WusH TH- 56367
NASA Technical Memorandum 86369

NASA-TM-86369 19850015006

A,. Theoretical‘ Basis for the Analysis of
Redundant Software Subject to

Coincident Errors

uOT TG ok oadlait SR Tuld pooil

Dave E. Eckhardt, Jr. and Larry D. Lee

JANUARY 1985

LiBAARY €20

PERVISN

LANGLEY RESEARCH CENTER
LIBRARY, NASA

NMA HAMPRTON, VIRGINIA

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

LT

SUMMARY

Fundamental to the development of redundant software techniques (known as
fault-tolerant software) is an understanding of the impact of multiple joint
occurrences of errors, referred to here as coincident errors. A theoretical
basis for the study of redundant software is developed which (1) provides o
probabilistic framework for empirically evaluating the effeétiveness of the
general (N-Version) strategy when component versions are subject to coincideant,
errors, and (2) permits an analytical study of the effects of these errors.

The basic assumptions of the model are: (i) independently designed‘software
components are chosen in a random sample and (ii) in the user environment, the
system is required to execute on a stationary input series. An intensity
function, called the intensity of coincident errors, has a central role in tae
model. This function describes the propensity of a population of programmers
to introduce design faults in such a way that software components fail togather
when executing in the user enviromment. The model is used‘to give conditions
under which an N-Versién system is a better strategy for reducing system
failure probability than relying on a single version of software. 1In addition,
a condition which limits the effectiveness of a fault-tolerant strategy is
studied, and we ask whether system failure probability varies monotonically

with increasing N or whether an optimal choice of N exists.

W 2 177

1.0 INTRODUCTION

The use of independently designed, redundant software is an intuitively
appealing approach to increasing software reliability. The redundancy
principle,>after all, has long been accepted as an effective means for
improving the reliability of hardwére devices. The basic premise in both cases
is that components (either software or hardware) will have independent failure
characteristics so that the probability of failures occurring simultaneously is
small (ideally the product of the individual component failure probabilities).
Fault-tolerant software is the methodology for structuring software components
to cope with residual software design faults. The most widely known, N-Version
programming [1] and recovery biock [2], are analogous to the hardware

techniques of N-Modular redundancy and stand-by sparing, respectively.

Although redundancy has beén successfully applied to fault-tolerant
computer systems (e.g., [31, [4]), its application to software has been slow to
develop. One reason for this may be that little empirical data is available
that demonstrates an increase in reliability sufficient to justify the
increased cost of the software development, although it has been suggested that

fault-tolerant software is cost effective [5].

More importantly, however, is the reliability degradation of fault-tolerant
software structures caused by either: (1) multiple faults which produce
dissimilar outputs but are man;fested by the same input conditions, or (2)

related software design faults causing identical incorrect outputs. The

general notion of related software design faults is often referred to as
"ecorrelated" faults. This term, however, appears to have different meanings to
different authors and it is sometimes not clear what combinations of the above
fault types and the degree of the attribute, "related", is being discussed. We
will refer, collectively, to errors manifested by both of the above fault types
as coincident errors. What will distinguish correlated errors from those that
occur simultaneously by chance, we presume, will be the intensity of coincident
errors as discussed in more detail later. 1In an extreme case one might imagine
that all residual design faults are common to all versions of a redundant
software structure and thus there is no reliability gain over randomly
selecting a single version of the software. More typical might be a situation
where a majority of identical faulty modules, in a voting scenario, outvote the

correct versions which are in the minority.

Although it is true that detected failures are potentially less serious
than undetected failures since control, in the case of detected failures, can
be passed to a higher authority, both are, in fact, failures of the fault-
tolerant structure. For applications in which fault-tolerant software is
performing some critical function, we take the conservative position that any
higher authority could not adequately cope with this loss of critical function
and that there is no safe-down state to repair the software (more likely reset
to some initial state). Thus we are concerned with both types of errors, which

are described by coincident errors.

Given that coincident errors are potentially devastating to redundant
software systems, it is fundamental to understand and assess the effects of
these errors, both analytically and empirically, on the general strategy of
software redundancy. Hardware designers, to date, have not been concerned with
this issue. The assumption is that hardware components do not share common
design faults but rather it is their independent degradation processes which
mainly contribute to unreliability. Independence, then justifies the use of
combinatorial methods for estimating hardware reliability. In the independence
case, conditions for which redundancy is a better strategy for reducing failure

probability than the use of a single component are well known [6].

In the case of redundant software, it is suggested in [7] that the
independence model when appliéd to software components leads to poor
predictions of reliability. Further, the analysis given in this paper shows
that for cases of coincident errors which appear reasonable to expect in
applications, the independence model gives estimates which fail to be

conservative.

Upon recognizing that statistically independent failures among software
components is a questionable assumption, the model suggested in [8] includes a
"correlation" factor. However, it too assumes a form of higher order
independence by representing the probabilities of joint occurrence of
identical, incorrect output in terms of the probability of pairwise occurrence
of such events. Furthermore, since the probability of identical, incorrect
output among component versions will likely vary with the input, the idea that

all of this complexity can be captured in a single scalar correlation

coefficient is questionable. For this reason, we employ an intensity function
defined on the input space (similar in several ways to a parameter vector)
which permits variation in the probability that software components fail
together. We shall not attempt to evaluate one fault-tolerant technique ovef
another but rather we shall examine the principle of redundant software as
represented by multiple (i.e., N) versions which are independently developed to
a common set of requiremehts and then operationally subjectedbto a perfect

majority voter.

