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SUMMARY

This report presents a numerical solution procedure to calculate the
interaction of a vortex with a two-dimensional airfoil in a uniform free
stream and results for several test cases. A Lamb-like analytically
prescribed vortex with a finite core, either fixed at one location in the
flowfield or convecting with the free stream, interacts with the flowfield
of an airfoil made up of NACA 0012 or NACA 64A006 profile in transonic or
subsonic free stream. Both Euler and thin-layer Navier-Stokes solutions
are computed using perturbation form of an implicit noniterative numerical
algorithm.

Euler and thin-layer Navier-Stokes solutions are compared with the
solutions from transonic small disturbance formulation (ATRAN2) and
experimental results where they are available. Most of the interactions
considered in this study are strong, in the sense that the vortex produced
significant and nonlinear distortions of the flowfield, but relatively
weak in the sense that they are within the scope of the transonic small
disturbance assumptions. For such interactions, the three methods gave
qualitatively similar results. For the stronger interactions considered,
in the sense of exceeding the small disturbance assumptions limit, Euler
and thin-layer Navier-Stokes solutions are computed.

Comparison of thin-layer Navier-Stokes solution with a test case of
recent Army Aeromechanics Laboratory experiments on a two-bladed heli-
coptor rotor shows a good agreement with the surface pressure distribution.
The location of the shock wave is predicted slightly downstream of the
experimental observation which implies that the time-lag effects of the

free stream velocity approaching the blade may be important and should be



considered in the analyses.

In general, the results show a tremendous influence of the interacting
vortex on the flowfield around the airfoil. This is particularly true when
the vortex is stationary. For a convecting vortex, the most dramatic
changes in the airfoil flowfield seem to occur when the vortex is within

one chord of the airfoil.
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radial distance from the vortex center

initial position of the vortex, ?ko + 3&0
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viscous flux vector
contravariant velocity components
free stream velocity components in x and y directions
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1. INTRODUCTION

The interaction of concentrated vortices with 1ifting surfaces is
encountered in many aerodynamic and fluid dynamic applications. Although
poorly understood, the interaction mechanism can have a significant
influence on the aerodynamics, aeroelasticity, and aeroacoustics of
maneuvering vehicles and especially so in the transonic flow regime. This
is because in transonic flow the shock wave position and strength are sen-
sitive to small changes in the flow parameters. Of particular interest,
in the present study, is the interaction encountered in a helicopter rotor
flowfield. The interaction of a trailing vortex wake in such a flowfield
with the oncoming rotor blades can induce unsteady blade Toading and
aerodynamic noise. The blade tips, which trail strong and concentrated
tip vortices, trace out prolate cycloidal paths in space, leading to a
variety of possible blade-vortex interactions. The generic problem, shown
schematically in Fig. 1, can be viewed as an unsteady, three-dimensional
close encounter of a curved-line vortex, at an arbitrary intersection
angle A, with a high aspect-ratio 1ifting surface that is executing
combined rotational and translational motion at transonic speeds. The
limiting cases of such encounter for A = 0° and 90° are illustrated in
Figs. 2a and 2b, respectively; the former encounter is essentially two-
dimensional but unsteady, whereas the latter can be considered as steady
but highly three-dimensional. For more discussion of these representations
and their aeroacoustic implications, the reader is referred to a recent
paper by George and Chang (Ref. 1).

Under certain flight conditions, helicopter rotor produces an impul-

sive, highly directional noise at a regular frequency corresponding to the



blade passage frequency. At least two mechanisms are thought to be
responsible for this impulsive noise (also called the "blade-slap"), viz,
1) shock formation on the advancing side of the blade due to local
transonic flow, and 2) unsteady 1ift fluctuations on the blade due to
interaction of the tip vortex from the preceding blade. In order to shed
some light on the understanding of this second mechanism (corresponding
to the case of Fig. 2a), the present study prepares groundwork for a
future aeroacoustic and vibratory airloads computation capability by
making unsteady two-dimensional flowfield computations of a vortex inter-
action with a rotorcraft airfoil.

Current numerical algorithms to compute unsteady transonic vortical
flows of the helicopter rotor are frequently either inadequate or too
costly to use for routine design analysis of a large class of two- and
three-dimensional flowfields. Unsteady potential theory cannot be satis-
factorily used for such analyses unless major assumptions are made in
modeling the nonlinear vortex wake structure. Numerical algorithms based
on the Euler equations are suitable for any inviscid flowfield simulation
but cannot be applied to flows dominated by viscous effects, in which case
the only choice is to use the Navier-Stokes equations. But current numer-
ical algorithms for both Euler and Navier-Stokes equations used for unsteady
flow computations have large computer time and storage requirements.

The motivation for the present study is two fold. The first of these
is to apply a modified form of Euler and thin layer Navier-Stokes two-
dimensional codes for computing the rotational compressible flowfield of
the interaction of a vortex with a rotorcraft airfoil made up of either

NACA 0012 or NACA 64A006 profiles. The cases of interacting vortex fixed



in space in the flowfield as well as convecting past the airfoil will be
considered so as to better understand the flow phenomenon and to provide
benchmark solutions for checking out more approximate engineering predic-
tion techniques. The second objective is to further the methodology of
existing numerical procedures so that advanced simulations of full heli-
copter flowfields are possible when more powerful computers become
available.

With the above objectives in mind, an implicit finite difference
procedure for solving the unsteady, two-dimensional thin layer Navier-
Stokes equations in conservation-law form of Steger (Ref. 2) was modified
to implement the perturbation scheme of Buning and Steger (Ref. 3) to
resolve non-uniform incoming streams (vortex in the present study) without
having to specify far-field grid refinement. This was further modified
to include the quasi-steady (vortex fixed) and unsteady (vortex convecting)
vortex effects to compute the interaction flowfield in the region outside
the core of the vortex. Although the concentrated vortex is analytically
specified and preserved in this study, an actual experimental vortex can
easily be substituted in its place. (It should be mentioned that the code
has the provision to turn off viscosity and modify the boundary conditions
to make Euler calculations if and when needed.) The numerical results are
compared with the available experimental results (Ref. 4) and results from
transonic small disturbance formulation (Refs. 5,6).

In this report the numerical formulations are discussed in Section 2.
Results and discussion are presented in Section 3, and the concluding

remarks are given in Section 4.



