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Levchenko and Solov'ev (1972, 1974) have developed a stability theory for

space periodic flows, assuming that the Floquet theory is applicable to

partial differential equations. In the present paper, this approach is
extended to unsteady periodic flows, A complete unsteady formulation of

the stability problem is obtained, and the stability characteristics over

an oscillation period are determined from the solutio_ of the problem.

Calculations carried out for an oscillating incompressible boundary layer

on a plate showed that the boundary layer flow may be regarded as a

locally parallel flow.
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STABILITY OF AN OSCILLATING BOUNDARY LAYER

V. Ya. Levchenko and A. S. Solov'yev

I. The problem of stability of nonstationary, and, in particu- _IO _

lar, periodic flows has long attracted the attention of the research-

ers because of its high theoretical and practical importance. Experi-

mental observations of the transition to turbulence in some periodic

flows revealed a number of interesting phenomena. In attempting

to explain them, the researchers have turned to the theory of hydro-

dynamic stability. Early studies were based on the concept of

quasistationary flow, which studied the stability of momentary

velocity profiles [I, 2]. The quasistationary approach is apparently

applicable if the change in velocity profile occurs fairly slowly

in time, i.e., when the characteristic time for change in the main

flow is considerably lower than the period of natural oscillations

in_e flow. However, the quasistationary approach is not satis-

factory for many real situations, and could even lead to erroneous

results [3]. Experiments on the transition to turbulence in

oscillating boundary layers show that nonstationariness has a sig-

nificant influence on the transition when the frequencies of the

applied oscillations are on the order of unstable natural frequencies

of the stationary boundary layer (Tollmin-Shli_hting waves) [4-7].

There is a problem in applying the quasistationary model to these

conditions.

Publications [8,9] have developed a nonlocal theory for

stability of "spatial-periodic flows which is based on a hypothesis

oF nl_l_ii.cabi'li.l.y oF I'hc I_lock I'hcory Io ,:tl,ll:_l _lll'f'_,l'_,llll:tl

equations. The correctness of' this theory was confirmed

by direct experiments [I0]. In this work, the methods developed

in [8,9] were extended to nonstationary periodic flows, i.e., an
,
Numbers in right margin indicate pagination in original text.
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attempt was made to set up and solve the problem of stability of

these flows in a "complete, nonstationary situation," thus defining

the stability characteristics for the oscillation period. Specific

calculations were made for an oscillating boundary layer of

incompressible liquid on a flat plate; the flow inme boundary

layer in this case was considered to be "locally parallel.'?

A number of researchers in recent years, independently of each

other, have abandoned the quasistationary approach and conducted

studies on stability of oscillating flows in a "complete nonstation-

ary _ormulation." Puhlication [3] solves the problem of stability

of a layer of viscous liquid with free surface that is put into

motion by the periodically oscillating lower boundary in relation

to long-wave perturbations. Grosch and Salven [II] studied the

stability of a Poiseuille modulated planar flow. yon Kerczek

and Davis [12] studied the stability of a finite Stokes layer

between two parallel plates, one. of which was brought into harmonic

oscillation in its plane. These publications are also based on the /ii

aforementioned hypothesis. The technique for computing the

stability characteristics in these works varies and differs from

that proposed by the authors. The authors do not know a solution

to the problem of stability of an oscillating boundary layer in

a "complete nonstationary formulabion."

2. The behavior of small two-dimensional perturbations in a

flat flow of viscous incompressible liquid is described by flow

function _l(X, y, t), which satisfies the linearized vortex equation

_--T ' O(M", q,o) I AAq;', A- _ _20 (_¢0,_') _ __ ,(A_I") _ a (x, g) a ix, u) R Ox_ _ o,j_" (2.1)

Ih,l"_ _ ,1" 'q°!i, I/) ...... I'l,,\v I'lll,,'l 1,,rl ,,l" J It, m.,ill I'[,,w, \vlll_'ll I1|'

the examined case is a function of time t and the coordinate y,

perpendicular to the direction of the flow; R--Reynolds number

which is constructed using characteristic dimensional quantities

of length and velocity, The function _0 does not depend on the

longitudinal coordinate x, therefore, one can look for the solution



to equation (2.1) in the form

_'(x,g,l)--e_l_(4Y) (2.2 )

