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FINAL REPORT ON PHASE 1 OF NASA CONTRACT NASI-17571

"TECHNOLOGY FOR PRESSURE-INSTRUMENTED THIN AIRFOIL MODELS"

PROJECT SU_IARY

The objective of Phase 1 of this research was to identify, then
select and evaluate, the most appropriate combination of materials and

fabrication techniques required to produce a Pressure Instrumented Thin

Airfoil model for testing in a Cryogenic wind Tunnel ( PITACT ). Particular

attention was to be given to proving the feasability and reliability of each
sub-stage and ensuring that they could be combined together without

compromising the quality of the resultant segment or model. In order to

provide a sharp focus for this research, experimental samples were to be

fabricated as if they were trailing edge segments of a 6% thick supercritical

airfoil, number 0631X7, scaled to a 325mm (13in.) chord, the maximum likely to
be tested in the 13in. x 13in. adaptive wall test section of the 0.3m

Transonic Cryogenic Tunnel at NASA Langley Research Center.

The majority of these objectives were achieved in Phase I.

Specifically it was shown that;

-EDM (Electro-Discharge-Machining) by the wire-cut process was a cost-

effective technique for cutting profiled bond planes and airfoil contours in

300 series stainless and 18 nickel 200 grade maraging steels.

-Chemical millingwas a highly cost-effective technique for creating a
complex network of channels in the surfaces of plates of these two metals.

Initial samples were flat plates, but subsequently it proved possible to
create matched pairs of channels on both the concave and convex surfaces of
profiled bond planes.

-Orifices of high definition have been produced by the technique

of pre-drilling blind holes from the ends of the chemically-milled
channels, such that they subsequently outcrop in the airfoil surface
when its profile is EDM wire-cut.

-Vacuum brazing has been used to join together the plates with the

channels and orifice holes pre-formed into their surfaces. Well bonded plates

with unblocked channels were achieved in small samples with flat bond planes,
but fixturing problems with samples having profiled bond planes caused cross-

leaks between channels. For small samples these problems are readily soluble,

but for larger plates warpage, caused by the relief of residual stresses, is
more serious.

-Grain growth in 18 nickel 200 grade maraging steels occurs at brazing
temperatures above IO00C (1830F). Good bonds have been made with this material

using a nickel-palladium-silicon alloy, Metglas MBF 1005.

-Joints between trailing edge segments and the main airfoil have been

investigated using a comb and docking port configuration.

Potential commercial applications of this research will occur

initially in the construction of highly instrumented airfoil models for use in

cryogenic and conventional wind tunnels. The opportunity for quality control
at intermediate stages of fabrication should make it a cost-effective

technique. It is also probable that some, or all, of these technologies would
be usable in other applications requiring accurately formed channel networks.



FINAL REPORT ON PHASE I OF NASA CONTRACT NASI-17571

"TECHNOLOGY FOR PRESSURE-INSTRUMENTED THIN AIRFOIL MODELS"

INTRODUCTION

Optimizationof the choiceof materialand fabricationtechniques
for constructionof models for cryogenicwind tunnelssuch as the U.S.
NationalTransonicFacilityand the NASA 0.3-m TransonicCryogenicTunnelhas
presenteddesignerswith an almost insuperableproblem.Many of the
propertiesrequiredare near the limitsattainablewith state-of-the-art
technology,and in many cases improvementsin one directionseem inevitablyto
be accompaniedby losses in others.For example,the materialhas to have a
yield stresshigh enoughto carry the imposedaerodynamicloadings,yet be
tough enough to operate safelyat cryogenictemperatures.

The need for adequate strength and toughness for safe operation at

cryogenic temperatures severely limits the range of materials available for

model construction. In order to meet the minimum acceptable toughness

requirements, many high-strength materials have to be heat-treated to a lower

strength condition and this can lead to dimensional instability, either as a

result of the formation of an unstable metallurgical structure, or due to the

stresses induced on cooling from the heat-treatment temperature.

The chosen material also has to be capable of being fabricated using

available machining and joining techniques to give a dimensionally stable

model with a precisely known shape. However, most conventional fabrication

techniques create, to a greater or lesser extent, tensile or compressive
stresses in the material, and in many cases they also result in a localized

modification to the microstructure of the material. Considerable warpage can

be caused either by the creation or relief of these stresses during model
fabrication or stress relieving heat-treatments, while additional dimensional

instability can be caused by the strains induced by differential thermal

contraction during temperature cycling between room and cryogenic

temperatures.

In order to generate valid aerodynamic data the airfoil surface must

have a high quality finish which also has to be either intrinsically resistant

to, or capable of being protected against, corrosion and degradation. If the
airfoil is to be of maximum use in providing aerodynamic information, it must,

in general, be fitted with a complex array of pressure orifices, tubes and

sensors of various types such as heat transfer gauges, transition detector

gauges and temperature measuring devices. One aspect of particular concern is
the method of achieving the necessary connections between orifices drilled

into the airfoil surfaces to measure the pressure distribution over the

airfoil and the measuring equipment generally located remote to the model.

Typical current practice is to machine a recess into one surface of the
airfoil to expose the bottom of the pressure tappings, braze fine diameter
tubes to connect with each individual orifice and then lead a bundle of such

tubes out via the wing root or support sting. The aerodynamic profile of the
model is then restored by welding a cover plate, usually fitted with its own

pressure orifices, over the recess. Alternatively, large channels are routed
out of the airfoil surface, bundles of tubes are then laid in these channels



and the gap backfilled with some form of filler which is then re-profiled to

the airfoil contours. This technique is, however, unlikely to be particularly

successful for thin airfoils used in cryogenic wind tunnels because of
differential contraction between the different materials. Furthermore, these

are labor intensive, and therefore expensive, methods of construction.

Mistakes which occur in the latter stages of model fabrication, where the

added value is high, are particularly expensive. The problem is, perhaps, at

its most severe in thin airfoils typical of advanced fighter configurations,

particularly at the trailing edge where thicknesses can be of the order of

0.040 inch. Hitherto, for example, in such models for the 0.3-m TCT, it has

not been possible to provide an adequate array of pressure orifices at

locations between 80 and I00 percent of chord using conventional construction

techniques.

Initial research and development of an alternative approach to

airfoil fabrication has been carried out by NASA LaRC personnel and the

principal investigator for the last 4-5 years. In essence, it involves

machining a network of open channels into the surface of two flat plates which
are subsequently vacuum brazed together to form closed, pressure-tight

passages. These passages form connections between holes pre-drilled into the
plates at one end of each channel and a take-off point at the edge of the

airfoil. The passages are then pressure tested for cross-leaks before further

expense is incurred in profiling and finishing the airfoil surfaces: if the

channels are not pressure-tight the model can be aborted at this relatively

inexpensive stage.

The initial research was conducted using 15-5PII, 17-4PH, type 347

and Nitronic 40 stainless steels with electrodeposited coatings or thin foils

of copper as the braze material. Further work was concentrated on the use of

a nickel-based alloy, MBF 20 (AWS BNi2, AMS 4777A) and the development

culminated in the fabrication of a symmetrical airfoil with a planar bond line
made from 15-5PH stainless steel and vacuum brazed with MBF 20. This

development was, however, only partially successful as warpage, caused by the
relief of residual stresses in the plates, created numerous cross-leaks

between adjacent channels.

The research and development carried out during Phase I of this

program is essentially a continuation of this earlier work, but targeted

towards a more difficult set of requirements, namely development of the

technologies needed to locate orifices in and near the thin curved trailing

edges of airfoil models intended for testing in cryogenic wind tunnels.

PHASE I TECHNICAL OBJECTIVES

The essentialobjectiveof Phase I was to identifyand then select
and evaluatethe most appropriatecombinationof materialsand fabrication
techniquesrequiredto producea PressureInstrumentedThin Airfoilmodel for
testingin a Cryogenicwind Tunnel (PITACT).Particularattentionwas given
to provingthe feasibilityand reliabilityof each sub-stageand ensuringthat
they could be combinedtogetherwithoutcompromisingthe qualityof the
resultantsegmentor model. Some specificproblemsto be addressedwere:
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- Materials - The choice of suitable materials was driven, primarily, by

the need to have adequate strength and toughness for cryogenic operations.

Currently favored choices are A286, 18 nickel 200 grade maraging steel

(Vascomax 200) and Nitronic 40, and these, together with Hastalloy X and type

321 stainless steel were the materials selected for initial study. Samples
from the 300 series of stainless steels were also used extensively as the

short, 7 month, period of performance for Phase I dictated the use of readily

available materials for the initial evaluation of techniques such as EDM wire
cutting and chemical milling.

- Contour Machining - Conventional metal removal techniques such as
milling and grinding induce residual surface stresses that can cause

deformation of the whole piece. However, some machining techniques, such as

electro-discharge machining (EDM) and chemical milling, are essentially

stress-free, and an important part of Phase I was to evaluate these techniques

for potential use on the PITACT model. In particular, the wire EDM technique
was to be closely studied for creating profiled bond planes and airfoil
surfaces.

- Formation of Channels & Orifices for Pressure Instrumentation - The aim

of producing pressure instrumentation in the thin trailing edge at locations

from 80-100 percent chord ruled out the use of conventional techniques such as
plumbing-in small diameter tubes. Alternate approaches were therefore to be

used to form connecting channels within the limited thickness of material

available and without compromising the structural integrity of the model.

Initial studies were to be carried out on bonding together plates with pre-
machined holes and channels, but the majority of the Phase I effort was to be

concentrated on proving and refining the formation of channels by chemical
milling.