We submit that there are a number of questions which must be answered in
order to provide a basic understanding of the effects of coincident errors on
redundant software. The framerrk discussed in the present paper does not
require unnecessary assumptions concerning independent failure of software
components; rather a model is derived from assumptions concerning the process
of selecting independently designed software components and testing them on an
input series chosen to emulate the user enviromment. In other words, we
believe the model has sufficient generality to warrant conclusions concerning

questions of the following type:

(1) Is an N-Version software structure always more effective at reducing
failure probability than a Single version of software? If not, what are
the conditions which cause this?

(2) What are the effects of different intensities of coincident errors on a

general N-Version system?

(3) What are the effects of increasing N? Does the failure probability always
increase or decrease with increasing N, as for the independence model used
for hardware, or might there exist an optimal choice of N other than N=1 or
N==? 1Is there a limit on the effectiveness of fault-tolerance at reducing
the probability of failure?

(4) Does the independence modél give a valid estihate of the failure
probability of a redundant N-Version system?

(5) Under what conditions does the assumption of independence hold?

In order to give a framework for evaiuating the effectiveness of a fault-
tolerant strategy and, in particular, to answer the above questions, we propose
a model based on formalizing tﬁe notion of coincident errors. The basic
assumptions of this model are: (i) that independently designed software
components are chosen in a random sample and (ii) each component and each
system is required to execute on a stationary, independent input series. We
derive the failure probability of-a redundant N-Version system and establish
general conditions giving answers to (1), (3), and (5) above. The main
quantities describing the model are: an intensity function defined on the
input space which models the occurrence of coincident errors and a usage
distribution which gives the probabilities of inputs occurring in various
subsets. Also important to our description is an intensity distribution
derived from the intensity function and the usage distribution. The intensity
distribution completely specifies the failure probability of a redundant
system; that is, if the intensity distribution is known or can be estimated,
answers to questions of type (1) - (5) can be given. Since empirical
information concerning the intensity distribution is unavailable, we study the

effects of coincident errors by varying the choice of intensity distributions.

Notation

We follow the usual convention in which random variables are denoted by

capital letters and their realizations are denoted by the corresponding lower

case. We also use the following:

Q

v(x)

8(x)

E(+) (P(e))

input set for software components designed to a common
specification;

a variable representing elements of Q;

the usage distribution, a probability measure defined on
(measurable) subsets of Q;

the score function, a binary function distinguishing the
ocecurrence 6r-corfect and incorrect output when a software
component‘executes on xefl;

intensity of coincident errors;

mathematical expectation (probability) derived from a product

probability space as specified by the two-stage process of

‘ Selecting software components at random and testing them on inputs

G(y)

G_(y)

chosen at. random from Q;

average probability of failure of an N-Version system

avérage probability of failure of a single software component;
number of software components in a multiple version program;
number of software components chosen in a random sample;
intensity distribution induced by the mapping x + 8(x) from Q

into [0, 1];

~ left continuous version of G(y);

g(e) probability mass function for a discrete intensity distribution;

N

h(y;N) z (2)y2(1—y)N 1, 0SSy s1 where m= (N+1)/2;
£=m)

02 variance of the intensity distribution;

$(y;N) n(y;N) - y.

2.0 THE MODEL

Suppose we are told that a particular software component, having input set
2, gives incorrect output when executing on inputs in some subset F of @
and gives correct output when éxecuting on inputs in the complementary set F'.
If_all inputs arriving in the user enviromment Selong to F, then the component
is totally unreliable whereas if all inputs arrive in F', then the component
is perfectly reliable. It is clear that some structure is required of the
input process in order to evaluate reliability; for example, the inputs could

alternate between F and F' or they may occur randomly in Q.

We assume tha; an input series X1, X2,..., is stationary and independent;
that is, successive inputs occur or are chosen at random in a series of
independent trials according to a common distribution. Some software
reliability models [9] and software testing experiments [10], [11] implicitly
assume or suggest this structure. The common distribution, say Q, is the usage

distribution which gives the probabilities Q(A) that successive inputs are

chosen at random in subsets A of Q.

At this stage of the discussion, other than the usage distribution itself,
the full probabilistic structure of an input series is not needed. Our concern
is mainly with the pbobability that a software component, and a redundant

structure developed from a set of components, fails on successive trials.

Let v(x), xeQ denote the score function for a particular component: v(x)
= 1 (v(x) = 0) 1if the component gives incorrect (correct) output when |
executing on xef. Note that the subset F of Q for which the component
gives incorrect output is {x: v(x) = 1}. The probability Q(F) that the

particular component fails on successive trials is
Q(F) = J v(x)dQ. (1)

Now consider either a physically existing population of programmers who
would design software to a given specification, or a conceptual population
based on what would happen in a large number of repetitions of an experiment
such as one which is designed to study the long term effectiveness of a fault-
tolerant strategy. Let 6(x) describe the pfoportion of this population giving
errors in the output when executing on xeQ. This intensity function can be
interpreted a number of ways: for example, it models the occurrence of
coincident errors; it gives the probability that a software component, when
chosen at random, fails on a particular input; and it describes a propensity

for software components to fail together when executing on a single input.

If a component is chosen at random, then for fixed xeQ, its score function
V(x) is a binary random variable taking values zero and one with probabilities
1 - 6(x) and 6(x). and, therefore, its mathematical expectation is

E[V(x)] = 6(x) for each xeQ.

As previously stated, (1) gives the probability that a particular component
gives an error in its output. This probability, however, is a random variable
which varies over repeated selections of software components. The mean of its

distribution is
E[/V(x)da] = fe(x)dQ. | ()

The conceptual distinction between (1) and (2) is analogous to the process
for estimating the reliability of hardware devices. That 1s, they capture,
respectively, the difference between the reliability of a particular hardware
device and the reliability of a population of devices of its type. While
reliability predictions are actually desired for the device on hand, they are

usually made on the basis of empirical results reported from testing a subset

of the population.

