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Abstract

A numerical algorithm has been developed for solving the equations

describing chemically reacting supersonic flows. The algorithm employs a two-

stage Runge-Kutta method for integrating the equations in time and a Chebyshev

spectral method for integrating the equations in space. The accuracy and

efficiency of the technique have been assessed by comparison with an existing

implicit finite-difference procedure for modeling chemically reacting flows.

The comparison showed that the new procedure yielded equivalent accuracy on

much coarser grids as compared to the finite-difference procedure with

resultant significant gains in computational efficiency.

Research was supported by the National Aeronautics and Space
Administration under NASA Contract No. NASI-17070 while the second author was

in residence at ICASE, NASA Langley Research Center, Hampton, VA 23665.
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Nomenclature

A cross-sectional area, constant in Arrhenius law

a,b constants in specific heat equations

C concentration of species

c speed of sound

Cp specific heat at constant pressure

E activation energy

eo total internal energy

flux vector

AA_n,_(I)n expansion coefficients in Chebyshev series

f mass fraction

source vector

ho total enthalpy

o reference enthalpy at standard conditionsHT

I identity matrix

K equilibrium constant

kb reverse reaction rate

kf forward reaction rate

M molecular weight

N number of nodes

NR number of reactions

Ns number of species

p static pressure

Po total pressure

R steady-state residual

R° universal gas constant

To total temperature

T static temperature

Tn Chebyshev polynomial

t time

At time step

species production rate
.
U dependent variable vector

u velocity

iii



x spatial variable

Ax spatial step size

Y stoichiometric coefficient, ratio of specific heats

eigenvalue

P density

equivalence ratio

Subscripts

c based on chemistry

f based on fluids

i,j species indices

R reactions, reference value

s species

sp evaluated spectrally

Superscript

- mass weighted value

iv



INTRODUCTION

Research to develop ramjet and supersonic combustion ramjet (scramjet)

propulsion systems has been underway at the NASA Langley Research Center for a

number of years. A critical element in the design of scramjets and ramjets is

the detailed understanding of the complex flow field present in the engine

over a range of operating conditions. Numerical modeling of various regions

of the engine flow field has proven to be a valuable tool for gaining insight

into the nature of these flows. In recent years, computer programs have been

developed to model the chemically reacting flow fields in ramjet and scramjet

systems.l 2 3 These programs have employed both explicit and implicit finite-

difference procedures to solve the equations governing the flow field in the

engine combustors. The calculations have often required long computer runs to

reach desired steady-state conditions and have been quite costly, due to

stiffness introduced in the equations by the finite-rate chemical kinetics

that is required for accurate modeling. Also, computer resource limitations

have sometimes reduced the degree of spatial resolution that could be achieved

in the calculations. These factors have led to the desire for more efficient

and more highly accurate algorithms for solving chemically reacting combustor

flows.

The system of partial differential equations describing chemically

reacting flows (see eq. (4)) is stiff because of the highly disparate time

scales that exist among the equations. Certain chemical reactions in an

overall combustor kinetics system can take place on an extremely short scale

of the order of 10-12 seconds, whereas the fluids dynamics may require 10-3 to

i0 seconds for a typical case to reach steady-state conditions. There are of

course several intermediate scales lying between these two extremes. Mathe-
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matically, stiffness is often defined by examining the eigenvalues of the

Jacobian of the governing equation system and noting that the ratio of the

real part of the largest to real part of the smallest eigenvalue is a large

number. The former physical definition is perhaps the more useful test of

stiffness; it is felt directly in the numerical integration of stiff systems

through the required proper choice of the integration time step. We will deal

with this requirement now and then follow with a discussion concerning inte-

gration of the spatial part of the problem.