- Bonding & Joining Methods - A number of alternative methods are

available for bonding plates with pre-formed channels, or joining together
subcomponents of a complete model. Suitable combinations of base material and
bonding agent needed to be evaluated for the candidate materials to ensure

that reliable bonds could be formed that would stand up to the stresses
subsequently applied during later fabrication stages and during the thermal

cycles that a model has to undergo between room temperature and its cryogenic
operating environment. Particular attention needed to be given to finding a
brazing alloy that permitted Vascomax 200 to be vacuum brazed without

degrading its metallurgical structure.

- Finishing & Assembly Methods - One continual problem with model
manufactureis the increasingrisk and cost of failurein one of the latter
fabricationstages that can result in the degradationor total loss of the
model for useful aerodynamicresearch.This risk is greatestin the case of
relativelythin airfoils(t<O.lOc)and modularassemblytechniqueswere
thereforeto be evaluatedto allow particularlycriticalregionsto be
fabricatedas sub-assemblieswhich could then be joinedtogetherto create
the final model configuration.If successfullydeveloped,this modular
approachcould also allow the replacementof damagedsegmentsor even the easy
reconfigurationof a model to study,for example,differenttrailingedge or
flap configurations.
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In order to providea relevantfocus for the researchand
developmenteffort,a specificairfoilconfigurationwas chosenas a typical
representativeof its genericclass. Airfoilnumber 0631X7has a maximum
thicknessof 6% of its chord,and when scaled to a chord of 325mm (13in.),
which is the maximum likelyto be used in the LaRC 0.3m TCT with the adaptive
wall test section,the trailingedge thicknessis 1.3mm (.052in.).

The specificobjectiveof Phase I of the PITACT programwas
thereforeset to developthe technologiesnecessaryto place a high densityof
orificesat locationsfrom about 80% to 100% of chord in a spanwisesegmentof
this supercriticalairfoilprofile,and to createa networkof pressure-tight
passagesthat connectedthese orificesto suitablejointsat the forwardedge
of the segment.

The shape of this airfoil,number 0631X7,and the trailingedge
segmentsfabricatedin the Phase 1 effort are shown in Fig. I.

-REPORT STRUCTURE

The technical details in this report are presented in such a way as
to reflect the logical and progressive development of the research and

development carried out in phase I of the PITACT program. Thus the subsequent
sections document the following progression;

-DEI series : Flat plates of 5 candidate materials with machined
channels and brazed with MBF 20.

-RH series : Flat plates of 300 series stainless steel with

chemically-milled channels and brazed with MBF 20.

-DSI sample : Block of 304 stainless steel with EDM wire-cut,

profiled bond line, chemically-milled channels on the

convex surface, vacuum brazed with MBF 20, and with

airfoil contours EDM wire-cut onto the upper and lower
surfaces of segment 4M.

-Metallurgy of Vascomax 200 : Evaluation of various brazing

alloys to identify MBF 1005 as giving a good bond without

causing excessive grain growth in the parent metal.

-DS2 &3 samples : Vascomax 200 blocks with EDM wire-cut profiled
bond line, chemically-milled channels on both concave

and convex surfaces, vacuum brazed with MBF 1005, and

with airfoil contours cut on their upper and lower
surfaces.

The details of the various samples used in Phase I of the PITACT

program are summerized in Table I, while further details are given in Appendix
I, Tables A2 to A9. Copies of the most relevant working drawings, reduced
where appropriate, are given in Appendix 2 for reference.

Much of the technical information discussed in this report is

presented in Figs. 2 to 14, the originals of which are color photographs. Some

copies of this report have been prepared with black and white photocopies

taken from these originals. Should color reproductions be required, they can

be obtained from the technical monitor, Dr. R.A.Kilgore, Mail Stop 287, LaRC,
Hampton Va. 23665.
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DEI SERIES OF SAMPLES

Flat plates of A286, Nitronic 40 (21Cr-6Ni-9Mn) Hastalloy X, 18
Nickel 200 grade maraging steel (Vascomax 200) and type 321 stainless steel

were machined to size 50x50x6mm (2x2x0.25in.) and their surfaces were ground

flat and parallel. A pattern of channels, 0.25mm wide x 0.25mm deep and spaced
at 5mm centers (.OlOin. wide x .010in. deep at 0.2in. centers) was electro-

discharge machined into the surface of one sample of each type of material,

designated a DEI A series plate, as shown in Fig. 2a. Four holes, each 0.5mm
(.020in.) diameter were drilled at the ends of the channels that did not

completely span the plate, and a similar group of four holes were drilled in

the matching DEI B series plates as shown in Fig. 2b. Two holes, 3.7mm

(.15in.) in diameter were drilled in each plate to accept the locating dowels

which kept the two plates in alignment during vacuum brazing.

MBF 20 (AMS 4777B, AWS BNi2) braze alloy foil, thickness 0.037mm
(.0015in), was placed between the pair of plates, which were then loaded into

a vacuum furnace. The temperature was increased to I065C (1950F) in 30

minutes, held for 15 minutes and then furnace cooled over a period of 2 to 3
hours.

A view of one edge of each of the samples of A286, Vascomax 200,

Hastalloy X and Nitronic 40 after vacuum brazing is shown in Fig. 2c. It can

be seen that a brazed bond exists at this end of each of the pairs of plates.

However, as may be seen more clearly from Fig. 2d, a simple operator error by
the brazing subcontractor resulted in each Hastalloy X plate being paired with

a Nitronic 40 plate to form two mismatched pairs. The differential expansion

set up during the brazing cycle caused the dowel pins to bind and the plates

to warp, as may be seen from the elliptical shaped gap between the two back-

to-back samples in the bottom half of Fig. 2d. Dowel binding also occurred

with the A286 samples to leave a wedge-shaped gap between the plates, with a

good bond at one end only. In the case of the Vascomax 200 sample a good
metallurgical bond was formed across the whole plate, but the channels were

blocked and excessive grain growth occurred in the parent metal. 0nly the 321

stainless steel samples had a good bond over the whole plate and un-blocked
channels.

RH SERIES OF SAMPLES

Two type 316 stainless steel plates, sized 80 x 60 x 6mm (3.2 x 2.4

x 0.25in) were cut to shape, lapped flat and degreased in preparation for

chemical milling the pattern of channels that can be seen in Fig. 3a. A mask 4

times full scale was drawn to the required pattern, photographed and reduced

down to to full size for application to a photo-sensitive lacquer that had

been applied to the surface of the stainless steel plates. Unfortunately the
mask was, in the event, over reduced so that channels that should have been at

3mm centers, were actually at 2.4mm centers. The plates were developed to
remove the lacquer from the regions that were to become channels, while

leaving it to protect the remaining area of the plates. Hot acidic ferric

chloride solution was used to chemically mill the channels to the required

depth. After washing off excess ferric chloride and drying, the lacquer was

removed with solvent to reveal the unattaeked surfaces that subsequently
became the faying (bonding) surfaces.



A series of holes of diameters 1.0, 0.5 & 0.32mm (.040,.020 &

O.Ol3in) were drilled at the ends of the channels, as may be seen in Fig. 3a,

and at higher magnification in Fig. 3b, for sample RH2. A similar sized plate,
LJS3, also with its surfaces lapped flat, was matched to RH2 and holes were

drilled through both plates to take the 2mm (.080in) dowel tubes used to align

the two plates during brazing.

MBF 20 brazing foil, 0.37mm (.0015in.) thick was placed between the

faying surfaces of the two plates. Thin strips of 0.05mm (.002in.)thick nickel
foil were placed at the edges of the laying surfaces to shim them apart and

thus maintain a constant separation during brazing. The assembly was placed in

a vacuum furnace with a small weight on top of the plates to keep a light

pressure on the nickel shim. The temperature was raised to I065C (1950F) in 30
minutes and held there for a further 30 minutes before furnace cooling. Sample

MG7 thus formed was found to have a good metallurgical bond between the two

plates and the center through-channel was unblocked.

Fig. 3e shows the locations of the offcuts formed by EDM wire-

cutting the edges from the sides of sample MG7 to form segment 3M. Also

clearly visible is the vertical section wire-cut through the slit-sawn

channels at the top edge of the sample. (The slit-saw cuts were used to extend

the chemically-milled channels to the edge of the plates.) The excellent

channel definition obtained by wire-cutting through the channels is revealed

more clearly by the X20 magnification view in Fig. 3d.

The offcut 3A was polished and lightly etched to reveal the

metallurgical structure of the brazed bond line as shown in the X70

magnification view in Fig. 4a. The grain boundary decoration visible in the

zone adjacent to the bond line is as expected, and due to the migration of

silicon, a sigma phaze former, from the braze alloy.

In order to obtain a taper section through the bond line, a planar

surface was wire-cut at an angle to the bond plane, which also exposed the

orifices in, and adjacent to, the trailing edge. This is shown in Fig. 4c, and

at the higher magnification of XIO in Fig. 4d. Although there appear to be a

few small imperfections in the braze zone these are probably polishing

artifacts as they are also present in the parent metal. The high quality of

this taper section is significant because in an actual model or segment it

might be necessary to have a bond line outcropping on the airfoil surface. An

even higher magnification view of this region is shown in Fig. 4e, in which

the grain boundary decoration adjacent to the brazed zone is again visible.

Two further planar surfaces were then ground onto the upper surface

of segment 3M in order to cut through the blind holes that had been pre-

drilled in RH2 and the orifices thus formed are visible in Fig. 4b. One of the
small 0.32mm (.013in) orifices was found to be blocked with braze alloy, while

a further orifice is missing because the drill work-hardened the stainless

steel and failed to penetrate.

