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SUMMARY

This report presents a numerical solution procedure to calculate the

interaction of a vortex with a two-dimensional airfoil in a uniform free

stream and results for several test cases. A Lamb-like analytically

prescribed vortex with a finite core, either fixed at one location in the

flowfield or convecting with the free stream, interacts with the flowfield

of an airfoil made up of NACA0012 or NACA64A006 profile in transonic or

subsonic free stream. Both Euler and thin-layer Navier-Stokes solutions

are computed using perturbation form of an implicit noniterative numerical

algorithm.

Euler and thin-layer Navier-Stokes solutions are compared with the

solutions from transonic small disturbance formulation (ATRAN2) and

experimental results where they are available. Most of the interactions

considered in this study are strong, in the sense that the vortex produced

significant and nonlinear distortions of the flowfield, but relatively

weak in the sense that they are within the scope of the transonic small

disturbance assumptions. For such interactions, the three methods gave

qualitatively similar results. For the stronger interactions considered,

in the sense of exceeding the small disturbance assumptions limit, Euler

and thin-layer Navier-Stokes solutions are computed.

Comparison of thin-layer Navier-Stokes solution with a test case of

recent Army Aeromechanics Laboratory experiments on a two-bladed heli-

coptor rotor shows a good agreement with the surface pressure distribution.

The location of the shock wave is predicted slightly downstream of the

experimental observation which implies that the time-lag effects of the

free stream velocity approaching the blade may be important and should be

V



considered in the analyses.

In general, the results show a tremendous influence of the interacting

vortex on the flowfield around the airfoil. This is particularly true when

the vortex is stationary. For a convecting vortex, the most dramatic

changes in the airfoil flowfield seem to occur when the vortex is within

one chord of the airfoil.
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LIST OF SYMBOLS

A,B = Jacobian matrices

a = vortex core radiuso

a = free stream sound speed

C = characteristic length scale, chord of the airfoil

CD = drag coefficient

CL = lift coefficient

CLV = lift equivalent vortex strength (=2r)
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E'Eo = flux vectors

e = total energy per unit volume

F, = flux vectorso
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j = transformation Jacobian
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Qv = velocity induced by the vortex, iu v + jv v

Q_ = free stream velocity
A

q = unknown flowfield vector

qo = Euler solution of vortex in a uniform free stream

Re = Reynolds number
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r = radial distance from the vortex center

ro = initial position of the vortex, ix ° + JYo
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U,V = contravariant velocity components
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u,v = velocity components in physical plane in x and y directions
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ve = tangential velocity

Xo,Yo = initial vortex location in the flowfield

Xv,Yv = instantaneous position of the vortex

x,y,t = physical plane coordinates

= angle of attack

= compressibility factor, (I - M) ½

F = strength of vortex (½CLv)

= ratio of specific heats

SE,SI = explicit and implicit smoothing coefficients

e = the angle which the vortex velocity vector makes with y-axis

K = coefficient of thermal conductivity

A = angle between vortex axis and rotor blade chord line

k = second coefficient of viscosity

= coefficient of viscosity

_,n,_ = transformed plane coordinates

_x,_y,.. = metrics of transformation

p = density

p_ = free stream density
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= disturbance potential

: angular velocity of the rotor

Subscripts

v = refers to vortex

= refers to free stream
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1. INTRODUCTION

The interaction of concentrated vortices with lifting surfaces is

encountered in many aerodynamic and fluid dynamic applications. Although

poorly understood, the interaction mechanism can have a significant

influence on the aerodynamics, aeroelasticity, and aeroacoustics of

maneuvering vehicles and especially so in the transonic flow regime. This

is because in transonic flow the shock wave position and strength are sen-

sitive to small changes in the flow parameters. Of particular interest,

in the present study, is the interaction encountered in a helicopter rotor

flowfield. The interaction of a trailing vortex wake in such a flowfield

with the oncoming rotor blades can induce unsteady blade loading and

aerodynamic noise. The blade tips, which trail strong and concentrated

tip vortices, trace out prolate cycloidal paths in space, leading to a

variety of possible blade-vortex interactions. The generic problem, shown

schematically in Fig. I, can be viewed as an unsteady, three-dimensional

close encounter of a curved-line vortex, at an arbitrary intersection

angle A, with a high aspect-ratio lifting surface that is executing

combined rotational and translational motion at transonic speeds. The

limiting cases of such encounter for A = 0° and 90o are illustrated in

Figs. 2a and 2b, respectively; the former encounter is essentially two-

dimensional but unsteady, whereas the latter can be considered as steady

but highly three-dimensional. For more discussion of these representations

and their aeroacoustic implications, the reader is referred to a recent

paper by George and Chang (Ref. I).

Under certain flight conditions, helicopter rotor produces an impul-

sive, highly directional noise at a regular frequency corresponding to the



blade passage frequency. At least two mechanisms are thought to be

responsible for this impulsive noise (also called the "blade-slap"), viz,

I) shock formation on the advancing side of the blade due to local

transonic flow, and 2) unsteady lift fluctuations on the blade due to

interaction of the tip vortex from the preceding blade. In order to shed

some light on the understanding of this second mechanism (corresponding

to the case of Fig. 2a), the present study prepares groundwork for a

future aeroacoustic and vibratory airloads computation capability by

making unsteady two-dimensional flowfield computations of a vortex inter-

action with a rotorcraft airfoil.

Current numerical algorithms to compute unsteady transonic vortical

flows of the helicopter rotor are frequently either inadequate or too

costly to use for routine design analysis of a large class of two- and

three-dimensional flowfields. Unsteady potential theory cannot be satis-

factorily used for such analyses unless major assumptions are made in

modeling the nonlinear vortex wake structure. Numerical algorithms based

on the Euler equations are suitable for any inviscid flowfield simulation

but cannot be applied to flows dominated by viscous effects, in which case

the only choice is to use she Navier-Stokes equations. But current numer-

ical algorithms for both Euler and Navier-Stokes equations used for unsteady

flow computations have large computer time and storage requirements.