2. NUMERICAL FORMULATIONS

2.1 Governing Equations

The governing partial differential equations are the unsteady, two-
dimensional, thin-layer Navier-Stokes equations (Ref. 2). These are
written in non-dimensional, strong conservation-law form for a perfect
gas using the generalized independent coordinate system of £, n, =

and in the perturbation form (Ref. 3) as

A C r ~ r r = -1 <
s.(a-q) + 8. (E-E)) +3 (F-F)) Re™%3 S (1)
where
P
puU
-~ - -1
R R (2)
e

is the flowfield vector we are solving for, ao is the solution of the

Euler equations
2.G, + 3,E, +3F = 0 (3)

and, in this particular case, representes the solution of a prescribed

vortex (either fixed in space or moving) in a uniform free stream. Also,

A ~

the flux vectors E, F, and S are given by



- pU - B pV .

pul + E.P puV + nyP

U+ V +
pv Eyp v nyp

L (e +p)U - g,p (e + p)V - nyp

0

2 2
u(n? + ny)un + (u/3)nx(nxun + nyvn)

2 + 2 +
u(ng ny)vn (u/3)ny(nxun + nyvn)

S = 3% | «Pri(y - 1)~ (n2 + n’)a a’ (5)

2 2 2 2
+ u(nx + ny)(u + v )n/2

+ (w/3)(nu + nyV)(nxu + “yvn)

where U and V are the contravariant velocities along the ¢ and n

directions given by

u = gy T EU gyv

<
]

N + nxu + nyV

The metrics at, g etc., are easily formed from the derivatives

X,

of X XE’ etc., using the relations
A n, = -Jyg
ST RSB T YeBy Mp T Xy T Yy



and J 1is the transformation Jacobian given by

J = ExNy = Eyy T 1/(x£yn

- X Ye) (8)

The viscous flux vector S is written in the context of thin-layer
model (Ref. 2) and hence is valid for high-Reynolds number turbulent flows.
In the viscous stress terms of the flux vector §, the viscosity

coefficient u is computed as the sum of ... o+ for

Hturbulent
turbulent boundary layer. Sutherland's equation (Ref. 7) is used to
evaluate Ylaminar> the turbulent eddy viscosity, Yturbulent’ is computed
using a two-layer algebraic eddy viscosity model of Baldwin and Lomax

(Ref. 8).

The generalized coordinate system

£ = &(xy,t)
n = n(Xstt) (9)
T = T

allows the boundary surfaces in the physical plane to be mapped onto
rectangular surfaces in the transformed plane as shown in Fig. 3. More-
over, this simplifies the procedure of grid point clustering in regions
that experience rapid change in the flowfield gradients. This is
particularly important in the present problem because of the presence of
the interacting vortex and shock waves. Further, such a body fitted
coordinate system would also simplicty the appliication of boundary condi-

tion procedure.



The primitive variables of Eq. (1) are the density o, the mass
fluxes opu, pv 1in the two coordinate directions x and y and the total
energy per unit volume e. In Eq. (4) the pressure p is nondimen-
sionalized by yp_; density o by p_; velocity components u, v in
x and y directions by a_; and the energy e by pmai. The chord of the
airfoil, C, is chosen as the reference length scale and is assumed equal
to unity. The nondimensionalization also produces parameters such as
Reynolds number (Re) and Prandtl number (Pr). The second coefficient
of viscosity X 1is assumed equal to -2/3u, after Stokes hypothesis.

The pressure, density, and velocity components are related to the
energy per unit volume by the equation of state which is written for a

perfect gas as

2 2
e = Y—i’—wp(“—;L) (10)

2.2 Boundary and Initial Conditions

Although Eq. (1) is solved for the perturbation quantity (q - ao),
the boundary conditions are applied only to the solution variable q.
ao’ which is the solution of Euler equations, is supposed to be known
as described below.

The boundary conditions used are applied explicitly. Figure 3 shows
a schematic of the solution domain. Along the outer boundary f-g-h, all
the flow quantities are specified by the solution of Eq. (3) and updated at
each time step. At the outflow boundaries e-f and a-h, a simple linear
extra-polation is used for p, pu, and pv. The total energy e is

obtained from Eq. (10) by holding the value of p equal to the free stream



value (the value corresponding to the Euler solution ao). To ensure
continuity across the wake cut a-b and d-e, the flow variables are
Tinearly extrapolated from both sides of the cut and then averaged to
obtain the values along the cut.

Along the body surface n(x,y,t) = 0, the no-slip condition for
viscous flow without suction or injection is given by setting V = 0

and U = 0. The velocity components u and v are then calculated from

u n 3 -g
“Nx X Nt
The pressure along the body surface is obtained from a normal momentum

relation given by

Pn(ni + n;)l/2 = JD(BTnt tudn, +v Brny) (12)

where n is the direction normal to the body surface. This equation is
solved implicitly in & for pressure at the body. The density at the air-
foil surface is obtained by extrapolation from the grid interior. Now
since the pressure and density are known at the surface, the total energy
is calculated from Eq. (10). The boundary conditions are of low order and
hence require that the grid lines be clustered and normal at the body
surface.

For the vortex interaction study any representation of practical
vortex can be chosen. Here, a Lamb-like analytical vortex (Refs. 9,10)

with a finite core is specified. The cylindrical velocity of such a vortex




is given for a compressible flow by

2

where Vo is the cylindrical velocity and is a function of only the radial
distance r from the vortex center, r= r/2na C 1is the dimensionless
vortex strengh, 2, is the core radius. (For most of the computations
reported here a, is assumed equal to 0.05.) For this vortex in a uniform
free stream, the pressure field induced (by this vortex) is determined

using the radial momentum equation

2
v - Ve (14)

in conjunction with the energy equation for constant enthalpy flow given by

Y PV 1 A2
y-15, 720 7 M (15)
where Q% = u? + v? and H, 1is the total enthalpy. Once the pressure is