Stiffness in the system of equations governing chemically reacting flows

typically arises from the source terms in the equations describing production

and loss of the chemical species that are present. Large values for these

source terms produce rapid changes in the dependent variables being sought,

and result in the very short time scales discussed in the previous

paragraph. To explore the problem of mixed (short and long) time scales,

consider the ordinary differential equation (ODE) system 4

d_
[A] (1)dt

where f = [fl,f2 ]T, f(0)= "_[2,1JT
and

-500.5 499.5 ]

A =

499.5 -500.5

The eigenvalues of [A] are XI = -I000.0 and %2 = -i.0, and the solution to

equation (i) follows as
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-t -1000t

fl(t) = 1.5 e + 0.5 e

(2)
-t -1000t

f2(t) = 1.5 e - 0.5 e

Note that the solutions fl and f2 have a rapidly decaying component

corresponding to %1 and a much more slowly decaying component corresponding

to %2" If we were solving this problem numerically, accuracy would require

that we advance the solution from the initial conditions using very small time

steps. However, once the solution dominated by %1 decays, we would prefer to

advance the solution using larger time steps that would still maintain an

acceptable level of accuracy• Care must be taken in picking a numerical algo-

rithm that will allow this choice of time step. Otherwise, the numerical

stability of the solution will continue to be dictated by %1 even though its

component has decayed, and very small time steps will still be required to

maintain stability• In response to this difficulty, several authors,

including Bussing and Murman, 5 Stalnaker, et al., 6 and Smoot, Hecker, and

Williams 7 recognized that the stiff source terms in the system of equations

governing chemically reacting flow should be evaluated implicitly• Therefore,

for our problem, algorithms should be developed with the source terms written

implicitly at the new time level in the integration step. Other terms in the

governing equations, that do not lead to stiffness, can still be evaluated

explicitly.5 6 7

Perhaps the best known algorithms for solving stiff systems of ordinary

differential equations are those developed by Gear. 8 These schemes employ

Adams" methods of variable order with explicit formulas used to solve non-

stiff equations in the system and implicit formulas used to solve the stiff
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equations. Hindmarsh generalized the Gear algorithms 9 and developed a variant

to allow for a variable integration step size. I0 Another class of algorithms

for effectively solving stiff ordinary differential equations is the

exponentialrfltted schemes, described in the work of Liniger and

Willoughby II and Pratt. 12 These methods fit the solution at two or more inte-

gration points with an exponential interpolant rather than polynomial

interpolants used in the Gear schemes. The exponential-fitted schemes more

naturally follow the exponential behavior of solutions to chemical kinetics

problems. Additionally, for decaying solutions, this class of algorithms has

an infinite stability radius for both the implicit and explicit varlants. 12 A

good deal more work has been carried out to develop efficient and accurate

algorithms for solving stiff systems of ordinary differential equations

resulting from chemical kinetics problems. We will not continue our survey

here, but rather we will refer readers to an interesting paper by Bui,

Oppenheim, and Pratt 13 that further discusses the area of stiff ODE solvers.

Next, we deal with the computation of spatial derivatives in the

governing equations. The importance of accurately modeling spatial deriva-

tives cannot be overemphasized. Chemical reaction does not take place until

fuel and oxidant are brought together and macroscoplcally mixed by convective

transport, and then mixed down to the microscopic (molecular) level by

diffusive processes. To model these processes, spatial derivatives must be

accurately computed. Due to computer storage limitations, higher order

numerical methods were indicated. Higher order flnite-difference schemes

offered one option for computing the spatial derivative. Another option was

apparent from earlier work of the second and third authors to develop methods

for highly accurate solutions of the Euler equations. Here, Hussaini,
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et.al. 14 used a spectral collocation method to compute the required spatial

derivatives in the governing equations. Using this approach, several problems

governed by the Euler equations were successfully solved and accurate

solutions were obtained on relatively coarse grids as compared to finite-

solutions of the same problems, iSpectral method_are based on the
difference

representation of the solution to a problem f by a finite series of global

functions X of the form

N ^

f(x) = _ a Xn(X) (3)
n=0 n

^

where the a are the expansion coefficients of the series. IS The Xn should ben

a complete orthogonal set. Spatial derivatives of f are then approximated by

taking derivatives of the corresponding series (3). If properly applied, the

high order approximation (3) yields a very accurate numerical representation

for derivatives of f. Spectral methods should therefore satisfy our

requirements for approximating spatial derivatives in the equation governing a

chemically reacting flow field.