Neither the score function nor its expected value has introduced any
assumptions to our model. However, when describing the reliability of a
redundant structure, we need to state what is meant by independently designed
versions of software components. We shall mean a set of n components which
is chosen at random from a population so that: (a) {V1(x); xeQl}, {Vz(x); xeq},
ey {Vn(x);‘xen} are independent collections of random variables and (b) for
each xeQ, V1(x), V2(x), oo Vn(x) are identically distributed random
variables. This assumption describes the usual conditions required of a random
sample. The condition that V1(x), V2(x), ceey Vn(x) are identically -

distributed implies that the probabilities fVi(x)dQ, i=1,2, ..., n of

10

incorrect outputs, which are themselves random variables,’vary according to a
common distribution and the mean of this distribution is /fe(x)dQ, as given
earlier. Note that condition (a) is similar to the condition defining
independence of a collection of stochastic processes indexed by a time
parameter. It is also similar to the process of recording independent vector
measurements for a Samplé of individuals taken from a human population. We
emphasiée that statistical independence in the current context refers only to
the selection process and does not imply statistically independent failures

among software components. This point is discussed further in Section 3.0.

Although empirical studies of fault-tolerant software are not likely to
often be conducted in the strict sense defining a random sample, repetitions of
ﬁhe veréion selection process does.involve uncertainty concerning the subsets
of Q on which tﬁe component versions fail. The probabilisﬁic structure
implied by the conditions defining a random sample gives a meanihgful way to
interpret experimental results when the main interest lies in the long term
effectiveness of a fault-tolerant strategy rather than the study of a

particular instance of its application.

Now consider an N-Version (N =1, 3, 5, ...) structure consisting of N
software components, each designed to a common specificationiand required to
execute on a single input series in the user environment. The outputs given
after each execution are compared and, in case of disagreement, a consensus
result is obtained by majority vote. An N-Version structure fails when
executing on some subset F of Q@ and, as before, this subset is conveniently

described by a score function v(x), xe, which is

11

N

v(x) = £ X vi(1)(x)...vi(2)(x)[1 - Vi(l+1)(X)]"‘[1-V (x)] (3)

- 1(N)

where vi(1)(x), v (X)) ouus vi(N)(X) is a permutation of the score

i(2)
functions for the component versions. The second sum in (3) is over all
distinct subsets of {1, 2, ..., N} and m = (N+1)/2 corresponds to the case of

a redundant system that fails when at least a majority of its components fail.

We now state‘the main result of this Section:

Theorem 1. Under the cdndition that the component versions are the result of a

random sample and each is required to execute on common inputs chosen at

random, the expected probability of sYstem failure is

N o
-5z e ' - a0 1" taa)

p
N 2=m

Proof. Upon édnditioning on VT(-), V2(-), cees VN(-), the probability of
failure is [v(x)dQ vwhere v(*) 'is given by (3). Now taking the expectation
inside the'integral and using the independence of V1(-),'..., VN(°) due to
sampling, together with the condition E[Vi(f)] = e(x),vi =1, 2, «.., N, gives

the desired result.

12

Although the main interest may often lie in the probability, Sv(x)dQ (where
v(x) is given by (3)), of failure of a particular N-Version system rather than
the population average, py» as given by (4), the quantity, Sfv(x)dQ, will vary
from one application to another and, unless we replace v{x) by its expected
value as done in (4), there is no basis for further simplification. This same
point was mentioned earlier when comparing (1) and (2) and, as before, is
analogous to the difference between the reliability of a particular hardware

device and the average reliability for a population of devices of its type.

While 6(x), xeQ together with N and the usage distribution completely
specify Py» little empirical evidence is available from which to estimate

8(x), xeQ; thus reasonable choices of the intensity to expect in applications

is unclear. For this reason, we reparameterize Py in terms of the following:
NN 2 N-2
h(y;N) = L (Q)Y (1 -y] , 0 Sy s (5)
: L=m
and
G(y) = [dQ, -» < y < = (6)

{x:8(x) < y}

We shall refer to G(y) as the intensity distribution which is induced by the

mapping x -+ 6(x) from Q into [0, 1].

13

Before proceeding to give a reparameterization of pN,'consider the
interpretation of G(y) 1in the discrete case which arises when 6(x) takes a
finite number of values over subsets of Q. Suppose 6(x) = ei for' xeAi
10 Ror e Ar is a partition of Q@ and suppose the sets giving a

common value under the mapping have been combined and indexed so that 0 £ 61 <

where A A

62 < oo K er € 1. Then, in this case,

L q;, ~@2 <y <= (7)

G(y)
(i 8, s v}

where q, = Q(Ai)’ i=1,2, ..o, r is‘the probability mass given by the usage
distribution. Since G(y) 1is right continuous, G(b) - G(a) .gives the
probability‘that inputs aré chosen so that the proportion of a population of
components that fail is in the range (a, bl, a < b (the upper limit, b, is
included in the interval (a,b] but the lower limit, a, is not included).

For later reference, we restate our earlier reéult in reparameterized form:

Corollary. Under the conditions stated in the previous theorem,

py = Jhly; N)dG(y) _ (8)

where h(y; N) 1is given in (5) and G(y) 1is given by (6).

The result follows by substitution (e.g., see [12], p. 43).

14

3.0 INDEPENDENT ERRORS

The assumption that failures occur independently (in a statistical sense)
in hardware components is a widely used and often successful model for‘
predicting the reliability of hardware dévices. Thus, it is tempting to assume
that software components also fail independenply and, on this basis, estimate

the failure probability of a redundant N-Version system from

g) k-, (9)
2=m . .