known, density can be determined from Eq. (15). Having known the pressure

and density, the total energy ey for the vortex flow is given by

Y - v



This completes the determination of the flow vector for vortex in a

uniform free stream and is given by

2.3 Grid Generation

Surface conforming grids, that is, grids in which one coordinate falls
on the body surface, are needed to simplify the application of the body
boundary condition procedure and improve the overall accuracy of the numer-
jcal scheme. The grid generation process can be divided into several tasks:
a) development of accurate surface representation, b) distribution of
body surface points to yield a properly clustered, smoothly varying grid,
and c) generation of outer boundary and interior mesh. While several
methods of grid generation techniques are currently available, (for
example, elliptic solver (Ref. 11) and hyperbolic solver (Ref. 12)
that is suitable for the present application, based on past experience, is
an algebraic method developed at Ames Research Center. The method has been
discussed in detail by Pulliam et al (Ref. 13) and is based on the original
algebraic grid generation technique of Eiseman (Ref. 14); the reader is
referred to Pulliam et al (Ref. 13) for details. Briefly, the airfoil
coordinates are taken as input and are used to define the airfoil surface.
On the surface, grid points are distributed with clustering as desired,

say, for example at the nose, trailing edge, and at prescribed Tocations

-10-



along the upper and lower surfaces of the airfoil to resolve shocks.
Coarse grid solutions can be used initially to determine the locations of
shock waves. The grid lines are also clustered in the normal direction

at the surface to resolve the boundary Tayer. This grid generation scheme
is quite fast and will generate a 161 x 52 grid, say, around a NACA 0012
airfoil in less than 10 sec of CPU time on a VAX 11/780.

Typical C-grids generated by this method are shown in Figs. 4 and 5a
for NACA 0012 and NACA 64A006 airfoils. The grids of Figs. 4a and 4b are
161 x 52 in size and are for viscous flow computations of NACA 0012 air-
foil and extend 6 chord lengths in all directions. The spacing of first
node normal to the surface is 4 x 10->. The grid of Fig. 5a is for invis-
cid flow (Euler) computations of NACA 64A006 airfoil and has dimensions
181 x 45. The grid extends 10 chord lengths upstream and in y-direction
and 6 chord lengths downstream of airfoil. The grid is clustered along
the body surface and in the radial direction as shown in the figure. The
spacing of the first node normal to the surface is 2 x 10~3 chord. The
grid of Fig. 5b, shown here for comparison, is used for ATRAN2 computations
of NACA 0012 airfoil. This is a 113 x 97 straight Tine grid extending 200
chord lengths in all directions with clustering at the leading and trailing
edges as shown. The ATRANZ grid used for the NACA 64A006 airfoil has the
same spacing in the y-direction but has 186 points in the x-direction and
finer clustering near the leading edge because of its small leading edge

radius.

2.4 Numerical Algorithm

The numerical algorithm used to solve the conservation-Taw form of the

thin-layer Navier-Stokes equations is based on a class of completely implicit
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noniterative, ADI schemes developed by Lindemuth and Killeen (Ref. 15),
Briley and McDonald (Ref. 16,17), and Beam and Warming (Ref. 18,19). The
procedure is a generalization of conservative, approximate factorization
scheme in the "delta" form. The procedure has been successfully applied,
for example, by Steger and Kutler (Ref. 20), Kutler, Chaussee, and Pulliam
(Ref. 21), and Srinivasan, Chyu, and Steger (Ref. 22) for inviscid flows
and by Steger (Ref. 2), Pulliam and Steger (Ref. 23), and Srinivasan,
McCroskey, and Kutler (Ref. 6) for viscous flows. Use of the implicit
procedure helps remove the stiffness of the problem introduced by the fine
mesh.

As applied to Eq. (1) the implicit, spatially factored algorithm

using Euler implicit time differencing takes the form

(1 + hGgAn - EIJ-IVgAgJ)
x (1+hsB"+ hs M' - c;0737 8 9)(ad" - 430) 18)
= -At[ﬁg(ﬁn - B+ an(?” - F) - Re™? sn§"]

")

. 1-1 2 271(a" - &
egd™ [(v,a,.)® + (v 8 )°13(a" - g,

~ A A

where A, B, and M are the Jacobian matrices A = aE/aq, é = aﬁ/aa,

~

M= ag/aa and I 1is the identity matrix. ¢ 5n are the spatial central

£
difference operators, A and v are forward and backward difference
operators, e.g., Aga = gq(¢ + Ag,n) - q(&,n) and for convenience

AE = 1 = an is assumed. Indices denoting spatial location have been
suppressed. The time index is denoted by h, t = (n at) and corresponds
to Euler implict time differencing where At corresponds to the

marching step size (in time) and a" = 4(n at), §" = (an+1 - M.
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€] and ep are the implicit and explicit smoothing coefficients. In
writing Eq. (18), it is assumed that Ao = A and éo = B where
Ao = aEO/aq0 and B0 = aFO/aqo.

2 ~ - A [
£)?(a - §,) in
Eq. (18) are added explicitly and these help to control possible numerical

Fourth-order dissipation terms such as eEJ*l(VgA

instabilities. The addition of the implicit second order difference terms,
with coefficient e, operating on (rg" - Aﬁg) extends the linear sta-
bility bound of the fourth-order terms (Ref. 23).

Central differencing is used throughout the solution domain, except
in regions of supersonic flow before a shock wave where upwind differencing
is used. The use of upwinding for shocks is widespread in transonic
potential calculations. Upwind differencing before shocks has a stabilizing
effect and impfoves the accuracy of the calculations.

Also, the metrics of Eq. (7) are not known analytically and therefore
are to be determined numerically. To accomplish this, second-order central
difference formulae are used at interior points and three-point one-sided

formulae are used at the boundaries.

2.5 Transonic Small Disturbance Formulation

Since the present numerical results of Euler and thin-layer Navier-
Stokes equations are compared with the results from transonic small distur-
bance equations, it is appropriate to describe briefly the formulation of
this numerical procedure. The particular version of the code used is due
to McCroskey and Goorjian (Ref. 5) and is called ATRAN2 code. ATRAN2 code
is a modification of Ballhaus and Goorjian's LTRAN2 code (Ref. 24) to in-
clude the high frequency term it and concentrated or distributed rota-

tional disturbances in the flowfield.
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The unsteady transonic small-disturbance equation is based on the
assumption of irrotational flow, which allows the velocity field Q to be
expressed in terms of a potential. The vortex is introduced as a pre-
scribed perturbation that is itself a solution to the Euler equation. Then
the equation for the disturbance potential due to the airfoil itself

becomes (Ref. 5)

Abyy +Boyy = Coopy +C (o +u )+ oy, (19)
where
A= o
2
B = 2M_
2
C = 1-M
1 o0
C = - Q(Y + 1)M2
- - -
§ = 4+ +Q,