Nevertheless, this segment represented a significant achievement in

that 15 out of a possible 17 channels connected with clear orifices, including

the one that would have out-cropped in the trailing edge. Thus in an actual

model or segment these would have been usable for boundary layer pressure
measurement.



SAMPLE DSI

As noted earlier, the objective of Phase I of the PITACT program was

to be able to place pressure orifices and their interconnecting channels in
the thin trailing edge of airfoils such as the 6% chord number 0631X7. As the

trailing edge of this airfoil has a pronounced downwards curvature it is

necessary, therefore, to be able to create a similarly profiled bond plane at,

or near, the neutral axis of its airfoil section. Sample DSI was used to

investigate the feasibility of EDM wire-cutting a profiled bond plane,

chemically milling channels onto a curved surface and vacuum brazing together

plates with curved faying surfaces.

A piece of rectangular stainless steel, 25mm (l.0in) thick, was

rough machined and ground to size 135 x 75 x 24mm (5.4 x 3.0 x 0.96in). The

profile shown in Fig. Ib was chosen for the bond plane and EDM wire-cut into

the block. The resultant two halves, DSI A&B, are shown in Fig. 5a, together
with a piece of the 0.37mm (.0015in) thick MBF 20 braze foil. When the two

halves were placed together after EDM wire-cutting it was found that the gap
between them was not of constant thickness, being zero in the planar section

and increasing to about .25mm (.010in) at the trailing edge. This was due to
the thickness of the wire used in the EDM machine and the fact that the two

surfaces were created by opposite sides of the wire. With samples DSI A&B it

was possible to achieve a zero gap over the bond plane by shifting DSIA
towards the trailing edge by about Imm (.040in) relative to DSIB. On a more

complex shape this would not, however, be possible and it would be necessary

to recut one of the two surfaces with the co-ordinates accurately aligned on
the opposite side of the wire.

A pattern of channels spaced at 3mm (O.12in) centers was chemically-

milled onto the convex surface of sample DSIA as shown in Fig. 5b. The sub-

contractor experienced some difficulties in getting a well defined image

exposed onto the lacquer on the curved part of the bond plane, and as a

consequence the channels were not properly formed in this region. For
subsequent samples, ways were found to overcome this problem, but at this

stage the interim solution was to rework the channels with a triangular needle

file to ensure that they would be adequate to allow the samples to go forward
to the vacuum brazing process. The average channel width was about 0.4mm

(.Ol6in) and the depth about 0.25mm (.010in).

A series of holes were drilled at the ends of the channels: O.037mm

(.Ol3in) nearest the trailing edge, 0.5mm (.020in) further forward and 1.0mm

(.040in) for the foremost orifices. Fig. 5c shows at X4 magnification some of
the channels with the 0.32 and 0.5mm holes drilled at their ends. Also visible

at the top of Fig. 5c is a pattern of channels intended for use in locating

the position of the trailing edge. This is necessary because it is prudent to

work with samples larger than the ultimate size of the segment so that the
edges can be cut off, both for use in quality control of the brazed bond and

also to protect for as long as possible the thinner parts of the segment. The
two views given in Fig. 5d show more detail of the channels and 0.32mm holes

at magnifications of XI5 and X20.

The two halves DSI A&B were then placed together, with the O.037mm
(.0015in) thick MBF 20 brazing foil sandwiched between them, and held under

pressure in a press while a series of laser tack-welds were made along the

sides at the bond plane. This stage is shown in Fig. 6a in the upper view,



the lower view illustrating the excellent definition obtained when the PITACT

name and date were chemically-milled onto the side of sample DSI. After

brazing, the sides and ends of the sample, by now designated MGS, were wire-

cut off to allow evaluation of the quality of the brazed bond and to create

segment 4M of the required size. It was soon apparent that the gap established

and held by the laser tack-welds was approximately twice the thickness of the

braze foil, i.e. 0.075mm (.003in) for the average gap width. As a result there

were cross-leaks between channels, some indication of which can be seen in the

longitudinal sections shown in Fig. 6b. A better view is, however, seen in the

transverse section shown at a magnification of X3 in the upper part of Fig.

6c. The oversized gap meant that there was simply not enough braze alloy to

ensure that the bonds between adjacent channels contained enough braze alloy
either to prevent cross-leaks or to create a full-strength bond.

Nevertheless, bonding at the trailing edge was much better and the view given

in the lower part of Fig. 6c at magnification XI5 shows both the improved bond

line and the unblocked channel that outcrops in the trailing edge. (Both of

the views in Fig. 6c are taken with the material in the as-wirecut condition.)

The final fabrication stage carried out on this sample was to EDM
wire-cut the upper and lower airfoil contours to the co-ordinates of the

trailing edge segment shown in Fig. Ib, that is for airfoil number 0631X7

scaled for a 325mm (13 in. chord). Fig. 7a shows segment 4M as wire-cut from

sample MG8 together, with offcuts from the upper and lower surfaces.

Longitudinal sections were taken from segment 4M in such a way as to expose

both channels and orifices, and one such section is illustrated in Fig. 6d.

The XI6 magnification view, at the top of Fig. 6d, shows a channel connecting
to a 0.32mm (.Ol3in) orifice, and the location of this orifice with respect to-

the trailing edge is shown at X4 in the lower view. One feature emphasized by
the XI6 view is the need to deepen the connecting channels so as to increase

their area of cross-section and minimize the pressure drop from orifice to the

measuring device.

An indication of the surface finish obtained by EDM wire-cutting can

be obtained from the views shown in Figs. 7b and 7c. There are two possible

causes of the linear features prominent in both photographs. The first is due
to the way in which the profile co-ordinates were fed into the EDM wire-cut

program. It is likely that the programmer only used co-ordinates spaced at

about 2 or 3mm intervals, and that the curve splining program connected them

up with circular arcs or straight lines. This is the most probable explanation

for most of the linear features seen in Figs. 7b and 7c. However, even with

flat planar cuts with an EDM wire, linear features are created when the wire

passes through an electrical discontinuity as this alters the power of the

spark discharge. The drilled orifices represent electrical discontinuities and

thus can give rise to linear features such as those observed, although the
effects are minimized with small diameter orifices. The larger channels do,

however, create more serious discontinuities and deeper scoring. (See, for
example, the scoring on offcut 3A shown in Fig. 3c.) As noted earlier, holes

of three different diameters were drilled at the channel ends, 0.32, 0.5 and

1.0mm (.013, .020 and .040 in), and the orifices they formed on the lower

airfoil surface are clearly shown in Fig. 7c. An impressive illustration of

the clean outline of the orifices formed by wire-cutting through pre-drilled

holes can be seen from the X20 magnification views of the three orifices sizes

shown on the right of Fig. 7b. The view on the left of Fig. 7b shows the

location of the orifice in the trailing edge, marked with an arrow, as well as
some of the orifices on the lower airfoil surface.



Once all the available information had been gleaned from segment 4M,

it was put to one further use, that of demonstrating one possible method of

connecting trailing edge segments to the main wing section. To this end a comb

with teeth, 2mm (.080in.) square and at 4mm (°160in.) centers, was cut onto

the forward end of the segment. The 4mm spacing of the teeth was necessary to

match up with the similarly spaced docking channels formed in segment 3F to be

described in the next section. For such a system to work in a real situation,

the channels in both segments would have to have the same spacing, but in the

present case the channels in 4M were at 3mm centers and those in 3F at 4mm.

The black dots visible in the center of the teeth, viewed end-on in the inset

to Fig. 7d are marks put on to indicate the positions at which the channels

should occur, namely in the center of each tooth in the male comb.

THE LJS/RH TRIPLET

In adopting the concept of modular construction of airfoils from

smaller segments, an implicit commitment was incurred to investigate possible

arrangements for joining segments to the main airfoil structure. Such joints

would have to accomplish two simultaneous objectives;

- achievement of a good load-bearing mechanical joint that would permit

accurate alignment of the segment with the main airfoil, in such a way as to

maintain the correct location and profiles of the airfoil surfaces.

- achievement of pressure-tight connections between the channels in the

segment and those in the main airfoil that will stand up to the stresses

imposed by aerodynamic loading and temperature cycling to and from its

cryogenic operating environment.

The LJS/RH triplet sample was designed to investigate one possible

jointing configuration that could be fabricated using the technologies thus

far developed during Phase I of the PITACT program.

Two flat plates of type 304 stainless steel, 6.25mm (.25in) thick

and designated LJS I and LJS 2 respectively, were lapped such that their faces

were flat and parallel. Docking ports 2mm (.080in) wide by 8mm (.32in) long

were milled to a depth of Imm (.040in) into the surfaces of both plates as

shown in Fig. 8a and 8b. A 7mm (.28in) wide flat, also Imm (.040in) deep was

milled in front of the docking channels to form one side of the groove in a

tongue and groove joint. Channels, 0.5mm (.020in) wide and 0.5mm (.020in) deep

were slit sawn from the ends of alternate docking ports to the opposite edges

of the plates, as shown in Fig. 8b. When the two plates were placed together

they formed a series of 2mm (.080in) square docking ports at the inner end of
the 7mm (.28in) wide groove. An end-on view of the docking ports thus created

is shown in the top view of Fig. 8c.