This paper discusses the development of a numerical algorithm for solving

the equations governing a chemically reacting flow. The algorithm employs a

two-stage partial implicit Runge-Kutta scheme for integrating the equations in

time and a Chebyshev spectral collocation method for computing spatial

derivatives in the equations. A computer program has been written to apply

this algorithm for the solution of a reacting flow problem. The code is

currently limited to quasi-one-dimensional inviscid flows with hydrogen-air

reaction, which is appropriate for development and evaluation of the

algorithm. There appear to be no restrictions prohibiting extension of the
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algorithm to three-dimensional viscous flows. Chemical reaction is

represented in the program with a finite-rate chemistry model, and a real gas

thermodynamic model is employed.

ANALYSIS

Governing Equations

The quasi-one-dimensional Euler equations in conservation law form with

multiple species undergoing chemical reaction are 16

_ + _ + H O, (4)_t

where

= {pA, puA, pe° A, Pfi A}T (5)

= {puA, pu2A + pA, puh ° A, puf i A}T (6)

dA(x) , 0, A}T, (7): {0, -p dx -wi

and N
T 2 s

ho = f CpdT + ___+u _ (HT)j fj (8)
TR j=i

R°
= h - [--)T. (9)eo o

M

If there are Ns chemical species, then, i = 1,2,..., (Ns - I) and (Ns - I)

equations must be solved for the species fi" The final species mass fraction
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fNs can then be found by conservation of mass since

N
S

) f = i .i
i=l

Chemistry Model

The chemical reaction of hydrogen and oxygen is modeled in this work with

the global finite-rate hydrogen-air chemistry model of Rogers and Chinitz. I?

This model adequately represents the chemical reaction taking place in the

problems to be considered, and it also produces an extremely large disparity

in the time scales present in the problems. This phenomenon allows the

ability of the numerical algorithm to deal with resulting stiffness to be

demonstrated.

The Rogers-Chinitz model assumes that the overall reaction of hydrogen

and oxygen takes place through two reactions, the first resulting in the

formation of hydroxyl radical, and the second combining the hydroxyl radical

with hydrogen to form water. The reactions are given by,

kfl

H2 + 02 _ 20H (i0)

kbl

kf2

20H + H2 _ 2H20 (ll)
kb2

where the kf_s are the forward reaction rates and the kbPS are the reverse

reaction rates. The reverse rates can be found given the forward rate and

equilibrium constant K for each reaction, as
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kb = kf/K. (12)

The forward reaction rates are computed from the Arrhenius Law,

N. -E./R°T

kfi A.T i i

= e (13)
1

for each reaction i. For the Rogers-Chinitz model, the rates are given by, l?

-4865/R°T

kfl = AI T-I0 e (14)

kf2 A2 T-13 -42500/R°T
= e (15)

where

= cm3
AI (8.917 _ + 31.433 28"95)(1047) mole-s

= cm6
A2 (2.0 + 1.333 0.833 _)(i064) mole2_ s+

and

-8992/T

KI = 26.164 e

K2 = 2.682 x 10-6 Te 69415/T.

Knowing the reaction rates for reactions (i0) and (ii), the production of the

four species present in the model can be found from the law of mass action.