It is important to note that Eq. (19) is nonlinear and independent solutions

are not superposable, but that the velocity field can still be split into

three parts: 1) the (uniform) free stream, 2) a prescribed vortical

disturbance, av’ etc., and 3) the unknown disturbance portential V¢.
The usual small disturbance boundary conditions are flow tangency

on the body, no disturbances at x + -« and y -+ *=, and Cp =0 at

X > +o. The new small-disturbance boundary condition on the body

Yp = F(x,t) (where Yp = F(x,t) defines the airfoil surface), becomes

-14-



> d
<ﬁ> = Q _y_l?. - 3’\,’ (20)

The wake behind the airfoil is represented by a branch cut through
>
which vorticity convects at Q, from the airfoil to the downstream boun-
dary. Across this branch cut the pressure is continuous; this condition

is expressed as follows:

(rx + rt)wake 0 (21)

Equation (19) and its corresponding small-disturbance boundary condi-
tions are solved by the Ames code ATRAN2 (Ref. 5), which uses the basic
time-accurate, implicit numerical algorithm of LTRAN2 (Ref. 24). Further

details of this code are described in Ref. 5.

2.6 Transonic Small-Disturbance Calculations in the Leading-Edge Region

The small-disturbance approximation has a well-known deficiency in the
leading-edge region of airfoils, where neither the disturbance velocity ¢
nor the usual airfoil boundary condition, Eq. (20) is small enough to
satisfy the basic premise of the theory (Ref. 25). The resultant loss of
accuracy is often tolerable in other applications, but in the present
vortex-interaction cases it poses a dilemma in interpreting the results for
airfoils with small leading-edge radii. For example, NACA 64A006 airfoil,
with the leading edge radius rQ/C = 0.0025, exhibits a rapid expansion
and suction peak very near the leading edge for small angles of attack or
other vertical velocity perturbations. Accordingly, the small-disturbance

results presented in Refs. 1 and 5 showed strong vortex-induced leading-
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edge suction peaks to form and collapse rapidly on the lower surface

(vortex side) of this airfoil. If real, this phenomenon would seem to be

a candidate source of acoustic radiation, such as the intense impulsive
noise in helicopter aeroacoustics known as "blade-slap". Therefore,

special attention was given to this point in comparing the small-disturbance
and Euler results.

Two important facts quickly emerged in the comparison of numerical
results. First, the Euler solutions showed much smaller magnitudes of the
leading-edge pressure fluctuations, as will be seen. Secondly, as reported
elsewhere (Ref. 25), the small-disturbance results were found to depend
upon the computational grid spacing in the Tleading-edge region; in the
present case, upon the maximum value of dyb/dx at the grid point nearest
the leading edge and on its variation at neighboring grid points. This
unsatifactory state of affairs is illustrated in Fig. 6a.

Keyfitz et al (Ref. 25) concluded that the errors in the small-
disturbance results are due to the inherent approximations, and not to
truncation errors. However, an improvement in the method can be obtained
by introducing a simple correction in Eq. (20); namely, by replacing Q
by an analytical approximation to the local velocity u near the leading
edge. This is done in the spirit of a thin-airfoil blunt leading-edge
correction, e.g., Van Dyke (Ref. 26), who derived a uniformly valid second-
order solution for the subsonic flow near parabolic leading edges. An

excellent eapproximation to Van Dyke's surface-speed distribution function

Q s
X
Q, ‘/;;q;;§7§§ (22)
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where 8% =1 -M2. Equation (22) reproduces Van Dyke's theory exactly
for incompressible flow. For compressible flow, Eq. (22) can be inter-
preted as effectively increasing the Teading-edge bluntness in proportion
to 1/8. It may be mentioned in passing that this compressibility cor-
rection bears a superficial resemblance to the classical similarity rules
of linearized thin-airfoil theory (Ref. 27). However, those rules are
derived using the small-disturbance boundary condition, Eq. (20), and are
therefore questionable with regard to the details of the flow in the
leading-edge region for thin airfoils.

Figure 6, which is reproduced from Ref. 6, demonstrates the effect
of modifying the surface-speed distribution function Q 1in the body boun-
dary condition procedure near the leading edge region for thin airfoils.
This treatment renders the transonic small-disturbance solutions almost,
but not completely, independent of the grid spacing. It also brings them
into much better agreement with the Euler solutions for the NACA 64A006
airfoil. Accordingly, the results presented in this report were obtained

using this treatment.
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3. RESULTS AND DISCUSSION

A two-dimensional approximation of helicopter blade-tip vortex
encounter in forward flight with the following blade is obtained by
simulating the interaction of a concentrated vortex with a stationary
rotorcraft airfoil, as indicated in Fig. 2a. A vortex with a finite core
and a Lamb-like analytical velocity distribution is considered to interact
with the flowfields of NACA 0012 and NACA 64A006 airfoils. The cases of
an interacting vortex fixed in space in the flowfield (quasi-steady) as
well as that convecting with the flow (unsteady) are considered. Viscous
as well as inviscid flowfield computations are performed. The results
are compared with ATRAN2 solutions for the cases which are well within
the scope of transonic small disturbance assumptions.

The numerical algorithm used for the viscous interacting flowfield is
given by Eq. (18). This is a perturbed form of the standard algorithm
where the disturbance or non-uniformity, &o, is supposed to be known.

In the present study ao is the solution of Euler equations that
represents a vortex moving in a uniform flow. With the algorithm

(Eq. 18), the boundary conditions are applied to the solution

variable q instead of the perturbation quantity (q - ao). The advantage
of this perturbation scheme is that it enables one to maintain accuracy
even in the coarse-grid outer flow. Near the body, however, the grid

is fine enough to resolve both the non-uniform stream (ao) and the
deviation from it (a - ao). This approach was first suggested and
successfully used by Buning and Steger (Ref. 3) to calculate an inviscid

shear flow past a cylinder.
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3.1 Baseline Solutions

Baseline solutions represent the steady state solution of stationary
airfoils in a uniform free stream. The airfoils considered are NACA 0012
and NACA 64A006 with a variety of flowfield conditions. For the thin-
layer Navier-Stokes solution, a nominal value of Reynolds number, based
on the chord of the airfoil and free stream velocity, of 6 million is
used. Turbulent boundary layer flow is assumed for the entire airfoil.

