NASA Technicai Memorandum 86704

(BASA-TN=-€670¢) EIFURCATICN THEORY APPLIZD N85-23705
TC ALECBAFI MOTICNS (NaSA) 17 p
HC AQ02/MF AU1 CsCL C1a b
Unclas 4
G3/i:2 14853

Bifurcation Theory Applied to
Aircraft Motions

W.H. Hui and M. Tobak

Epdd sy ot LR
rarroes mreawia. .

March 1985

= NASN

National Aeronautics and
f Space Administration

!
e .- - e vl e e e i
. = IR — o e - . e o e T—_meatwer e o Yy
® R P L e
. * [ S NI g - ERRER o= e e s i il T e, B
i




- )

S

.
«

- i
-z

"

!

!

4

NASA Technical Memorandum 86704

&
L

1.

!
v

Bifurcation Theory Applied to
Aircraft Motions

PR e

W. H. Hui, University of Waterloo, Waterloo, Ontario, Canada
M. Tobak, Ames Research Center, Moffett Field, California

March 1985

NASAN

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field. California 94035

T Gl g £
oyt

R er =~ TR N WP S

RO IS

i
o |
od
Vot
’
13
S i
i
i
i
N
P
Loy

w2 -
. o [T s . - - 2 im s s P
N ..
ererer o e e oo = S - - e e o i ﬁ



.
e
-2

26~-1

BIFURCATION THEORY APPLIED TO AIRCRAFT MOTIONS

W. H. Hui
Profesaor of Applied Mathematics and Mechanical Engineering
University of Waterloo, Waterloo, Ontario, Canada N2L 3G!

Murray Tobak
Reasarch Scientist
NASA Ames Research Center, Moffett Field, California 94035, U.S.A.

SUMMARY

8ifurcation theory is used to analyze the nonlinear dynamic stability characteristics of single-~degree-~
of-freedom motions of an aircraft or a flap about a trim position. The biturcation theory analysis reveals
that when the bifurcation parameter, e.g., the angle of attack, is increased beyond a critical value at
which the aerodynamic damping vanishes, a new solution representing finite-amplitude periodic motion
bifurcates from the previously stable ateady motion. The sign of a simple criterion, cast in terms of
aerodynamic properties, determines whether the bifurcating solution is stable (supercritical) or unstable
(subcritical). For the pitching motion of a flat-plate airfoil flying at supersonic/hypersonic speed, and
for oscillation of a flap at transonic speed, the bifurcation is suberitical, implying either that exchanges
of stability between steady and periodic motion are accompanied by hysteresis phenomena, or that potentially
large aperiodic departures from steady motion may develop. On the other hand, for the rolling oscillation
of a slender delta wing in subsonic flight (wing rock), the bifurcation is found to be supercritisal. This
and the predicted amplitude of the bifurcation periodic motion are in good agreement w.... experiments.

1. INTRODUCTION

Problems of aerodynamic stability of aircraft flying at small angles of attack have been studied exten-
sively. With increasing angles of attack the problems become more complicated and typically involve non-
linear phenomena such as coupling between modes, amplitude and frequency effects, and hysteresis. The need
for investigating stability characteristics at high angles of attack was clearly demonstrated by Orlik-
RUckemann (Ref. 1) in his survey paper which deals largely with experinments.

On the theoretical side, much of an extensive body of work is based on the linear theory, in which the
unsteady flow is regarded as a small perturbation of some known steady flow (possibly nonlinear in, e.g.,
the angle of attack) that prevails under certain flight conditions. The question of the validity and limi-
tations of such a linearized perturbdation theory is of fundamental importance. Yet, it has rarely been
investigated. One may argue that, in principle, it should be possible to advance to higher and higher
angles of attack o by a series of linear perturbations since the solution at each step should include a
steady-state part which, when added to the previous steady-state solution, would provide the starting point
for the next perturbation. This may well be true provided that at each step the steady motion is both
statically and dynamically s .dle, and that the actual disturbances, e.g., the amplitude of oscillation,
remain small. However, when the angle of attack exceeds a certain critical value 9gp At which the steady
motion {8 no longer stable, the linear theory predicts an exponential growth of the perturbation with time
and, therefore, must Cease to be valid after finite time. The motion of the aircraft under these conditions
can only be studied by means of a nonlinear theory.

In this paper we {nveatigate three types of problems in which a steady motion becomes unstable.
Padfield (Ref. 2) studied A similar class of problems using tha method of multiple scales, which is valid
only for weakly nonlinear oscillations. We shall study the problem using bifurcation theory. This allows
us to draw on recent mathematical developments (see Ref. 3) that are particularly well-suited to investigat-
ing funcamental questions in linear and nonlinear stability theory. A numerical scheme based on bifurcation
theory was proposed earlier (Ref. 4) for analyzing aircraft dynamic stability in a general framework. More
recent work by Guicheteau (Ref. 5) demonstrates the considerable potential +f bifurcation theory in flight
dynamics studies, particularly toward establishing a method for the design of flignht control systems to
ensure protection against loss of control. While acknowledging the importance of the aerodynamic model in
determining aircraft stability characteristics, neither study contains an adequate assessment of the model
requirements. The treatment of unsteady flow effects receives no attention. In contrast, we shall focus on
Just this aspect of the motion analysis.