We will examine the spatial growth in small perturbations,

considering that ¢=_r_i_+. is a complex constant. In this case,

the flow is stable if _.>0, and unstable if _.< 0.
l l

Assume that the main flow _0(t,y) is periodic for t with period

2_/_. Assuming that one can use the Flock theory for ordinary

differential equations for the partial differential equation

(2.1), we will look for the solution to (2.1) in the form

_F(t, V) ----e"q) (4 Y), (2.3 )

where m--real constant, where spatial growth of the perturbations

is examined, while !(t,y)--periodic function t with the same

period 2_/_ as the coefficients of equation (2.1). Some sub-

stantiations for this hypothesis are presented in publications

[3, II, 12]. By substituting into (2.1) functions _0(t,y) and

i(t.y) in,he form of infinite Fourier series for t with coefficients

that depend on y,

_o co * ._°(t, V) = _ h1,(y)e"k_t+ _ hl_(y) e"_t, (2 4) •
I_:=0 k==O

oo

+_ +P,,(V)
-- oo

(2.5)

and equating the terms with the same exponents, we obtain an

infinite cottltt.:ct_.],d :_y_b_.++,Ht_+,I' .I lllt_.,_tJ', ot'dltt_tt',V dlt't'ePetltl._Ll_quatl.ot_S

( +) ' (+,',,' +++,+,,)= (2.6>L,,t_,,---- U -- c -t- n-_. A,,-- U",.p,,-. +o+1--'-_
<:o

= _ {at+''`r,,-a + h_,tt',P,,-._+-- h2A,,_+,-- h_',4,,+_+} (n = 0, + I .... ).
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Here the following designations are introduced

n a

U -.--2 Re ho, o_------ _e, A,, _ _p_-- _z_P_•

The asterisk designates the complexly-conjugate quantity, the

apostrophe designates the derivative for y.

If the boundary conditions for in are uniform, then with assigned !]

_, R and _ we have a problem for eigen values, and the flow is

stable or unstable depending on the sign of _i" The 10(t,y) flow

which is studied for stability is known before the problem is

solved, therefore, in the sums for k in expressions (3.4) and (2 6)

one can be limited with the necessary accuracy to a finite number

of terms in the Fourier series. The main difficulty in solving

system (2.6) is that system (2.6) is coupled. We assume that if

series (2.5) is also broken, i.e., we ignore in (2.6) the terms

containing %+_,_-_-i,%+2,_-_-2...., then, starting from a certain

fairly large number n = s, where s is a whole positive number,

the eigen values _ found will not depend on s essentially with

the necessary accuracy. The system of equations that is thus

obtained has a finite order, and can be integrated. In particular,

with k = i, it looks .like

i,z_,_=h_ I - *' =-- .s). (2.7)I¢_n_l+ h_IIl(_n+l--h;A,,_l lh A,,+_, .(n s....

The plan for integrating systems of this type is presented in

detail in [8]. It is clear that the effectiveness of the described

method for the solution depends significantly on _e number of

terms s taken into consideration in series (2.5). The use of

the method is justified, if the value s is small, i.e., does not

exceed two or three. The value s is selected while solving the

problem and depends on the type of _nction _0(t,y). However,

calculations show that with a reduction in the frequency parameter

s, starting from certain values, one has to take into consideration

a greater number of terms in the Fourier series. This results in

4



an undesirable increase in the Order of the corresponding equation

system, increases the time for numerical integration of the system

on a computer, and the described direct method for solving the

problem becomes ineffective.

On the other hand, when _ is small, equation (2.1) contains

coefficients which are slowly changing functions of time t, in

that sense that their derivatives are proportional to the small

parameter s. Asymptotic methods can be used in this case to

solve equation (2.1). In this work, as in publication [9],the

method of many scales is used in the process of constructing the

asymptotic method to solve the problem in a complete nonstationary
f6rmulation.