The baseline Navier-Stokes solution is computed by setting ao =0
in the algorithm, Eq. (18). In this case the numerical algorithm reduces
to the standard (non-perturbed) form of Steger (Ref. 2). The baseline
Euler solution is generated by turning-off viscous terms and setting
G = 0 in Eq. (18) and in addition making suitable changes to accomodate
surface boundary conditions. The steady state solution so obtained for
the NACA 0012 airfoil at o = 0.5 deg 1in a uniform flow of M_= 0.8 is
shown in Fig. 7 for the three methods in the form of plots of coefficients
of pressure (Cp). The agreement between the Navier-Stokes and Euler
solutions is good, indicating that the viscous effects are relatively small
for this case. However, ATRANZ solution predicts the Tower surface shock
wave to be weaker and to occur upstream of that predicted by the Navier-
Stokes and Euler codes. This is due in part to the leading-edge correction
which was found to be too Targe for this airfoil, and in part to the
Timitation of the small-disturbance approximation. Nevertheless, all three
methods give solutions which have good qualitative agreement. Figure 8
shows a similar baseline steady state solution for NACA 64A006 airfoil in
a uniform free stream of M_= 0.85 at at o = 0 degrees. Also shown here
are the experimental results from Zwaan (Ref. 28). The agreement is very

good.
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3.2 Vortex Interaction Configurations

Figure 9 shows a schematic of two configurations considered in this
study. In Fig. 9a, the interacting vortex is fixed at one Tocation in the
flowfield and its influence on the airfoil flowfield is computed. For the
second configuration shown in Fig. 9b, two cases are considered: 1) the
vortex convecting in a prescribed path a freestream velocity, 2) the
vortex convecting in a force free path at local fluid velocity.

3.2.1. Interaction of a Vortex with NACA 0012 Airfoil

(a) Vortex Fixed in Space. An analytical vortex, whose center is

located at a point (xo,yo) in the flowfield, as shown in Fig. 9a, is made
to interact with the airfoil flowfield. For Lamb-like vortex with a finite
core and fixed in the flowfield, the cylindrical velocity distribution is

given in the small-disturbance Timit for a compressible flow by

vg(r)
a

|-t

2 2
B (1-e" /ao) (23)
® cos? 6 + g2 sin o

The velocity field from Eq. (23) and pressure field from Eq. (14) of
the vortex are introduced into the airfoil flowfield through the vector ao
in Eq. (18) and the resulting flowfield is computed. Figure 10 shows
steady state pressure distributions in the form of Cp plots for this
interaction computed from three methods for a vortex located at Xy = 0.5,
Yo = -1 and of strength T = O.O65(CLv = 0.13). Comparison of pressure
distributions of Fig. 10 with the baseline solutions, Fig. 7, shows the
dramatic influence of the vortex on the airfoil flowfield. Since the vor-

tex induces spacially varying downwash downstream and upwash upstream
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of its Tocation and also positive streamwise velocity above and negative
stream velocity below its location (because of the sense of its rotation,
see Fig. 9), its influence on the airfoil flowfield is determined by where
it is Tocated with respect to airfoil. The shock wave on the Tower surface
has moved downstream with all three methods of computation, ATRANZ showing

a much Targer influence than the other two methods. Evidently the small
disturbance, irrotational approximation to Euler equations introduces errors
in the solution.

Figure 10 also lists the coefficients of 1ift and drag values. Com-
parison of these numbers with the baseline values shows the extent of the
vortex influence on the flowfield of the airfoil. For example, the Tift
and drag coefficients for the baseline viscous case are respectively
0.09928 and 0.001173; with the vortex interaction these values change to

C, = 0.05757 and Cp = 0.01457.

D
(b) Vortex Convecting with the Flow. So far, the results of vortex

interaction with an airfoil were presented where the vortex was fixed at
one location in the flowfield. In this section, the vortex is made to con-
vect with free stream velocity 6m as shown in Fig. 9b and allowed to
interact with the flowfield around the airfoil. This case approximately
simulates a practical flow situation on a helicopter blade in contrast to
the fixed vortex case.

For a moving vortex in compressible flow, the cylindrical velocity
distribution is given by Eq. (13). The velocity from this and the pressure
field from Eq. (14), induced by the vortex, are introduced through the
vector ao in Eq. (18) as done for fixed vortex case before.

To compute the interaction flowfield, the vortex is initially posi-

tioned at, say, the upstream grid boundary or any suitable upstream
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location (xo,yo) of the airfoil and then made to convect with the flow
at the free stream velocity and along a straight Tine aligned with the

free stream. Typical resulting unsteady solution of such an interaction
for the case of vortex of strength T = O.2(CLV= 0.4) initially located

at Xo = -6.0 and Yo = -0.26 1is presented in the form of C_ plots in

p
Figs. 1la and 1llc at several stages of vortex passage across the airfoil.
The pressure distribution (Cp) presented in Fig. 11 generally typifies
the history of interaction of the airfoil flowfield as the vortex passes
by. The three methods of computations used here give results which are in
qualitative agreement.

Examination of the pressure distributions of Fig. 11 shows the
expected initial development of the pressure difference from the baseline
case to resemble the case of increasing negative angle of attack (downwash
influence) as the vortex is approaching the airfoil. This influence
changes to that of a positive angle of attack (upwash) as the vortex
passes behind the airfoil. Although the initial influence of the
approaching vortex is felt by the airfoil when the vortex 1is only a few
chords upstream of it, its influence decays very slowly even when the vor-
tex has passed many chords downstream of it, and the return of the flow
around the airfoil to the original state is an extremely slow process.
This is also evident from the plot of the variation of the 1ift and moment
coefficients as a function of the instantaneous vortex position as shown
in Fig. 12. This contrasts with incompressible behavior (results presented
later) where the influence of the vortex is felt approximately equally far
upstream and downstream of the airfoil. Such a behavior in incompressible

flow has also been observed by Parthsarathy (Ref. 29).
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Comparison of pressure distributions for vortex-fixed and -moving
cases shows that the unsteadiness greatly attenuates the influence of the
vortex on the flowfield around the airfoil, as shown in Fig. 13. The Tift
and drag coefficients for this example are CL = -0.06332 and CD = 0.02186
for the unsteady case and CL = -0.30152 and CD = 0.04578 for the quasi-
steady case. The aerodynamic force coefficients for the quasi-steady case,
thus, are significantly higher than the values for the unsteady case. The
pressure distributions shown in Fig. 13a for the unsteady and quasi-steady
(vortex fixed) case are for the same vortex location with respect to air-
foil in the flowfield, viz, Xog = Xy = 0 (leading edge) and Yo =Yy T -0.26.
The corresponding flow pictures in terms of Mach number and pressure con-
tours are delineated in Figs. 13b - 13c. The Mach number and pressure con-
tours show the difference in quasi-steady and unsteady flowfields of such
interaction. It is interesting to note that for the quasi-steady inter-
action of this vortex, vortex induced separation of the boundary layer was

observed on the lower surface (vortex side) of the airfoil. But no

separation was observed for the unsteady interaction of the same vortex.

