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All of the time and offort during this report period ~as, dire~ted toward 

acquiring, reducing and analy:ing hot-wira anemometer data. This experimental 

study included ~lve combinations of chord Reynolds number, angle of attack, 

, and freestream disturbance environment using the NACA 663-018 airfoil. 

"'This resea~chhits' as' 1t!:objectiYe the deta1'led documentation 0' the 

structure and behavior of the separatf~n bubble 1nclud1nq transition and the 

redeveloping boundary layer after reattachment over an airfoil at low Reynolds 

numbars. The intent of this ttOrt is to further the understanding of' the 

cOIliplex MOll phenoroena sc that analytic ~tl1ods for predicting their fonr.ation 

and development can be improved. These analytic techniques have applications 

in the do~1gn and perfo~lncepredfction of airfoils opcrntfr.g in the low 

Reynolds n~ber flight regime. 

CALCULATIOU OF PARN'lETERS 

The primary resul ts of this inve:otigatfon ara the various flcm field 

parameters that ~ro catcul~ted from the basic data. A rnljority of these, 

.,.:;.: .,P,llral!!.,ter.s, ~'er:e, JO~,al, ·,var:i,a~'c~. ~Illculatcd at the points of,. s~paration, 

transition, and reattach~cnt. Since the locations of these points were 

altered slightly as ~dd1t1onal data was taken, a computer code ~~s developed 

to handle the large number of tedious calculations. Although this cn'culatio~ 

, ,scttemc WliS gennr1:: in nature. tho vr.st !irnilaritic;s that c~1st~d in thedata 
; . ' .' 

lillcr.-:ed for accurate and consistent co~putatfon of the pal7al~~ters. Some 

precautions had to be taken however, and these \'In, be discussed in more 

detail. 

'I: HI,SA Tccim1cal t.lonftor fOithfs Grant is 
Hi. Dcn H. Somers. HASA Langley Research Center. 
Hamp~)n. Virginia 23665. 
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Most of the parameters included tn Tables I And II are derived - from the 

basic boundary lay!r variables and require little addttional -dfscu~s10n once 

th~ definition is provided. The definitions of the parame~rs can be. found in 

tht! list of _ nomenclature or on Figure 1. . tn th! case of the two angular 

par~tGrs, however, further discussion of th~ definition and calculation 

technique is requtred. 
" 

Separation Bubble locations . : ...• ,. ",',-. 

Before any parameters could be calculated, ·the locations of f'l0\!l 

separation, transition, and reattachment had to be determined. These 

important locations, which . collect1velydcscribe . the basic character of all 

laminar separation bubbles, tlare determined through a careful examiFlation of 

the static pressuro and hot-trlre anern~try data. Since static pressure data 

~~2 Gvn1tabl0 at clo~c~·1r.te~als along th~ airfoil upr-ar surface, it ~as uted 

as the primnry indicQtor of bubble location~. The hot-\11rc profiles \>tare usod .... 
to confirn the pressure datil. and in the case of separation, ~re sometimes 

u~~d to . fur~~~r pinpo{nt the actual location. tn general. the presfturc and 

hot-wire data shewed good agree~ent~ and together provided sufficient 

:.' .fnfom'lttcn· for. d!?terr.:in.ing .deta'ilod bubble locations. . . .' ..... , ... 
, 

.' ... 

tn order to determine separation, transition, and reattach~ant'locations 

. in i1 con~1stent manner, it was scml:!times necessary to choo:oe locations between 

adjacent p~eS5urc taps. In tha case of separation, this type of location 

would latet' p~r;,lit 'l:ccurate caiculation of th~ local pressure' and velccity' 

gradients. The locations of trans~tfon dnd renttachli1ent\~ere . ta;r:en as those 

points at which tht: prc55ure distribution exhibited sharp discontinuities. 
. -

These d1~ccntfr.uities \·:ere SOf[j{;tf~C5 masked because of the finite dist<lnces 

betlteon taps •. ' Thus, 1nt~,·pcla.tfon. b2t .. lecn points was necessary to .sfmuhtc 

tM Hnea.- prcssure. increase that ust!al1y e:dsts bebl~en transition and 

'.' 

PRECJ::.DI.NG PAG,i:; .I3l~t\NK. NO:r rlI:MED , 

r 
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reatt&chw~nt. In general, this process allowed for greater consistency in 

locating tlw various flmt phenomena associated with the sersaration bubbl~. 

Further justification for 4ssigning locations betwee~ taps ca~~ from the 

need for defining uncertainty band,. In most cases, -it was obvious that the 

important bubble locations occurred between a pair of adjacent pressure taps. 

