
NASA Contractor Report 172560

ICASE REPORT NO. 85-16 NASA-cR-172560
19850015010

CONSTRUCTION OF A MENU-BASED SYSTEM '"""'_E_-_-L:-;

Robert E. Noonan

W. Robert Collins

Contract No. NASI-17070

February 1985

INSTITUTE FOR CO_UTER APPLICATIONS IN SCIENCE AND ENGINEERING

NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

LIB AE1YCgPY
'- :_d5.. ,_' ,: _,

I.ANGLEYRESEARCHCENTER
National Aeronautfcs and LIBRARY,NASA
Sl3ace Aclmintstratfon HA_IP.TOI_,VIRGINIA

Langley Research C_ter
Haml3ton,Virgan_a23665

CONSTRUCTION OF A MENU-BASED SYSTEM

Robert E. Noonan [I]

College of William and Mary
and

Institute for Computer Applications in Science and Engineering

W. Robert Collins [2]

College of William and Mary

SUMMARY

In this paper we discuss the development of the us'er interface to a

software code management system. The user interface was specified

using a grammar and implemented using an LR parser' generator. This was

found to be an effective method for the rapid prototyping of a

menu-based system.

[I] Research was supported by the National Aeronautics and Space
Administration under NASA Contract No. NASI-17070 while the author was

in residence at $CASE, NASA Langley Research Center., Hampton, VA 23665.

[2] Research was supported by NASA Langley Research Center under NASA
Grant NAG-I-534.

i

INTRODUCTION

As interactivecomputing has displaced batch processing,the design

of the user interface has become increasingly important.

Unfortunately, in most systems the user interface is not explicitly

designed, resulting in confusing and unfriendly systems. Command

languages, such as UNIX (Tm) and IBM's TSO, are notorious examples of

unfriendly systems.

Recently, the authors were part of a team to design and implement a

software code management system, named SCMS, to run on a UNIX-based

workstation. Previous experience with other software tools had

convinced management that an unfriendly user interface could ruin an

otherwise satisfactory system. The authors were assigned the task of

designing and implementing the Command language for this system, based

on a set of requirements and a list of sample commands.

The user interface was to be implemented as rapidly as possible,

long before the rest of the system was completed. This was to provide

the capability of being able to "play" with the user interface as early

as possible and to request changes in the interface. These changes

were to impact the ongoing implementation as little as possible.

Based on experience with the design, implementation, and use of

other interactive systems, it was determined that the user interface

should be specified and implemented using a BNF grammar. Since the

terminals to be used were ordinary alphanumeric terminals (of varying

2

kinds) using an RS-232 port, a mouse-based command system was not

possible. The alternatives considered were a conventional command

language and a menu-based system. While conventional command languages

are commonly implemented based on a grammar, m_nu systems seldom are.

However, the inherent friendliness and ease of use of menu systems made

them the logical choice.

In the remainder of the paper the guidelines used for constructing

the grammar are discussed. Next, we discuss the implementation of the

system using an LR parser. We do not, however, discuss the

functionality of the system; readers interested in this aspect should

consult [Rochkind 1975]. Finally, the advantages of this approach are

enumerated.

D_EHI_Gg__0F__A__Z_

Based on experience with using a variety of menu systems, it was

decided that menus would be presented on a single line, with the first

character of each menu item being used to select that item. Thus, a

typical menu might appear as:

SCMS: C(reate-lib D(estroy-lib U(se-lib Q(uit ->

In this case, "SCMS" is the name of the menu being displayed, and valid

responses consist of "C", "D", "O", and "Q" (or their lower case

equivalents).

3

Other menu styles are possible. This style was chosen because it

• was felt that brief menus would not interfere with use of the system by

experts (all users are professional programmers). Also, some users may

be using low bandwidth ports to the computer. However, the style

chosen has no real impact on the implementation.

The movement from one menu to another was perceived as movement

within a transition diagram. This leads to the use of right recursion

in the specifying grammar. Thus, the grammar rules for the above menu

might appear as:

<scms_menu> ::= c <create_lib> <scms_menu>

<scms_menu> ::= d <destroy_lib> <scms_menu>

<scms_menu> ::= u <use_lib> <use_menu>

<scms_menu> ::= q

Both the create and destroy commands leave the user in the SCMS menu,

while the use command gets the library name and then invokes another

menu. The quit command exits the system.