3.2.2 Interaction of a Vortex with NACA 64A006 Airfoil

The use of this airfoil has special significance because of the numer-
ous numerical and experimental studies done with it. It is thinner than
the NACA 0012 section and has significantly smaller leading-edge radius,
so it will serve as a test case to check the applicability of the Tran-
sonic Small Disturbance equations particularly near the leading edge in
the presence of vortex-induced downwash against Euler and Navier-Stokes
equations which are exact.

Four test cases are computed for this airfoil interacting with a
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moving vortex for the following conditions:

Case 1: M_=0.85, o = 0% 1 = 0.2,
Xg = -9.5, Yo =¥, -0.52
Case 2: M_=0.85, o = 0° T =0.2,
X, = 9.5, y, =y, = -0.26
Case 3: M_=0.85, a = 0% 1 = 0.4,
X, = -9.5, y, =y, = -0.26
Case 4: M_=0.85, o = 0% r = 0.2,
Xo = -9.5, Yo = -0.26

In the first three cases listed above, the interacting vortex convects in

a prescribed path at a constant yv(= y..) with free stream velocity. In

(6]
Case 4, the vortex convects in a force free path (variable yv) with the
local fluid velocity.

a) Vortex Convecting in a Prescribed Path

Figures 14 - 21 summarize the results of these test cases. In all
these cases, the airfoil incidence is zero and the dramatic difference in
Cp distribution between the upper and Tower surfaces is due solely to the
vortex interaction. As before, the influence of the vortex is felt more
on the Tower surface of the airfoil than the upper surface, a result of

nonlinear effects; Tlinear small-disturbance calculations (Ref. 5) showed

the effects of the vortex to be equal and opposite on the upper and lower
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surface of the airfoil.

Figure 14 shows Cp plots for the Case 1 where the vortex of strength
r = 0.2 1ds initially located at Xo = -9.5 and Yo © -0.52. As seen,
Euler and ATRAN2 codes predict pressure fields which are in qualitative
agreement. As before, the influence of the vortex on the airfoil flowfield
begins for vortex position upstream and continues even when the vortex has
moved far downstream of the airfoil. However, the most rapid and dramatic
changes occur when the vortex is between one chord length upstream of the
leading edge of the airfoil and the trailing edge. From the Cp plots
presented in Fig. 14 for the vortex location at the leading edge and down-
stream of this, it can be seen that both Euler and ATRAN2 solutions show
large similarities at all x-stations; even the shock waves on upper and
lower surfaces are quite sharp for the two solutions. Figure 15 shows Tift
and pitching-moment variations for the airfoil as the vortex gets convected
across as a function of the instantaneous vortex position. Note that both
CL and CM are initially zero and change continuously as the vortex moves
across it.

Figures 16 and 17 show a similar comparison of Cp plots for Case 2
where the vortex of strength T = 0.2 was initially located at the same
x-Tocation of Xy = -9.5 but closer to the airfoil at Yo = -0.26 to pro-
duce a stronger interaction. For this particular set of conditions, the
interaction is quite severe in terms of the small disturbance approximation.
The ATRANZ numerical solution seems to be marginally stable, for these flow
conditions, depending on the fineness of the grid geometry and on the size
of the time step At.

The instantaneous pressure distributions on the airfoil are shown for
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this case at eight x-stations of vortex position in Figs. 16a - 16b
for the thin-layer Navier-Stokes and Euler methods of computations and
are compared with the ATRAN2 solution shown in Fig. 16c. The baseline
pressure distribution for each of the methods is shown at the first Xy
station of X, = -9.5, where the vortex is initialized. As before, the
dramatic changes occur when the vortex is within one chord from the airfoil
leading edge. Before the modification of the surface boundary condition in
the leading edge region, the ATRAN2 code predicted a rapid development of a
sharp suction peak followed by a rapid compression-like wave in the leading
edge region. However, with the modified boundary condition the magnitude
of the peak was dramatically reduced as pointed out in Section 2.6. With
this modification for ATRANZ code, all the three methods predict results
which are in good qualitative agreement. Even the gross aerodynamic quan-
tities are in very good agreement for the three methods as seen in Fig. 17
where the Tift and pitching moment coefficients are shown as a function of
the instantaneous vortex position for this interaction.

Figure 18 shows a similar type of pressure distribution plots as

Fig. 16 but for Case 3 where the vortex is located initially at the same

(Xd’yo) Tocation as Case 2 but doubled in its strength. The rest

of the conditions are identical to that of Case 2. No ATRAN2 results were
obtained for this case as these conditions are quite severe and exceed the
limits of small-disturbance approximation.

Instantaneous pressure distributions are presented for this case in
Fig. 18 for the interaction history from thin-layer Navier-Stokes and Euler
computations at eight x-stations of vortex location. As before, the trend

of events is similar to that shown in Figs. 14 and 16. The sharp suction
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peak of the pressure distributions at the leading edge, mentioned before,
is the most noteworthy event occurring for the vortex location within one
chord from the airfoil leading edge (e.g., x = -0.5). It appears that as
the interaction gets stronger, by either increased vortex strength or by
closer encounter of the vortex, not only does the size of the suction peak
increases but occurs earlier, i.e., even when the approaching vortex is
well upstream of the leading edge of the airfoil. Using the transonic
small disturbance code without leading edge correction for the surface boun-
dary condition, both George and Chang (Ref. 1) and McCroskey and Goorjian
(Ref. 5) in independent investigations have observed this kind of leading
edge behavior even for weaker vortex strengths, such as Cases 1 and 2, and
they concluded that this is possibly responsible for a "blade-slap"-1ike
acoustic wave propagation. In contrast, as shown by the results presented
here, the thin-layer Navier-Stokes and Euler codes predict this kind of
leading edge effect only for stronger interactions.