The motivation for the present study is two fold. The first of these

is to apply a modified form of Euler and thin layer Navier-Stokes two-

dimensional codes for computing the rotational compressible flowfield of

the interaction of a vortex with a rotorcraft airfoil made up of either

NACA0012 or NACA64A006 profiles. The cases of interacting vortex fixed

-2-



in space in the flowfield as well as convecting past the airfoil will be

considered so as to better understand the flow phenomenon and to provide

benchmark solutions for checking out more approximate engineering predic-

tion techniques. The second objective is to further the methodology of

existing numerical procedures so that advanced simulations of full heli-

copter flowfields are possible when more powerful computers become

available.

With the above objectives in mind, an implicit finite difference

procedure for solving the unsteady, two-dimensional thin layer Navier-

Stokes equations in conservation-law form of Steger (Ref. 2) was modified

to implement the perturbation scheme of Buning and Steger (Ref. 3) to

resolve non-uniform incoming streams (vortex in the present study) without

having to specify far-field grid refinement. This was further modified

to include the quasi-steady (vortex fixed) and unsteady (vortex convecting)

vortex effects to compute the interaction flowfield in the region outside

the core of the vortex. Although the concentrated vortex is analytically

specified and preserved in this study, an actual experimental vortex can

easily be substituted in its place. (It should be mentioned that the code

has the provision to turn off viscosity and modify the boundary conditions

to make Euler calculations if and when needed.) The numerical results are

compared with the available experimental results (Ref. 4) and results from

transonic small disturbance formulation (Refs. 5,6).

In this report the numerical formulations are discussed in Section 2.

Results and discussion are presented in Section 3, and the concluding

remarks are given in Section 4.
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2. NUMERICALFORMULATIONS

2.1 Governing Equations

The governing partial differential equations are the unsteady, two-

dimensional, thin-layer Navier-Stokes equations (Ref. 2). These are

written in non-dimensional, strong conservation-law form for a perfect

gas using the generalized independent coordinate system of _, n, T

and in the perturbation form (Refo 3) as

(q - qo) + a_(E - Go) + _ (F - Fo) = Re-Z@S (1)T n n

where

pU
(_ = j-l (2)

is the flowfield vector we are solving for, qo is the solution of the

Euler equations

_)TCIo+ _[[0 + 8nFo = 0 (3)

and, in this particular case, representes the solution of a prescribed

vortex (either fixed in space or moving) in a uniform free stream. Also,

the flux vectors E, F, and S are given by

-4-



- pU - pV -

,, puU + _xp puV + nxP
E = j-1 , _ = j.--1 (4)

pvU + 5yp vV + nyP

(e + p)U - 5tp _(e + p)V -ntP -

0

_(nx2+ ny)Un + (_/3)nx(nxUn + nyVn)

_(nx + n2)Vyn + (_/3)ny(nxUn + nyVn)

2 + ny)_ a2 (5)= j-1 _Pr-1(_- l)-1(nx n

+ + 2+v2)/2

+ (_/3)(nxU + nyV)(nxU + nyVn)

where U and V are the contravariant velocities along the _ and n

directions given by

U : 5t + 5xu + _yV
(6)

V = nt + nxU + nyV

The metrics _t' _x' etc., are easily formed from the derivatives

of x_, x_, etc., using the relations

_x = JYn nx - JY_

_y = -Jx ny = Jx5 (7)n

_t = -x_5 x - yT_y nt = -x nx - y ny

-5-



and J is the transformation Jacobian given by

J = _xny - _ynx = I/(x_y n - x y_) (8)

The viscous flux vector S is written in the context of thin-layer

model (Ref. 2) and hence is valid for high-Reynolds number turbulent flows.

In the viscous stress terms of the flux vector S, the viscosity

+
coefficient _ is computed as the sum of _laminar _turbulent for

turbulent boundary layer. Sutherland's equation (Ref. 7) is used to

evaluate _laminar; the turbulent eddy viscosity, _turbulent' is computed

using a two-layer algebraic eddy viscosity model of Baldwin and Lomax

(Ref. 8).

The generalized coordinate system

= _(x,y,t)

n = n(x,y,t) (9)

T : T

allows the boundary surfaces in the physical plane to be mapped onto

rectangular surfaces in the transformed plane as shown in Fig. 3. More-

over, this simplifies the procedure of grid point clustering in regions

that experience rapid change in the flowfield gradients. This is

particularly important in the present problem because of the presence of

the interacting vortex and shock waves. Further, such a body fitted

coordinate system would also simplicty the application of boundary condi-

tion procedure.

-6-



The primitive variables of Eq. (1) are the density p, the mass

fluxes pu, pv in the two coordinate directions x and y and the total

energy per unit volume e. In Eq. (4) the pressure p is nondimen-

sionalized by yp_; density p by p_; veloci_ components u, v in

2 The chord of thex and y directions by a ; and the energy e by p a .

airfoil, C, is chosen as the reference length scale and is assumed equal

to uni_. The nondimensionalization also produces parameters such as

Reynolds number (Re) and Prandtl number (Pr). The second coefficient

of viscosi_ _ is assumed equal to -2/3_, after Stokes hypothesis.

The pressure, density, and velocity components are related to the

energy per unit volume by the equation of state which is written for a

perfect gas as

-- ( u2+V2 )

e 2 +p (i0)
y-1 2

2.2 Boundary and Initial Conditions

Although Eq. (1) is solved for the perturbation quantity (q - qo),

the boundary conditions are applied only to the solution variable _.

Go, which is the solution of Euler equations, is supposed to be known

as described below.

The boundary conditions used are applied explicitly. Figure 3 shows

a schematic of the solution domain. Along the outer boundary f-g-h, all

the flow quantities are specified by the solution of Eq.(3) and updated at

each time step. At the outflow boundaries e-f and a-h, a simple linear

extra-polation is used for p, pu, and pv. The total energy e is

obtained from Eq. (10) by holding the value of p equal to the free stream

-7-



value (the value corresponding to the Euler solution _o). To ensure

continuity across the wake cut a-b and d-e, the flow variables are

linearly extrapolated from both sides of the cut and then averaged to

obtain the values along the cut.