For a general reaction,

N ss kfi N

1 _ _ij Cj , = ,NRI ? jCj _ [ " i 1,2,...
j=l kbi j=l
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the law of mass action states that the rate of change of concentration of

species j by reaction i is given by, 18

k Ns Y'" Ns Y" "](Cjli = (7_'j- 7ij) fi j_iCji3 - kbi j_icji3] " (16)

The rate change in concentration of species j by all NR reactions is then

found by summing the contributions from each reaction,

NR

C" = [, (Cj)i" (17)3 i=l

Finally, the production rate of species j is found from,

= (18)
3 33

Applying the law of mass action to the global model, equations (i0) and (ii),

gives, 17

= + 2 (19)

_02 - kfl CH2 C02 kbl COH'

2 C2
_H20 = 2(kf2 C0H CH2 - kb2 H20) , (20)

l

_H2 = _02 - [ _H20, (21)

t0H - (2 + (22)
= _02 _H20)"

The source terms for the last i equations in (4) can now be determined, as a

function of the dependent variables, by application of equation (18).
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Thermodynamics Model

The specific heat at constant pressure, Cp, is nearly a linear function

of temperature for each species present in the flow field (H2, 02, OH, H20 ,

N2) over the range of temperature being considered. We therefore fit the Cp

versus temperature data 19 for each species i with

c (T) = ai T + bi, (23)
Pi

where a and b are constants. A mixture specific heat, Cp, can then be

defined by weighting over the species i as

N
S

c = )_ c f.. (24)
P i=l Pi 1

The total enthalpy of the mixture, made up of the five species, is given by

N

H = )_ fi TR c dT + +_-- (25)i=l Pi Ti

19

o is the reference enthalpy at the reference temperature TR = 0 K.where HT

Putting equation (24) into (25) and integrating gives

s a T2
u2

o + _-- . (26)
H = >_ fi -- + bi T + HTii=l

Finally, the mixture gas constant, R, is found by weighting the individual gas

constants over the species i as

N
S

= )_ Ri fi" (27)
i=l
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Equations (24), (26), and (27) can then be used to define all other required

thermodynamic variables.

SOLUTION OF THE GOVERNING EQUATIONS

Chebyshev Spectral Method

The Chebyshev spectral collocation method 15 is used to define the

derivatives 8_/@x in equations (4). To define _/_x, we expand _ in terms of

the Chebyshev polynomials

T (x) = cos(n cos-ix) (28)n

in the truncated Chebyshev series

N
^

F(x) = > Fn Tn(X) (29)
n=0

A

where the F are the expansion coefficients of the series To form a range onn

x, we introduce the change of variables

x = cose, 0 < e < _. (30)

Putting equation (30) into (28) and introducing the resulting expression into

(29) gives

N ^

F(x) = _ F cos ne, (31)
n=0 n

a Fourier cosine series. To discretize equation (31), we define a set of
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collocation points xj by

x; = cos j=0,1,2, ,N (32)N ' "'"J

and the discrete form of (31) becomes

N

Fj = F(xj)= n=0_" _n cos n_JN" (33)

The inverse of (33) gives the F asn

N

_ 2 _ _.-i F. cos n_j (34)
n ..__ j=0 3 3 Nn

whe re

_ _2 j =0or j =N
C. = i3 1 i < j < (N - i)

Examination of equations (33) and (34) shows that the F can be efficientlyn

evaluated using the fast Fourier transform. 20

Next, we differentiate F in equation (33) with respect to x giving

N

F'(x) = 7 Fn Tn(X)" (35)
n=l

A form of equation (35) without derivatives of the Chebyshev polynomials is

preferred, so we rewrite (35) in terms of another series

N

F'(x) = [ _ (i) Tn(X ) (36)
n=0 n
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and then proceed to relate the coefficients of the two series• The following

recursion relation exists between the Chebyshev polynomials and their

derivatives 15

Tn+l Tn-I 2m T (37)
n+l n-I C n

n

whe re

2 n=0

C = •

n 1 n _ i

Putting equation (37) into (36) and algebraically manipulating the resulting

expression gives

N C i (I) N i (i)

n-l_n-i T" - > _n+iT'. (38)
F'(x) = [ 2n n 2n n

n=l n=l

Introducing equation (35) into (38) and simplifying then results in

^ (1) = (1)2n F = (39)
n Cn-i n-i - _n+l

^ ^

an expression for the F (i) given the F . The procedure for findingn n
^

the F (1) is initialized by setting
n

: o
N+I

^ (i)
FN = 0

(i) through F (i) by back substitution. 15 Then,
and then solving for _N-I 0

^

knowing all the F (i) .n , the required spatial derivatives of F can be calculated
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from equation (36). This procedure can again be done efficiently using the

fast Fourier transform (FFT).