We shall reatrict this study to the single-degree-of~freedom motions, e.g., pitching or rolling, of an
aircraft about its trimmed flight condition. This enables us to analyze motions for which complete aerody-
namic information (exact analytical or numerical solutions) {s available for certain shapes, The {nforma-
tion is obtained from solutions of the unsteady inviscid flow equations (Refs. 6-12) or from results of
experiments (Ref. 13). 1In this way {t ls possible to establish a form revealing a precise analytical rela-
tionship between the basic aerodynamic co-fficients and the characteristics of the motion,

Specifically we shall consider the following three examples:

A. Pitching supersonic/hypersonic airfoll in rectilinear fiow (Fig. 1);
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K f;.. Let the aircraft or flap be in level, trimned flight until time t =» 0 when it is perturbed from its

>
<
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R sponding instantaneous perturbation moment of the aerodynamic forces.

262 j
!
B. Flap oscillations in tranaonio flow (Fig. 2); :

C. Wing rook of a alender delta wing in aubaonic flow (Fig. 3).

2. MATHEMATICAL FORMULATION ;1

trim position. During the subsequent motion the center of gravity continues to follow a rectilinear path at
constant velooity V,. For a asingle-~degree-of-~freedom oscillatory motion, the equation of motion is i

2
o L))
dat

<
"

where §£(t) is the lnstantaneous angle-of-attack perturbation in example A, flap-angle perturbation in
example B, and roll angle {n example C; I is the appropriate moment of inertia; and G(t) is the corre-

In Eq. (1), A represents a set of parameters defining steady flight at the trim condition. Flight :H
Mach number M., ratio of specific heats Y, and trim angle of attack 0y Aare included in these param- .
eters. We shall consider i to be the trim angle of attack o in examples A and C, snd the mean flap !
deflection angle &, 1in example B, In other words, all other defining parameters will be held fixed when s
considering the consequence of varying A on alrcraft motion characteristics. We assume that the moment §

perturbation moment only.

For most probleas encountéred in the study of dynamic atability, the motion i- slow although its amplitude

!
i
.! required to trim the aircraft or flap at A has been accounted for, so that G(t;A) is a measure of the ;
o ;
— =8 . i
_ A oL The instantaneous motion state, £(t) and £(t), and the instantaneous moment GC(t) are a result of the ’
u‘ interaction of aircraft or flap motion and the unsteady aerodynamic forces from time zero to time ¢t. 32
" o Consequently, the {nstantaneous moment G(t) depends not only on the instantaneous motion state, £(t) and ;i
o g £(t), but also on the past motion history from time zero to t. This is to say that G(t) is a functional o
e | of &(ty), (0 st St) as described in Ref. 14, Thus 1
. | !
I t ‘
e ; ,
S ate) = ofecs,] (2) "
s 0
e For motions for which £(t,) {s analytic, the funotional is equivalent to a function of an infinite set of
vie e variadbles, i
' t
e a(e) = ofs(e,)] !
o 0 I
AR . " n A
R . c(e(:). @, &o,..., S5 ) (3 4
T at :
i y
. } 14

- i may be finite or large. Under these conditions &(t), €e), ... ftn Eq. (3) may be neglected and, as a
3 Lo first approximation .

6(t) = G(E(L),E(L)) (4)

We further assuae that G is ». analytic function of & and ¢&. Expanding Eq. (4) as a Taylor series,
we neglect terms of O0(£") and b ' q4uer for slow motions, and after reintroducing the parameter ),

actin) = apcacern) » B 6 cgeeyin) (3)
[ ]

i where L s a characteristic length and

e e i ot AR AR ALY ik 2 Tad vt S o

00(011) -0 (5)

- as required at the trim condition. The form of the instantaneous moment G(t;)) in Eq. (5) s consistent
C with the exact analytic solution for the pitohing moment in example A (Ref. 10), the numerical solution for i
the hinge moment in example B (Ref. 12), and the experimentally derived empirical formula for the rolling t
moment {n example C (Ref., 13).
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in summary, the single-degrae-of-freedom motions conaidered in this paper will be based on the follow-
ing mathematiocal problem

2 .
e RENCITVIRE ¥ NTIS R TH 1Y) (7a)
at -
&£(0) = &, (o)
£0) = (10)

The functions Gg(4iA) and G,(&:)) are generally nonlinear {n §{ and have to be determined from the study
of unsteady aerodynamics, either theoretically or experimentally. Evidently G, is related to the restor-~
ing moment and G, is related to the damping moment.