Along the body surface n(x,y,t) = O, the no-slip condition for

viscous flow without suction or injection is given by setting V _ 0

and U z O. The velocity components u and v are then calculated from

= z (11)
-nx _x

The pressure along the body surface is obtained from a normal momentum

relation given by

Pn(nx + ny2)Z/2 = Jp(_Tnt + u _ nx + v _ ny) (12)

where n is the direction normal to the body surface. This equation is

solved implicitly in _ for pressure at the body. The density at the air-

foil surface is obtained by extrapolation from the grid interior. Now

since the pressure and density are known at the surface, the total energy

is calculated from Eq. (10). The boundary conditions are of low order and

hence require that the grid lines be clustered and normal at the body

surface.

For the vortex interaction study any representation of practical

vortex can be chosen. Here, a Lamb-like analytical vortex (Refs. 9,10)

with a finite core is specified. The cylindrical velocity of such a vortex

-8-



is given for a compressible flow by

v°(r) - r (I - e-r2/ao) (13)a r

where vo is the cylindrical velocity and is a function of only the radial
^

distance r from the vortex center, r = r/2_a C is the dimensionless

vortex strengh, ao is the core radius. (For most of the computations

reported here ao is assumed equal to 0.05.) For this vortex in a uniform

free stream, the pressure field induced (by this vortex) is determined

using the radial momentumequation

dPv PvVo
- (14)dr r

in conjunction with the energy equation for constant enthalpy flow given by

Pv
+ ½ Q2 = Ht (15)- I Pv

where Q2 = u2 + v2 and Ht is the total enthalpy. Once the pressure is

known, density can be determined from Eq. (15). Having known the pressure

and density, the total energy ev for the vortex flow is given by

Pv
ev - + ½ pvQ2 (16)- 1

-9-



This completes the determination of the flow vector for vortex in a

uniform free stream and is given by

p

pu

Go = j-1 (17)
pv

e
-- -_ V

2.3 Grid Generation

Surface conforming grids, that is, grids in which one coordinate falls

on the body surface, are needed to simplify the application of the body

boundary condition procedure and improve the overall accuracy of the numer-

ical scheme. The grid generation process can be divided into several tasks:

a) development of accurate surface representation, b) distribution of

body surface points to yield a properly clustered, smoothly varying grid,

and c) generation of outer boundary and interior mesh. While several

methods of grid generation techniques are currently available, (for

example, elliptic solver (Ref. 11) and hyperbolic solver (Ref. 12)

that is suitable for the present application, based on past experience, is

an algebraic method developed at Ames Research Center. The method has been

discussed in detail by Pulliam et al (Ref. 13) and is based on the original

algebraic grid generation technique of Eiseman (Ref. 14); the reader is

referred to Pulliam et al (Ref. 13) for details. Briefly, the airfoil

coordinates are taken as input and are used to define the airfoil surface.

On the surface, grid points are distributed with clustering as desired,

say, for example at the nose, trailing edge, and at prescribed locations

-I0-



along the upper and lower surfaces of the airfoil to resolve shocks.

Coarse grid solutions can be used initially to determine the locations of

shock waves. The grid lines are also clustered in the normal direction

at the surface to resolve the boundary layer. This grid generation scheme

is quite fast and will generate a 161 x 52 grid, say, around a NACA0012

airfoil in less than i0 sec of CPUtime on a VAX 11/780.

Typical C-grids generated by this method are shown in Figs. 4 and 5a

for NACA0012 and NACA64A006 airfoils. The grids of Figs. 4a and 4b are

161 x 52 in size and are for viscous flow computations of NACA0012 air-

foil and extend 6 chord lengths in all directions. The spacing of first

node normal to the surface is 4 x i0 -s. The grid of Fig. 5a is for invis-

cid flow (Euler) computations of NACA64A006 airfoil and has dimensions

181 x 45. The grid extends 10 chord lengths upstream and in y-direction

and 6 chord lengths downstream of airfoil. The grid is clustered along

the body surface and in the radial direction as shown in the figure. The

spacing of the first node normal to the surface is 2 x 10-3 chord. The

grid of Fig. 5b, shown here for comparison, is used for ATRAN2computations

of NACA0012 airfoil. This is a 113 x 97 straight line grid extending 200

chord lengths in all directions with clustering at the leading and trailing

edges as shown. The ATRAN2grid used for the NACA64A006 airfoil has the

same spacing in the y-direction but has 186 points in the x-direction and

finer clustering near the leading edge because of its small leading edge

radius.

2.4 Numerical Alqorithm

The numerical algorithm used to solve the conservation-law form of the

thin-layer Navier-Stokes equations is based on a class of completely implicit
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noniterative, ADI schemes developed by Lindemuth and Killeen (Ref. 15),

Briley and McDonald (Ref. 16,17), and Beamand Warming (Ref. 18,19). The

procedure is a generalization of conservative, approximate factorization

scheme in the "delta" form. The procedure has been successfully applied,

for example, by Steger and Kutler (Ref. 20), Kutler, Chaussee, and Pulliam

(Ref. 21), and Srinivasan, Chyu, and Steger (Ref. 22) for inviscid flows

and by Steger (Ref. 2), Pulliam and Steger (Ref. 23), and Srinivasan,

McCroskey, and Kutler (Ref. 6) for viscous flows. Use of the implicit

procedure helps remove the stiffness of the problem introduced by the fine

mesh.

As applied to Eq. (1) the implicit, spatially factored algorithm

using Euler implicit time differencing takes the form

(I + ha_Rn _ _iJ-_v_Asj)

x (I + h_B n + hanMn - ciJ-_v a J)(n_n - A )n n (18)

: _ + _ _Re-1

-CEJ-I[(V_A_)2 + (VnAn)2]a(_ n - q_)

^ ^

where A, B, and M are the Jacobian matrices A :  El q, B=  Fl q,

= _S/_q and I is the identity matrix. _' _n are the spatial central

difference operators, A and v are forward and backward difference

operators, e.g., A_q = q(_ + A_,n) - q(_,n) and for convenience

A_ = I = An is assumed. Indices denoting spatial location have been

suppressed. The time index is denoted by h, t = (n At) and corresponds

to Euler implict time differencing where At corresponds to the

marching step size (in time) and _n = _(n At), _n = (_n+l _ _n).
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€I and _E are the implicit and explicit smoothing coefficients. In

writing Eq. (18), it is assumed that Ao _ _ and Bo _ _ where

Ao = _Eo/_qo and Bo = _Fo/_qo"

Fourth-order dissipation terms such as CEJ-I(v_A_)2J( _ - 4o) in

Eq. (18) are added explicitly and these help to control possible numerical

instabilities. The addition of the implicit second order difference terms,

with coefficient _I' operating on (A_n - A_) extends the linear sta-

bility bound of the fourth-order terms (Ref. 23).