When this occurred, central locations beflteen the tar1s were chosen so that 

uncertainty bands extending across the two taps could be established. 

Although the exact locations of these various flO':1 phf!nOO'lena can be disputed 

to some degree, the locations'determined represent mean positions within the 

bands of uncertainty. These uncertainties only apply to the pressure 
-:--

distributions' obtained in this investigation ~h1ch were shown to be very 

repeatable. Long tem repeatib111ty tests, hO';lev,:!r, might reveal slight 

deviations ~hfch would fu~thcr extend the uncertainty bands. tn general. 

small vu1at1oni in separation. transition. and reatt!.chtr.,!nt locations did riot 
.. .... . . 

sfgnHicMtly affect the final results. The bubble locations associated' with 

each of the experimental cases are sumr.~rized in Tabl~ ItI. 

AE2'1cation of Definitions 

". ,,·,Altho~"Sh. '. t.h~" ~e,f.~ni~fQi'\s. ,~f, thl! various f1,~ffcld param"ters are 

relatively str~19htioNard. their application to- a dhcrete set of data is not 

neces~arfly trivial. On ~n airfoil. for example. all length dimensions should 

be ~asured along tllo curvcd' sUI'face. The origin of this coordinate is 

usually taken ~s the point of f10't1 stagnation. In this investigation, the arc' 

lengths along the airfoil surface uere approximated by Sllli':mfnlJ t~c- line 
, . 

scgm~nt contl'ibutfons calcu1o.ted from the coordinate points. Fortunately. 

additional ccordfnnto points t<:erc a'll'll1abie Mer' the loading edge so that .the 

,. 1 in~ar apPl·o}!.imltion uas very geod. 

flnother pnt~ntial proulc~ arose in choosing su'table the: 
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external velocities. Because of the effects of hot-wire probe orientation, 

the pressure data was used to obtain all external veloc~ty magnitudes. Since 

the locations of separation and transition, &s determined by the process 

described above, sometimes fallon gradient regions of the pressure 

distribution:, the associated external velocities were measured at the Qxtreme 

ends of the pressure plateaus instead of at'the a~tual locations. Although 4 

relativoly nrtnor pOint, this distinction wa, necessary to combine the effects 

of consistent bubble locations ~ith accurate parameter calculations. 

Because it wa:s necessary to survey the entire boundary layer over the 

airfoil, it was not possible to take ,data at close enough intervals to always 

correspond to the exact locations of separation, transition, and reattachment. 

For this reason, an interpolation schem! was employed to calculate values at 

tti~ p:lints of int.cl'"Cst. To dctl'!rmi Ile the integrated thic~nesse, at 

separation,' for e~amp'et it was so~~tih.~S necessary to interpolate betw~en an 

upstre~1:1 and' a dO'.'4nstrea.tn valutl. Fortuna tcly t in most cases, data was 

ava1hblc at stations at or very near the .,desired location so· that the 

rC5ultant interpol~ted values were vary' ralf~ble • 

The turbulent spreading angle aT is a parameter' 

simplified bubble model shown in Figure 1. In attempting to approximate the 

magnitude of this angle, the geometric simplification sho,;/O in Figure 2a was 

cmplcyed. I!er~, the "origin- OT the tUibulencc was taken to bl! the point ,of 
. ' , 

maximum turbulence intensity at transition. This point generally fell'at or 

very near the vert.1 cal center of the free shear 1 aycr~ From this point. the 

turbulencQ\'laS l:l!:scr, .. :.:d' to sprea.d bett{~cn two 1ince.r boundaries e~tcndiog 

outward to the boundary layor edge and tho airfoil surface at reattachment. 

" 
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transition nnd reattachment were determined. 

The final par~~eter which, requires additional dfscussion is the angle y 

formed between the airfoil surface and the separation streamline. Because of 

the problems associated with the flow visualization data, a direct measurement 

of this angle was basically impossible. As such, itwas necessary to u!-e 

hot-wire velocity profiles to, estfmate this important parameter. This 

procedure involved determining theheights of the recirculation region at 

three or more stations just downstream of separation. These heights were 

defined as those distances over which the velocity ratios UfUfs were very 

SZl'.all, and the profiles had extremely large, slopes. These heights were 

plotted versus the surface arc length at which the corresponding proffles were 

taken. This partfcular definition of a separatfon angle on a curved surface, 

is similar to that proposed b)' Oobbfnqa et n1 r1]. Fortunately. the points 

corresponding to tha lam1n3.r free shear layer generally fell on a single line 

uhich could be extt'apohted bac!: to form an angle. 

defined ,is shown SCh~!l1!tica"y 1n Figure 2b. 