This gives a computationally convenient formula for which the only
information required is the average failure probability p of the software
components. However, it clearly differs from the representation bf' pN givén
earlier in (4). In this Section we ask whether independence implies a
condition on the intensity distribution which is reasonable to expect in
applications. Also, we ask whether it isAcorrect to interpret a low intensity
as implying staﬁistical independence and a high intensity as implying

statistical dependence in the context of coincident errors.
Cdnsider for the moment only two versions. Suppose, as before, they are
chosen in a random sample and each is required to execute on common inputs

chosen at random from Q. The two versions fail independently if

P(F1f\ F2) - P(Fl) . P(F2) = 0. | (10)

15

We have

P(Fi) = fo(x)dQ, i =1, 2 (11)

and

P(F1r\ F2) = E[fV1(x) V2(x)dQ] (12) '

where V1(-) and V2(-) are the score functions for the individual versions.
Upon taking the expectation inside the integral in (12) and using the

assumption that V1(-) and V2(-) are the result of a random sample, we have

P(F1f\ F2) = f62(x)dQ. ‘ (13)

Now the condition for independence, as stated in (10), is that

76°(x)dQ - fo(x)dQ + fB(x)dQ = O. | (14)

However, the term on the left is the yariance,

o® = fy%dG(y) - fydG(y) - Sydo(y), | (15)

of the intensity distribution and
JydG = Jo(x)dQ ‘ (16)
is its mean.

The variance.of a distribution can equal zero only if the mass of the
distribution is concentrated at a single point. Therefore, we state the
following:
Theofem 2. Under the conditions stated in the previous theorem, a necessary .
and sufficient condition for (unconditioﬁal) independent failure of the
component versions is that 6(x) Dbe constant except on a subset A .of Q for

which Q(A) = 0,

16

Proof. In the general case, independence holds if

n n ‘
P(N F,) =1 P(Fi).
1 1
or if,
se"(x)dQ = [fe(x)dQl".

F F are

pr e B

independent events. Conversely, independence of F1, F2, ceey Fn implies

By substitution, a constant intensity implies that F1,
pairwise independence which in turn implies a constant intensity as shown for

the case n=2.

A few words of explanation are in order to illustrate the difference
between unconditional probabilities which are used in Theorem 2 and conditional
probabilities that are appropriate when the discussion is limited to particular
versions. This difference was discussed earlier following the statement of
Theorem 1 and also when comparing (1) and (2). Suppose that two particulap
independently designed versions fail on inputs chosen from the sets
F. = {k:vi(x) =1}, i =1,2. Thé conditional probability (given the particular

i

versions) that both versions fail on inputs chosen from Q |is
QF, N F,) =/ vy (x) v, (x)dQ
and the individual conditional probabilities are

QF;) = [v, (x)dQ, i = 1,2.

17

If F1 and F2 are disjoint sets and if Q(Fi) >0, i=1,2, then

Q(F1fﬁ FZ) < Q(F1) Q(F2).

Thus the twp particular versions represent a case of negative (conditional)
dependence. Further these two versions may have been chosen from a population
having constant intensity. This does not invalidate the statement of Theorem 2
for the same reason that a coin cannot be declared biased on the basis of
observing two heads in two tosses. ‘Repetitions of the process of selecting
independently. designed versions would typically result in conditional
probabiiities which vary over repeated selections and itvis the average of

these conditional probabilities to which we refer in Theorem 2.

A constant intensity is probably unreasonable to expect in most
applications. For example, if for some population, none of the component
versions fail on most inputs while a small percentage fail on a small portion

of the inputs, then independence cannot hold.

Now consider whether it is physically plausible that a constant intensity
should imply the independent occurrence of errors in component versions. This
same question can arise in the context of a coin tossing experiment. Suppose
that if two similar coins (software components designed to a common
specification) are tossed (execute) under one condition (on input x1) then the
probabilities of each giving tails is .4, but if each is tossed undérianother
condition (input x2), the probability of each giving tails is .6. Now if the

condition (input) is chosen at random and the pair of coins is tossed, the

18

probability of both giving tails is .5(.14)2 + .5(.6)2 = .26 while the
probabilities that they individually give tails is .5(.6) + .5(.4) = .5,
Independence fails to hold (.26 = (.5)2) since the probability of tails varies
with the input conditions. Independence in the software context is, therefore,
no less plausible than for other experiments in which the results are given by

a two-stage process.

Even though the notion of a constant intensity might seem unacceptéble at
first, we assert that users of the indepehdence model implicity make this
assumption. Given that informaﬁion concerning the intensity is unavailable,
the most logical choicé would be the average intensity [fe(x)dqQ, which is also
the mean component failure probability. Substituting the average intensity for

8(x) in (4) gives the independence model.

Our results show it is incorrect to interpret a low intensity as implying
statistical independence and a high intensity as implying statistical
dependence. Rather the variance 02 of the intensity distribution gives a
measure of departure from the independencé model, However, a more useful
approach may be to compare directly computations given by (8) and (9). This
difference describes the effect of assuming independence when prediéting'the
failure probability of an N-Version system. We examine this difference in a

later section.

19

4.0 A SUFFICIENT CONDITION FOR REDUNDANCY TO IMPROVE RELIABILITY

Whereas estimates of Py N=1, 3, 5, ... can be given directly on the
basis of a random sample of independently designed versions, such estimates
would provide little insight concerning the effect of coincident errors.
Moreover, in terms of efficiency, rather than examine a series of parameters to
decide whether redundancy improves reliability, ;t is desirable to give a
globél condition which permits examining the intensity distribution. The
difference in failure probabilities for the N-Version .and sinéle version cases
is

py = P = JIn(yiN)-yldo(y) - - D
where G(y) 1is the intensity distribution and h(y;N) is given in (5). We

desire a condition on G(y) which insures that (17) would be negative. Here and

in later discussion of this problém we refer only to the case m = (N+1)/2.

