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" CONTRIBUTION TO TIIE TItEORY OF STATIONARY SEPAttATION AREAS

G. I. Taganov :_

Experience shows that tile pattern of steady flo_ around /3.

a bluff body with a closed s'eparation area is disrupted at

subsonic current velocity at R nu=bers from 101 to i0: when the

flow is laminar in nature. In addition, experience demonstrates i

that, at supersonic current speed, there is a stable, steady

flow pattern if there are laminar stagnation zones adjacent to

the body (a stagnation zone behind a reverse ledge on the bodySs

surface, a stagnation zone in front of the smooth ledge on the ._

body's surface, a forward separation area for_ed by the tip of ._ !
the centerbody, a stagnation zone formed when there is a _ :

descending jump on the body's surface) at high _ numbers on the

order of I04-I0 _
?
!

Thus, experience indicates that, for certain ranges of chani{e i.i
in M and R nu_zbers under specific boundary condition:, steady !_

solutions to equations for the movement of a viscous liquid exist _-

and are reliable. Outside these ranges and under different _.

boundary conditions, flo_ around a body _ith a clo:ed separation i

area is more (Karran's vortex street at bl<<l)or less (pulsing in _,i

close wake behind a body at M>l) clearly definable as steady in I'
i

nature. There is still no theoretical proof of the existence of i
%

stable steady flows _ith separation areas in these ranges. I

I
Here _e attempt to find the region of existence of passible i

steady flows with a closed separation area in a range of R I
numbers such that flow in a viscous nixing area can be described I

by Prandtl's equations. Limit conditions for flow within the !

i

iseparation area are set so that the flow pattern _ithin the area . ,I
i
!

I.
_:Nu_ber_in the _argin indicate pagination in the foreign text. !

i
I

I
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is considerably simplified and it becomes possible to use :_
hydrodynamic analytical methods. ,I

>

3
The first part of this article (points 1-4) studies the field

of possible steady flows for an incompressible fluid. It is (}
4

shown that only under special boundary conditions within the .j
separation area (ideal dissipator) does flow near a s_ooth slab i

approach Kirchhoff's flow with quiescent fluid within the zone if _

R approaches infinity. The drag coefficient for the "slab +
_

ideal dissipator" system is cx._/(_+4), i.e. nearly half the
value obtained by Kirchhoff for an ideal fluid. _ *

!
i'Oualitative study of the field of possible steady flows in

plane cxR has made it possible to detect the existence of a

certain region tChich has degenerated into a line with an upper ! !

linit on the R number of about I0e. In this region steady flows _

possess a particular flow configuration if vortical attachllent is ! "
not viscous. _

i

The existence of a connection between flow configuration in
!i

the region of non-viscous vortical attachrmnt and the reliability

of the steady solution is traced in part two (point= 6-7), both i_

for individual solution_ obtained by _ethods of the linear theory ii!of hydrodynamic s'tabil'ityand "for well-known experinental ":.

material obtained over a wide range of R numbers at sub- and

supersonic current velocities. This revie_J makes it possible to

formulate a rule for selecting stable stcady flows with ]

separation areas and to use it to analyze co_parable flous --

both laminar and,. in some cases, turbulent.

I. Degenerate flo_ in a t=eparation zone. _'le will consider
i

the pattern of a steady flow _-_ith closed separation area behind a

body past which a current of incompressible fluid flows at R

numbers such as _=u d/v (u is the velocity of the unperturbed

current, d - the transverse dimension of the body), at which the

4



thichness of tile boundary layer is less than the size of the body

(cf. figure 1).

We can identify the following typical lines and areas in the

upper half-plane of the flow.

The dividing streamline of the current with fluid segments AB

and Be and.a segment of the body boundary AC; regions:

1 -- outer potential current; 2 -- outer viscous boundary layer

and wake; 3 -- inner viscous mixing layer; 4 -- viscous flow with

nearly constant vorticity; 5 -- viscous boundary layer near the

rigid boundary of the body with a vorticity opposite in sign;

6 -- attachment. At points on seg_:ent AB of the dividing

streamline the fluid has a velocity of Up, and friction stress Tr .%

is applied cloch_ise to the fluid movinZ within the zone. In

segment CB, fluid velocity is Uo; friction stress equals zero.

In segment CA, velocity equals zero, and friction stress applied

.... to the" fluid acts•countercloc]:wise. _:_

During steady flo_,'in a separation area, friction forces in

_egment AB should equal the viscous dissipation of energy l_ithin

tileclosed area.