In many situations, it 1s known that when the parameter 1A reaches some critiocal value xc,. the
aerodynamic damping Gy vanishes and steady flight at the trim condition 1,, loses its stability., We use
bifurcation theory to determine the motion characteristics of an aircraft or flap whose trim condition is
near or beyond A,..

3. BIFURCATION THEORY
We introduce the dimensionlesa time t = V t/t, where & 1is a characteristic length, equal tc the
chord length of the airfoil in example A, the chord length of the forebody plus flap in example B, and the

chord length of the wing in example C. Hereafter we use (°) to denote d/dr. We further let

P £ = o(g, bt vind

= Fol&sd) « EF,(€:0) (8)
Then £q. (7a) may be written
d .
$at (9a)
af .
& .o éon (90)

An expansion of F(E.E:A) in a Taylor series in § and é and a change of notation uy = §, uy = é
yield for Eqs. (9)

. » 4
U - A“(A)uJ * B“k(l)ujuk * c:sz‘*)“J“k“z +0(lu]™) , (1 =1,2) (10)
where
0 1
Aa (11a)
~S(1) =0())
S(A) = -Fé(O;l) y D(A) = -?1(0;A) (11p)
2
1 3 r
8 « 0 8 - = (11e)
13k ! 23k 21 3u,du
37| 3a0
and
Corg ®0 4 Coiry ® Lo (114)
BT ' 24kt 3! 3u,adu, du
L Y

(Although Eqs. (9) have been derived on the assumption of slow oscillations, subsequent bifurcation analysis
of Eq. (9) will hold for general f(E,E:0), L.e., as {f no restriction had been placed on the magnitude
of -§.)

In Eqs. (11), the tensors B and C represent the effects of “‘nite amplitude to the secon” and third
order. The following symmetry properties hold:
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Bask * Baxg (12a)
Saskt " Cajak * Canay " Caggy * Capeg (12b)

On the basis of Eq. (10), we discuss the linear and nonlinear stability of the motion,

3.1 Linear Stability Theory

The stability of steady motion at the trim condition A to infinite:
the nature of the eigenvalues of the matrix A, They are

()« 20000 & A20) - 4sCh) )
2

Case It S(A) < 0, In this case, n, > 0, ng < 0.
unstable.

simal disturbances is determined by

(13)

The steady motion at this gondition A is always

Case Il: S(A) > 0.

Ifa: D(A) < 0. In this case, Re(ny) > 0 and the steady motion at 1 is unstable.

IId: D(A) > 0. In this case, Re(n1) < 0 and the steady motion at A is stadle.

2
Only in Case IIb, when both stiffness derivative S(\) and daaping derivative D(A) are positive, is
the steady motion at the trim cordition A stable to infinitesimal disturbances. In fact, stability theory

(Ref. 3) can be used to show that stability of the steady motion in this case {s assured if and only if the
disturbance is sufficiently small.

When linear theory predicts growth of the disturbance amplitude, growth is exponential and the linear
theory is no longer valid when the amplitude becomes large after a finite time. What happens to a motion
with growth of disturbances predicted from linear theory cannot be predicted by using only the linear
theory. To determine the ultimate State of motion, the full nonlinear {nertial equation (or a suitable
approximation of it, such as Eq. 10) must be used. Of particular interest i{s the dynamic stability bound~

ary 1 = Ay., where S(Ac,) >0 and D(*cr) = 0. The stability characteristics near this boundary will be
studied presently.

3.2 Hopf Bifurcation Theory
At the dynamic stability boundary i = xcr' we have S(Acr) > 0; hence,

n,(xcr) - ::/sixcrs . *‘90 (14)
2

The existence of purely imaginary eigenvalues of the matrix A at i «
Hopf bifurcation (Refs, 3 and 15), signaling a changeover from stable st
orossing i e *cr' the steady motion that had been stable for A ¢ Acr becomes unatable to disturbances,
resulting (after a transient motion has died away) in the existence of 4 rew motion, which (if it {s stable)
{s periodic. 1In the vicinity of A = Agne the circular frequency of the periodic motion {s nearly equal

to wy. We call the new solution of the squation of motion a bifurcation dolution. In this section we
shall determine its character and a oriterion for its stabilicy,

Aap 18 the characteristic sign of a
¢ady motion to periodic motion. On

For 1 sligntly larger than Agpe the eigenvalues of the matrix A are

1
N ==z DA & 18(2) (15)
2

where

B(A) « /S(2) - D%(a)/a

{16)
We shall assume that

D'(Aar) <o (17)

which {s the usual case (n agpliclctonl. (The ccse D'(XQ,) > 0 ocan be treated in exactly the same way.)
The normalized eigenvector §(1) aasociated with the eigenvalue n(A) (s

P
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¢1<x) L1t 1

—_— (18)
;z(x) 27800 fa(ny

Tr) =

whereas the adjoint eigenvector E'(x) with eigenvalue N(A), which is the complex aconjugate of n(i), i8