In summary, the computational procedure to find _/_x is carried out as

follows. First, given initial values of F.3 = F(xj), find the Chebyshev
^ ^

coefficients F from equation (34) or the FFT. Next, compute the F (i) fromn n
^

equation (39). Then, knowing the F (i) .n , compute _F/Sx from equation (36) or

the FFT. Once _/3x and the source term H (see equations (4)) are known at

t = O, the solution may be advanced in time with an appropriate temporal

integration scheme. The scheme developed for this work is discussed in the

next section of the paper.

Temporal Integrator

. .

Once values for _F/_x and H are determined as described above, there

remains a system of ordinary differential equations in time that must be

+

solved for the dependent variable vector U. A number of algorithms were

surveyed for integrating this system of ODE's including pure explicit schemes,

pure implicit schemes, and mixed explicit-implicit schemes. The pure explicit

schemes were in general unattractive because the stiffness of the ODE system

made the algorithm inefficient. Pure implicit schemes were also precluded by

the difficulty of developing spectral algorithms for the spatial derivatives

evaluated implicitly. Hybrid explicit-implicit algorithms therefore appeared

to offer the most attractive approach. Following References 5-7, (see page 2)

the explicit-implicit split was formed by computing the source

.

term H implicitly at the new time level, and computing _/3x explicitly at the

old time level to allow application of the spectral approach. Having made

this choice, the equations were then integrated in time using a two-stage
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Runge-Kutta technique. The algorithm was developed as follows.

We first discretize equation (4) as noted above giving

n+l = Un _ At[f_F]n Hn+l]Ui i _xJi + i _ + O(At)2 (40)
sp

where n is the old time level and n+l is the new time level. The

vector _n+l is then expanded in a Taylor series in time.

Hn+l = Hn + Atf_H_ n + O(At) 2<St j

or

Hn+l = Hn + Kn( Un+l - un) + O(At) 2 (41)

where Kn is the Jacobian of H 8H Putting equation (41) into (4)' _U "

simplifying the resulting equation, and then rewriting in delta form gives,

[I + AtK_]AU n+l f_F_ni = -At[_-_xJi + H_] (42)
sp

where AUn +I n+l n
i = U i - Ui • Examination of equation (42) shows that the

bracketed term on the left-hand side is a block-diagonal matrix, the blocks

being n by n submatrices with n the number of equations in the system (4).

Since the matrix in equation (42) is diagonal, equation (42) is the most

easily solved for AU by inverting the blocks, i.e.,

n -i n

ANn+I=l -At[l + AtKi] Ri (43)
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where [ ]-i represents a block invert, and

Rn = f_F]n Hn+ (44)

sp

is the steady-state residual vector. To apply the two-stage Runge-Kutta

technique, we divide equation (43) into a predictor and corrector step as

follows:

Predictor

•AUn+l = -At[I + AtK1 1

(45)

un+l = n + Aun--_
i Ui i

Corrector

• _]-iRn+iAUn+l = -At[I . AtK1 1

(46)

n+l.

un+li = Uni + _'1 [ AU.n--'_i + AUi )"

Starting with initial conditions for 9, equations (45) and (46) are used to

advance the solution from time level n to time level n+l. The process is

continued until steady-state conditions, defined as a reduction of ten orders

of magnitude in the steady-state residuals, are reached.

