)*

1.55 VV 56 3.? ± 0.6
1.55 HH 56 1.3 t 0.3

4.75 VV 56 17.9 t 0.7
4.75 HH 56 3.0 t 0.5
4.75 VH 56 0.4 t 0.1
4.75 HV 56 1.2 t 0.5

10.20 VV 56 31.2 t 1.9
10.20 HH 56 14.1 t 2.2

* Does not include estimated t 10% accuracy error.

83



.	 j

Crop Wheat -^
Site W2
Julian Date 150
Low Angle (24°) Path Length (m)
High Angle (56°) Path Length (m) 0.86 (decapitated)

99% CONFIDENCEFREQUENCY ANGLE MEAN ONE-WAY

(GHz)	 POLARIZATION (0) CANOPY LOSS (dB) INTERVAL LIMITS	 (dB)*	 •'

1.55 VV 56 3.9

_k

t 0.5	 .±
1.55 HH 56 0.9 t 0.3

4.75 VV 56 13.1 f 0.9
4.75 HH 56 2.9 t 0.7

10.20 VV 56 21.4 ± 2.4

10.20 HH 56 8.4 ± 1.5

* Does not include estimated t 10% accuracy error.

Y

f

r

w4

^ ^	 1

1

.1•
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Crop
	

Wheat
Site
	

W1
Julian Date
	

158
Low Angle (24°) Path Length (m)
	

1.1E
High Angle (56°) Path Length (m)
	

1.90

FREQUENCY ANGLE	 MEAN ONE-WAY 99% CONFIDENCE

(GHz) POLARIZATION	 (a)	 CANOPY LOSS (dB) INTERVAL LIMITS (dB)*

1.55 VV 24 1.3 ± 0.1
1.55 HH 24 1.3 t 0.2

4.75 VV 24 5.4 t 0.6
4.75 HH 24 3.7 t 0.4

10.20 VV 24 10.9 t 1.7
10.20 HH 24 9.4 t 1.1

1.55 VV 56 7.1 t 0.6
1.55 HH 56 2.6 t 0.6

4.75 VV 56 17.8 t 0.3
4.75 HH 56 6.0 t 0.6

10.20 VV 56 36.1 t 1.0
10.20 HH 56 26.7 t 1.3
10.20 HV 56 19.8 f 0.8

s

* Does not include estimated t 10% accuracy error.
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Crop
Site
Julian Date

Low Angle (16°) Path Length (m')
High Angle (52°) Path Length (m)

Soybeans	 •^

S1
181	 i

0.45	 ¢
0.60

F
.f

FREQUENCY ANGLE MEAN ONE-WAY 99% CONFIDENCE

(GHZ) POLARIZATION (a) CANOPY LOSS (dB) INTERVAL LIMITS (dB)* 	 •^

1.55 VV 16 1.5 t 0.1	 .:
1.55 HH 16 0.5 t 0.1

4.75 VV 16 2.6 ± 0.4
4.75 HH 16 2.0 t 0.3

10.20 VV 16 4.3 t 0.6
10.20 HH 16 4.6 ± 0.6

1.55 VV 52 1.6 ± 0.2	
71

1.55 HH 52 0.4 ± 0.1	 .^

4.75 VV 52 8.6 ± 0.8
4.75 HH 52 3.4 ± 0.5

10.20 VV 52 11.8 ± 1.6
10.20 HH 52 8.0 ± 0.9

1

* Does not include estimated t 10% accuracy error.
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Crop	 Soybeans
Site	 S1
Julian Date	 188
Low Angle (16°) Path Length (m) 	 0.54