A+ DOV

ML) = R o lti (19)
17{8)) 2/a0%y 1
A. Hopf Bifurcation. The bifurcation solution 3(1,A) may be written as
. ' T e a0l e 0 ' (20)
Following looss and Joseph (Ref. 3, p. 125), we get ‘
- 2= eby(8) + cBoy() + eny(a) ¢ OCeh
s = [+ ‘2“2 + 0(;")]1 (2

2 4
Aol te Ay * 0(e)

where, for brevity, we omit the lengthy solutions for ‘é bp» wps and P (Ref. 11). The solution is
periodic in t with circular frequency equal to wy * €%wy * 0(e™).

B. Stability of the Bifurcation Periodic Solution. According to Floquet theory (Ref. 3), the ﬁ:abil-
ity of the bifurcation periodic solution Eq. (21) is determined by the sign of an index u. To 0(e’),

has the form
2 4
ue o'(xer)xzc + 0(e) (22)

The bifurcation periodic solution is stable if u < 0 and unstable if u > 0, Since we have assumed
D'(Acr) ¢ 0, stability depends on the sign of Ay, with ip > 0 denoting stadbility and iy < 0 instabil~
fty. It remalns to cast i, in more recognizable terms. Considerable manipulation yields

be o (.air. 2 f_r) 2,2 (__a% . .a’.r) (23)
3 2 0 ,.2) 3u,du 0 2 0.3
Huy 3, duy 1772 duyau, auz 30
x-xcr

in terms of F(uj,up;r). From Eq. (8) we see that the function F {s directly related to the moment
G(g,E;1) acting on the aircraft or flap which is performing a finite-amplitude oscillation § around the
trim position A. Equation (23) demonstrates that the stability of pericdic motion near the dynamic stabil-
ity boundary A {s determined by the behavior of the aerodynamic response QG(§,E:2) in that vieinity.

er

With the assumption of slow oscillations under which the form of Eq. (5) was derived (terms =~ O(EZ.E)
neglected), we may substitute Eq. (5) with Eq. (8) into Eq. (23) to get

2

3 2
b= S (L ¢ 0fDeng (2u)
‘ Hug AmA
or
| Since from Eqs. (14) and (11Db)
’ ‘ wy = /STRY » /7FRT0NA L) (25)
Eq. (24) becomes, after using Eq. (8),
2
] ™ FI(Esr,,)
a- ! e N - er
: e ' ® (WT) (26a)
or
£=0
' or
' 2
i . € w, 4 Og(ﬁshcr) (260)
d T | dE \G3TEn =)
er £a0

y
1
i
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Using Eq. (10) we get

2
L £ 49 C211200gp) (260)
H T"‘ Tkopy'- [}

We have thus eatablished the following criterion: bdifurcation periodic motion ia atable or unatable ascord-~
ing to

HeEO0 or w0 (27)

or alternatively, since S(Ag,.) > 0, according to

c2112(*or) <0 or 02112(A°r) >0 (27b)
The two possibilities are well fllustrated in the form of bifurcation diagrams as shown in Figs. da end udb.

In a bifurcation diagram, the abscissa represents the bifurcation parameter ), while the ordinate is a
narameter characteristic of the difurcation solution alone. In this case it is ¢, a measure of the ampli-~
tude of the bifurcation periocdic solution. Stable solutions are indicated by solid lines and unatable
solutions are indicated by dashed lines. Thus over the range of the bifurcation parameter A < xcr where
the steady~state motion is stable, ¢ 1is zero, and the stable steady -stion is represented along the
abscissa dy & solid line. The steady motion becomes unstadle for all values of ) > A,, as the dashed line
along the abscissa indicates. Periodic solutiona bifurcate from A = Agpe oither supercritically or
suberitically.

When 621,2(A°,) <0, hence u < 0 (implying Ay > 0), the difurcation is qalled supercritical and its
characteristic form s shown in Fig. 4a. In this case, stable periodic solutions (solid curves in Fig. ka)
exist for values of ) > Aape The amplitude of the periodic solution at « given value of i ~ A r is 172
proportional to &, hence is vanishingly small when 1\ -~ *cr is amall, varying essentially as (g - ‘or) B

When Cpqqa(dgn) > 0 hence u > 0 (implying Ay < 0), the bdifurcation is called subcritical and its
characteristic form is shown in Fig. 4. In this case, pericdic solutions exiat for values of A < xcr' but
they are unstable (dashed curve in Fig. &d). The existence of atable periocdic solutions for 1 > Agp
depends predominantly on the behavior of the damping G,(&£:;A) for A > Agpe If no stable periodic solutions
exist for i > Ay, then when 1 is increased beyond 1,, the aircraft or flap may undergo an aperiodic
motion whose departure from the steady motion at 1 = i,, 1is potentially large.