OISCUSSIOW OF RESULTS 

The separation angle so 

" ' .. During the dat& acquisition phase of this investigation. thesc?arat1on 

.. 'b~~~le" ~ ~~i~ld' '~~~r' 't''''~' af"rfo1', . 'WllS survcyt2d for 'twelve' -different 

conditions. These conditions were chosen in such a way that. the effects of 

Reynolds number, . angle of attack. and disturbance envfronm~nt could be 

isolated. Along, with indfcating such behavioral trends, the data· also 

provided valul!ble insight into the. structure of the st:plSraticn bUoDle. In 

addition, the deve'op~cnt of the turbul cnt boundary 1 ayer down~tream of 

reatt.achm~nt \:lttS invcltigntcd •. 

The important scparntion bubble para~atr;rs are c~p11ed 'togeth~r in 

Tables I and tIe These valu~s wcr~ calculated from th~bas1c. data once the 

o c 
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1 positions of separation. trAnsition. and-reattachmen~ were determined. A list 
" ,t; 
I of the actual bubble locations used in the analysis is included in Table III. 
",' 

As illustrated in Figure 1. the length dimensions. 11. 12. and lB used 

throughout this investigation represent distances measured along the airfoil 

surface. Definitions of the various parameters are included in the list of 

nomenclature. The more involved calculation schemes used to determine the 

angular parameters aT and y were described earlier. 

General Seearation BubblaCharacteristics 

As'shown in Figures 3 and 4. t~e chord Rey~olds number has an important 

. effect on the separation bubble flowfield. These figures shaw the effects of 

~ Reynolds number for the one and zero flow restrictor cases respectively. As 
:,~, 

J. * Figure 3 indicates. the length of the separation bubble decreases as the chord 

l Reynolds numb~r is increased. As the tunnel speed is elevated to achieve 

higher Reynolds number testing conditiops, the rate at which smal' 
. .' .-... . 

disturbances alae being, umpliffed in the unstable laminar shear layer is 

.~.. increased. This causes fOr".-lard movement in the point of transition' which 

subsequently reduces the overall length of the separation bubble,. 

--. -. M . thQ 'b,ubblc, . di~in' s,h,cs, f n length, the pressure di stribution becomes . . . ~"'. . .' . . 

~ less "distorted", nnd a higher suction peak is attained. This implies· that 

changes in the separation bubble significantly affect the entire lending erige 

_~~. f1ow. As a result. the upstream pressure distribution is ~tghly d~pendent on 
..:b 

'i~ 'the chord Reynolds nu~ber. As sh~n 1nFigure 4, however, the effect of the· 

~ 1'.1.:: .. :.... bubb 
1 
:h:n. ::: c:~:' ::::: :::::: d n::::r:n t:.: 1 m:::::: · length Is 'um"" rf zed 

- in F1gul"c 5. In this figure, the bubble lengthsln ,listed 1nTable I arc 

I
' .. :,~.:., plotted versus Reynolds number for all of the 12 degree nngle of attack cases. 

As indicated, ,the bubble mOI'c than doubles in length tlS the chord'Rcyn'olds 

r ~:2!c,:!,::=::""~_,,,,~,:.~-:: . =:-'~S .... ;.;.~~~ 
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number is decreased frOM Rc· 140,000 to Rc • 50,000. Each of the different 

flow restrictor cases exhibit the same trend witt, Reynolds numbt'r although the 

magnitudes of lS are shifted. This can be seen by the dotted line which . 
connects the three cases at Rc·· 140,000. The shift ~ ~ magnitude of 19 

indfcates that bubble length is also a direct function of the disturbance 

environment. Although the level of freestream turbulence increased as the 

chord Reynolds number (tunnel speed) was increased, the latter effect appears 

to predominate. It is, however, impossible to totally uncouple the two 

effects when changes in tunnel speed are used to alter the chord Reynolds 

number. 

Although er.allges in Reynolds number could not be achieved without slight 

changes in the disturbance environment for the given model, it was possible to 

isolate the effects of freestream turbulence. This was made possible through 

the introduction of flow restrictol's which heve been shown to alter the 

testing envfl'onment (2J. Pres~ure d"istributions obtained at various·levels of 

fraestrearn turbulence are sh~dn in Figures G and 1 • As the turbulence. level 

.. . . 
effect obtained by increasing the chord Reynolds number that the two"are often 

equated. This has· given rise to the usc of "effective" Reynolds numbers 

when dealing wi th various disturbance environments or when discussing the 

effects of' different types of surfaca roughness (3). 