The magnitude of the time step in equations (45) and (46) is chosen based

on the physical time scales present at any given time in the solution. The

fluid-dynamic time step, Atf, can be shown numerically to be limited by the

Courant condition,
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Ax

Atf = luI + c " (47)

The chemical relaxation time for a species i is given by 21

Pfi
t = --. (48)
c w.

i

Changes in this relaxation time are then given by

A(of i)
At - (49)
c _.

1

since
wi remains nearly constant over a time step. For accuracy, we require

that the chemical time step be chosen such that no change in specific mass

fraction greater than A occurs over that time step. Equation (49) then

becomes

A
At - . (50)
c $.

i

A is initially set at 0.0001 for the computations that follow. The

computational time step At is then chosen to be the minimum overall grid

points, of the fluid and chemical time step, i.e.,

At = min(Atf, Atc) (51)

(We also note here, following our earlier discussion, that other authors 8 12

restrict the truncation error or the growth of truncation error in the

numerical solution to be below some set level, by the appropriate choice of

time step. This is also an important constraint to achieve a given level of
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accuracy. This constraint on At has not been applied in the present work, but

such an approach should be included as the work further matures).

Initial and Boundary Conditions

The governing equations (4) are hyperbolic and require initial conditions

at each point to start the calculation and boundary conditions at the inflow

boundary. Initial conditions are computed by first specifying an inflow Mach

number and estimating an outflow Mach number. The interior Mach number

distribution is then assumed to have a spatial variation which is linear. The

total pressure and total temperature are assumed to be constant throughout the

domain. Finally, the initial flow is assumed to be isentropic, so that

isentropic relations can be used to compute the static pressure and

temperature; these conditions are found from

T

Po T
y1 53)P

Knowing the static temperature and pressure and Mach number, the velocity

distribution can be computed, and the density distribution can be found from

the equation of state. Since the inflow boundary flow remains supersonic,

boundary conditions are specified thereby holding conditions fixed at their

initial values.
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RESULTS

Having now developed a numerical algorithm for solving the equations

governing chemically reacting flows, that algorithm will now be used to model

the reacting flow in a rapid expansion supersonic diffuser. A rapid expansion

diffuser was chosen such that high concentration gradients existed near the

inflow boundary, providing a formidable test for the method. Results from the

present algorithm were compared with a benchmark calculation from an existing

finite-difference chemical kinetics code to validate the method. The

comparison also allowed a demonstration of performance of the high-order

accurate spectral method on grids which were quite coarse compared to grids

required in the finite-difference calculation.

The rapid expansion diffuser is shown in figure i. The diffuser is two

units long, has an initial cross-sectional area of 0.79 and a final cross-

sectional area of 3.14. The diffuser wall is defined, as noted, by a shifted

sinusoidal. Flow is introduced to the diffuser at M = 1.4, a velocity of 1230

m/s, a temperature of 1900 K, and a pressure of 0.081 MPa. The chemical

composition of the inflow is defined to be a three-tenths stoichiometric

mixture of hydrogen fuel and air.

Starting from the initialstate described above, the governing equations

were solved, using the algorithm in a time consistent manner, until steady-

state conditions were reached. Independent benchmark calculations were also

carried out with a previously validated Adams-Moulton implicit finite-

difference program. In the results which follow, comparisons between the two

methods will be made, first to verify the new procedure, and second to

demonstrate its high spatial resolution on relatively coarse grids. A

comparison of methods showing a time history of the chemical species is given
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in figures 2 through 4 for H2, 02, OH, and H20, respectively. Results are

presented at the first grid point interior to the inflow boundary where both

the flow field and species gradients are a maximum. Agreement between the

Runge-Kutta spectral and the finite-difference calculations is excellent in

all cases.

Next, we compare spatial results from the two methods once steady-state

conditions have been reached. The finite-difference solution required i01

grid points before a grid independent solution, defined as a graphically

imperceptible difference in the steady-state result between the present grid

and next coarser grid, was attained. Calculations using the Runge-Kutta

spectral code were carried out on 17 and 9 point grids. Comparisons of

steady-state results for the two methods are given in figures 5 through I0.