Figure 19 shows the 1ift and pitching-moment coefficient plots as a
function of vortex location for this interaction. As mentioned earlier,
this interaction is quite strong and produced thickening of the wall boun-
dary layer in the vicinity of shock wave. This is an early warning for
eventual flow separation.

The description of the flowfield during the unsteady interaction pro-
cess is delineated in Figs. 20 - 22 in the form of Mach number and pressure
contour plots. The effect of doubling the vortex strength is shown in
Figs. 20 - 21. Figures 20a and 20b show contour plots for Case 2 (r = 0.2)
when the vortex location is one chord upstream of the leading edge of the

airfoil. Figures 2la and 21b are for Case 3 (I = 0.4) and at the same
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instantaneous vortex location. The initial shock wave position and its
movement due to doubling the vortex strength are apparent from these plots.
Figures 22a and 22b are for Case 3 (T = 0.4) when the vortex is at

x, = 0.2 (right below the airfoil). Comparison of these figures with
Figs. 21a and 21b shows a tremendous movement of the lower surface shock
wave and modification of the leading edge flow as the vortex passes by.

The Mach contour upper 1imit is fixed at 1.2 in these plots and this
enables visualizing the progressive decrease of lower surface pressure on
the airfoil as is evident from the corresponding increase of the local

Mach number of the flowfield.

b) Vortex Convecting in a Force Free Path

Here the interacting vortex is convected in a force free path.
As before, the vortex is initialized at an upstream location and made to
convect with the flow. By doing so, not only does the vortex convect at
the Tocal fluid velocity but preferably follows a streak line. Figure 23a
presents plots of instantaneous surface pressure distribution for such an
interaction (Case 4) computed from Euler method. ATRANZ results for the
same cases are presented in Fig. 23b for comparison. The two methods pre-
dict qualitatively similar pressure distributions at least until the vortex
reaches the trailing edge of the airfoil. From there on downstream of the
airfoil, ATRAN2 results are in disagreement even qualitatively with the
Euler results. It is not surprising since the transonic small disturbance
formulation prescribes a wake unlike the Euler and thin-layer Navier-Stokes
methods where the wake is captured and is a part of the overall solution
process. This disparity in the prediction techniques is also apparent in

the plots of 1ift, pitching moment coefficients and the yv-trave1 of the
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vortex as shown in Fig. 24. A comparison of Figs. 16 - 17 with Figs. 23 -
24 gives an idea of the effective change in the flowfields when the vortex
is simply let free to move instead of forcing it to move in a prescribed

path.

3.3 Vortex Interaction in Subcritical and Subsonic Flow

This Sectijon presents results of computations of thin-layer Navier-
Stokes Code for subcritical and subsonic free stream conditions of
NACA 0012 airfoil. Two free stream conditions of M_=0.714, o = 0 deg.,
and M_=0.3, o =0 deg. are considered. The condition of M_ = 0.714
corresponds to a case where some experimental results are available to
validate the present computational procedure.

Figures 25 - 26 show plots of instantaneous surface pressure distri-
butions at different x-locations of the vortex computed from thin-layer
Navier-Stokes code. These are compared with the resuits from a recent
Army Aeromechanics Laboratory experiment of Caradonna et al (Ref. 4). The
experiments were done on a two-bladed helicopter rotor.

The computations did not include any time lag effects of the blade
flows, that is, the time-dependent "free stream" velocity approaching the
blade, nor any three-dimensional effects. Considering this, the agreement
between computations and experiment is good. The experiments indicate the
position of the shock wave to be upstream of that predicted by the compu-
tations. This suggests that the time-lag effects may be important and
should be considered in the analysis. But for the comparisons shown here,
the agreement between experiment and computations for the vortex side of
the airfoil surface (lower surface in the Figures) is very good except for

the Tocation of the shock wave, considering the difficulty of making measure-
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ments in the unsteady flows. The reason for not so good agreement on the
non-vortex side of the airfoil surface is not clear at present. It should
be mentioned here that the experimental rotor model had pressure taps on
only one side and the model was simply inverted to get the pressure field
measurements on the second surface in an almost identical second experi-
ment. Another point to consider is that, for the free stream Mach number
of M_=0.714, the flow is completely subcritical in the absence of a
vortex. Therefore, the shock wave formation arises from the influence of
the interacting vortex field.

Figures 27a - 27b show pressure distributions from thin-layer Navier-
Stokes and Euler codes for various x-locations of vortex and for purely
subsonic flow conditions of M =0.3 and « =0 degrees. The other
flow parameters are delineated in the figures. In general, Euler and
Navier-Stokes solutions give qualitatively similar pressure distributions.

The pressure distributions at this subsonic conditions compared to
transonic conditions of Fig. 11, show as before that the significant
influence of vortex occurs when the approaching vortex is within on chord
of the leading edge of the airfoil and its influence starts fading away
even before the vortex reaches the trailing edge and the history does not
persist long unlike in a transonic flow. By the time the vortex has moved
3 - 4 chords downstream of the trailing edge, the flowfield on the airfoil
looks Tike it has reverted back to a no-vortex situation. This is apparent

from the time-history plots of Cp distribution in Figs. 27a - 27b.

3.4 Preservation of Vortex by Perturbation Scheme

One of the important features of this vortex interaction problem is
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to resolve and preserve the vortex as it gets convected in the flowfield.
Earlier studies (Ref. 10) dealing with such flows were not efficient as
the convecting vortex got smeared-off in the coarse grid regions and by
the time the vortex actually reached the airfoil, its peak pressure and
velocity distribution was totally destroyed. To demonstrate this
deficiency, Euler calculations were made using both the previous non-
perturbation appraoch as well as the present perturbation approach. The
results are shown in Figs. 28 - 29 in the form of plots of vortex induced
1ift coefficient as a function of instantaneous vortex position as the
vortex moves across the airfoil. A1l the flow conditions are identical
for the two methods including the grid geometries.

As seen in Fig. 28, as the grid gets finer, the solution accuracy
improves for the non-perturbation approach. In contrast, the present
perturbation approach demonstrates in Fig. 29 that it is possible to

resolve and preserve the vortex even with a coarse grid.
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4. CONCLUDING REMARKS

A perturbation form of an implicit numerical algorithm for thin-layer
Navier-Stokes and Euler equations was used to compute two-dimensional
interaction of vortex with airfoil in transonic and subsonic flows. The
NACA 0012 and NACA 64A006 profiles were selected for the airfoil shape.