Insight into the type of condition required is gained by examining the
integrand ¢(y;N) = h(y;N) - y appearing in (17). As shown in the Appehdix,
¢(y;N) 1is an antisymmetric function (a class of functions studied in [13]),

with center of antisymmetry at .5; that is,
¢(.5 + y;N) = - ¢(.5 - y;N), 0 Sy s .5. (18)
In addition, ¢(y;N) is convex over the range 0 <y £ .5, concave over .5 Sy

£ 1, ¢(0;N) = ¢(.5;N) = ¢(1;N) = 0, and ¢(y;N) lieé below (above) the

horizontal axis for 0 <y < .5 (.5 <y <'1). The antisymmetry of ¢(y;N)

20

suggests that a sufficient condition for (17) to be negative is when the
‘intensity distribution assigns greater mass to intervals of the type (.5 - b,
.5 - al], 0 $ a < b, than to their symmetrically located counterparts [.5 + a,

.5 + Db).
To describe this condition, we require that
G(.5-a) - G(.5-b) 2 G_(.5+b) - G_(.5+a) (19)

for all 0 s a<b where G_(y) is given by the left continuous version of

G(y); namely, by
G (y) =/ dQ - (20)
{x: 8(x) < y}

Note that if equality holds in (19) for all 0 £ a < b, then G(y) is a
symmetric distribution with center of symmetry at .5. Thus condition (19)
describes an asymmetry of the intensity distribution relative to the center

point of [0, 1].

The asymmetry condition (19) can also be described by either of the

following conditions:

G(.5 - y) + G_(.5 +y) 1is nonincreasing in y 2 0 (21)

or

G(y) + G_(1 - y) is nondecreasing in y § .5. (22)

21

A sufficient condition under which redundant N-Version (N = 1, 3, 5, ;..
and m = (N+1)/2) strucﬁures "on the average" have smaller probability of
failure than do single versions is as stated in the following: |
Theorem 3. If thé intensity distribution satisfieé the asymmetry condition
(19), then [¢(y;N)dG £ 0. Equality holds when G(y) is'a symmetric
distribution. :
Proof,

Since ¢(.5;N) = 0,

.5 ©
J ¢(y;N)dG = [¢(y;N) dG + J ¢(y;N)dG_
. —-® _ .5
and by substitution, the expression on the right becomes
- (.5 - y;N)AG(.5-y) + S ¢(.5 + y;N)dG_(.5+y).
0 0
Now using the antisymmetry of ¢(y;N) gives

o

S o(y;N)AG = S ¢(.5 + y;N)A[G(.5 - y) + G_(.5 + y)].
0

If G(y) is symmetric then G(.5 - y) + G_(.5 +y) 1is constant in 'y 2 0 so
that Jf¢(y;N)dG = 0. On the other hand, if condition (19) holds then (21)
- implies that G(.5 - y) + G_(.5 + y) assigns a negative measure to each

interval and implies the desired result.
Although asymmetry of the intensity distribution is not a necessary

condition, 1t does describe a wide class of cases.for which an N-Version

structure is better than a single version. In particular-noté thét ir 1 -

22

G(.5) = 0, then the sufficient coridition is met; that is, if 6(x) £ .5 for
xeQ except on a set A for which Q(A) = 0, then an N-Version structure gives
a smaller probability of failure than does a strategy based on a single

version.

Whereas for hardware devices the independence model and the average
component failure probability, p, can be used to give a condition under which
redundancy impréves reliability, this is not true, in general, for redundant
software subject to coincident errors. In particular, the average component
failure probability being less than .5 does not imply that redundancy decreases

system failure probability as is demonstrated in the next section.
5.0 EFFECTS OF COINCIDENT ERRORS

In this section we examine the effects of coincident errors on the failure
probability, p&, (N=1, 3,5, "f) of an N-Versiqn software structure. Since
coincidence, in the current context, refers to an intensity function 6(x),
xeQ, we are confronted with the problem of having to hypothesize a probability
mass function (pmf), g(6), of the type suggested earlier in (7). We will
assume a highly skewed distribution as in Table 1a to represent a form we

believe is reasonable to expect in applications of software redundancy.

The interpretation of g(6) is the probability of encountering an xeQ
whose coincidence intensity is the proportion 6. Thus ideally, we have high
probabilities of encountering inputs that result in low values of 8 and

significantly less probability of encountering the higher intensity

23

coefficients at the tail of the distrgbutloh. For the given pmf, we would
expect all (i.e. 0=0) of the programs of our population_to provide correct
outputs on 98.98% of -the input cases. The average failure probability for a
single version (which is ;he samé as the mean of the intensity distribution) is ‘l‘k

p = L6g(8) = 2 x 107",

0 g(8)] 8,(d) g,(8) 8419}
0 .98977 - o S0 .99999 .99997 .99993 Y
.01 .00512 : .05 .00001 .00002 .00004 :
.02 .00256 . A0 0 .00001 .00002 . i
.03 .00128 ' A5 0. - 0 .00001 ‘ L
.08 .00064 » - o
.05 .00032 !
.06 .00016 ‘ (Y , b
.01~ .00008 : : ' : f;
.08 .00004 ﬁ
.09 .00002 ;
10 ..00001]

(a) v
|
o 8(0) ' L 8(e) _ . o
0 .99899 . .0 .99998 . : .) !
.10 - .00100 .05 .00100 ‘ ' ’
.50 .00001 : ' - .60 .00001
() : o o (d)
) a(e) - - B g(oe)
0 .99999 S ' 0 .99998
.60 .00001 , .10 .0000!
‘ ‘ : ' .60 .00001 !
(e) - - 0 o o !