In the more likely event that stable periodic solutions do exist for A > Agps their amplitudes must be
finite, and not infinitesimally small, even for small positive values of A = A .. It is likely that this
branch of stable periodic solutions will join that of the unatable branch as illuatrated in Fig. Ub. In
this event, the form of the bifurcation curve for values of A < A,. helpa explain the situation where the
steady-~state motion gould be stable to sufficiently small disturbances but become unstadle to larger distur-
bances. For i < *cr' Fig. 4b suggests disturdances with small enough amplitudes (lying beiow curve 0B)
will die out and the steady motion will remain stadle. Howaver, disturbances with smplitudes sufficiently
larger than those of the unstable branch may actually grow up to the ultimate motion as <t + =, which will
be that of the stable branch of periodic solutions (curve BA in Fig. 4b). Finally, we note that if the
motion does attain the stable branch of periodic solutions (say, for A < 10,). then hysteresis effects will
manifest themselves with further changes in A. When ) {s {noreased beyond i,., motion will continue to
be periodic with finite amplitude (point A {n Fig. 4b). If 1 is now decreased delow Agps periodic motion
will persist, even at values of ) where previously there had been steady motion when 1 was being
inoreased. Not until ) is diminished beyond a certain point (point B in Fig. 4b) will the moticn return
to the steady-atate condition (point C {n Pig. Hb) that had been experienced when A was increasing.

4, APPLICATIONS TO AZRCRAFT MOTIONS

In this section we ahall apply the theory developed in Seos. 2 and 3 to three different aingle-degree-
of ~freedom motions.

4,1 Pitcohing Motion of Supersonic/Hypersonie Airfoil

We retain the symbol £ 1in all three cases to designate the perturbation variable. The other symbols
w#ill be replaced as neceasary by the parassters relevent to the particular motion.

In the case of pitching oscillation (Fig. 1) of a supersonic/hypersonic airfoil in rectilinear flight,
the parameter 1 1ia the Lrim angle of attack, designated o, in Fig. 1, measured relative to the horizon-
tal valocity vector. The (nitantaneous argle of attack is o(t), also measured relative to the horizontal
velocity veator, so that the perturdbation var{able {(t) is the inclination o(t) = o, from the fixed trim
angle of attack., The perturdation mcaent G {n this case {3 the perturdation pitching moment about the
center of gravity., Thus,

caen

i
{
b
‘1
)
;
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a(tsr) = QS’-C.(NGM.H_.Y.M (28)
where q ia the dynamic praessure, and S and % are the reference area and length. The inatantaneous

pitoning~moment coefficient cm is also a funation of the trim angle of attack op, the flight Mach num-
ber M_, the ratio of apeciric heat Y, and the (dimensionless) pivot axis position h.

For large-amplitude alow oscillations, exact solutions for cm exiat for simple shapas (Refs, 10
anu 11), and thair form i3 conaistent with Eq. (%), {.e.,

Caltioy) = cmo(i(t)xom) . Gcm1(€(1);om) - cm°(°‘°m). (29)

Moreover, it is shown that (Refs. 10 and 11)

Cmt(ﬁtom) - Cmi(ﬁ * °m) v (1 =0,1) (30)
Acgordingly
acm‘ acmx
—55—03—% (L =0, 1) (31)
and Eq. (26b) reduces to
cau D'(o0 )
R TR (R (32)
m n 9 0an

where the stiffness derivative S(oy) and the damping-in-pitch derivative D(o,) are related to the
pitching-moment coefficient <C, by

S(°m) - -C&O(om) ' D(°m) - -Cm1(om) (33)

and

Dloy,) =0 (34)

A typical example of the variation of damping derivative D(on) versus o, s shown in Fig. 5 (Ref. 16).

We conclude that when the trim angle of attack o, s increased beyond a critical value o,, at which
the aerodynamic damping vanishes, i.e., °(°cr) = 0, the steady motion at o,. loses its stability. A new
finite-amplitude periodic motion, called the bifurcation solution, will replace it for values of o 2 Oap
{f {t is stable. Stability of the bifurcation solution depends on whether D'(gp)/S(oy) is 1ncreasTng OF
decreasing on crossing “he stability boundary ogqn.

By utilizing an approximate relation (Ref. 17)
D(om) - b[S(oop) - 3(°m)] ' b>0
{n Eq. (32), we get

czdob d2
ye—r ;.-é-ln S(Ou)
] 92" %

For the case of a flat-plate airfoil in supersonic/nhypersonic flow, the stiffness and damping-in-pitech
derivatives S(on) and D(on) are known exactly in analytical form (Ref. 7) for values of o up to the
shock detachment angle. It is shown in Table 1 that u > O for all combinations of M, and h. Thus, the
bifurcation is subcritical, The bifurcation periouic solution is therefore unstadle, which implies one of
two alternatives. The steady motion is either replaced by a finite-amplitude periodic motion accompanied by
nysteresis phenomena, or Dy & potentially large aperiodic motion. 1In either case the loss of stability of
the steady-~state motion must be accompanied by » discrete change Lo a new stable state.