3. In order to simplify the calculations, we will examine a

case frequently encountered in the applied cases where _0(t,y)

looks like (in (2.4) k = I)

_o(4 Y)----_1_o(Y).: (h(U)ei_'.l: (Y)e-'_'}, ( 3.1 )

0
where _l_0--2Reh0,h,----_°Iz,while _ --a certain small amplitude para-

0
meter. The parameters E and _ satisfy the conditions

_,<<I,_°<<1. (3.2)

We will introduce into (2.1) and (3.1) a new time scale T = st,

and, by using the formalism of the method of many scales, we will

replace the derivative for t in (2 i) of the type _ _ a
" " _ _+_7_'

In the resulting equation, the equations will not de_end on x and

t, consequently, one can search for the solution in the form

_' (x, y, T, 0 = _I_(g, l) e_.... '_, (3.3).

where the following equation is obtained for the function i(y, T)

5



After this equation has been supplemented with uniform boundary /13

conditions, we obtain a problem for eigen values to determine _.

• The method for solving this type of problem is presented in detail

in [9], therefore, we will present below only a brief description

of the method and derive the main equations for the examined problem.

The coefficients of equation (3.4) are periodic functions T

with period 27. We have a solution to equation (3.4) in the class

of functions which are periodic for T with the same period 2_,
: 0
and require that the two small parameters _ and s are proportional

to each other with coefficient of proportionality k, i.e.,

_°=k_" (3.5)

As Iindicated in [9] and discussed in detail in [13] in the example

of a model equation, imposition of condition (3.5) is the only

possibility of avoiding a quasistationary apnroximation. Decom-

posing _ and _(t,y) into asymptotic series for

'_= _°._c_1._%'_-1-_s_'3+ .... ( 3.6 )
09(r, g)=Oo('T, y)+_lq)l(T, t!)+_O_(T, !;)+_sOs (T, tj) +...,

where all li--periodic functions with period 27, substituting
(3.6) into (3.4) with regard for (3.5), and equating the terms

with the same ,degrees of a, we obtain a series of partial
(]-1 f'_(_,-i-,C_l.l_;-]rl], o_lll:]_:_(-_tl;',, I'l,(_u _ql!]_'it _ 11_, _,_,,i'i i ,.i,.i1_ ;: ,_I' ,,:.:l_.lll::i,,ii;..

(3.()), COt_talltS _i atld l_uucLi.ot_ _i a_.e st_ccc.ssively determined.

The terms of the zero order yield the equation

LO0-----0,
(3.7)

, (0_ o) I (0_ __)_--operator ofwhere L _ (--i_q-is,0_0)_-_- _ --i_0q'_,!--_ -_.,-

Orr-Sommerfield. One can search for the solution to this equation

6



¢_0(T,g)=_0(V)8(T).
in the form (3.8)

The eigen value. _0 and function 10(Y) are found from the Orr

--Somn_erlieidequationuniform boundary conditions for 10' while the
B(T) function is determined from a nonuniform equation obtained

1
by leveling the terms with

Lqbx = -- kB (T) e_rF_ (y) -- kB (T) e-_r F_o(V)-- (3.9 )
- d--!F_3(V)-- cqB(T)F_ (V),dT

where

Fll (V) --i_o (h'A_o--h"%o), ( 3.10 )
Fl2(Y) = iczo(h" Acpo--h"%o),

02

a = d--_-- %

This equation, supplemented by uniform boundary conditions for

91 has a solution only when the condition of orthogonality is
fulfilled

dB _ rB oodT 0 _+F'ady+ke:" (T) _ _ Fndy+ ke-_rB(T)_q,+o F_2dy+ c_B(T) × (3.11)
0 0 o

oo

× _ cpgF14dy -- O.
o

The solutions to the equation, conjugate to the Orr-Sommerfield /14

equation are designated here by i;. By using the requirement

for periodicity of the B(T) function, it is easy to show [9]

that _i _ 0, while the B(T) function looks like

B (T) = Bo (le)cxp [ik (",,,e iT --r 12e-iTX ],l (3.12)

where

_ %_Fl,ndY
o (m= 1, 2),

rim _ oo

S'r
0
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while B0(k)--constant that is not defined in framework of the
linear theory. We search for the solution to equation (3.9) in
the form

(3.13)
O,(y,T)=B(T)[e_T_,(y)+e-%p2(y)].B,(T)_o(g),

where the functions €I and ¢2 are found from the nonuniform
Orr-Sommerfield equations:

• FL_m--k[--Fl,,,(g)+l 1,,,"_a(lJ)] (re=l, 2) (3.14)

with uniform boundary conditions for Cm" In order to determine
2

the function BI(T) it is necessary to examine the terms with _ .