The correlation between increases in freestrce.m turbulence and increases 

in Reynold~ number is sh~1n dramatically in Figure 8. Except fo~ tho slight 

deviation in the suction peeks, these dfstr1butions arc basically identical. 

Thus, the ca~e of Rc ::r 140,000, a .. 12 0
• 2 fl O~I rcstrictors can be said to 

have an "effect1ve" chord Reynolds nllmb~r of 200.000 "fth 0 flow rcstrfctors. 
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Starting fran the base condition CRc • 140,000, OFR), an increase in 

turbulenc~ intensity of 6121 or an increase in Reynolds number of 43~ is 

required to produce the common pressure distribution. Associated with the 

Reynolds number increase was a 421 increase in the freestream turbulence 

intensity. Givan these incremental ~~gn1tudes,it appears that, in general, 

the small rise in turbulence level associatod with increases in tunnel speed 

contributes relatively little to the overall effect of increasing the chord 

Reynolds number. Thus, for a given tunnel configuration, changes in speed 

predominato over acc~~panying changes in turbulence levels as the driving 

mechanism which affects the separation uubble. 

Along with chord Reynolds number and freestreaM turbulence intenSity, the 

separation buoblc flOtIfield is also affected by changes in angle of attack. 

These effects arc shown in Figures 9-11 for three different testing 

",conditions. As the angle of attack is increa~edfrom 8 to 10 degrees, the 

point of hm1'nal'" separation moves fOn-lard from approximately 3.7% to 

approximately 2.8Z X/C, but there is no significant change in the l~ng~h of 

tha bubble. At 12 degrees angle of attack~ the bubble has again moved forward 

but has nO','I 1 ncreased in 1 ength. As a given angl e of attack. the separa ti on 
. . ' '~'~1~'(rc~min's 'esscrit'iailY'unch'a'ng'ei:1over the entire range of' ReynO'd~·~l..mber • 

rhe effect of angl e of Ii ttack on the bubble 1 ength 1b is summarized in Figure 

12. 

In addition to the overall length, the thickness of the separation,bubble 

is a parahleter that is significantly ~ffected by the various testing 

conditions. For the' sake of· comparision. the height of tho' rccf~cuiation 

region at transition {Ha)T \las determined ·from ench set of velocity profiles. 

These thicknesses are plotted versus chord Reynolds number in Figure 13. This 

ffgure indicates that a shal'p reduction in bubble thickness occur~' ,as the 
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chord Reynolds number·is increased.· . The bubble. at Rc ::r 50.000 is almost 3 

times thicker at transition than the corresponding bubble at Rc • 140,000. 

This seems to imply that the bubble thickness is closely related to the total 

bubble length. This almost linear t'elatiol'lship is plotted in Figure 14 •. The 

limited number of points available in Table I also indicate that the bubble 

thickness increases as the angle of attack is increased. This phen~lenon was 

confirmed by flow visualization data. 

In addition to determining the overall separation bubble characteristics, 

the recent work. has focused on u9cumenting the various structural components 

compriSing the bubble. This documentation involved a detailed investigation 

of the various flow phenomena associated with the bubble, as well as, a study 

of the rede\ lopillg turbul ent boundary 1 ayer downstream of reattachment. Once 

this documentation was completed, the large amount of experimental data was 

analyzed in terms of existing physical and mathematical mode1s of the flow 
. ~ . .. " . . 

field. The result5 of this analysis indicated that further ~/ork is needed to 

adequately model the flow over an airfoil at 10'11 Reynolds nu:ilbers. It 

app~ars, however, that this work, which is described in detail in Reference 

. .. (2J,· .has··: provided ·.t~e groUn~J9r~ . for future improvements in the design and 

performance prediction of low Reynolds number airfoils. 

. .. 
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During this r~port period the following publications ~re· written and/or 

published under this grant: 

Hueller, T.J., "The Influence of Laminar Separation and Transition on. Low 
Reynolds Number Airfoil Hysteresis," AiM 17th Fluid Dynamics, Plasma 
Dynamics, and Lasers Confei"ence, SnO',rIlMss, Colorado, June 25-27, 1984, 
(accepted for publication in AIAA.Journal of Aircraft). 