High Angle (520 ) Path Length (m)	 0.78

FREQUENCY ANGLE MEAN ONE-WAY 99% CONFIDENCE

(GHz) POLARIZATION (0) CANOPY LOSS (dB) INTERVAL LIMITS (dB)*

1.55 VV 16 2.6 ± 0.2
1.55 HH 16 0.8 t 0.2

4.75 VV 16 3.8 ± 0.8
4.75 HH 16 3.6 ± 0.4

10.20 VV 16 7.8 ± 1.4
10.20 HH 16 10.9 ± 1.4

1.55 VV 52 2.6 ± 0.3
1.55 HH 52 0.7 t 0.2

4.75 VV 52 9.9 ± 0.9
4.75 HH 52 3.1 t 0.3

10.20 VV 52 12.5 t 1.6
10.20 HH 52 12.1 t	 1.1

* Does not include estimated t 10% accuracy error.
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ri

t.i

Crop Soybeans	 (Defoliated)

{4

f

Site S1
Julian Date 188
Low Angle (16°) Path Length	 (m) -- - ►
High Angle (52°) Path Length (m) 0.67 (Defoliated)

i
i

.4

FREQUENCY ANGLE	 MEAN ONE-WAY 99% CONFIDENCE ^?

(GHz) POLARIZATION	 (°)	 CANOPY LOSS (dB) INTERVAL LIMITS (dB)*
s

1.55 VV	 52 2.4 t 0.5
1.55 HH	 52 0.4 t 0.4

4.75 VV	 52 8.8 ± 1.9
4.75 HH	 52 1.7 t 0.9

10.20 VV	 52 8.3 t 2.3_
10.20 HH	 52 3.7 t 1.1

.t

* Does not include estimated t 10% accuracy error.

f
f i

f_ f{

^

1i
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n

r	 Crop Wheat

i	 Site W1

Julian Date 135

Mean Canopy Height (m) 0.73

Head Length (m) --

Row Spacing (m) 0.15

Density (stems/m2 ) 1694

1	
Top-1/3 Leaf H2O 80.0% (1.46 kg/m2)

Mid-1/3 Leaf H2O 80.2% (0.71 kg/m2)

(	 Low-1/3 Leaf H2O 81.1% (0.11 kg/m2)

l	 Top-1/3 Stalk H2O 86.1% (1.19 kg/m2)

Mid-1/3 Stalk H 2O 84.1% (1.56 kg/m2)

Low-1/3 Stalk H2O 83.8% (1.46 kg/m2)

Head H 2O --

L123 Leaf H2O 80.1% (2.28 kg/m2)

L123 Stalk H2O 84.6% (4.21 kg/m2)

Whole Plant H2O 82.9% (6.49 kg/m2)

Leaf Area Index 8.0

Growth Stage* 23 (Flag Leaf Visible)

Leaf Thickness	 (mm) 0.15

r	
Stem Diameter (mm) 2.00

`.	 Look Direction Perpendicular to Rows

Receiver Height	 (m) 0.10

* LACIE Crop Inventory System
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_I

.i

Crop

Site

Julian Date

Mean Canopy Height (m)

Head Length (m)

Row Spacing (m)

Density (stems/m2)

Top-1/3 Leaf H2O

Mid-1/3 Leaf H2O

Low-1/3 Leaf H2O

Top-1/3 Stalk H2O

Mid-1/3 Stalk H2O

Low-1/3 Stalk H2O

Head H2O

L123 Leaf H2O

L123 Stalk H2O

Whole Plant H2O

Leaf Area Index

Growth Stage*

Leaf Thickness (mm)

Stem Diameter (mm)

Look Direction

Receiver Height (m)

* LACIE Crop Inventory System

BID

Wheat 4i

W2

150

1.11	 (0.70 Decapitated)

0.08

0.15

1027 - î

68.9% (0.18 kg/m2)

52.1% (0.15 kg/m 2 ) -^

8.3% (0.00 kg/m2 ) •i

65.8% (0.41 kg /m2)

69.0% (0.75 kg /m2)

63.4% (0.43 kg/m2)

82.2% (1.11 kg/m2)

55.2% (0.33 kg/m 2)

66.6% (1.59 kg/m2)•

69.9% (3.03 kg/m 2 ) -^

3.6

34 (Kernels Formed)