The equation for ¢2 looks like

L(D2=-- kB,(T), "it F_(g)--kB,(r)e -'T F,_ (g) --d/-_-F13(/J) B (T) e2irF2t(y)-
(3.15)

--B(T)e_'r F._2(g) I3(7) l:_a(g) fl(7")e-'r F24(9)-
--B (T) c -'2it F25 ([1) --rz2B (T) FI4 (/J),

Here

Fn k (F{P v F(')'_ F°o :FI')= -- 111 13 7) .. -- t 13 )

,-0) " F(') ' "(=) r F(2)_" (3.16)F=a= k _,P_2-- -t12 13 T /'11 -- II 13 7,

<,,.(2) p1=F{2a)).F=4= -- iF{_)>, F=5= k Vrl= --

From the condition of orthogonality, BI(T) is determined, while
the requirement for periodicity yields

,oa-F=_,_U ( 3.1 7 )
o

o

Continuing the described algorithm, we obtain _3' etc. quite

8



analogously.

0 (3.18)

.f
o

where

tC(a_ F(4))F,n=k_.2--r,2Fl_)q-F{1 )_r n _a,. (3.19)

We note that in order to obtain the functions _in_(m)'in (3.16)

and (3.19), it is necessary to replace the function 10 by the

function Cm (m = I .... ,4). The functions ¢I and 12 are found from

(3.14), while ¢3 and ¢4 are determined from the equations

!

Lcp_= -- y ikP_ (-- F_2+ r_2Faa) -- (F_ + r22F_3), ( 3.2 0 )

Lcp4-- TI ikF_a (-- Fx_ @ ]_11F_z) -- (F_4 + F_4Fx3 )

with the corresponding uniform boundary conditions. Here

_ ,9+oF2t,dg

I'2,, = _° (n-- I, ...,5). (3.21)
[ 'rol'l",_,dv
0

Thus, by analyzing (3.18) - (3.20) with regard for (3.14)

and (3.16) and (3.21), and taking (3.6) into consideration with
3

accumacy to terms on the order of _ , we find

0_= O_o.-_g2k2Co._ 8a (k2Cl.q_k4C2) _3LO(84). ( 3.2 2 )

Here Cn(n = 0,...,2) are known constants which depend on _0' R,

9



and do not depend on s and k.

4. The mode of fl0w in the oscillating boundary layer with
0

rate of the external flow U = 1 + e cos_t is characterized by

the parameter _=_. The dash notes dimensional quantities.

Here x--longitudinal coordinate, Um--average rate of external
flow, _--cyclic frequency of applied oscillations. With _ < i,

the flow is considered to be quasistationary, with _ > I0 it is

high-frequency; the values 1 < _ < i0 correspond to the intermediate

mode. Ackerberg and Phillips obtained asymptotic solution to

the equations of the oscillating boundary layer on a flat p!_te

for _ . _ which is correct to values _ > 4 []/_]. This solution

was used in calculating the stability characteristics.

Figure 1 illustrates the neutral curves, figure 2 shows

the curves for the coefficients of perturbation amplification

with fixed frequency parameter F=_=110.10 -6, ,where _--dimensional
frequency of perturbation,_--viscosity, while the amplificatiion

Curves 1 were
coefficients are designated by Ina=--.I'_i_dR.

computed for a stationary boundary layer (Blasius profile). Curves

2 are the results of calculations for the amplitude Of applied
0

oscillations _ = 0 I, and dimensionless frequency F0_ _v= 45.10_._"

The calculations were made by both aforementioned methods.