Four alternatives were considered for implementing the grammar. The

" first alternative was to handcraft a program that implemented the

grammar, following the technique known as recursive descent [Aho 1977].

However, extensive changes in the menus due to experimentation would

cause the program to define the interface, and not the grammar as

desired. Also, this alternative violated our desire to quickly produce

a running prototype.

Another alternative was to implement the grammar as a finite state

machine. However, this would capture only those parts of the grammar

dealing with menus. Some nonterminals occurred in the right-hand side

of more than one rule. Also, we had no automated tools available for

converting a grammar or part of a grammar to a running implementation.

The third alternative was to use an LL parser generator and an LL

parser [Aho 1977]. There were two problems with this choice. As

written the grammar was not LL(1), although this was a relatively minor

problem. The major problem was that we did not have an LL parser

generator available to us.

The last alternative was to use an LR parser generator and an LR

parser [Aho 1977]. We had such a parser generator available to us

[Collins 1980] and had extensive experience with it. More importantly,

the source code of the parser generator was both available and familiar

to us, a consideration that, in retrospect, was irrelevant. The

grammar was SLR(1), a subset of LR. The only major problem was that

the extensive use of right recursion in the grammar necessitated a

potentially infinite runtime parse stack.

Since a running implementation could be produced directly from the

grammar very quickly, it was decided to use an LR parser. The parser

stack problem was temporarily finessed by declaring the stack to be

very large (a thousand entries). In fact, the ease of implementation

allowed the exploration of issues using a subset of the grammar and the

experimentation with stylistic issues such as the appearance of menus,

IMPLEMENTATION

Over the course of several years, we have developed a number of

distinct parser programs targeted at various application areas. One of

these, named QUERY, has been used for developing traditional,

interactive applications. This program was used as a starting point in

developing the parser needed for this application.

QUERY has a traditional parser-based program structure, consisting

of three phases [Aho 1977]: scanner, parser, and semantics phase. The

first two depend only on the grammar and are otherwise application

independent. The semantics phase consists of a procedure containing a

giant case statement, with one case per grammar rule. As the end of a

rule is recognized, the parser invokes this routine, passing as an

argument the number of the grammar rule. Hence, all of the application

dependent code is placed in the semantics routine and the procedures it

invokes.

" There are several problems with this structure. All of the input is

read in the scanner and passed in a logical stream to the parser. As

soon as the parser has consumed a token or symbol, the scanner is

called to produce a new token. In particular, the scanner is required

to produce a token before the parser begins executing!

6

A second problem is the coordination of the prompt menus with the

input. The former would have to be output oy the semantics routine,

while the latter is handled by the scanner. Ti_is results from the fact

that the scanner has no knowledge of the state of the parser.

Coordinating the two was clearly a problem.

The third problem had to do with incorrect input. In this case, the

user has to be notified and a new input obtained. With input in one

routine and output in another, coordination was again going to be a

problem.

One possible solution was to eliminate the scanner entirely and have

all the output of menus, input, and legality checking done in the

semantics routine. The major problem with this solution is that the

code to perform this function had to be replicated in as many places as

there were menus. Also, this solution decreased the importance of the

grammar in specifying the user interface.

In a very real sense, the coordination of parser input with the

output of menus is similar to the functions performed when a syntax

error is discovered in the input [Graham 1975]. The error recovery

routine first determines what tokens are legal given the current state

of the parser, so that a legal token can be either inserted ahead of or

exchanged for the illegal token. This notion was combined with the

concept of lazy input [Kaye 1980], in which input is not requested from

a terminal until the program requests it via a "read" statement.

However, for this scheme to be effective the parser must use "default"

reductions [Anderson 1973] in those states in which the input is

irrelevant. Fortunately, this is a space saving technique commonly

employed by parser generators.

In our implementation, there is no scanner. No input is done until

the parser enters a state in which a token is required. At this point,

the "error recovery" routine enumerates on the terminal the set of

legal tokens (menu choices). A character is read from the terminal and

checked against the first character of each token. If a match occurs,

the "error recovery" routine returns with the "correct" token.

Otherwise, a bell character is output and the user reprompted for

input.

This approach has a number of advantages. First, the menus

themselves appear explicitly in the grammar:

<use_menu> ::= C(heck <check_menu>

<use_menu> ::= D(efine <define_menu>

<use_menu> ::= R(emove <remove_menu>

<use_menu> ::= E(xit <scms_menu>

J Thus, addition of new menu choices or even of entire new menus is

accomplished by modifying the grammar and regenerating the parser. The

latter process takes only a few wall clock minutes on our supermini

computer.