IIere dl is an arc element, dj is an element of the cross

section of the area, F is the area of the cro_s section limited

' by line ABCA.

5



Analysis of values introduced into the integrated expression

on the right side of equation (I.I) shows that, if R numbers

increase, when the thickness of regions 3 and 5 decreases,

velocity gradients in them noticeably exceed the velocity

- gradient in the core of the flow. Most of the dissipation occurs

in these regions, and most energy dissipates in that part of

region 3 which is adjacent to section AB of the streamline.

We will try to find conditions under which the pattern of

flow within a separation area may be fundamentally simplified.

To obtain such a degenerate flow within the separation area, we

need to:

I) prevent energy dissipation in region 4;

2) mini=ire dissipation in region 5;

3) precisely determine energy dissipation (E(3))AB in
that

part of region 3 which is adjacent to the streamline AB,

4) concentrate dissipation

IO u;(1)T_(1)dl--(E_-_)_AB I

' _ Figure 2 J
I

- , e I!

inadec, uate to provide a balance in segment CB of region 3, by

.... causing dissipation in an additiona! element -- an energy

dissipator. It is assumed that this additional element; firmly

connected to the body, creates a region with high velocity

gradients within the separation area, in which dissipation

inadequate for balance (4) occurs and that it accepts and

transmits to the body the mo,-_entum of the backward jet moving

toward the body from the attachment region. The shape and

dimensions of the dissipator are immaterial to further

discussion -- it is considered to be a black box with the ability

to reduce the value of Bernoulli constants corresponding to

different backward jet streamlines to assigned values.

|i
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Figure 2 shows a flow arising in the presence of an ideal _i

dissipator, which dissipates al_ost all the kinetic energy of the

backward jet and assumes the entire momentum of the backward jet

gained in segment AB of the dividing streamline.

It is easy to see that, in this case, degenerate flow /5

(without a circulation core) occurs at constant pressure over the

entire region limited by the dividing streamline, except for the

attachment region.

A viscous mixing layer develops here at constant pressure and

constant outer flow velocity. The tangential component of inner

flow velocity on the border of the viscous mixing layer equals
€

zero. Note that there are precise self-similar solutions under

conditions close to those considered [I, 2]. We will calculate

the residual kinetic energy contained in the backward jet, which

must be dissipated in the dissipator, as well as the backward jet

momentum which the dissipator must assume.

Let us calculate paraDeters of the inner part of the viscous

mixing layer in cross section S, located at the end of the

separation area, but in front o£ the attach_nent region in which

the flow will be regarded as nonvis_:ous and eddying. I

The force of the outer current at the dividing streamline

(I.I) is partially dissipated when the quiescent fluid

accelerates and is partially used up in creating motion whose

kinetic energy in cross section S equals ©

l It is possible to regard flow in the stagnation point region

as nonviscous and vortical because of analysis of Navier-

Stokes equations in this area. (This has been shown, for

example, in a paper by Y. Y. Sychev at the 8th Symposius on

Modern Problems of Fluid and Gas Mechanics. Poland, Tarda,

18-23 September, 1967 )o.

7



where n is the normal to the dividing streamline. This..residual

kinetic energy should dissipate in the dissipater with an error

on the order of (v'/Up) 2, where v' is the velocity of the fluid
drawn into the viscous mixing layer from the quiescent fluid in

the separation area and the level of dissipation in the section

between cross section S and the dissipator.

Let the non-self-similar viscous mixing layer in cross-

section 1 have a certain momentum. It will remain the same in

cross-section 2 dowstream as well, but will increase in the inner

part of the viscous mixing layer in cross-section 2 and decrease

by the same amoun% in the outer part, since the momentum gained

by the inner part of the mixing layer at the area of dividing

streamline 12-11 will be
h

A_' ,=: _-T;(l)dl
I,

..

and the momentum lost by the outer current will be hr.