Central differencing is used throughout the solution domain, except

in regions of supersonic flow before a shock wave where upwind differencing

is used. The use of upwinding for shocks is widespread in transonic

potential calculations. Upwind differencing before shocks has a stabilizing

effect and improves the accuracy of the calculations.

Also, the metrics of Eq. (7) are not known analytically and therefore

are to be determined numerically. To accomplish this, second-order central

difference formulae are used at interior points and three-point one-sided

formulae are used at the boundaries.

2.5 Transonic Small Disturbance Formulation

Since the present numerical results of Euler and thin-layer Navier-

Stokes equations are compared with the results from transonic small distur-

bance equations, it is appropriate to describe briefly the formulation of

this numerical procedure. The particular version of the code used is due

to McCroskey and Goorjian (Ref. 5) and is called ATRAN2code. ATRAN2code

is a modification of Ballhaus and Goorjian's LTRAN2code (Ref. 24) to in-

clude the high frequency term Ctt and concentrated or distributed rota-

tional disturbances in the flowfield.
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The unsteady transonic small-disturbance equation is based on the

assumption of irrotational flow, which allows the velocity field Q to be

expressed in terms of a potential. The vortex is introduced as a pre-

scribed perturbation that is itself a solution to the Euler equation. Then

the equation for the disturbance potential due to the airfoil itself

becomes (Ref. 5)

A@tt + B@xt = C _xx + C2(@x + Uv)x + @yy (19)

where

A = Mz
2

B = 2M
2

C = I-M

c - +I)M2

Q : q_ + v, + Qv

It is important to note that Eq. (19) is nonlinear and independent solutions

are not superposable, but that the velocity field can still be split into

three parts: 1) the (uniform) free stream, 2) a prescribed vortical

disturbance, Qv' etc., and 3) the unknown disturbance portential v@.

The usual small disturbance boundary conditions are flow tangency

on the body, no disturbances at x . -_ and y . ±_, and Cp 0 at

x . +_. The new small-disturbance boundary condition on the body

Yb = F(x,t) (where Yb = F(x,t) defines the airfoil surface), becomes
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_/:,_ + dYb __
= Q_ dx JVv (2O)

y=O

The wake behind the airfoil is represented by a branch cut through
.

which vorticity convects at Q_ from the airfoil to the downstream boun-

dary. Across this branch cut the pressure is continuous; this condition

is expressed as follows:

(r x + rt)wake = 0 (21)

Equation (19) and its corresponding small-disturbance boundary condi-

tions are solved by the Ames code ATRAN2(Ref. 5), which uses the basic

time-accurate, implicit numerical algorithm of LTRAN2(Ref. 24). Further

details of this code are described in Ref. 5.

2.6 Transonic Small-Disturbance Calculations in the Leading-Edge Region

The small-disturbance approximation has a well-known deficiency in the

leading-edge region of airfoils, where neither the disturbance velocity &@

nor the usual airfoil boundary condition, Eq. (20) is small enough to

satisfy the basic premise of the theory (Ref. 25). The resultant loss of

accuracy is often tolerable in other applications, but in the present

vortex-interaction cases it poses a dilemma in interpreting the results for

airfoils with small leading-edge radii. For example, NACA64A006 airfoil,

with the leading edge radius r_/C _ 0.0025, exhibits a rapid expansion

and suction peak very near the leading edge for small angles of attack or

other vertical velocity perturbations. Accordingly, the small-disturbance

results presented in Refs. 1 and 5 showed strong vortex-induced leading-
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edge suction peaks to form and collapse rapidly on the lower surface

(vortex side) of this airfoil. If real, this phenomenonwould seem to be

a candidate source of acoustic radiation, such as the intense impulsive

noise in helicopter aeroacoustics known as "blade-slap". Therefore,

special attention was given to this point in comparing the small-disturbance

and Euler results.

Two important facts quickly emerged in the comparison of numerical

results. First, the Euler solutions showed much smaller magnitudes of the

leading-edge pressure fluctuations, as will be seen. Secondly, as reported

elsewhere (Ref. 25), the small-disturbance results were found to depend

upon the computational grid spacing in the leading-edge region; in the

present case, upon the maximumvalue of dYb/dX at the grid point nearest

the leading edge and on its variation at neighboring grid points. This

unsatifactory state of affairs is illustrated in Fig. 6a.

Keyfitz et al (Ref. 25) concluded that the errors in the small-

disturbance results are due to the inherent approximations, and not to

truncation errors. However, an improvement in the method can be obtained

by introducing a simple correction in Eq. (20); namely, by replacing Q_

by an analytical approximation to the local velocity u near the leading

edge. This is done in the spirit of a thin-airfoil blunt leading-edge

correction, e.g., Van Dyke (Ref. 26), who derived a uniformly valid second-

order solution for the subsonic flow near parabolic leading edges. An

excellent eapproximation to Van Dyke's surface-speed distribution function

Q is

_-x xQ(x,r_,M ) _ Q_ + r_/2B (22)
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where B2 = 1 -M2. Equation (22) reproduces Van Dyke's theory exactly

for incompressible flow. For compressible flow, Eq. (22) can be inter-

preted as effectively increasing the leading-edge bluntness in proportion

to 1/8. It may be mentioned in passing that this compressibility cor-

rection bears a superficial resemblance to the classical similarity rules

of linearized thin-airfoil theory (Ref. 27). However, those rules are

derived using the small-disturbance boundary condition, Eq. (20), and are

therefore questionable with regard to the details of the flow in the

leading-edge region for thin airfoils.