Table 1. - Probability mass functions for figures 1-6,

24

Effect of Independence Assumption

The expected system failure probability on the basis of the pmf of Table 1a
is shown in Figure 1. Also shown is the result of assuming independent errors.
It is evident that increasing N does substantially reduce the probability of
incorrect output for an N-Version system. A N=5 version system, for example,
will reduce this fallure probability by approximately two orders of magnitude
relative to that of a single version. However, also evident is the fact that
the assumption of independént errors leads to predictidns of improvement of
more than five orders of magnitude. This underestimation can be seen another
way: 1t would take seventeen versions from a population whose average failure
probabllity is 2 x 10_u to producé a system with pN < 10-9 rather than the five

versions when independence 1is assumed.

3
I,i?z}““l

ol 3 Coincident Errors Model.
VN O Independent Errors Model

(S

9
(@]
I
/

Pt
2
o
T
/

Pr {System Failurel

Figure 1. - Effé;c of independent errors assumption.

Effect of Shifted Intensity Distribution

Figure 2 shows the effect of shifting the mass points of the intensity
distribution to the right, thereby, increasing the intensity of coincident
errors. The coincident errors increase from a maximum of 5.0 percent for 31(9)
to .15.0 percent for 33(9) as shown in Tabie 1b. This shift has degraded

T t05.5x 100, 1r

-9

average component failure probability, p, from 5.0 x 10°
these components were used in a critical application requiring Py <10 then
twenty-one components would be required from the population with g3(6) compared

to nine components corresponding to 31(6).

~— -
® K
= ®
‘= 1076 B
Ex. 1y 0 AN
g \\ \Q \A.\
- - Q4 N &
> \ O A _
=~ 1078 W g a gy PS4 g3
[\ ~ ~
Q. @ ﬁ\
N q | \’S‘r I R AN
1 S 9 13 17 21

Figure 2. - Effect of a shifted intensity distribution.

26

The Limiting Probability of System Failure

Here we examine the limiting value of Py a8 N increases. Using property

(11) of the Appendix it is easily shown that this limiting value is

1
2im py = .50G(.5+)-G(.5-)] + [., dG(8). - {23)

This effect is illustrated in Figure 3 using the pmf of Table 1c.

~-x1076

p—
@ o
!

(o))
|
|

Pr §{System Failurel

Figure 3. - Limit on Pr {System Failure}.

Although it is true for this example that a fault-tolerant approach is
better than a single version of software, the coincidence mass points
distributed along the interval .5 S0 s 1 limits thé reliability that can be
obtained with fault tolerance. For this example Py can never fall below

5 x 10-6 with any degree of fault tolerance.

27

A Condition For System Degradation In The Limit.

Consider the pmf of Table 1d and the correéponding pN shown in Figure 4.
Here we have a case where the value of N corresponding to the minimum failure
probability is not the limiting case (N + =) but rather an intermediate value,
N = 7. Increasing N beyond this point actually degrades the system. What

has been the condition that has brought about this degradation with increasing

N?
10 x107%
e \
[Y .
= \
- ot \ _
= B8rF a E]___E]-——El“‘{] +
= \E]-E]”E"
-3
o 6
| S
Q-
4 | 1] !] J
1 ° -9 13 17 21

N

Figure 4. - Existence of optimal N.

This condition will exist when the failure probability for some %-Version

system is less than the limiting failure probabiliﬁy, i.e., when for some N,

-]

bN < .5[G(.5+) - G(.5=)] + [dG(e) (24)
5+

28

Using (8) for Py this can be written as

.5— -] .
J h(e;N)dG(e) + S/ [h(e;N) - 1]dG_(s) < 0. (25)

-0 .5+
Using the symmetry, h(e; N) =1 - h(1 - 8; N),
we have
5=
S h(e; N)A[G(e) + G_(1 - 8)] < 0. - (26)

-0

The sufficiency condition of Theorem (2) implies that G(8) + G_(1 - 8) is

N r 4 N
increasing for 6 £ .5 which is inconsistent with inequality (26) above. -
Therefore, a necessary condition for a system to degrade in the limit is a

violation of the sufficiency condition of Theorem (2).

This example illustrates the possibility of coincident errors causing an
increase in system failure probability with increasing N. However, the end
result ‘is still better than a single version system. Also note that the

sufficiency condition given in Theorem 2 is not a necessary condition for

pN < p.
Effect of Highly Coincident Errors

As we have shown earlier, certain intensity functions can result in an N-
Version system being more prone to failure than a single software component.
An example of this, although perhaps highly unlikely, is sﬁown in Figure 5a
(Corresponding to the pmf of Table 1e). Here all programs produce corréct

output except for a subset A of the input space for which 6(x) = 8 = .6,

29

xeA. Thus for this subset, 60 percent of the population would produce an
error. In this case it is clear why increasing N degrades system
reliability. In the case of the independence model, if the average component
failure probability, p, excéeds .5, 1t becomes increasingly more difficult with
increasing N to realize a majority of components having correct output.
Similarly, for the coincident error model, if 6(x) > .5 for x in some
subset A for which Q(A) > 0, it also becomes increasingly more difficult with
increasing N to realize a majority of components having correct output.
Moreover, conditions could exist when one must specify a value of N in order
tq aésess whether N~Versioﬁ is better than a single version. This is
illustrated in Figure 5b (corresponding to the pmf of Table 1f). Increasing N
initially decreases system failure probability but eventually heads for its

limiting value which is worse than for a single component.