Figure 5 shows a comparison of the axial velocity profiles in the diffuser.

The 17 point spectral solution and the i01 point finite-difference solution

agree quite well throughout the diffuser. The 9 point spectral solution

slightly overpredicts the velocity near the inflow boundary, but agrees well

throughout the remainder of the diffuser. The overprediction is likely due to

the failure of the coarsest spectral grid to predict adequately the high

gradients that exist at the beginning of the diffuser. Temperature

comparisons, given in figure 6, follow similar trends, with the 17 point

spectral solution agreeing well with the benchmark, and the 9 point solution

also agreeing well, except near the inflow boundary. Identical trends also

occur when axial pressure profiles are compared in figure 7.

Comparisons of axial species distribution computed by the two methods are

given in figures 8 through i0. Prediction of the H2 mass fraction by the

spectral method with 17 grid points agrees well with the finite-difference
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solution throughout the diffuser as can be seen by examining figure 8. The 9

point spectral solution underpredicts the H2 mass fraction near the inflow

boundary, again due to the high spatial gradient in fH2 there, but agreement

again becomes good away from the inflow boundary. The spatial distribution of

02 mass fraction is given in figure 9. The gradients are not as large for

this species since 02 is in excess, and both 17 and 9 point grids agree well

with the finite-difference solution. The steady-state species distributions

for OH and H20 are given in figure i0. The spatial gradients are again high

for both species near the inflow boundary, and trends similar to those for H2

are repeated here. Agreement is again quite good when comparing the 17 point

spectral and finite-difference results. The 9 point spectral solution still

underpredicts gradients near the inflow boundary, however.

A final comparison of methods is given in figure Ii which shows the rate

of reduction of steady-state residual with iteration count at the first

interior grid point. Since the 17 point Runge-Kutta spectral and the i01

point finite-difference calculations yield comparable accuracy and have the

same minimum spatial step size, it is reasonable to assess the relative

efficiency of the methods using the result given in this figure. Note that

the residual reduction rate by the spectral code is significantly greater than

that provided by the finite-difference code. The maximum residual (at any

grid point) is reduced with the spectral code by ten orders of magnitude in

only 2400 iterations, whereas the finite-difference code requires 6000

iterations to achieve the same level of residual reduction. The more rapid

rate of residual reduction translates directly into a superior overall

computational efficiency for the spectral Runge-Kutta method.
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CONCLUDING REMARKS

A numerical method has been developed for solving the equations governing

chemically reacting flow fields. In this method, spatial derivatives are

discretized using a Chebyshev spectral collocation technique. Species source

terms are calculated using a global hydrogen-air finite-rate chemistry

model. The resulting ordinary differential equations in time are integrated

using a two-stage partial implicit Runge-Kutta scheme that is effective in

handling the stiffness, due to chemical kinetics, that is present in these

equations. A computer program has been written using the spectral Runge-Kutta

algorithm, and this program has been used to compute the flow in a rapid

expansion supersonic diffuser. The diffuser flow field was also computed

using an existing implicit finite-difference reacting flow code that had been

validated in prior analyses. Comparison of results from the two programs

indicated that the Runge-Kutta spectral code was accurate in predicting both

the time evolution of the dependent variables and the final steady-state

results. In addition, the spectral algorithm produced equivalent accuracy on

relatively coarse grids as compared to the fine grid required by the finite-

difference calculations. Based on these results, it appears that the Runge-

Kutta spectral method offers promise for improving our ability to model

chemically reacting flow fields.
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Figure I. Rapid expansion supersonic diffuser test case.
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Figure 2. Comparison of time history of hydrogen mass fraction.
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Figure 3. Comparison of time history of oxygen mass fraction.
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Figure 4. Comparison of time histories of hydroxyl and water

mass fractions.
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Figure 6. Comparison of axial temperature profiles.
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Figure 9. Comparison of axial oxygen mass fraction profiles.
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