Having menu presentation and legality checking of input done in one

8

place has a number of advantages. First, there are enormous savings in

the amount of code that must be written. Stylistic changes in the

presentation of menus is easily accomplished. Finally, the code is

fixed and uses automatically generated tables.

The only remaining problem was the potentially infinite parser

stack. However, because of the design of the grammar, menu states only

appear on the stack more than once through the use of right recursion.

Since this use is merely to mimic transitions from one menu to another,

the duplication of a menu state on the parser stack is unnecessary.

Through the use of a simple and efficient mechanism, the stack is cut

back to the previous occurrence whenever such a duplication occurs.

Thus, the parser stack cannot grow to be larger than the number of

parser states.

Table i gives some statistics on the size of the specifying grammar.

SCMS Pascal

Grammar Rules 114 202

Nonterminals 72 92

Terminal Symbols 33 64

Parser States 86 194

Menus 12 --

Table 1 : SCMS vs. Pascal Grammars

As can be seen from the comparison with Pascal, the language

implemented was nontrivial. The design of the menu items themselves

took considerably longer than the implementation.

One of the unexpected benefits of this approach was that it

uncovered problems in the requirements document for the system. These

discrepancies were easily fixed because they were discovered early

enough not to impact the implementation of the functionality of the

system.

_0_N_¢L_L9_IQNS

Using a grammar to formally specify the user interface to an

application usually results in a cleaner, more consistent interface.

An added benefit is that a parser generator can be used to generate the

user command language directly from the grammar. Thus, a running

prototype can be generated very quickly.

We have found that even menu-based applications benefit from this

approach. The problems encountered in using an LR parser were easily

" solved. The _esulting prototype enabled early experimentation with the

system and uncovered discrepancies in the requirements document.

I0

NOTES

UNIX is a trademark of AT&T Bell Laboratories.

REFERENCES

i. Anderson, T., Eve, J., and Horning, J. J. Efficient LR(1)

parsers. Acta Informatica, 2 (1973), 12-39.

2. Aho, Alfred V., and Ullman, Jeffrey D. principles of Compiler

Design. Addison-Wesley, 1977.

3. Collins, W. Robert, Knight, John C., and Noonan, Robert E. A

translator writing system for micro-computer high-level languages

and assemblers. NASA-AIAA Workshop on Aerospace Applications____

Microcomputers, (November 1980), 179-186.

4. Graham, Susan L., and Rhodes, S. P. Practical syntactic error

recovery. AC_, 18 (November 1975), 639-650.

5. Kaye, Douglas R. Interactive Pascal input. SIGPLAN Notices, 15

(January 1980), 66-68.

6. Rochkind, Marc J. The Source Code Control System. IEEE Trans. on

Soft. EDgr., SE-I, (December 1975), 364-370.

-1. Report No. NASA CR-172560 2. Government Accession No. 3. Recipient's Catalog No.

ICASE Report No. 85-16

4. Title and Subtitle 5. Report Date

CONSTRUCTION OF A MENU-BASED SYSTEM February 1985
6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.

Robert E. Noonan and W. Robert Collins 85-16
10. Work Unit No.

9. Performing Organization Name and Address

Institute for Computer Applications in Science

and Engineering 11. Contract or Grant No.

Mail Stop 132C, NASA Langley Research Center NASI-17070, NAG-I-534

Hampton, VA 23665 13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address
Conr r_rtor R_nort

National Aeronautics and Space Administration 14. Sponsoring Agency Code
Washington, D.C. 20546 505-31-83-01

15. Supplementary Notes

Langley Technical Monitor: J. C. South, Jr.

Final Report
Submitte_ to Software Practice & Experience.

16. Abstract

In this paper we discuss the development of the user interface to a software

code management system. The user interface was specified using a grammar and

implemented using a LR parser generator. This was found to be an effective method

for the rapid prototyping of a menu-based system.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

grammars 6[- Computer Programming

parser generator and Software

menu-based system
Unclassified - Unlimited

19. Security Classif. (of this report] 20. Security Classif. (of this page) 21. No. of Pages 22. Price

Unclassified Unclassified 12 A02

.-3os Forsale by the NationalTechnical InformationService,Springfield, Virginia 22161

q .