Figure 6, which is reproduced from Ref. 6, demonstrates the effect

of modifying the surface-speed distribution function Q in the body boun-

dary condition procedure near the leading edge region for thin airfoils.

This treatment renders the transonic small-disturbance solutions almost,

but not completely, independent of the grid spacing. It also brings them

into much better agreement with the Euler solutions for the NACA64A006

airfoil. Accordingly, the results presented in this report were obtained

using this treatment.
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3. RESULTSANDDISCUSSION

A two-dimensional approximation of helicopter blade-tip vortex

encounter in forward flight with the following blade is obtained by

simulating the interaction of a concentrated vortex with a stationary

rotorcraft airfoil, as indicated in Fig. 2a. A vortex with a finite core

and a Lamb-like analytical velocity distribution is considered to interact

with the flowfields of NACA0012 and NACA64A006 airfoils. The cases of

an interacting vortex fixed in space in the flowfield (quasi-steady) as

well as that convecting with the flow (unsteady) are considered. Viscous

as well as inviscid flowfield computations are performed. The results

are compared with ATRAN2solutions for the cases which are well within

the scope of transonic small disturbance assumptions.

The numerical algorithm used for the viscous interacting flowfield is

given by Eq. (18). This is a perturbed form of the standard algorithm
^

where the disturbance or non-uniformity, qo" is supposed to be known.

In the present study qo is the solution of Euler equations that

represents a vortex moving in a uniform flow. With the algorithm

(Eq. 18), the boundary conditions are applied to the solution

variable q instead of the perturbation quantity (_ - _o). The advantage

of this perturbation scheme is that it enables one to maintain accuracy

even in the coarse-grid outer flow. Near the body, however, the grid

is fine enough to resolve both the non-uniform stream (qo) and the

deviation from it (q - qo). This approach was first suggested and

successfully used by Buning and Steger (Ref. 3) to calculate an inviscid

shear flow past a cylinder.
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3.1 Baseline Solutions

Baseline solutions represent the steady state solution of stationary

airfoils in a uniform free stream. The airfoils considered are NACA0012

and NACA64A006 with a variety of flowfield conditions. For the thin-

layer Navier-Stokes solution, a nominal value of Reynolds number, based

on the chord of the airfoil and free stream velocity, of 6 million is

used. Turbulent boundary layer flow is assumed for the entire airfoil.

The baseline Navier-Stokes solution is computed by setting 4o _ 0

in the algorithm, Eq. (18). In this case the numerical algorithm reduces

to the standard (non-perturbed) form of Steger (Ref. 2). The baseline

Euler solution is generated by turning-off viscous terms and setting

_ 0 in Eq. (18) and in addition making suitable changes to accomodate

surface boundary conditions. The steady state solution so obtained for

the NACA0012 airfoil at _ = 0.5 deg in a uniform flow of M = 0.8 is

shown in Fig. 7 for the three methods in the form of plots of coefficients

of pressure (Cp). The agreement between the Navier-Stokes and Euler

solutions is good, indicating that the viscous effects are relatively small

for this case. However, ATRAN2solution predicts the lower surface shock

wave to be weaker and to occur upstream of that predicted by the Navier-

Stokes and Euler codes. This is due in part to the leading-edge correction

which was found to be too large for this airfoil, and in part to the

limitation of the small-disturbance approximation. Nevertheless, all three

methods give solutions which have good qualitative agreement. Figure 8

shows a similar baseline steady state solution for NACA64A006 airfoil in

a uniform free stream of M = 0.85 at at _ = 0 degrees. Also shown here

are the experimental results from Zwaan (Ref. 28). The agreement is very

good.
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3.2 Vortex Interaction Configurations

Figure 9 shows a schematic of two configurations considered in this

study. In Fig. 9a, the interacting vortex is fixed at one location in the

flowfield and its influence on the airfoil flowfield is computed. For the

second configuration shown in Fig. 9b, two cases are considered: 1) the

vortex convecting in a prescribed path a freestream velocity, 2) the

vortex convecting in a force free path at local fluid velocity.

3.2.1. Interaction of a Vortex with NACA0012 Airfoil

(a) Vortex Fixed in Space. An analytical vortex, whose center is

located at a point (Xo,Yo) in the flowfield, as shown in Fig. 9a, is made

to interact with the airfoil flowfield. For Lamb-like vortex with a finite

core and fixed in the flowfield, the cylindrical velocity distribution is

given in the small-disturbance limit for a compressible flow by

^ 2 2

vo(r) _ r B (I - e-r /ao) (23)
a r cos2 8 + B2 sin e

The velocity field from Eq. (23) and pressure field from Eq. (14) of

the vortex are introduced into the airfoil flowfield through the vector qo

in Eq. (18) and the resulting flowfield is computed. Figure 10 shows

steady state pressure distributions in the form of Cp plots for this

interaction computed from three methods for a vortex located at xo = 0.5,

Yo = -i and of strength r = O.065(CLv = 0.13). Comparison of pressure

distributions of Fig. I0 with the baseline solutions, Fig. 7, shows the

dramatic influence of the vortex on the airfoil flowfield. Since the vor-

tex induces spacially varying downwash downstream and upwash upstream
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of its location and also positive streamwise velocity above and negative

stream velocity below its location (because of the sense of its rotation,

see Fig. 9), its influence on the airfoil flowfield is determined by where

it is located with respect to airfoil. The shock wave on the lower surface

has moved downstream with all three methods of computation, ATRAN2showing

a much larger influence than the other two methods. Evidently the small

disturbance, irrotational approximation to Euler equations introduces errors

in the solution.

Figure I0 also lists the coefficients of lift and drag values. Com-

parison of these numbers with the baseline values shows the extent of the

vortex influence on the flowfield of the airfoil. For example, the lift

and drag coefficients for the baseline viscous case are respectively

0.09928 and 0.001173; with the vortex interaction these values change to

CL = 0.05757 and CD = 0.01457.