In the event, both plates warped when channels were slit sawn into

their surfaces due to the relief of residual surface stresses. The plates were

therefore heat-treated to anneal any remaining stresses, then re-milled to

deepen the docking ports and groove to the requisite Imm (.040in). A further

stainless steel plate, RHI, that had a pattern of channels chemically milled

into its surface to the same configuration as that shown previously in Fig. 3a

for RH2, was added to plates LJSI and 2 to form a triplet. A series of 1.0,
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0.5 and 0.32mm (.040, .020 and .013in) holes were drilled at the ends of the

chemically-milled channels to represent orifices that would need to be present

in an actual airfoil. 2mm (.080in) clearance holes were drilled through the
three plates to accept the 2mm diameter, thin-walled stainless steel tubes

used as dowels to align the three plates.

Foils of MBF 20 braze alloy, O.037mm (.0015in) thick, were placed
between the two sets of faying surfaces and pieces of O.05mm (.002in) nickel

foil were used to shim the faying surfaces apart when the braze foil melted.

The assembled triplet was placed into a vacuum furnace, a weight was placed on

its top to keep some pressure on the nickel shim and they were brazed at I050C

(1920F). The resultant brazed triplet, designated MG6, is shown in the lower
view of Fig. 8c.

Examinationof the brazed tripletshowedthat some furtherwarpage
had occurredduring brazingwith the result that some of the centralchannels
were blocked.The 2mm (.080in)wide, 7mm (.28in)deep groove was re-milledto
a width of 4mm (.16in)to accommodatethe tongue cut on the forwardsectionof
segment4M and the four sides were ground flat. The upper and lower surfaces
of the triplet,now designatedsegment3F, were contouredto match the upper
and lower contoursof segment4M and so producethe dockable segmentto be
describedin the next section.A view of segment3F showingthe dockingports
and cross-feedchannelsis given in Fig. 8d.

One particularlesson to be learnedfrom the experienceobtained
from fabricatingsegment3F highlightsthe problemof warpagecausedby the
creationor relief of residualstresses.The problemis going to be more
severe in thinnerplates becausethe deflectionproducedfor a given surface
stress is inverselyproportionalto the plate thickness.Thus, the economic
attractionof using thin plates to minimizethe amount of redundantmetal has
to be balancedagainstthe greaterprobabilityof warpagethat could cause the
whole componentto be rejected.

Nevertheless,the fabricationof segment3F representedanotherstep
forward, in that two good metallurgicalbonds were formed simultaneously
betweenthe 3 plates.The partialblockagethat occurredin some of the
channelsbetweenplates LJSI and 2, was capableof rectificationby drilling
the excess braze metal from the channels.

A DOCKING SYSTEM TO JOIN SEGMENTS TO THE MAIN AIRFOIL

The need for investigationof a possibleconfigurationfor a docking
system was explainedat the beginningof the previoussection,and the
fabricationof segments4M and 3F has been described.Fig. 9a shows segment
3F, on the left, and segment4M, on the right, before docking,while Fig. 9b
shows the pair after docking.An even better idea of the designof the joint
can be obtainedfrom Fig. 9c which shows the situationwhere segment4M has
been shiftedlaterallyby one tooth.The male tooth can be seen penetrating
into the sectioncut throughone of the dockingchannels,while the thicker
4mm (.080in)tongue fits into its matching groove.A low meltingpoint solder
or adhesiveresin would be necessaryto ensurea pressure-tightjoint between
tooth and dockingport, so that their associatedchannelsdid not leak.
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Similarly, some form of mechanical fastener and/or bonded joint would be

needed to lock the tongue and groove to form a load-bearing mechanical joint.

The views shown in Fig. 9d are unfortunately rather dark, but it is possible
to see that the upper two sections taken from segments 4M and 3F are undocked.

The sections through segments 3F (left) and 4M (right) shown in the lower view
of Fig. 9d are as-docked.

Experience gained in fabricating this design of a docking system has

shown up a number of possible difficulties and it is unlikely that it would be

used to join trailing edge segments to an actual airfoil model. In particular,

the need for mechanical strength and stiffness from the tongue and groove
joint might conflict with the application of the solder or resin needed to

form a pressure-tight joint between the teeth on the trailing edge segment and
the docking channels in the main airfoil. Further designs would therefore need
to be evaluated in Phase II.

METALLURGY OF 18 NICKEL 200 GRADE MARAGING STEEL

As part of the initial series of tests, samples DEI 4A&B were vacuum

brazed at I050C (1920F). While sample DEI4C was kept as a control. Comparison

between sections taken from both heat-treated and control samples, polished

and etched to reveal their metallurgical structures, showed that significant
grain growth had taken place during the brazing operation. This is shown

clearly in Fig. 10c by the X400 magnification metallographs. The structure of

the control sample on the left is as would be expected for an 18 Nickel

maraging steel, basically a lath martensite. The heat-treated sample on the

right shows an equiaxed grain structure with strong grain boundary decoration.

Such a material would have a significantly lower fracture toughness at the
cryogenic operating temperatures of an actual wind tunnel model.

A series of 18 Nickel maraging steel test samples were brazed using
alloys that melt at lower temperatures. Work carried out at NASA Langley
Research Center has shown that temperatures should not exceed about 1000C

(1830F) if grain growth is to be avoided. The four alloys chosen were

available as foils, 0.037mm (O.0015in.) thick from Metglas, Parsippany, New
Jersey. Metallographs at magnifications of X400 from sections taken from the

four samples are shown in Figures lOc and 10d, while the structure of the

control sample is shown in Figure lOb at the same magnification. The lowest

brazing temperatures were for the two alloys shown in Fig. lOc. MBF 1005, an
experimental nickel-palladium alloy was brazed at 927C (1700F) and the

structure of its bond can be seen on the left of Fig. 10e. There is some
second phase present in the braze zone, but it is not too massive and does not

span the bond completely. Furthermore there is no apparent change in the grain

structure of the parent metal, as may be seen by comparison with Fig. lOb.
This alloy was therefore chosen for further work with samples DS2 and DS3.

The metallograph on the right of Fig. 10c is of the brazed bond

formed using MBF 65A,(AWS BNi7) a nickel-phosphorous alloy that was brazed at

982C (1800F). There is some indication of modification to the grain structure,
especially near the braze zone, but less so in the parent metal. A more

serious objection to the use of this alloy is, however, the 9% phosphorous
considered by the technical director of the material suppliers, Vasco
Teledyne, likely to cause problems with the parent metal and hence this braze
alloy was rejected from further consideration.
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The two other braze alloys tested both contained boron and

metallographs of their joints are shown in Fig. 10d at X400. The dark etching

nature of the zone adjacent to the braze zone and the heavy grain boundary

decoration further into the parent metal are caused by the rapid diffusion of

boron from the braze alloy. The more aggressive nature of the liquid metal is

also evident from the greater degree of intergranular penetration in these two

alloys as compared with those in Fig. 10c. Even more significant, however, is

the equiaxed grain structure of the parent metal caused by the higher, IOIOC

(1850F), brazing temperature. These two alloys, the nickel palladium MBF 1002

shown on the left of Fig. lOd and the modified MBF 20 shown on the right, were
therefore eliminated from further consideration.

On the basis of these tests, the 47Ni-47Pd-6Si MBF 1005 was chosen

for further study with the 18 nickel maraging steel samples DS2 and DS3 to be

described in the next section. On the advice of the Metglas metallurgists, two

different brazing temperatures 927C (1700F) and 965C (1770F) were chosen to

see whether the greater fluidity available at the higher temperature would be

an advantage or disadvantage as regards bond formation or channel blockage.
As will be seen, however, these questions were largely left unresolved because

of fixturing problems encountered with these samples.

18 NICKEL MARAGING STEEL SAMPLES DS2 AND DS3

Thus far in Phase I of the PITACT program, the complexity of the

samples has progressed from flat plates of 300 series stainless steel with

machined and chemically-milled channels, to a 304 stainless steel segment with

a profiled bond plane and channels chemically milled into the convex side of

the bond plane. The metallurgical limitations imposed by grain growth in 200

grade 18 nickel maraging steel have been evaluated and a suitable braze alloy
has been identified to allow the construction of realistic trailing edge

segments from this high strength alloy of major interest for the construction
of airfoil models for cryogenic wind tunnels. Samples DS2 and DS3 were

intended as a culmination of the Phase I effort on the PITACT program by the

actual fabrication of two such segments.

Two blocks of Vascomax 200 were obtained from Vasco Teledyne with

the kind assistance of their research director. The two blocks supplied were

rectangles, sized 125 x 75 x 12.5mm (5 x 3 x 0.5in.) and when rough machined

and ground with parallel sides they measured 120 x 70 x llmm (4.8 x 2.8 x
0.44in.). A profiled bond plane was then EDM wire-cut through each of the

blocks using the same trailing edge coordinates as used for sample DSI, but

making the necessary adjustments to ensure that the trailing edge lay within
the llmm (.44in.) thickness. The two halves thus created, DS2A and DS2B are

shown replaced together in Fig. lla. (The corresponding halves of DS3 are just
visible at the right-hand side of Fig. lla). In Fig. lib, DS2A and B are shown

opened out to give an idea of the degree of curvature on the bond plane.

Using the same basic techniques as before, photographic masks were

made of the channel pattern required, but in this case a matched pair was

created for application to both convex and concave surfaces as may be seen in

Fig. llc. Creating a sharp image on the concave surface presented a challenge

to the lithographers, but high quality images were obtained in the lacquer

coatings on both surfaces. Chemical milling using acidic ferric chloride had

already been shown to be effective in small-scale tests with Vascomax 200
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and excellent channel definition was achieved in all four samples. Fig. lld
shows three of the channels formed on the concave surface of DS2B, and it also
gives an indication of the degree of curvature in the bond line.