‘4,2 Flap Oscillation in Transonic Flow

The case of a flap oscillating about a hinge is conceptually similar to that of an airfoil pitching
abnut a pivot axis. 1In effect, the oscillating flap may be regerded as an airfoi) pitehing in the nonuni -
form oncoming stream that results from a uniform free stream passing over the fixed forebody (Flg. 2).
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In thia case (Fig. 2), &(t) ia the inatantaneoua flap defleation angle, meaaurad relative to the unde-
flected position. Tha paramater ) here ia the fixed mean deflectinn angle 4me+ 4180 measurad from the
undefleated position. Thus, §(t), the perturbation variable, is the inclination 4(t) - &, from the fixed
mean deflection angle &,. The perturbation moment G 1a the perturbation hinge moment about the hinge
line, Thus

a(tir) = qSlch(tscm.M_.Y) (35)

where Ch is the instantanaous hinge-moment coefficient. In direct parallel with the oscillating airfoll h
case of Eq. (29), we asaign C, the form

C, (ridy) = CnO“("“m’ + éch1(€(r):6m) - °n°(°"m’ (36)

Equation (36) is consistent with Eq. (5). A similar form was validated in Ref. 12 by comparison with
results of large~Jcale numerical integrations of the coupled inertial/flow field equations. : i

Equation (5) or Eq. (36) for the hinge~moment coeffiocient allows calculation of ch’(s(r)xsn) by ' )

linearizing the fiow field equations about the steady flow corresponding to fixing the instantaneous deflec~
tion angle, £(t) * &, (see Eq. (39)). Caloulation of ch1(;(r);cm> from the linearized equations may

require less computing time than the nonlinear method used in Ref. 12, yet it {s consistent with the level
of approximation leading to Eq. (5) or Eq. (36). This simplification of the calculation of Cn1(€(1)36m)

e .

reinforces the main conclusion of Ref. 12 that the cost of computations to determine the flap's motion will
be very small if the aerodynamic contribution to the equations of motion is modeled, as compared to the b
computational cost required to solve the coupled inertial/flow field equations. i

It was *urther established (Ref., 11) that

e R e

Ch1(€36m) . Chx(E *8,) (4 =0, 1) ) (37)

which in turn reduces Eq. (26b) to

Cug 4 D'(&n)
S I O O 0
o= on

i
'
where ;
S(dm) - -CQO(GN) ’ D(cn) - -chi(‘m) , D(Gar) =0 (39)
We therefore reach a conclusion regarding the characteristiocs of the flap oscillation near the mean flap

deflection angle ‘cr which is direotly analogous to that of Sec. 4.1 regarding the characteristios of the
airfoil pitching motion in the neighborhood of o4, . [ .

v e

Numerical results from Ref. 12 for S(4;) and D(§y) are reproduced (by means of spline fitting) in , }
Fig. 6. These are results for an NACA 64A010 airfoll at zero mean angle of attack in a transonic stream
with M, = 0.8 and Y = 1.4, It i{a found that

n'(en)
s = -59,20 at §__ = 2.7°
acm 836.5 cm'ccr or

Hence, the bifurcation is suboritical and the bifurcation periodic solution is unstable. Just as we found

for the flat-plate airfoil in supersonic/hypersonic flow, 108s of stability of the steady-state transonic

flow about the flap at &5 = &4, implies a disorete changs to & new stable state. The new state may be !

either a finite~amplitude periodic oscillation about &, accompanied by hysteresis phenomena, or it may be '
. & potentially large aperiodic departure from the steady state. The fact that °(°m) becomes positive again .

at |em| « 179 (Fig. 6(b)) implies that the first of these alternatives will be the preferred one (Ref. 11).

]
4,3, Wing Rock of Slender Delta Wing in Sudasonic Flow ; i
!

The phenomenon Known as "wing rock™ of a slender delta wing in subsonic flow has been the subject cf
{ntensive investigation by many researchers (Refs. 13, 18-21), It {s now well-documented (Refs. 13 and 18)
that as the trim angle of attack o, 1s raised (ncrementally, a critical value o,, i3 reached where roll- ‘
damping moment changes from stabilizing to destabilizing. Ericsson (Ref. 21) has shown how the leeside :
vortices, which appear and grow stronger as o, is raised, may lag behind a rolling motion of the -wing.

The preasures they induce may contribute a roliing-moment component proportional to rolling velocity that is
deatabilizing and eventually becomes large enough to surpass the stabilizing component that had existed
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alone at amaller o,. Conaequontly, at o 2 o, amall dinturbanaen in the flow field exaite a growing
roll oanillation. Bifurcation theory again oan Be applind to help determine the ultimate state of the
osaillation.