O'I~eara, M.~'" "An Experimental Investigation of the Separation Bubble 
F1O'if Field Over an Airfoil' at . Low Reynolds' Numbers," ,~.S. Thesis, 

... ", . .;~. " Un1versityof notre Dame, 19a~. 
' .... ~ ':,.' ; ~ 

O'Meara, M.H., Schmidt, G.S., and "1ueller, T.J., "Experimental Studies of 
the laminar Separation. Bubble," Proceedings of the Conference on Low 
Reynolds Number Airfoil Aerodynamics, University of Notre Dame, June 1985 
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NOMENCLATURE 

Airfoil chord. mm 

Pressure coefficient, Cp a (?f - Pfs)/Qfs 

Flow Restrictol'" 

Transition height, mm 

• f .:,' '"';) 

H12 Shape factor eaual to the boundary layer displ acement thickness 
divided by the momentum thickness 

H32 

ts 
t1 

t2 

Rt,2 

Rll 

R 

~bl 
Rc 

RS 

R1B 

Shape factor equal to the boundary layer energy thickness divided by 
the momentum thickness 
Total bubble length, r:m 

Bubble length from separation to transition 

8ubcle length from transition to reattachment 

Reynolds number 1:9.sed on momentum. thickness, U ~2 P / JJ 

Roymlds number 1n.sed on laminar length, U liP I P 

Reattachment location 

Reynolds lJ.t:nl;-~Z: ~sed on displac6nont thickness, U 01 P / P 

Chord Reynolds n~"ber 

Reynolds numoo:.- based on suxf'aco a...""C length 

Reynolds nUl!100r rosed "n total. bubblo length 

oS ° o· 00 "L~friaor se~iarat16n ,oTocatOfo'n° "_ ° Surlaca a~ length cooxitir-.a.te 

S' Turbulent separation location 

T Location of apprcximate end of transition 

U VeloCity 

U' Fbdua.t.1r.g vcloci ty comfOn~nt 

Ufs Freestr~am velocity 

. X!C Hondimensional distance ~long chord' 



.' 

<. . ,.' 

-":'. 
r, 

c < 

Greek $j!!1bols 

a Angle of attack 

y. Separat.ion angle 

or. Turbulent spreading angle 

13 

v 

Boundary tayer diSjllacement thickness 

Boundary layer en~rgy thickness 

Boundary layer momentum thickness 

Kinematic viscosity 

p Density 

Subscriots 

fs Freestream 

R Reattachment 

S Separation 

T Transition 

ext Exterr.al 
.Cc ,. 

atm Atmosphere 

w Uncertainty mn.g!l.~. tude 

S' TurbuJ.eni s.: paration 

< < 
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... 

C',) ·~-r""'''''''!!il:''.~'i'i"''~~ - --.,..~----~- .... ~-.....::-;-~:--.<:"--- . _.,;. '' .. --.----..... -,~."".:--~~.':):" 

~·:;~::;;;~~: .. ~,;I.~tl:~~~:t.i:t~:~~~~;!(N~::St!.rr:;~~·~·?~::~!~~~~~~k~~-'~:'·-:;:~.;~:;~dl2.i~)'x~;~~';!trn··p)6~J.6l-:6.~~~~,;7-£~ 



.... - ... ---. " 

.I 

F;"');,i.rr; l::"\'"rr\',;.:,,'?";+,;r,;i .!;"".",",:!" ;'):";l;.).:i,;'H;,;>\:,;;~;:.''-i,';:~~ .i"f.i.:~\.,;;.:i;:.;.c;~,;.i,:j;:;;~<;;'1:t"j:;;;ii.t.,;; .. i.id"::"·~:;;1r:.:;:iili1:'j:)j~:!,;.:::~t!4,t;:;n>1i& ~:i~r;:;j"i~\)" \;'.~,:;;'j;:~)~ri~;J2'j,':1}\:;~;~{&~~;t;~~1;;~,I~~1!lMY~¥:;t 

TMlLE I· 

mp'ORTAllT FLOW fIELD PJ'IRmETERS 

·s lic"lear. !\c"SC( Rc·gCK tic "200;;; ~;:.aor. R~ .. !!I/i\ R,-10OX 
o"lZ· n-12· o-IZ· c-l Z·' a-lO· ~"12· 0-10· 
cril OrR OFR IFR ' IFR IFR lFR 

;>ar,?,1;,~ter 

t~ (5/C :, 13.6 12.3 9.0 22.0 : lZ.7 16.7 10.2 

tI ($/C :) 7.1 6.4 4.3 12.9' 8.3 9.2 &.9 
tz. (SIC :) 6.5 5.9 4.2 9.1 " 4.4 7.5 3.3 
(HalT (:C) 0.54 0.46 0.29 1.13, 0.54 o.ao 1J.42 

.r-;(:C) 0.79 Q.e4 0. 4 6 1.69 0.77 1.29 /).67 

· liS {~hl 17.0 19.9 25.6 5.7 9.2 9.4 11.7 

· Or (1:';/5) 17 .1 20.0 25.4 5.6 9.2 9.4 11.7 
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