If the thickness of the momentum lost at the beginning of the

separation area in the buter current is other than zero, then in

cross section S, the momentum gained by the inner part of the

current will equal

where uk is the velocity at the outer boundary of the nixing
layer. If we use the concept of momentum loss thichness 6t,$ and

introduce the concept of the momentum gain thickness of the inner

part of the viscous mixing layer 6+_$, determined by the /6
relationship

c

puAz6.°_ =p _ u'dn (1.3)

8



then from (1.2) we have

(6+_°)'€= (6°°)s - i6*')° (i. 4)

- The combination of the constant pressure region behind the

body and the inner potential flow region was studied using the

theory of cavitation flows'. At present, there is a mathemati-

cally noncontradictory pattern for flow with a backward jet

(Efros' flow [3]), which ensures combination of the constant
pressure zone

L i

__ Figure 3

<_r..3 "--

I
behind a body and inner potential flow over a wide range of ]

static pressures within tile zone (cf. figure 3). Ho_,_ever,a ,!

hydrodynamically noncontradictory outer potential flow around the !
body with constant pressure behind it must be plotted, in which [i!

viscous effects within the closed separation area and.viscous [

effects in the outer part of the mixing layer (displacement I
effect) ,_ould be accounted for. !

I
!_

In approximating momentum equations of the boundary layer I:

theory, flow in the inner part of the viscous mixing layer with

degenerate flo_ _ithin the area is equivalent to flow in a fluid I!
layer with Bernoulli constant for outer potential flow and with a i
tl,ickness equal to momentu[_ gain thickness 6+_$. I

?

Consequently, the thickness of a bach_ard jet with a velocity ]

constant in terms of cross section and corresponding to the
pressure in the constant pressure zone in ideal fluid model 60 !



must equal the momentum assumption thickness in cross-section S

of the viscous flow:

6°-
(1.5)

Tractive force T, acting on an ideal dissipator in a viscous

degenerate flow 2, must equal tractive force T° , which acts on

f!ow within _'heconstant pressure zone in an ideal fluid model of

flow with a bac!_wsrd jet.

In viscous degenerate flow, the ideal dissipator is a flow of

impulse, but not a flow of mass. In the ideal fluid potential I
l

flow which models the subject viscous flow, sink flow of impulse IIi
which equals the power of the sink flow of impulse in an ideal

dissipator, is, of course, sink flow of mass.

Presure drag XI acting on a body in viscous degenerate flow

must equal pressure drag acting on a body in an ideal fluid model

X1°" i!

The displacing effect a viscous boundary layer developed at _ I

rigid profile ha= on potential flow is, as we kno_, determined by I

the arrangement on the surface of the profile of hypothetical I_i

sources, which ensure that potential flow deviates by l_i

displacement thickness _. Hypothetical sources in an actual i ,

viscous flow do not have a current of impulse. In an ideal fluid

model, the current of mass from these sources also bears the

current of impulse.

In the case considered -- flo_; with a free boundary -- /7

current from sources arranged close to the dividing streamline

deforms not only exterior potential flow, but also the contour ofu

the constant pressure zone. To obtain from Efros' flow an ideal

2 Here and henceforth, T, XI, and X represent total forces

valid for two f!ow regions divided by the plane of symmetry.

1



fluid model in which viscous effects in the internal and external

part of the viscous layer are accounted for in ease of degenerate

flow in the separation area, sources must be placed close to the

free boundary between cross sections O and S. These sources must

ensure that a random cross section 1 has a mass flow rate of

, * are, respectively, momentumeUk(6+_* + 5e*) where 6+_ and 6e
gain thickness and displacement thickness of the outer part of

the viscous mixing layer in this cross-section (cf. figure 4.)

Figure 4

• nr.4

Indeed, let us extend line L from point N, the dividing

- -. streamline of Efros' current (cf. fi£ure 3) in cross section S,

to point O, so that the current of impulse in each section of !
each layer limited by line L and the free boundary _ill equal !

PUkZ(_+_>_)1 and, correspondingly, the current of 7._asswill equal i"

PUk(+..... li
L

Then for the external flo_, line L will becol_.e the line of

sink flows throu5h which nassf!o_.:s equal to {-Puk(6+.';;:-') 1} can

• ... - . Successfully •pass.. To account for the displacing effect of the

external part of the viscous layer, we must arrange along this

line both sources vdlich compensate for sinhflo_ on the line with

a flow rate of PUk(6+_:_._.:)ltoward cross section I, and sources '
which account for the displacing effect of the e.':ternalpart of

i

the viscous mixin_ layer with a massflow of PUk(fle$)1 toward
cross section I, i.e. with a total nassflow toward section 1 I

equal to PUk(6+$$. + de$)l.