0.15 -;

2.00

Perpendicular to Rows

0.22

-T

_F

. 1•

sj



I I -W

l

'i

t

c r. Crop

l	 Site
i

Julian Date

	

rr	

Mean Canopy Height (m)I	

Head Length (m)

Row Spacing (m)

t	 Density (stems/m2)

Top-1/3 Leaf H2O
R

	

-	 Mid-1/3 Leaf H2O
Low-1/3 Leaf H2O

Top-1/3 Stalk H2O

Mid-1/3 Stalk H2O

Low-1/3 Stalk H2O

Head H2O

L123 Leaf H2O

L123 Stalk H2O

Whole Plant H2O

F ^'

	

	 Leaf Area Index

Growth Stage*

Leaf Thickness (mm)

Stem Diameter (mm)

Look Direction
t	 Receiver Height (m)

* LACIE Crop Inventory System

B11

F^

Wheat

W1

158

1.16

0.08

0.15

1694

72.6% (0.46 kg/m2)

53.7% (0.15 kg/m2)

47.8% (0.07 kg/m2)

75.7% (0.87 kg/m2)

78.2% (1.49 kg/m2)

72.9% (1.00 kg /m2)

72.59 (1.13 kg/m2)

64.0% (0.69 kg/m2)

75.9% (3.36 kg/m2)

73.3% (5.18 kg/m2)

4.0

42 (Soft Dough)

0.15

2.00

Perpendicular to Rows

0.10



Crop

Site

Julian Date

Mean Canopy Height (m) Low Angle (16°)

Mean Canopy Height (m) High Angle (520)

Row Spacing (m)

Row Width (m)

Density (plants/m2)

Leaf H2O

Main Stem H2O

Secondary Stem H2O

Whole Plant H2O

Leaf Area Index (m2/m2)

Mean Main Stem Length (m)

Mean Secondary Stem Length (m)

Mean Secondary Stems per Plant

Growth Stage**

Leaf Thickness (mm)

Main Stem Diameter (mm)

Secondary—Stem Diameter (mm)

Look Direction

Receiver Height (m)

•

Soybeans

i
_i

.t

.i

S1 _T

181

0.56

0.50 .^

0.77

0.54

42.0	 (59.9)*

18.3X* (0.75 kg/m2)*

81.7X* (0.60 kg/m2)*

90.9X* (0.66 kg/m 2 ) -^

84.8%* (2.00 kg/m2)*

4.2	 (6.0)*

0.34

0.18

11.1 +^

31	 (One Open Flower)

0.2 cj
5.6

1.9

Perpendicular to Rows

0.13

* Vegetated portion of field only (percent cover -,IUX)

** LACIE Crop Inventory System

B12
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Crap Soybeans

Site S1

Julian Date 188

Mean Canopy Height (m) - Low Angle (16*) 0.65

Mean Canopy Height (m)	 - High Angle (52°). 0.61 (0.54 Defoliated)

Row Spacing (m) 0.77

Row Width (m) 0.64

Density (plants/m2) 42.0	 (51.6)*

Leaf H2O 12.176*	 (0.62 kg /m2)*
Main Stem H2O 78.5X* (0.58 kg /m2)*
Secondary Stem H2O 81.7X* (0.60 kg /m2)*
Whole Plant H2O 17.276*	 (1.80 kg /m2)*
Leaf Area Index (m 2/m 2 ) 4.6	 (5.5)*

Mean Main Stem length (m) 0.44

Mean Secondary Stem Length (m) 0.22

Mean Secondary Stems per plant 11.1

Growth Stage** 32 (Full	 Bloom)

Leaf Thickness (mm) 0.2

Main Stem Diameter (mm) 5.6

Secondary-Stem Diameter (mm) 1.9

Look Direction Perpendicular to Rows

Receiver Height (m) 0.13

* Vegetated portion of field only (percent cover -83X)

** LACIE Crop Inventory System
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