30

'S

Pr {System Failurej

Pr {System Failure}

10 ~x1079
-
o
£3 — ’E]‘__{:r- —E}'
_ 8-
_B
6 [
] 1 | | |
) 5 9o 13 17 21
N
(a)
10 ~x10-6
| _
8 - E—E‘B—-E] :
_g-8°-
B .g-3-°F |
N
‘4 | |] { J
1 5 9 13 17 21
N

~(b)

Figure 5. - Effect of highly coincident errors.

31

6.0 CONCLUSIONS

The application of redundancy to hardware components has long been
established as an effective methodology for increasing reliability. 1Its
application to software is a relatively new and untested technology largely
motivated by the need for high reliability in life-critical applications such
as flight control. Thus, at least in the initial stage of studying fault-
tolerant software, much interest is likely to lie in evaluating the long term
effectiveness of a fault-tolerant strategy rather than in examining only a
single instance 1n which, for example, a partichlar system has smaller failure

probability than its component versions.

In this paper a theoretical basis for the analysis of redundant software
has been developed which directly links certain basic quantities with the
experimental process of testing independently designed software components. We
used tﬁis model to study in some detail the case of N-Version redundancy in
which the system fails if at least a majority of its components fail. Our @ain
conclusion in this case is that if the intensity distribution is asymmetric in
a certain way (see Section 4), then we can ensure that an N-Version.strategy is

better than one based on using a single software component.

- This condition differs sharply from what is required on the basis of the
independence model commonly used to estimate the reliability of hardware
devices. 1In the latter case, a necessary and sufficient condition (assuming an

N-modular redundant system which fails if a majority of its components fail)

32

[

for redundancy to. improve reliability over that of a single component is that
the component failure probability be less than .5 "and, further, system _.
reliability would then increase as the number of components is increased. 'The
same thing'cannot_be_saidnof redundant software systems which_are subject to

coincident errorS'(see Section 5).

This only points out'onedmajor differenoe between the type.of model needed
for redundant software and the'independence-model used for hardware.devices,v‘
Our model also gives some insight oonoerning the validlty of assumlng that
software components fail independently in a statistical sense. A-lowv:;
coincidence of errors does not describe 1ndependenceg Rather,a constants'
intensityicharacterizes:the case ofzindependenoeband the.varianoe of.the.
_intensity distribution measures-departure_from the independence model.r we
believe a constant intensity_is a condition unlikelytto hold'in most
applications. . Therefore, the combinatorial_method, based on independence and
:requiring only information concerning_the'failure'probability of component'

_ versions, is unlikely to give accurate estimates when:applied'to.redundant

software systems.

We have illustrated'theveffectsrof coincident errors on'the failure_
probability of»redundant SOftwarelsystems. Itfis_clear that redundancy under
certain conditions can‘improvevreliability. -However, the effects of coincident
errors, ‘as a minimum, required an 1ncrease in the number of software components
.greater than would be predicted by calculations using the combinatorial method
which assumes independence. Further, the effects of_a,high»intensity of’ _” |
coincident errors can be much moredseriousito-the ektent'of making a fault’

tolerant approach, on-average, worse<than using'a‘Single version. 'Herevagain

33 .

we must reassert that the assumption we are making is that we equate the
process of developing a single version with that of randomly selecting a

program from a population of programs which have been independently developed.

For purposes of illustration we have postulated in some céses a rather high
intensity of coincident errors. It is clear we need empirical data to truly
assess the effects of these errors on highly reliable software systems.
Additionally, efforts to identify the sources of coincident errors and to
develop.methods to reduce their intensity (hopefully that will come with an
understanding of the common source of the errors) will not only benefit the
development of fault-tolerant software but also software engineering in

general.

; 34

APPENDIX

Here we summarize some properties of h{(y;N). A real valued function f(y),

say, is antisymmetric [13] on [0, 1] with center at .5 if
£(.5-y) + f(y+.5) = 2f(.5), 0 Sy § .5. o (A.1)

The function h(y;N) given by (5) for N =1, 3, 5, ... and m = (N+1)/2

can'be written

Ly ‘ |
h(y;N) = NL(kDD ™2 £ uK(-w®au, 0 sy s 1, (A.2)
o ,

where k = (N=1)/2; this is a well-known formula [14] for a sum of binomial

terms.

The main properties of interest concerning h(y;N) anq $(y;N) = h(y;N)-y

are:' |

(1) h(O;N) = 0, h(1;N) =1 and h(.5;N) = .5 for N =1, 2, 3, ...;

(i1) as N=«, 1im h(y;N) - 0, .5, 1 whenever y<.5, y=.5, and y>.5,
respectively; '

(1ii) n(y;N) is antisymmetrical with center at .5;

(iv) h(y;N) is convex on [0,.5] and is concavé on [.5,1];

(v) ¢(y;n) is antisymmetrical with center at .5 and ¢{(0;N)=¢{(.5;N)=¢(1;N)=0
for N =1, 3, 5, cee3 |

(vi) ¢ty;N) is convex on [0,.5] and is concave on [.5,1];

(vii) h(y;N) is nonincreasing in N =1, 3, 5, ... for y<.5;

(viii) h(y;N) is nondecreasing in N = 1, 3, 5, ... for y>.5.

35

Proof. The result (i) follows by substitution and by symmetry of the binomial
distribution when y=.5; (ii) follows from the weak law of large numbers applied
to the binomial distribution; (iv) and (vi) can be seen directly by examining

the second derivatives of h(y;N) and ¢(y;N).

To prove (iii), note that symmetry of the integrand in (A.2) gives

_n Oty _ 1
Ntk 2 wRG-wKan = mikn T2 5 W (-wXau
o) 5=y
where the term on the left is h(.5+y;N) and the term on the right is 1-h(.5-
y;N). Therefore, h(.5+y;N) + h(.5-y;N) = 1 = 2h(.5;N). Now (v) also follows

by using the antisymmetry of h(y;N) established in (iii).