Chemical milling channels approximately 0.4mm (.016 in) thick is
accompanied by a significant degree of undercut beneath the surface of the

adjacent lacquer and this gives rise to the apparently ragged appearance of

the channels shown at X4 magnification in Fig. 12a. However, simple hand

reworking with a triangular needle file produces the much cleaner and highly

regular channel definition shown in Fig. 12b. The photo-sensitive lacquer was
in fact left on the sample surfaces until all machining operations were

complete, as it was found to be extremely tough and an excellent protective
coating for the faying surfaces.

Careful attention was paid to mask alignment while the samples were

prepared for chemical milling and when the two halves of DS2 were placed
together before bonding an excellent match was achieved such that the two

semi-circular half channels formed complete channels with almost circular

cross sections as shown in the upper view of Fig. 12c. The lower view in Fig.
12c gives a clear impression of the regularity and definition of the channels
at the forward edge of the samples.

As noted earlier both samples DS2 and DS3 were brazed using the

nickel-palladium alloy MBF 1005. DS2 was brazed at 927C (170OF) to give sample
MGI3, while DS3 was brazed at the higher temperature of 965C (1770F) to

produce MGI4. Dowel pins, 2mm (.080in) in diameter, were used to align the two
halves of each sample and once again 0.05mm (.002in) thick nickel shim was

placed at the sides of each sample to produce a gap of constant thickness

larger than the O.037mm (.0015in) MBF 1005 braze foil. A weight of 1.15kg was

placed on top of the sample to keep some pressure on the shim during brazing
and the samples were heated to the brazing temperature in about 20 minutes and

held there for 15 minutes. The relatively long time taken in furnace cooling
after brazing meant that the samples spent a significant period passing

through the ageing temperature range and that they were at least partially

aged. A full cycle of solution annealing followed by quenching and ageing
would, therefore, probably be necessary to achieve maximum strength.

For some reason,as yet not fully understood,the two halves of both
DS2 and DS3 moved apart during the brazingcycle to createa wedge-shapedgap
in the bond plane.At the forwardend of each sample it was about 0.25nlm
(.010in)wide as shown in the two views of Fig. 12d. At the trailingedge
there was, however,virtuallyno gap and a relativelygood bond was formed.

Both samples had therefore failed to achieve an adequate brazed
joint and there was excessive cross leaking between channels. From a

production viewpoint, such samples would be useless but at this early stage in

a research and development project it was considered worthwhile proceeding to
cut suitable airfoil contours on the top and bottom surfaces of both samples

to see what other problems might be encountered. Fig. 13a shows sample
DS2/MGI3 after wire-cutting to create segment 5M, together with offcuts from

the top and bottom surfaces. Prior to profiling the upper and lower surfaces,
10mm (0.4in) wide strips were cut from each side of both DS2/MGI3 and DS3/MGI4

in such a way that, after a further grinding stage, a section through both a

channel and pressure orifice was obtained. One such section is shown in Fig.
13b at a magnification of XI5. The dark line running along the center of the
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channelis the unbondedgap and the black dashed line intersectingthe 0.37mm
(.015in)diameterdrilledhole is meant to representwhere the airfoil surface
would have been created.The other featurenoticeableis the partialblockage
of the Imm (.040in)diameterpilot hole by braze alloy. In a well-fixtured
braze such blockageis much less likelyto occur, as capillaryaction would
draw the braze alloy into the much narrowergap betweenthe two surfaces.

The bond formedat the trailingedge was of a much higher quality
and the channelthat was to outcropat the trailingedge was unblocked,as can
be seen at the left of Fig. 13c at a magnificationof XI5. The right hand
view in Fig. 13c shows part of the O.05mm (.002in)nickel shim at the extreme
right hand side of the trailingedge. Fig. 13d shows two views, at XI5
(upper)and X3 (lower),of the trailingedge orificeafter the airfoil
surfaceshad been EDM wire-cuton to this segment.

The final views in Figs. 14a to d show the appearanceof the upper
and lower surfacesof segments5M and 6M in the as-wirecutcondition.The
orifices in both segmentshad been pre-drilledin such a way as to have
orificesat 1% intervalsfrom 99% to 82% of the airfoil,supposingit to have
a 325mm (13in) chord.In segment5M (DS2) the orificeswere arranged in
staggeredrows such that alternaterows outcroppedon the upper and lower
surfaceson the right hand side of the centralorificeon the trailingedge,
while the orificeson the left hand side outcroppedto fill in the missing
positions.Thus, for example,if the undersideof segment5M is viewed from
the trailingedge, as in Fig. 14a, the 99, 98, 97 and 96% orificeswould be
found on the left of the centralorifice,while the 95, 94, 93, 92 and 91%
orificesare on the right. 90, 89, 88, 87 and 86% (86 was sectionedin the
offcut)are then found on the left of the centralorificeand 85, 84, 83 and
82% are on the right.

Anotherfeaturenoticeablein Fig. 14a, particularlywith the 84,
83, and 82% orificesat the top right of the picture,is the largerdiameter
of some of the orifices.This is best understoodby first reconsideringFig.
13b which shows a Imm (.040in.)pilot hole drilledfrom the channeltowards
the plate surface,with a 0.37mm (.015in.)hole outcroppingat the surface.
Rememberingalso that, becauseof the fixturingproblemdiscussedearlier,the
gap betweenthe two plates DS2A and DS2B taperedfrom about O.05mm (.002in.)
at the trailingedge to about 0.3mm (.012in.)at the forwardend. It can thus
be appreciatedthat the profiled surfaceactuallycut by the EDM wire machine
was at a differentpositionfrom that calculatedwhen the Imm (.040in.)pilot
holes were drilled,and that in some cases the wire cut throughthe Imm
(.040in.)pilot hole insteadof the intended0.37mm (.015in.)orifice.

The upper surface of segment 5M is shown in Fig. 14b, and it also

shows rows of orifices outcropping alternately on either side of the center

line, as well as the Imm (.040in.) pilot holes cut through due to the
excessive thickness of the bond line. (When comparing Figs. 14a and b, it

should be remembered that any feature apparently on the left hand side of the

airfoil centerline on the lower surface in Fig. 14a, would occur at the

corresponding mirror image position on the right hand side of the centerline

on the upper surface in Fig. 14b.)
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A different set of orifice positions were drilled into the two

plates, DS3A and DS3B, that eventually formed segment 6M. In this case all

the orifices on the upper surface were on the right hand side of the central

trailing edge orifice, as viewed from the trailing edge, while all the

orifices on the lower surface were on the left of the centerline. Thus, the

orifices visible in Fig. 14c, are those on the upper surface of the airfoil,

which appears on the right in Fig. 14c. Also shown, on the left of Fig. 14c,
is the offcut formed when the upper profile was EDM wire-cut. This

illustrates a further problem to be considered and overcome before such

segments can be produced reliably, namely the need to ensure that the work

piece is set up with the line of symmetry along its bond plane aligned

completely parallel to the wire axis. If this is not ensured, tapered
sections and incorrectly located orifices will be the result.

Finally, Fig. 14d shows a closer view of the orifices on the lower

surface of segment 6M, which, it should be remembered, lie to the left of the

center line. The view on the right is of the lower surface itself, and out of

the 13 orifices visible, 12 have the desired size of 0.37mm (.015in.) and only
in one case has the Imm (.040in.) pilot hole been cut through instead.

Comparison with the view of the offcut (shown on the left in Fig. 14d) which
only has 0.37mm (.015in.) holes visible, infers that the pilot hole had been

cut through within 0.37mm (.015in.) of the intended orifice level, as this was

the thickness of the wire used in the EDM wire-cut machine. In fact, of the 17

orifices formed on the lower surface, only 3 were Imm (.040in.) in diameter.

Thus, due to the fixturing problems that led to the creation of a

wedge shaped gap in the bond plane, segments 5M and 6M did not achieve the

target of producing segments with pressure-tight, unblocked channels that

connected to a total of 39 orifices located at 1% intervals on both upper and
lower airfoil surfaces and in the trailing edge. There was, therefore, no
attempt made to cryocycle these components, as the results would not have had

much significance. However, the progress made up the technological learning
curve by the fabrication of these components, suggests that the achievement of
the initial objectives are significantly closer to realization.
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CONCLUSIONS

As will by now be apparent to a reader who has digested the main

text of this report, many of the technical objectives set out at the beginning

have been realized during the period of performance of Phase I. Furthermore,

it has also proved possible to combine many of them to allow fabrication of

realistic trailing edge segments of a thin supercritical airfoil. The major

achievements may be summarized as follows;

- EDM wire-cutting- : This has been shown to be a cost-effective

technique of cutting profiled bond planes and airfoi! contours
into 300 series stainless steels and Vascomax 200. There is also

good reason to believe that it would be equally satisfactory for

superalloys and other relevant materials. Complex profiles need
to be cut separately on each face if they are to fit exactly, the
co-ordinates being set-up on each side of the EDM wire. To minimize

the amount of finishing required, as many co-ordinates as

possible should be used to define the profile: enough material
also needs to be left outside the finished dimensions to allow

for the removal of blemishes created by the wire cutting through

electrical discontinuities such as pressure orifices.