(b) Vortex Convecting with the Flow. So far, the results of vortex

interaction with an airfoil were presented where the vortex was fixed at

one location in the flowfield. In this section, the vortex is made to con-

vect with free stream velocity Q_ as shown in Fig. 9b and allowed to

interact with the flowfield around the airfoil. This case approximately

simulates a practical flow situation on a helicopter blade in contrast to

the fixed vortex case.

For a moving vortex in compressible flow, the cylindrical velocity

distribution is given by Eq. (13). The velocity from this and the pressure

field from Eq. (14), induced by the vortex, are introduced through the

vector qo in Eq. (18) as done for fixed vortex case before.

To compute the interaction flowfield, the vortex is initially posi-

tioned at, say, the upstream grid boundary or any suitable upstream
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location (Xo,Yo) of the airfoil and then made to convect with the flow

at the free stream velocity and along a straight line aligned with the

free stream. Typical resulting unsteady solution of such an interaction

for the case of vortex of strength F = O.2(CLv= 0.4) initially located

at xo = -6.0 and Yo = -0.26 is presented in the form of Cp plots in

Figs. lla and 11c at several stages of vortex passage across the airfoil.

The pressure distribution (Cp) presented in Fig. 11 generally typifies

the history of interaction of the airfoil flowfield as the vortex passes

by. The three methods of computations used here give results which are in

qualitative agreement.

Examination of the pressure distributions of Fig. 11 shows the

expected initial development of the pressure difference from the baseline

case to resemble the case of increasing negative angle of attack (downwash

influence) as the vortex is approaching the airfoil. This influence

changes to that of a positive angle of attack (upwash) as the vortex

passes behind the airfoil. Although the initial influence of the

approaching vortex is felt by the airfoil when the vortex is only a few

chords upstream of it, its influence decays very slowly even when the vor-

tex has passed many chords downstream of it, and the return of the flow

around the airfoil to the original state is an extremely slow process.

This is also evident from the plot of the variation of the lift and moment

coefficients as a function of the instantaneous vortex position as shown

in Fig. 12. This contrasts with incompressible behavior (results presented

later) where the influence of the vortex is felt approximately equally far

upstream and downstream of the airfoil. Such a behavior in incompressible

flow has also been observed by Parthsarathy (Ref. 29).
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Comparison of pressure distributions for vortex-fixed and -moving

cases shows that the unsteadiness greatly attenuates the influence of the

vortex on the flowfield around the airfoil, as shown in Fig. 13. The lift

and drag coefficients for this example are CL = -0.06332 and CD = 0.02186

for the unsteady case and CL = -0.30152 and CD = 0.04578 for the quasi-

steady case. The aerodynamic force coefficients for the quasi-steady case,

thus, are significantly higher than the values for the unsteady case. The

pressure distributions shown in Fig. 13a for the unsteady and quasi-steady

(vortex fixed) case are for the same vortex location with respect to air-

foil in the flowfield, viz, xo = xv = 0 (leading edge) and Yo = Yv = -0.26.

The corresponding flow pictures in terms of Mach number and pressure con-

tours are delineated in Figs. 13b - 13c. The Mach number and pressure con-

tours show the difference in quasi-steady and unsteady flowfields of such

interaction. It is interesting to note that for the quasi-steady inter-

action of this vortex, vortex induced separation of the boundary layer was

observed on the lower surface (vortex side) of the airfoil. But no

separation was observed for the unsteady interaction of the same vortex.

3.2.2 Interaction of a Vortex with NACA64A006 Airfoil

The use of this airfoil has special significance because of the numer-

ous numerical and experimental studies done with it. It is thinner than

the NACA0012 section and has significantly smaller leading-edge radius,

so it will serve as a test case to check the applicability of the Tran-

sonic Small Disturbance equations particularly near the leading edge in

the presence of vortex-induced downwash against Euler and Navier-Stokes

equations which are exact.

Four test cases are computed for this airfoil interacting with a
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moving vortex for the following conditions:

= 0oCase 1: M = 0.85, _ , F = 0.2,

xo -9.5, Yo Yv -0.52

Case 2: M = 0.85, _ = 0° r = 0.2,

xo = -9.5, Yo = Yv = -0.26

Case 3: M = 0.85, _ = 0°, r = 0.4,

xo = -9.5, Yo = Yv = -0.26

Case 4: M = 0.85, _ = 0°, r = 0.2,

xo = -9.5, Yo = -0.26

In the first three cases listed above, the interacting vortex convects in

a prescribed path at a constant yv (: yo ) with free stream velocity. In

Case 4, the vortex convects in a force free path (variable yv ) with the

local fluid velocity.

a) Vortex Convecting in a Prescribed Path

Figures 14 - 21 summarize the results of these test cases. In all

these cases, the airfoil incidence is zero and the dramatic difference in

Cp distribution between the upper and lower surfaces is due solely to the

vortex interaction. As before, the influence of the vortex is felt more

on the lower surface of the airfoil than the upper surface, a result of

nonlinear effects; linear small-disturbance calculations (Ref. 5) showed

the effects of the vortex to be equal and opposite on the upper and lower
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surface of the airfoil.

Figure 14 shows Cp plots for the Case 1 where the vortex of strength

r = 0.2 is initially located at xo = -9.5 and Yo = -0.52. As seen,

Euler and ATRAN2codes predict pressure fields which are in qualitative

agreement. As before, the influence of the vortex on the airfoil flowfield

begins for vortex position upstream and continues even when the vortex has

moved far downstream of the airfoil. However, the most rapid and dramatic

changes occur when the vortex is between one chord length upstream of the

leading edge of the airfoil and the trailing edge. From the Cp plots

presented in Fig. 14 for the vortex location at the leading edge and down-

stream of this, it can be seen that both Euler and ATRAN2solutions show

large similarities at all x-stations; even the shock waves on upper and

lower surfaces are quite sharp for the two solutions. Figure 15 shows lift

and pitching-moment variations for the airfoil as the vortex gets convected

across as a function of the instantaneous vortex position. Note that both

CL and CM are initially zero and change continuously as the vortex moves

across it.