In that region of _equencies where _ is fairly small and it can

be viewed as a small parameter of the problem, the asymptotic

calculation method was used (we note that _ = FoR diminishes with /i___

a decline in R and F0; R--Revnolds number constructed using the

characteristic dimension _ =] , The nentral curve 2 in

figure 1 was calculated both by the direct method described in

section 2 (two terms in the Fourier expansion were considered,

s = 2), and by the asymptotic method, using formula (3.22) (the

I0
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Figure I.

Figure 2.

corresponding points of theneutral curve are designated by light

circles). The results show the good agreement of the presented

methods.

The dimensionless frequency F0 = 45 x 10-6 was selected to

be close to the eigen frequency of the stationary boundary

layer observed near the point of transition to turbulence [15].

When acoustic oscillations are applied (amplitudes of the

oscillations are small) with frequencies that coincide with

unstable eigen ' frequencies of the stationary boundary layer that

correspond to the internal region of the neutral stability curve,

a significant increase was observed in the experiments in the

Reynolds transition number, i.e., destabilization of the boundary

II



layer [4-7]. Since in boundary layer t_pe i'lows, the

transition to turbulence is due to the instability in the laminar

flow in relation to small perturbations, one should expect the

destabilizing influence of oscillations in the external flow on the

stability characteristics of the boundary layer. However, the

calculation results were unexpected and seemlngiy contradictory

to the known experimental facts. For the value of the amplitude
0

of oscillation in external flow s = 0.05, the calculations indi-

cated that the influence of nonstationary flow on the characteristics

of its stability is essentially missing. With an increase in the

modulation amplitude of the external flow, the flow stabilizes
0

in the boundary layer: the curve of neutral stability for s = 0.I

(curve 2 in fig. i) is shifted into the region of large Reynolds

numbers; the slowing down of growth in perturbation is visible in

this case in figure 2 (curve 2).

Direct experimental verification partially confirmed the

correctness of this theory: with low amplitudes of applied

oscillations, no change was noted in the stability characteristics

of the boundary layer; destabilization in the oscillating boundary

layer observed in the experiments is not explained by the increased

i flow stability, but by other reasons [16].

Stabilization of the boundary layer with "high-frequency"

oscillations in the external flow with fairly_high amplitude

has not yet been experimentally confirmed; there are no experi-

mental data for these conditions. The possibility of stabilization

has basically been excluded. Stabilization was experimentally

observed for flow in _e boundary layer under the influence of

sound waves t_ansverse to the direction of the flow. The stabi-

lizing effect of modulation on the flow of other types is known

[II]. The results of this work can be qualitatively compared with

the results of von Kerczek and Davis [12]. With high-frequency

oscillations, all the influence of nonstationariness on flow in

the boundary layer is manifest in a narrow band near the surface,

the so-called Stokes layer. The calculations of von Kerczek and

12



Davis indicated very high stability of the finite Stokes layer,

and the stability improves with an increase in the oscillation

amplitude.

The experiments of Obremski and Fejer [17] studied the

effect ofiow-frequency oscillations on the transition in the

boundary layer. Destabilization was observed in the flow with
80

values of parameter _eNs=_, larger than 2,6 x 104 . With ReNS <

2.6 x 104, there is no influence of nonstationary flow on the

transition in these experiments. In the calculations, whose

results are discussed above, the ReNS values did not exceed 2500.

In figure I, the cross designates the neutral points that were

calculated for ReNS = 105, F0 = 3 x 10-6, which corresponds

roughly to mode No. 2 in the experiments [17], in which significant

reduction was observed in the Reynolds transition number. Unfor-

tunately, we did not succeed in advancing into the region of smaller

Reynolds numbers with the employed velocity profiles or con-

structing the entire neutral curve, since the values of the

parameter in this case became smaller than 4. However, there

was a noticeable expansion in the range of unstable frequencies,

which indicates destabilization of the flow. Of course, it is

impossible to draw definite conclusions from two points, but it

is possible that in contrast to the case of "high frequencies",

destabilization of the flow at low oscillation frequencies of

the external flow is explained by increased instability of the

nonstationary velocity profile. Further studies of this question

are needed.
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