-Chemical milling - : This has been shown to be a highly cost-

effective technique for creating a complex network of channels in
the surface of 300 series stainless steels and Vascomax 200. It

has also proved possible to create matched pairs of channels on
both the concave and convex surfaces of profiled bond planes. A

particular advantage is the ability to carry out corrective work
at the intermediate stages. Furthermore, drilled orifice holes can

be accurately and conveniently located at the channel ends. A

simple extension of the technique could allow the formation of
channels with variations in their width and depth.

-Vacuum brazing - : Bonded joints have been formed using MBF 20 in

A286, Nitronic 40, Hastalloy X, Vascomax 200 and type 321
stainless steel. Reasonable success was achieved with small, flat

plate samples. Scale up to large samples presents difficulties
due to warpage created by the thermal relief of residual
stresses. Limited success has been achieved with brazing profiled

bond planes, but further work on fixturing, the use of stop-offs
and control of dimensional instability will be necessary before

vacuum brazing can become a routine, cost-effective fabrication

technique.

-Metallurgy of Vascomax 200 - : Brazing at temperatures in excess
of IO00C (1830F) causes excessive grain growth in 18 nickel

maraging steels, thus precluding the use of MBF 20. Evaluation of
four other brazing alloys led to the selection of a nickel-

palladium alloy, MBF 1005, for use with Vascomax 200. Its
metallurgical structure appears satisfactory, but further tests
will be needed to measure the strength of the bonds.
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-Orifice exposure - : High quality orifices have been produced by

the technique of pre-drilling blind holes from the ends of the

chemically-milled channels, such that they subsequently outcrop
in the airfoil surface when its profile is EDM wire-cut.

-Joining segments - : One possible design of joining trailing edge

segments to the main airfoil has been investigated from a mechanical
viewpoint. Pressure channels were not, however, joined and the

experience gained from this initial configuration would be used

to design an improved version for use in a real airfoil.

Thus Phase I of the PITACT program has developed a range of

technologies and combined them to allow the fabrication of three segments of a

6% thick supercritical airfoil which were heavily instrumented with orifices.

Cross-leaks due to bonding difficulties were present in these segments, but

success in other samples leads to high confidence in that this problem will be
resolved.

-TECHNICAL FEASIBILITY OF FUTURE WORK

From the progress made during Phase 1 of the PITACT program, it

can reasonably be concluded that fabrication of segments of supercritical

airfoils having thicknesses of about 6% chord, with pressure orifices at 1%

stations from about 80% to 100% chord, is highly feasible. Indeed, two such

segments would have been fabricated in Phase I, ahead of schedule, if the

fixturing problems had not arisen with samples DS2 and DS3.

Detailed proposals for Phase 2 of the PITACT program are to.be made
in our response to IFB/RFP Number 1-06-0100.0630. In general terms, however,
the proposed Phase II technical objectives will aim at the construction of a

2D airfoil to be testable in the LaRC 0.3-m TCT. The configuration of the

airfoil will be such as to have a basic airfoil onto which interchangeable

leading and trailing edges with a high density of pressure orifices can be

mounted. Such a project would be technically feasible within the two year time
span of Phase II. Its design would require the active assistance of LaRC

engineers in order to ensure that the airfoil configuration was of a type
generally needed for aerodynamic research, and not just a sterile exercise in

technical development.
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Table I Summary of results from PITACT Samples

Sample Material Charactoristics of Bonding surface Combinat

Ident. Type Finish Channel w d @sp (mm) Hole(mm) Ident.

DEIIA A286 Ground E.D.M. 25x.25 @ 5 .5 MGI

DEI IB .... .5 MGI
DEI IC .... -....

DEI 2A Nitronic Ground E.D.M. 25x.25 @ 5 .5 MG2*
DEI 2B 40 " .5 MG3*
DEI 2C .... -....

DEI 3A Hastalloy Ground E.D.M. 25x.25 @ 5 .5 MG3*
DEI 3B .... .5 MG2*
DEI 3C " " .....

DEI 4A Vascomax Ground E.D.M. 25x.25 @ 5 .5 MG4

DEI 4B 200 " .5 MG4
DEI 4C .... -....

DEI 5A 321 SS Ground E.D.M. 25x.25 @ 5 .5 MG5

DEI 5B " " .5 MG5
DEI 5C .... -....

LJS 1 316 SS Lapped Slit saw 5 x.5 @ 4 -- MG6

LJS 2 316 SS " " " -- MG6

RH 1 304 SS " Chem-mill .6 x.25 @ 2.45 I,.5,.32 MG6

RH 2 304 SS Lapped Chem-mill .6 x.25 @ 2.45 1,.5,.32 MG7
LJS 3 304 SS " -- MG7

RH 3 Vasco200 Lapped Chem-mill letters -- n/a

DS IA 304 SS EDM wire Chem-mill .4 x.25 @ 3 1,.5,.32 MG8
DS IB .... -- MG8

RH 5a,b Vasco200 Lapped Chem-mill .5 x.3 @ 2.45 -- MG9

RH 6a,b " " " " -- MGIO

RH 7a,b ........ -- MGII

RH 8a,b " ..... ' -- MGI2

DS 2A Vasco200 EDM wire Chem-mill .7 x.35 @ 3 1 & .37 MGI3
DS 2B ........ " MGI3

DS 3A Vasco200 EDM wire Chem-mill .7 x.35 @ 3 1 & .37 MGI4
DS 3B .......... MGI4

sc file a:tablelpi
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(Table 1 CONT)

Combination Effect of Braze on; Comments
Ident. Braze Channel Holes Bond G.Size

MGI MBF 20 open n/a good OK wedge
MGI

-- control

MG2* MBF 20 open n/a good OK *Nitronic

MG3* /Hastalloy
-- control

MG3* MBF 20 open n/a good OK *Hastalloy
MG2* /Nitronic

-- control

MG4 MBF 20 blocked closed good large grain

MG4 growth
-- control

MG5 MBF 20 open OK good OK Segment
MG5 2M

-- control

MG6 MBF 20 partly n/a good OK Segment
MG6 blocked n/a 3F

MG6 open OK good OK Triplet

MG7 MBF 20 open OK good OK Segment
MG7 3M

n/a n/a n/a n/a n/a n/a Chem Test

MG8 MBF 20 cross- open good OK Segment
MG8 leak 4M

MG9 MBF 1002 blocked n/a 2phase OK? 1010C (1850F)

MGI0 MBF 1005 .... 2phase OK 927C (1700F)

MGII MBF 65A .... 2phase OK 982C (1800F)

MGI2 MBF 20Md .... good OK? IOIOC (1850F)

MGI3 MBF 1005 cross- open/ good OK Segment 5M

MGI3 927C leak closed 927C (1700F)

MGI4 BBF 1005 cross- open/ good OK Segment 6M

MGI4 965C leak closed 965C (1770F)
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APPENDIX 1

Table A2 Details of PITACT Samples A286V200

BASIC CHARACTERISTICS & INITIAL PREPARATION

Material & Origin: A286 Dynamic Engineering Inc.

Identification : DEIIA DEI IB DEI IC

Size and Shape : DEI IA,B,&C;50x50x6 mm rectangular plates

Faying Surface : DEI IA,B,&C;Ground to better than 500 micro in.
Channels : w=.25,d=.25,spaced @ 5mm none none

Holes : 4 each .5mm dia, 2mm deep. as DEIIA none

Comment : Channels EDM machined to Drawing 1 control

BRAZING CYCLE

Combination Ident: DEIIA + IB = MGI n/a

Braze alloy : MBF20 (AMS 4777B,Ni-7Cr-3Fe-4.5Si-3.2B) n/a
Fixture : 2 each 3.7mm dowels + weight n/a

Furnace Schedule : RT-1065C in 30 min,15 min hold, slow cool n/a

Com_,.ent : Possible loss of vacuum as samples discolored;
: Dowels seized, wedge shaped gap;bond at one end.

METALLURGICAL EXAMINATION

Channels : Clear at brazed end n/a
Holes : n/a n/a

Aggression : None n/a
Grain Structure : OK

control
Comment : Sample proves A286 brazable using MBF20Ii

: No further use as segment.

BASIC CHARACTERISTICS & INITIAL PREPARATION

Material & Origin: Vascomax 200 Dynamic Engineering Inc.
Identification : DEI 4A DEI 4B DEI 4C

Size and Shape : DEI 4A,B,&C;50x50x6 mm rectangular plates

Faying Surface : DEI 4A,B,&C;Ground to better than 500 micro in.
Channels : w=.25,d=.25,spaced @ 5mm none none

Holes : 4 each .5mm dia, 2mm deeD. as DEI 4A none

Comment : Channels EDM machined to Drawing I control

BRAZING CYCLE

Combination Ident: DEI 4A + 4B = MG4 n/a
Braze alloy : MBF20 (AMS 4777B,Ni-7Cr-3Fe-4.5Si-3.2B) n/a

Fixture : 2 each 3.7mm dowels + weight n/a

Furnace Schedule : RT-1065C in 30min, 15 min hold,slow cool n/a
Com_,,ent : Fully Bonded

METALLURGICAL EXAMINATION

Channels : Blocked n/a

Holes : Mainly blocked n/a

Aggression : None n/a

Grain Structure : Excessive grain growth as T braze 1000C. control
Comment : Toughness @ 77K would be lowered.v!