Figures 16 and 17 show a similar comparison of C plots for Case 2P

where the vortex of strength r = 0.2 was initially located at the same

x-location of xo = -9.5 but closer to the airfoil at Yo = -0.26 to pro-

duce a stronger interaction. For this particular set of conditions, the

interaction is quite severe in terms of the small disturbance approximation.

The ATRAN2numerical solution seems to be marginally stable, for these flow

conditions, depending on the fineness of the grid geometry and on the size

of the time step At.

The instantaneous pressure distributions on the airfoil are shown for
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this case at eight x-stations of vortex position in Figs. 16a - 16b

for the thin-layer Navier-Stokes and Euler methods of computations and

are compared with the ATRAN2solution shown in Fig. 16c. The baseline

pressure distribution for each of the methods is shown at the first xv

station of xv = -9.5, where the vortex is initialized. As before, the

dramatic changes occur when the vortex is within one chord from the airfoil

leading edge. Before the modification of the surface boundary condition in

the leading edge region, the ATRAN2code predicted a rapid development of a

sharp suction peak followed by a rapid compression-like wave in the leading

edge region. However, with the modified boundary condition the magnitude

of the peak was dramatically reduced as pointed out in Section 2.6. With

this modification for ATRAN2code, all the three methods predict results

which are in good qualitative agreement. Even the gross aerodynamic quan-

tities are in very good agreement for the three methods as seen in Fig. 17

where the lift and pitching moment coefficients are shown as a function of

the instantaneous vortex position for this interaction.

Figure 18 shows a similar type of pressure distribution plots as

Fig. 16 but for Case 3 where the vortex is located initially at the same

(Xo,Yo) location as Case 2 but doubled in its strength. The rest

of the conditions are identical to that of Case 2. No ATRAN2results were

obtained for this case as these conditions are quite severe and exceed the

limits of small-disturbance approximation.

Instantaneous pressure distributions are presented for this case in

Fig. 18 for the interaction history from thin-layer Navier-Stokes and Euler

computations at eight x-stations of vortex location. As before, the trend

of events is similar to that shown in Figs. 14 and 16. The sharp suction
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peak of the pressure distributions at the leading edge, mentioned before,

is the most noteworthy event occurring for the vortex location within one

chord from the airfoil leading edge (e.g., x = -0.5). It appears that as

the interaction gets stronger, by either increased vortex strength or by

closer encounter of the vortex, not only does the size of the suction peak

increases but occurs earlier, i.e., even when the approaching vortex is

well upstream of the leading edge of the airfoil. Using the transonic

small disturbance code without leading edge correction for the surface boun-

dary condition, both George and Chang (Ref. I) and McCroskey and Goorjian

(Ref. 5) in independent investigations have observed this kind of leading

edge behavior even for weaker vortex strengths, such as Cases 1 and 2, and

they concluded that this is possibly responsible for a "blade-slap"-like

acoustic wave propagation. In contrast, as shown by the results presented

here, the thin-layer Navier-Stokes and Euler codes predict this kind of

leading edge effect only for stronger interactions.

Figure 19 shows the lift and pitching-moment coefficient plots as a

function of vortex location for this interaction. As mentioned earlier,

this interaction is quite strong and produced thickening of the wall boun-

dary layer in the vicinity of shock wave. This is an early warning for

eventual flow separation.

The description of the flowfield during the unsteady interaction pro-

cess is delineated in Figs. 20 - 22 in the form of Mach number and pressure

contour plots. The effect of doubling the vortex strength is shown in

Figs. 20 - 21. Figures 20a and 20b show contour plots for Case 2 (r = 0.2)

when the vortex location is one chord upstream of the leading edge of the

airfoil. Figures 21a and 21b are for Case 3 (r = 0.4) and at the same
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instantaneous vortex location. The initial shock wave position and its

movement due to doubling the vortex strength are apparent from these plots.

Figures 22a and 22b are for Case 3 (F = 0.4) when the vortex is at

xv = 0.2 (right below the airfoil). Comparison of these figures with

Figs. 21a and 21b shows a tremendous movement of the lower surface shock

wave and modification of the leading edge flow as the vortex passes by.

The Mach contour upper limit is fixed at 1.2 in these plots and this

enables visualizing the progressive decrease of lower surface pressure on

the airfoil as is evident from the corresponding increase of the local

Mach number of the flowfield.

b) Vortex Convecting in a Force Free Path

Here the interacting vortex is convected in a force free path.

As before, the vortex is initialized at an upstream location and made to

convect with the flow. By doing so, not only does the vortex convect at

the local fluid velocity but preferably follows a streak line. Figure 23a

presents plots of instantaneous surface pressure distribution for such an

interaction (Case 4) computed from Euler method. ATRAN2results for the

same cases are presented in Fig. 23b for comparison. The two methods pre-

dict qualitatively similar pressure distributions at least until the vortex

reaches the trailing edge of the airfoil. From there on downstream of the

airfoil, ATRAN2results are in disagreement even qualitatively with the

Euler results. It is not surprising since the transonic small disturbance

formulation prescribes a wake unlike the Euler and thin-layer Navier-Stokes

methods where the wake is captured and is a part of the overall solution

process. This disparity in the prediction techniques is also apparent in

the plots of lift, pitching moment coefficients and the Yv-travel of the
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vortex as shown in Fig. 24. A comparison of Figs. 16 - 17 with Figs. 23 -

24 gives an idea of the effective change in the flowfields when the vortex

is simply let free to move instead of forcing it to move in a prescribed

path.

3.3 Vortex Interaction in Subcritical and Subsonic Flow

This Section presents results of computations of thin-layer Navier-

Stokes Code for subcritical and subsonic free stream conditions of

NACA0012 airfoil. Two free stream conditions of M = 0.714, _ = 0 deg.,

and M = 0.3, _ = 0 deg. are considered. The condition of M = 0.714

corresponds to a case where some experimental results are available to

validate the present computational procedure.

Figures 25 - 26 show plots of instantaneous surface pressure distri-

butions at different x-locations of the vortex computed from thin-layer

Navier-Stokes code. These are compared with the results from a recent

Army Aeromechanics Laboratory experiment of Caradonna et al (Ref. 4). The

experiments were done on a two-bladed helicopter rotor.