For thia case, we take the parameter A to be the fixed trim angle of attack op, while the perturba-
tion variable £(t) is the roll deflection angle ¢(t) (Fig. 3), measured from the poaition of zero roll
angle., The perturbation moment G is the rolling moment about the wing longitudinal axis. Thua

G(t;r) = qSlcg(t;om.A) (4o)
where, for incompressible flow, the instantaneous rolling-moment coefficlent C; depends on the trim angle
of attack op and the aweepback angle A of the delta wing. Results of experiments (Refs. 13 and 18) and
numerical computations (Ref. 19) have shown that, for a given—A, it i3 a good approximation to the instan-
taneous rolling-moment coeffioient to take

C, = cao“(‘)‘°m) + €C£1(€(t)zom) (41)
which is consistent with Eq. (5). '

As an example, for the 80° sweep~back flat delta wing studied in Ref. 18, Cg 1s approximated by a
power series (Ref. 19) which leads to the following equation for the rolling motion

£ = F(&,diop)
= [o,(0,)€ + byCay)E3] + &by + bylay) + byla )Ed]

= F(E30,) + §F (§30) (42)
Taking account of the scaling factors®adopted in Ref. 19,
2
b, (o) = °C,a, (o) (1«1, 3) (43a)
bJ(Om) - ‘cla,j(om) ’ (J =2, ) (43b)
In Eqs. (43), ¢ 1is a factor accounting for the difference between scalings adopted for the time variable in

Ref. 19 and this study. From Ref. 19, x = 2¢/L = 2 x 0,429/0,107 = 8, Cy = 0.088. The a;(o,) are tabulated
in Table 5 of Ref. 19, which yields the following table for the bi(om)z

n 10° 15¢ 20° 25°

b, -0.0265 =-0.0721 -0.1977 -0.3320
b, -0,01C1  0.0090 0.0596  0.0959
by -0.1222 -0,2714 =-0.0501  0.2894
by +0.1491  0.1159 -0.1799 -0.9977

From Eq. (11b), the linear contribution to the damping in roll is
D(°m) - ~F1(0;om) = ~by = b2(°m) (44)

where -bo > 0 i3 proportional to the wind-off roll-damping moment due to bearing friction in the experi-
mental setup used in Ref, 18, 1In order to compare our theoretical prediction with the experimental results
of Ref. 18, we choose a value of -~by asuch that Eq. (i4) ylelds zero demping in roll at the same angle of
attack, oy, ~ 18.6°, as that reported in Ref, 18. The funoction D(o,) is then plotted in Fig. 7 by means of
spline fitting.

From Eq. (26c), the index for atability of the bifurcation periodic rolling oscillation is

2
< u, bk(oor)

ue-=3 S;T;;:T (45)

At o,. = 18,6, we find from the table above that by(o,.) = ~0,1591 < 0. From the spline-fit curve for
b"(ocrs (Fig. 8), we find that bylogn) « ~0.05473. Hence u < 0 and the bifurcation is supercritical,
implying that the bifurcation periodic roll oscillation is stable. This is in agreement with the experimen-
tal finding in Ref. 18,
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_ ;| . We now furthar compare the supararitical bifurcation diagram pradiqted by the pressnt theory with
. axperimantal reaulta from Ref, 18. Combining Eq. (21a) with Eq. (22) to eliminate A and then uaing
Eq. (458), we get
h
e 2% Py
} . ; . 1 "%
S
1
! b
| -c :__ (46)
: } aptv/-~b .
I 1d oq®on
[}

} The last aquation was obtained by using Eqs. (25) and (42). From Fig. 7 (noting that 1° = »/180), we get
PR D'(0gn) = ~0.6131. ‘'Hance Eq. (46) reduces to

A 2

A O " Ogp = 0.1120 ¢ (47)
' whers ¢ s the amplitude of the bifurocation periodic solution (Ref. 11). Equation (47) is plotted in

Fig. 9 for the 80° sweep~back delta wing and compared with the experimental results of Levin and Katz

(Ref'. 18). The agreement is excellent near 9p» Where the bifurcation theory ia partiocularly appliocable.

b It should be noted that although u < 0 and the bifurcation is superoritical, the magnitude of |u|

s small in the example. This implies that the bifurcation is close to the boundary batween subcritical and
supercritical. Consequently, on increasing the angle of attack op Oy a small amount, the amplitude of the
resulting periodic motion will be quite large. This is confirmed by the experimental results shown in

Fig. 9. For example, increasing o, Dby 1° past Oy (=18.6°) results in a stable periodic roll osoillation
with an amplitude of 22.6°, .