: No further use as segment.
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Table A3 Details of PITACT Samples a:nithast

BASIC CHARACTERISTICS & INITIAL PREPARATION

Material & Origin: Nitronic 40 Dynamic Engineering Inc.
Identification : DEI 2A DEI 2B DEI 2C

Size and Shape : DEI 2A,B,&C;5Ox50x6 mm rectangular plates
Faying Surface : DEI 2A,B,&C;Ground to better than 500 micro in.
Channels : w=.25,d=.25,spaced @ 5mm none none
Holes : 4 each .5mm dia 2mm deep. as DEI 2A none
Comment : Channels EDM machined to Drawing I control

BRAZING CYCLE

Combination Ident: DEI 2A + 2B = MG2* n/a
Braze alloy : MBF20 (AMS 4777B,Ni-7Cr-3Fe-4.5Si-3.2B) n/a
Fixture : 2 each 3.7mm dowels + weight n/a
Furnace Schedule : RT-I065C in 30 min, 15 min hold, slow cooln/a
Comment : *Samples mixed up at Metglas, Nitronic 40 matched

" : with Hastalloy X.

METALLURGICAL EXAMINATION

Channels : Clear at brazed end n/a
Holes : n/a n/a
Aggression : None n/a
Grain Structure : OK control

Comment : Good bond formed when surfaces kept close together
" : No further use as segment

BASIC CHARACTERISTICS & INITIAL PREPARATION

Materia! & Origin: Hastalloy X Dynamic Engineering Inc.
Identification : DEI 3A DEI 3B DEI 3C

Size and Shape : DEI 3A,B,&C;5Ox50x6 mm rectangular plates
Faying Surface : DEI 3A,B,&C;Ground to better than 500 micro in.
Channels : w=.25,d=.25,spaced _ 5mm none none
Holes : 4 each .5mm dia 2mm deep. as DEI 3A none
Comment : RT-I065C in 30min,15 min hold,slow cool control

BRAZING CYCLE

Combination Ident: DEI 3A + 3B = MG3* n/a
Braze alloy : MBF20 (AMS 4777B,Ni-7Cr-3Fe-4.5Si-3.2B) n/a
Fixture : 2 each 3.7mm dowels + weight n/a
Furnace Schedule : RT-1065C in 30 min, 15min hold, slow cool n/a
Comment : *Samples mixed up at Metglas, Nitronic 40 matched

" : with Hastalloy X.

METALLURGICAL EXAMINATION

Channels : Clear at brazed end n/a
Holes : n/a n/a
Aggression : None n/a
Grain Structure : OK control

Comment : Good bond formed when surfaces kept close together
" : No further use as segment
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Table A4 Details of PITACT Samples & Segments stain321

BASIC CHARACTERISTICS & INITIAL PREPARATION

Material & Origin: 321 Stainless Dynamic Engineering Inc.
Identification • DEI 5A DEI 5B DEI 5C

Size and Shape • DEI 5A,B,&C;50x50x6 ram rectangular plates
Faying Surface • DEI 5A,B,&C;Ground to better than 500 micro in.

Channels : w=.25,d=.25,spaced @ 5mm none none

Holes ." 4 each .5mm dia 2mm deep. as DEI 5A none

Comment : Channels EDM machined to Drawing 1 control

BRAZING CYCLE

Combination Ident: DEI 5A + 5B = MG5 n/a

Braze alloy • MBF20 (AMS 4777B,Ni-7Cr-3Fe-4.5Si-3.2B) n/a
Fixture : 2 each 3.7mm dowels, weight + Nickel foil n/a

Furnace Schedule : RT-1065C in 30 min, 15 min hold, slow cooln/a
Comment : Sample brazed later than DEI 1 to 4, .05 mm Nickel

" : shim used as spacer with .04 mm braze alloy

METALLURGICAL EXAMINATION

Channels • Clear n/a

Holes : Clear n/a

Aggression : None n/a
Grain Structure : OK control

Comment : Only sample from DEI series successfully brazed
tt

SEGMENT IDENTIFIER 2M

SURFACE PROFILE

Upper contour : Planar

Upper finish : Ground

Lower contour : n/a
Lower finish : n/a

Comment : Unblocked pressure orifices exposed on upper
" surface

JOINT CONFIGURATION

Male/female • Male
Detail

Comment
q!

CONCLUSIONS

Sample showed nickel shim to be effective

as spacer in keeping bond to required
thickness and preventing channel

blockage. Pressure orifices exposed by

grinding upper contour showed good
definition.
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Table A5 Details of PITACT Samples & Segments rh21js3

BASIC CHARACTERISTICS & INITIAL PREPARATION

Material & Origin: 304 Stainless, Southampton University,
Identification : RH2 1 LJS3

Size and Shape : Both 80 x 60 x 6mm, rectangular
Faying Surface : Both lapped

Channels : Chem Milled_w=.25,d=.6mm, spaced@ 2.45mm none
Holes • I, .5 & .32mm none

Comment : details of RH2 as to Drawing 2
t!

BRAZING CYCLE

Combination Ident: RH2 + LJS3 =MG7

Braze alloy : MBF20 (AMS 4777B,Ni-TCr-3Fe-4.5Si-3.2B)

Fixture : 2 each 2mm dowels, weight + Nickel foil
Furnace Schedule • RT-I065C in 30 min, 30 min hold, slow cool

Comment • Chem milled channels extended to edge of
" : RH2 using .5mm wide saw slit to depth .5mm

METALLURGICAL EXAMINATION

Channels : Clear

Holes z Clear

Aggression • None
Grain Structure : OK

Comment : Perfect braze,no voids,no blockages.
tt

SEGMENT IDENTIFIER 3M

SURFACE PROFILE

Upper contour : 3 separate planes at increasingly steep angles
Upper finish : EDM wire cut,hand ground & diamond polished
Lower contour : n/a

Lower finish : n/a

Comment : 3 planes chosen to intersect pre-drilled

" • holes & form orifices; aft plane gives

: taper section through bond plane.
JOINT CONFIGURATION

Male/female : Male

Detail • Drilled holes for tube insertion
tt

Comment : All channels open,no cross leaks:taper
• section showed void-free bond line. Holes

: have good definition.

CONCLUSIONS Successful segment confirming validity

of concept of preforming half channels
and drilling blind holes. Planar bond

surface easier to prepare and quality
control than profiled surfaces.
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Table A6 Details of PITACT Samples & Segments

BASIC CHARACTERISTICS & INITIAL PREPARATION

Material & Origin: 316 Stainless, Southampton University
Identification : LJS 1 LJS 2 RHI

Size and Shape : All 80 x 60 x 6mm, rectangular

Faying Surface • All lapped

Channels : Slit sawn,w=.5mm,d=.5mm, spaced@ 2.45mm *Chem mill

Holes • none none I, .5, .32mm

Comment : LJSI&2 to Drawing 3;RHI to Drawing 2: *Chemically
" : milled channels d=.6,w=.25,spaced @ 2.45mm

BRAZING CYCLE

Combination Ident: LJSI + LJS2 + RHI =MG6

Braze alloy : MBF20 (AMS 4777B,Ni-7Cr-3Fe-4.5Si-3.2B)

Fixture : 2 each 2mm dowels, + weight + Nickel foil
Furnace Schedule : RT-1065C in 30 min, 15 min hold, slow cool

Comment : LJSI & 2 had distorted during machining; further
t!

: warpage during braze gave thicker bond at edges.

METALLURGICAL EXAMINATION

Channels • LJSI/2 part blocked: LJS2/RHI open
Holes • n/a open
Aggression : None none
Grain Structure : OK OK

Comment • Channels blocked at center of LJSI/2 due to warpagetl

: of plates during brazing

SEGMENT IDENTIFIER 3F

SURFACE PROFILE

Upper contour : Planar

Upper finish : Ground
Lower contour • n/a

Lower finish : n/a

Comment • Upper profile ground to give continuous upper
" surface when matched with segment 4M

JOINT CONFIGURATION

Male/female : Female

Detail : Groove 4mm wide x 12mm deep; docking ports
" 2mm square x lOmm long

Comment Channels redrilled after brazing to clear blockage

CONCLUSIONS

Segment used to demonstrate proof-of-concept

for joint configuration for possible use in fixing
segment to main airfoil. Thin chordwise sections cut

from segments 3F and 4M to show joint configuration.
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Table A7 Details of PITACT Samples & Segments a:dslm4

BASIC CHARACTERISTICS & INITIAL PREPARATION

Material & Origin: 304 Stainless, Southampton University,
Identification : DSIA DSIB

Size and Shape : Rectangular block 135x75x24mm (5x5x2.9in.)
Faying Surface : EDM wire-cut to co-ordinates in Drawing 5 as DSIA

Channels : Chem Milled to pattern shown in Drawing 6 none
Holes : I, .5 & .32mm drilled at channel ends none
Comment : Uneven chem-milled channels hand-finished

" : with needle file

BRAZING CYCLE

Combination Ident: DSIA + DSIB = MG8

Braze alloy : MBF20 (AMS 4777B,Ni-7Cr-3Fe-4.5Si-3.2B)

Fixture : Edges of 2 halves laser-tacked while foil compressed
Furnace Schedule : RT-1037C in 30 min, 60 min hold, slow cool

Comment : Laser-tacking held gap at .08mm: but braze foil

" : O.04mm thick thus unable to fill all gap

METALLURGICAL EXAMINATION

Channels : Clear

Holes : Clear

Aggression : None

Grain Structure : Some grain boundary sensitization away from bond.

Comment : Over-wide gap caused cross-leaks between some

" : channels especially at joint end.

SEGMENT IDENTIFIER 4M

SURFACE PROFILE

Upper contour : Wire EDM cut to co-ordinates in Drawing 5

Upper finish : EDM wire cut,hand polished with 600 grade abrasive
Lower contour : As upper contour

Lower finish : As upper finish

Comment : Pre-drilled holes in lower surface exposed by wire-

" : cutting giving clean orifice profile

JOINT CONFIGURATION

Male/female : Male

Detail : 2mm square castellations at 4mm centers,length 8mm.