The computations did not include any time lag effects of the blade

flows, that is, the time-dependent "free stream" velocity approaching the

blade, nor any three-dimensional effects. Considering this, the agreement

between computations and experiment is good. The experiments indicate the

position of the shock wave to be upstream of that predicted by the compu-

tations. This suggests that the time-lag effects may be important and

should be considered in the analysis. But for the comparisons shown here,

the agreement between experiment and computations for the vortex side of

the airfoil surface (lower surface in the Figures) is very good except for

the location of the shock wave, considering the difficulty of making measure-
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ments in the unsteady flows. The reason for not so good agreement on the

non-vortex side of the airfoil surface is not clear at present. It should

be mentioned here that the experimental rotor model had pressure taps on

only one side and the model was simply inverted to get the pressure field

measurements on the second surface in an almost identical second experi-

ment. Another point to consider is that, for the free stream Mach number

of M = 0.714, the flow is completely subcritical in the absence of a

vortex. Therefore, the shock wave formation arises from the influence of

the interacting vortex field.

Figures 27a - 27b show pressure distributions from thin-layer Navier-

Stokes and Euler codes for various x-locations of vortex and for purely

subsonic flow conditions of M = 0.3 and _ = 0 degrees. The other

flow parameters are delineated in the figures. In general, Euler and

Navier-Stokes solutions give qualitatively similar pressure distributions.

The pressure distributions at this subsonic conditions compared to

transonic conditions of Fig. 11, show as before that the significant

influence of vortex occurs when the approaching vortex is within on chord

of the leading edge of the airfoil and its influence starts fading away

even before the vortex reaches the trailing edge and the history does not

persist long unlike in a transonic flow. By the time the vortex has moved

3 - 4 chords downstream of the trailing edge, the flowfield on the airfoil

looks like it has reverted back to a no-vortex situation. This is apparent

from the time-history plots of C distribution in Figs. 27a - 27b.P

3.4 Preservation of Vortex by Perturbation Scheme

One of the important features of this vortex interaction problem is
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to resolve and preserve the vortex as it gets convected in the flowfield.

Earlier studies (Ref. I0) dealing with such flows were not efficient as

the convecting vortex got smeared-off in the coarse grid regions and by

the time the vortex actually reached the airfoil, its peak pressure and

velocity distribution was totally destroyed. To demonstrate this

deficiency, Euler calculations were made using both the previous non-

perturbation appraoch as well as the present perturbation approach. The

results are shown in Figs. 28 - 29 in the form of plots of vortex induced

lift coefficient as a function of instantaneous vortex position as the

vortex moves across the airfoil. All the flow conditions are identical

for the two methods including the grid geometries.

As seen in Fig. 28, as the grid gets finer, the solution accuracy

improves for the non-perturbation approach. In contrast, the present

perturbation approach demonstrates in Fig. 29 that it is possible to

resolve and preserve the vortex even with a coarse grid.
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4. CONCLUDINGREMARKS

A perturbation form of an implicit numerical algorithm for thin-layer

Navier-Stokes and Euler equations was used to compute two-dimensional

interaction of vortex with airfoil in transonic and subsonic flows. The

NACA0012 and NACA64A006 profiles were selected for the airfoil shape.

The interacting vortex, having a Lamb-like velocity distribution, was

introduced as a perturbation of the mean flow into the governing equations.

The equations were then solved for the interacting flowfield. The required

computational grids were generated by an algebraic grid generation scheme.

The thin-layer Navier-Stokes and Euler solutions are compared with solution

from ATRAN2code and some experimental results where available.

Most of the interactions considered in this paper are strong, in the

sense that the vortex produced significant and nonlinear distortions of the

flowfield, but relatively weak in the sense that they are within the scope

of the transonic small disturbance assumptions. For such cases, whether

the vortex was stationary or moving, the three computational methods gave

qualitatively similar results. The close agreement of the thin-layer

Navier-Stokes and Euler results indicates that viscous effects are negligi-

ble for these interactions. In general, ATRAN2results are in good agree-

ment with the results from the other two methods, although needing a

special leading edge treatment for thin airfoils; without this treatment,

ATRAN2results overpredicted the interaction effects in the leading edge

region. In this sense, previous studies (Refs. 1,5) of such interactions

using the transonic small disturbance method are in error.

For the stronger interactions considered in this paper, strong in the

sense of exceeding the small disturbance limit, the Euler and Navier-Stokes
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solutions showed a sharp suction peak in the pressure distributions in the

leading edge region followed by a rapid compression-like wave when the

interacting vortex was approximately within one chord upstream of the

leading edge of the NACA64A006 airfoil.

Comparison of thin-layer Navier-Stokes solutions with the experimental

results of a two-bladed helicopter rotor shows good agreement, but it

suggests that the time-lag effects of the free stream velocity approaching

the blade are important and should be considered in order to interpret the

experimental data properly. In subsonic incompressible flows, the inter-

acting vortex influence dies out faster compared to transonic flow condi-

tions as the vortex passes behind the airfoil.

In all the cases considered here, the results show a tremendous

influence of the vortex on the flowfield around the airfoil. This is

particularly true when the vortex is stationary. For a convecting vor-

tex, the most dramatic changes in the airfoil flowfield seem to occur

when the vortex is within one chord of the airfoil.

Typical run times for these computational methods on the NASAAmes

Research Center CRAYX-MP Computer, expressed as CPUtime per time step

per grid node, were as follows: thin-layer Navier-Stokes = 2.1 x 10-4

sec, Euler = 1.8 x 10-4 sec, and Transonic Small Disturbance = 1.0 xlO -s

sec. Thus the small disturbance code runs approximately 20 times faster

than the Euler and thin-layer Navier-Stokes codes. However, the latter

were found to be more accurate and robust with important consequences for

the stronger interaction cases considered here.
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Figure 25 • Instantaneous chordwise pressure distribution as a function of the vortex position. Thin-
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= 0.31, and Yo = -0.4. Vortex is convecting in a=force free path.
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