To prove (vii), let f£(y) = h(y;N+2)/h(y;N) and use (A.2) to get

y 'y
f(y) =c /S uk+1(1-u)k+1du/ S uk(1-u)kdu
o . o
where ¢ = (N+2)(N+1)(k+1)-2, k=0, 1, 2, The derivative 3/3y{f(y)} is

nonnegative when y < .5 providing

y y
vGi-y) £ o¥G-wKau - £ oK a-w ¥ au 2 o,
(o] [o]

But u(1-u) when O S u sy < .5 takes the maximum value y(1-y) so that

y y
J u(1-u)uk(1-u)kdu s y(1-y) f uk(1-u)kdu
o o

36

which proves that f(y) is nondecreasing for 0 £y s .5. This proves (vii)
since f(.5) = 1. Since h(.5+y,N) = 1 - h(.5-y;N) and h(.5-y;N) is

nonincreasing in N=1, 3, 5, ..., we have also proved (viii).

37

10.

11.

12.

13.

14,

REFERENCES

Avizienis, A., "Fault Tolerance and Fault Intolerance: Complementary
Approaches to Reliable Computing," Proc. 1975 Int. Conf. Reliable
Software, pp. 458-464,

Randell, B., "System Structure for Software Fault Tolerance," IEEE Trans.

. Software Eng., June 1975, pp. 220-232.

Weinstock, C. B., "SIFT Design and Analysis of a Fault-Tolerant Computer
for Aircraft Control," Proc. of IEEE, Vol. 66, No. 10, 1978, pp. 1240-

1255.

Hopkins, A. L., et al., "FTMP - A Highly Reliable Fault-Tolerént»
Multiprocessor for Aircraft," Proc. of IEEE, Vol. 66, No. 10, 1978, pp.
1221-1239.

Migneault, G. E., "The Cost of Software'Fault Tolerance Techniques," NASA
Technical Memorandum 84546, Sept. 1982.

Barlow, R. E., and Proschan, F., "Statistical Theory of Reliability and
Life Testing," Holt, Rinehart, and Winston, Inc. 1975.

Scott, R. K., Gault, J. w.; McAllister, D. F., and Wiggs, J.,
"Experimental Validation of Six Fault-Tolerant Software Reliability
Models," IEEE Conf. on Fault-Tolerant Computing, 1984, pp. 102-107.

Grnavou, A., Arlat, J., and Avizinienis, A., "Modeling of Software Fault
Tolerance Strategies," Proc. 1980 Pittsburgh Modeling and Simulation
Conf., Pittsburgh, Pennsylvania, May 1980.

Littlewood, B,, "Theorieé_of Software Reliability: How Good Are They and
How Can They Be Improved," IEEE Trans. on Software Eng., Vol. SE-6, No. 5,

1980, pp. 489-500.

Nagel, P. M., and Skrivan, J. A., "Software Reliability: Repétitive Run
Experimentation and Modeling," NASA CR-165036, 1982.

Nagel, P. M., SCholz,;F; W., and Skrivan, J. A., "Software Reliability:
Additional Investigations into Modeling with Replicated Experiments,'" NASA
CR-172378, 1984, - : g

Chung, Kai Lai, "A Course in Frobability Theory," New York: Harcourt,
Brace and World Inc., 1968.

Van Zwet, W. R., "Convex Transformations of Random Vabiables," Armsterdam:
Mathematisch Centrum, 1964,

Abramowitz, M., and Stegun, I. A., ed., "Handbook of Mathematical
Functions," New York: Dover Publications, Inc,, 1965

38

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.

_NASA TM-86369

4. Title and Subtitle 5. Report Date
A Theoretical Basis For The Analysis Of Redundant January 1985

Software Subject To Coincident Errors 6. Performing Organization Code

505~34~13-35
7. Author(s) 8. Performing Organization Report No,
Dave E. Eckhardt, Jr.
Larry D. Lee 10. Work Unit No.

9. Performing Organization Name and Address

NASA Langley Research Center 11, Contract or Grant No.
Hampton, Virginia 23665

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Technical Memorandum

National Aeronautics and Space Administration

Washington, DC 20546 14. Sponsoring Agency Code
b]

15. Supplementary Notes

16. Abstract

Fundamental to the development of redundant software techniques (known as
fault-tolerant software) is an understanding of the impact of multiple joint
occurrences of errors, referred to here as coincident errors. A theoretical
basis for the study of redundant software is developed which (1) provides a
probabilistic framework for empirically evaluating the effectiveness of the
general (N-Version) strategy when component versions are subject to coincident
errors, and (2) permits an analytical study of the effects of these errors.

The basic assumptions of the model are: (i) independently designed software
components are chosen in a random sample and (ii) in the user enviromment, the
system is required to execute on a stationary input series. An intensity
function, called the intensity of coincident errors, has a central role in the
model. This function describes the propensity of a population of programmers
to introduce design faults in such a way that software components fail together
when executing in the user environment. The model is used to give conditions
under which an N-Version system is a better strategy for reducing system
failure probability than relying on a single version of software. In addition,
a condition which limits the effectiveness of a fault-tolerant strategy is
studied, and we ask whether system failure probability varies monotonically
with increasing N or whether an optimal choice of N exists.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement
Fault-Tolerant Software]
Redundant Software Reliability Unclassified - Unlimited
Coincident Errors
Intensity Distribution Subject Category - 61 & 65
19, Security Classif. (of this report) 20. Security Classif. (of this page) 21. No, of Pages 22, Price
Unclassified Unclassified 39 AO3

N-305 For sale by the National Technical information Service, Springfield, Virginia 22161

End of Document