" : Male square section comb projecting from tongue 4mm
" : thick and 8mm long.

Comment : Presure tight joint to be made between comb teeth

: and docking ports using adhesive or solder

CONCLUSIONS

Chem-milled channels in segment 4 are at 3mm centers

but cross-leaked & thus not pressure-tight.

Segment 4M thus used to demonstrate concept of

castellated comb & docking port system to match
segment 3F which has channels at 4mm centers.
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Table A8 Details of PITACT Samples & Segments a:vastest

BASIC CHARACTERISTICS & INITIAL PREPARATION

Material & Origin: Vascomax 200 , LaRC round bar, 75mm dia.
Identification : RH5a&b RH6a&b RH7a&b RH8a&b

Size and Shape : Thichness 12mm (0.5in.), irregular shape

Faying Surface : Lapped flat
Channels : Chem-Milled

Hole s : none

Comment • -

BRAZING CYCLE

Combination Ident : MG9 MGIO MGII MGI2

Braze alloy : MBF 1002 MBF 1005 MBF 65A mod. MBF 20

Fixture : 0.59 Kg weight

Furnace Temp. • 1010C (1850F) 927C (1700F) 982C(1800F) I010C(1850F

Furnace schedule : Heat to brazing temperature in 30 minutes , hold for
" : 15 minutes, then furnace cool.

METALLURGICAL EXAMINATION

•Channels : Blocked
Holes • None

Aggression : None? none slight slight
Grain Structure : Slight growth OK excessive excessive

Comment : Rejected Chosen Rejected Rejected

SEGMENT IDENTIFIER n/a

SURFACE PROFILE

Upper contour

Upper finish
Lower contour

Lower finish
Comment

tl

JOINT CONFIGURATION n/a

Male/female
Detail

t!

Comment

CONCLUSIONS

MBF 1005 alloy chosenfor furtherbrazing
Vascomax 200 samples
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Table A9 Details of PITACT Samples & Segments a:ds2ds3

BASIC CHARACTERISTICS & INITIAL PREPARATION

Material & Origin: Vascomax 200 , Vasco Teledyne
Identification : DS2 DS3

Size and Shape : Rectangular, 120xTOxllmm (4.8x2.8x0.44in.)

Faying Surface : EDM wire-cut as per Fig. 1 and Drawing 7

Channels • Chem-Milled as per Drawing 8 on both surfaces.
Holes ." 1 and 0.37mm (.040 and .OlSin.)

Comment : DS2 and DS3 have different orifice layouts

" DS2 has rows of orifices alternating on upper &

" lower airfoil surfaces to right and left of center

" line; DS3 has all upper orifices on right, lower,lef

BRAZING CYCLE

Combination Ident : MGI3 MGI4

Braze alloy : MBF 1005 MBF 1005

Fixture : 1.15 Kg weight and dowel pins

Furnace Temp. : 927C (1700F) 965C (1770

Furnace schedule : Heat to brazing temperature in 20 minutes , hold for
" : 15 minutes, then furnace cool.

METALLURGICAL EXAMINATION

Channels : Open, but with excessive cross-leaks

Holes : Generally open
Aggression : None

Grain Structure : No growth

Comment : Fixtures failed to prevent tapered gap of

" : 0.25mm (.Ol0in.) at forward end of both segments

SEGMENT IDENTIFIER 5M 6M

SURFACE PROFILE

Upper contour : EDM wire-cut to Fig.lc and Drawing 7
Upper finish : EDM wire-cut

Lower contour : EDM wire-cut to Fig.lc and Drawing 7
Lower finish : EDM wire-cut

Comment : Some Imm (.040in.) pilot holes cut through instead
" : of 0.37mm orifices due to bond gap

JOINT CONFIGURATION

Male/female : none
Detail : none

tt

Comment : Not fabricated because of channel cross-leaks

CONCLUSIONS

Segments not pressure-tight due to failure
of fixture during vacuum brazing. In all
other respects the technologies worked.
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APPENDIX2

Oufline of Each segmenf has 2 blocks size 50xS0xG.3mm.50x50x6.3mm "
(2x2xO25in)block (2 x 2 x 0.25)

IF I ,
I I I_ .....

Ouf[ine of segmenf-----,, ' r ..... 9 _ Rough machine both blocks fo size.
affer machining ' _-.....I _'

, r----_-_- _Grind or lap one surface of each b[ock flaf to
I ._
, r ..... beffer fhan 500_inch.
I I. .....

i I (o

ChanneIfo oufcropaf , F....
frai[ing edge " I 5 _Machine nefwork of channels into ground surfaceI

' "--- cf one block
4-I

I I-....

A[[ ofher channels-_ ''_' ', F..... _Mark each block wifh material and segmenf
I I I- ....

have blind ends. , , _-.... _" identifiers
Lo dril[ orifices wifh ' m L....I " I

020in diam.drill i , ,I.. ....

" _ _Refain some scrap
I
I

Channel dimensions- .010in wide

•010in deep

Materials. Projecf: PITACT R&D.DEII A2B6 Scale : 2x Full Size.

DEI 2 Nifronic 40 Drawnby DAW. Drawing No.1 APPENDIX 2
DEI 3 321 St. Sfee[ Tifle : Simulafed frailing edge segmenfs for Drowing No. I
DEI _ IB Ni 200grade Dale OCT 25,1983. vacuum brazing fesfs.
DEI 5 Hasfalloy
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iFig. lc Segments 5M & 6M _

Fig. l b Segment 4M

Fig. I SKETCHOFAIRFOIL0631X7



Fig. 2a Layout of spark-eroded channels and
holes drilled in DEI A series plates

Fig. 2b Layout of holes drilled in DEI B
series plates

Fig. 2c(left) Brazed bonds in A286, Vascomax 200, Hastalloy X and Nitronic 40. Fig. 2d(center)
Hastalloy X/Nitronic 40; top, unbonded: bottom, warped. Fig. 2e(right) DEI 5, 321 Stainless

- ---------



Fig. 3a Layout of chemically milled channels .
and drilled holes in stainless sample RH2

. . . . .. . . . . . . . . . . . .

Fig. 3c Location of offcuts 3A, 8 & D and
segment 3M after vacuum brazing sample MG7

As wire-cut surface finish
3A [magnification X20J



Fig. 4a Offcut 3A polished and etched to show
section through brazed joint[ magnification X70J

Fig. 4b Segment 3M with 3 planar surfaces
ground to expose pre-drilled holes

Fig. 4c(left) Segment 3M polished to give taper section through bond line. Fig 4d(center) X10
view of taper section thru bond line & channels. Fig 4e (right) X70 view of center channel.



X4 magnification view of channels and
trailing edge locator on sample DS1 A

into

5d (left) X15 view of channels & hole.
(right) X20 view of .32mm (.013in) hole
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Fig. Sa(upper) DS1A&B laser tack welded
& brazed. (lower) Chemically milled lettering

Fig. Sc (upper) As-wirecut section across MG8 Fig. Sd (upper) Channel & .32mm orifice.
channels[ X3J. (lower) X15 section thru channel (X1SJ (lower) Location of orifice in airfoil [X4J



Segment 4M as-wirecut from sample
MG8 shown together with offcuts

•

•

•

•

Fig. 7c View of orifices formed by wire cutting
profile on lower surface

•

•

Fig. 7d Combs cut on forward edge of seg
ment 4M. (inset) frontal view of combs



Fig. Bd MG6 cut & shaped to form segment
3F, showing docking ports & cross channels

•

•
Fig. Bb Samples LJS1 &2 showing matching

docking ports & .5mm (.020in) channels

Fig. Bc (upper) LJS1 &2 before brazing. (lower)
LJS 1&2 plus RH 1 brazed to form MG6



Fig. 9a Segments 3F (left) and 4M (right)
before docking

Fig. 9b Segments 3F and 4M after docking

Fig. 9c Segments 3F and 4M laterally shifted
by one comb to show joint between channels

Fig. 9d (upper two) Sections through channel
joints undocked. (lower) Docked.



Fig. 10c [X400J vacuum brazed bonds. (left)
MBF1005 @927C: (right) MBF65A @982C

Fig. 10d [X400] vacuum brazed bonds. (left)
MBF1002 @1010C: (right) MBF20Mod @1010C



Fig. 11 c Samples DS2B(left) and A(right) after
chemically milling channels & drilling holes

Fig. 11 b Samples DS2A&B after EDM wire
cutting showing faying surfaces

Fig. 11 d Samples DS2 A(top) and B(bottom)
put together after chemically milling channels



12c Views of DS2 A&B showing matched
half channels; (top) X4, (bottom) X1.5

Fig. 12d Views of channels and
gap after brazing; (top) X20, X7



Fig. 13c (left) Trailing edge orifice in MG 13 as
brazed [X15J: (right).05mm Nickel shim [X12J

Fig. 13d Trailing edge orifice in segment 5M,
os-wirecut. (upper) X15, (lower) X3



Fig. 14a Segment 5M. View of as-wirecut
lower surface showing .32mm (.013in) orifices

•
• ••

Fig. 14b Segment 5M. View of as-wirecut
upper surface showing .32 & 1mm orifices

Fig. 14c Segment 6M. View of upper surface
(right) & offcut (left) showing warpage effect

Fig. 14d Segment 6M. View of lower surface
(right) & offcut (left) showing orifices[ X1.5J
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