5. CONCLUDING REMARKS

We have shown how bifurcation theory can be used to study the nonlinear dynamic stability characteris-
tics of an aircraft or flap subject to single-degree~of~freedom motion about its trim position. When the
bifurcation parameter ) (e.g., the angle of attack) {s Lnoreased past the stability Loundary Agp+ Where
the aerodynamic damping vanishes, the steady motion loses its stability. This results in a finite-amplitude
periodic motion after the transient motion has died away. We have also established a simple criterion for
the stability of the bifurcation pertiodic motion in terms of the aerodynamic coefficients. The theory
predicts that bifurcation solutions are unstable (subcritical) for the pitching airfoil in
supersonic/hypersonic flow and for flap oscillations in transonic flow. Bifurcation solutions are stable
(supercritical) for roll oscillations of the slender delta wing {n subsonic flow. The latter predic:ion is
in good agreement with available experimental results.

When the theory predicts suboritical bifurcation, the abrupt change in the motion that results when
A {3 increased past *cr may cause an abrupt structural change of the flow field. This {n turn may render
invalid the form of the perturbation moment of the aercdynamic forces that was used. Under these condi-
tions, aerodynamic information in a different form may be required. However, the theory as developed in
this paper is valid up to Acr and can be used to predict the onset of suberitical bifurcation.

When the theory predicts supercritical bifurcation, the bifurcation periodic solution is stable to
small disturbances for a range of A beyond Aqpe With further increase in i, however, the periodic
motion may lose its stability. This {n turn may result in ancther bifurcation at A = Az > Agps which could
N : be either subcritical or supercritical. The resulting bifurcation solution may be quasi-periodic, and the

. sequence of bifurcations may continue.

“ Finally, the theory may be generalized to apply to alrcraft motions involving more than a single degree
of freedom. For motions involving two degrees of freedom or more, one should be aware of thn Fo88ibility of
chaotic behavior ocourring after a finite number of successive bifurcations.
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‘ TABLE 1, Y7ALURS OF STABILITY GRITERION u(Mg, h) FOR FLAT~PLATE AINFOIL; ! : o ‘
[ €= 1, Yo 4 usvo SUBCRITICAL BIFURCATION, u < O SUPERCRITICAL
' BIFURCATION
i
h h .
0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4 )
noos Ha M i
]
[ 19,0 ~m- St eme 2 39.5 25.8 17.2  13.0 14.7
o 23.4 13.6 8.8 0.7 3 7.2 38.6 26.8 20,9 23,3
v 2.8 155 1.0 128 4 8N S84 W1k 32,8 36.4
N \ 25.3 16.3 12,0 13.7 5 107.3  T4.8 53.7 H2.9 47,8 \
",} 25.5 16,8 12,6 14,3 6  123.6 86.7 62.6 50.3 55.6 T
o 25.8 17.2 13.0 1.7 f
Y !
Ll h
L,,‘.ﬂ‘ ; * 0.26 0.27 0.28 0.29 0,30 0.3t 0.32 0.33 0.3% 0.35 i .
R 101 9.7 9.3 9.0 8.8 8.6 8.5 8.5 8.4 8.5 ok
"" i 12.2 11.8 11.5 1.2 1.0 10.8 10.7 10.6 10.6 10.7 } d
e 13.2 12.8 12.5 12.2 12,0 1.8 1.7 11,6 1.7 11.7 : W
j&; 13.7 13.% 13.0 12.8 12.5 12.4 12.3 12.2 12.2 12.3 i §\:
=T LAt 4.1 13.8 13.5 13.2 13.0 12.8 12.7 12.6 12.7 12.7 z ..,T
~ !
o |
o : J
Jy |
4 /
i
- -1; : }
“ " Ch £ I ~ts) 1
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Fig. 1. Piteching airfoil in supersonic/hypersonic Fig. 2. Flap oscillation in transonic flow. :
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Fig. 6a. Stiffness derivative S versus mean

deflection angle &, of a transonic flap on NASA v
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i Fig. 4. Typical forms of bifurcation diagrams i;
i near the dynamic stability boundary A r Where g?
i D(Asn) = 0. (&) Superoritical, u < O. () 20k )
v 9 Suberitical, u > 0, /\/\ 'Q.
- ber N .
e ‘
e & .nb )
CR ] \
=< _I
~ { i -,60
—° o 5
) I «d I 4 | “ !‘
=.". : 2 -1 [) 1 2 {
8 ¢n. dog x 107 ¢
5 3
Fig. 6b. Damping derivative D versus mean “
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incompressible flow (Refs. 18, 19), Eq. (4u).
i dop = 18.69, '




S el ~‘~*

|
|
{
-

bytle.)

€, dog X 'y

B — e W1}

O EXPERIMENT,
LEVIN & KAT2, Ref. 18

Rolling aerodynamic coefficient b

20 ] 30
s 908

€ of bifurcation periodic
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oni Eq. (47); © experiments
Gop = 18.6°,
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in incompressible flow (Rers. 18,

angle of attack
Observe bu(°cr) s ~0.05473 < O.

R L St ot

Do 27

va——————

| e e e e

v J VU GUSEy SV A S SRS S