The interacting vortex, having a Lamb-like velocity distribution, was
introduced as a perturbation of the mean flow into the governing equations.
The equations were then solved for the interacting flowfield. The required
computational grids were generated by an algebraic grid generation scheme.
The thin-Tayer Navier-Stokes and Euler solutions are compared with solution
from ATRANZ code and some experimental results where available.

Most of the interactions considered in this paper are strong, in the
sense that the vortex produced significant and nonlinear distortions of the
flowfield, but relatively weak in the sense that they are within the scope
of the transonic small disturbance assumptions. For such cases, whether
the vortex was stationary or moving, the three computational methods gave
qualitatively similar results. The close agreement of the thin-layer
Navier-Stokes and Euler results indicates that viscous effects are negligi-
ble for these interactions. In general, ATRAN2 results are in good agree-
ment with the results from the other two methods, although needing a
special leading edge treatment for thin airfoils; without this treatment,
ATRANZ results overpredicted the interaction effects in the leading edge
region. In this sense, previous studies (Refs. 1,5) of such interactions
using the transonic small disturbance method are in error.

For the stronger interactions considered in this paper, strong in the

sense of exceeding the small disturbance 1imit, the Euler and Navier-Stokes
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solutions showed a sharp suction peak in the pressure distributions in the
leading edge region followed by a rapid compression-like wave when the
interacting vortex was approximately within one chord upstream of the
leading edge of the NACA 64A006 airfoil.

Comparison of thin-layer Navier-Stokes solutions with the experimental
results of a two-bladed helicopter rotor shows good agreement, but it
suggests that the time-lag effects of the free stream velocity approaching
the blade are important and should be considered in order to interpret the
experimental data properly. In subsonic incompressible flows, the inter-
acting vortex influence dies out faster compared to transonic flow condi-
tions as the vortex passes behind the airfoil.

In all the cases considered here, the results show a tremendous
influence of the vortex on the flowfield around the airfoil. This is
particularly true when the vortex is stationary. For a convecting vor-
tex, the most dramatic changes in the airfoil flowfield seem to occur
when the vortex is within one chord of the airfoil.

Typical run times for these computational methods on the NASA Ames
Research Center CRAY X-MP Computer, expressed as CPU time per time step
per grid node, were as follows: thin-layer Navier-Stokes = 2.1 x 10~*
sec, Euler = 1.8 x 10™* sec, and Transonic Small Disturbance = 1.0 x10-5
sec. Thus the small disturbance code runs approximately 20 times faster
than the Euler and thin-layer Navier-Stokes codes. However, the latter
were found to be more accurate and robust with important consequences for

the stronger interaction cases considered here.
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Schematic of helicopter rotor-blade/vortex interaction.
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Figure 6. Pressure distributions in the leading edge region for the NACA 64A006 airfoil with and
without leading edge modification in ATRAN2 code: M_= 0.85, o = 0 deg.,
r = 0.2(CLV = 0.4), X, = -0.3, y, = 0.26. Between x = -0.05 to 0 and x = 0 to 0.05
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5+ 9; standard mesh has 8 + 9; fine mesh has 8 + 25; while the Euler grid has
31 points between x = 0 and 0.05.
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-1.27 O EXPERIMENT (AGARD-R-702, ZWAAN , Ref. 28 )
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Figure 8 . Baseline pressure distribution for NACA 64A006
airfoil: M_ = 0.85, o = 0 deg., Reynolds num-
ber of computation = 6.02 million and that of
experiment = 2.28 million.
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Figure 11b. Instantaneous pressure distributions during an airfoil-vortex unsteady interaction: Euler
solution, NACA 0012 airfoil, M = 0.8, a = 0.5 deg., Re = 5.78 mil/ft., T = 0.2 (CLV = 0.4),

X, = 6.0, Yo = -0.26 and Yy = Yo - (x - xo)tan a .
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Figure 13 continued.
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Figure 14 . Instantaneous pressure distributions during an airfoil-vortex unsteady interaction:
Euler and ATRANZ solutions, NACA 64A006 airfoil, M= 0.85, o = 0 deg., I = 0.2,
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Figure 16a . Instantaneous pressure distributions during an airfoil-vortex unsteady interaction: Thin-
layer Navier-Stokes solution, NACA 64A006 airfoil, M = 0.85, o = 0 deg., I = 0.2,

Yy = -0.26.
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Figure 16b. Instantaneous pressure distributions during an airfoil-vortex unsteady interaction: Euler
solution, MACA GAAQ06 airfoil, M, = 0.85, « = 0 deg., T = 0.2, Yy = -0.26.
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Figure 16c. Instantaneous pressure distributions during an airfoil-vortex unsteady interaction: ATRANZ
solution, NACA 64A006 airfoil, M_= 0.85, o = 0 deg., I = 0.2, Yy = -0.26.
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Figure 21. Euler results of the flowfield Mach number and pressure contours during an airfoil-vortex
unsteady interaction: NACA 64A006 Airfoil, M_=0.85, o =V deg., T = 0.4, X, = -1,
Yy T -0.26.
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Figure 23a. Instantaneous pressue distributions during an airfoil-vortex unsteady interaction:
Euler solution, NACA 64A006 airfoil, M = 0.85, « = 0 deg., I = 0.2, Xy = -9.5,

Y, = -0.26. Vortex is roving in a force free path.
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Navier-Stokes sclution: NACA 0012 airfoil, M_ = 0.714, o = 0 deg., vortex strength r = 0.31,
Vortex is convecting in a force free path.

and Yo = -0.4.
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Instantaneous pressure distributions during an airfoil-vortex unsteady interaction:
Thin-layer Navier-Stokes solution, NACA 0012 airfoil,
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Figure 27b. Instantaneous pressure distributions during an airfoil-vortex unsteady interaction:
Euler solution, NACA 0012 airfoil, M_= 0.30, a = 0 deg., T = 0.2, Yo =¥y T -0.26.
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Figure 28. Lift coefficient variation with instantaneous x-location
of the vortex for two grids using non-perturbation
approach: Euler solution, MACA 64A006 airfoil, M_= 0.85,
o = 0 deg., I = 0.2, and Yo = -0.26.
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Figure 29. Lift coefficient variation with instantaneous x-location
of the vortex for fine and coarse grids: FEuler solution,
NACA 64A006 airfoil, M_ = 0.35, o = 0 deg., r = 0.2, and
Yo © -0.26.
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