If in the first approxir.ation we disregard the effect of

viscous layer displacement on the configuration of the constant

pressure zone, then error in calculating transverse diuension b

II

• L
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_H_ of the constant pressure zone will be on the order of

}':_; 6e,/b Rb 1/2

}i_ in direct use of Efros' flow in a first approximation of

. ..: external potential flow near body with degenerate flow in the

,4 separation area, as the preceding indicates, the outer part of

! the viscous mixing layer'is characterized by negative

tl displacement thichness, equal to tilemomentum gain thickness of

i the inner flow, _+$$. In other words, an additional error ini
i determining the transverse dimension of the constant pressure

i zone, on the order of about Rb 1/2• , is permitted.
i

:_ We will now determine in the first approximation (without

regard for actual displacement) c for a "flat slab-idealx

dissipator" system as a function of R number, assuming that the

r initial momentum loss thickness (6_)0=0 and flow in the viscous
mixing layer is _elf-similar

.... _ In this case, with regard for (1.4), tractive force acting on
the ideal dissipator is by definition equal to the total backboard

jet monentum (since the axial component of the velocity of the

fluid from the dissipator equals zero)

'h7= pu 2(6* )s (I.6)

, Pressure dra_ acting on a bluff body, XI is about equal to

X,E. Pressure drag acting on a body in Efros' flow is related to

bachward jet thickness 6E by a ratio obtained from the equation

for momentum (cf. [4])

-- _ (:.7)

With regard for tractive force acting on the flow of fluid /8

in a backward jet 1/2TE=PU) 6E,:, the coefficient for total force of

drag acting on the "body + backward jet" system will be

12



and the coefficient of pressure drag acting on the body is, from
(:.7)

_ /: bE/,__ an _ U_
= ]-Z-$

(1.9)

where d is the size of the body.

The dimensionless velocity at the current dividing line in a

self-similar solution [I, 2] will be

U-----up =0.557
1,

and friction stress on the current dividing line (from [2]) will I
be

t

• p O._'ILpu_s/ l !
.... i

.... (1.10)
t

1
where "I is the length of the arc along the dividing streamline [':i

from section 0 to the subject section. ! '
i

The configuration of the flow, and then also for a given E l

number, can be determined from (1.5), since the length of cavity i5g
ik as a func*_on.of backward _et thickness is known from the

solution of the problem of streamlining a body with bachward jet

6E=fl(Ik). From the self-similar solution for a viscous mixing

layer, we can obtain the function (8+$$)s=(655)s = fl(Ik) for a
given R number.

Integrating (1.10) along the dividing streamline to cross

section S, located distance ik from the beginning of the mixing _,
layer, we obtain an equation for the momentum loss thickness of

the external part of the viscous mixing layer

pa_2(5+*)_ = 0.4}'ppua"la ( 1.1 1 )

13
b.
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Substituting the equation for _E from (1.11) into (1.8),
given (1.5) und (1.6), we find

¢,-- t.GT_';'5_'t'R-v', lk-" l,/d, _ -----u_lu= (1. ]2)

IIere _k is the dimensionless length of the cavity in an Efros

flow, uk is the dimensionless velocity at the free boundary.

From (1.8) and (1.9) we have Cx=Cxl/(l+_k). As we know [4],
when Ik approaches infinity, then in an Efros flow near a flat

plate 2_E/d._/s(w+4) , and exi approaches 2n/(n+4), about 0.88,
i.e. it tend= toward a Kirehoff value for drag coefficient. It

is easy to see that (1.5) is satisfied if R approaches infinity.

Consequently, flow in a separation area with an ideal dissipator

approaches a _irchhoff flow i_hen R approaches infinity, and,

i accordin_ to (1.8), when uh approaches u , the dra_ coefficient
for the "plate + ideal dissipator" system, approache_ c =_/(_+4)x
or about 0.44, i.e. a value half that obtained by Kirchoff for a

separation area with a quiescent fluid at p=O. This is an

accurate result, since error from disrezardin_ the effect of

displacement approaches zero if the increase in the size of the

constant pressure zone is unlimited.

The limitation on the region of existence of stationary /fl

flows in terms of R number imposes the condition Pop ->P-' where

POp is total pressure at the dividing streamline for a nonviseous
+ vortical flow in the attachment region. From Bernoulli equations

used in the re,ion of nonviscous attachment to the dividin_

streamline and to the streamline for the inner potential flow, it

follows that

_ P_--p._ ."
'Iou " (I.13)i_ o

L_hen R approaches infinity and U=0.587, POp--0.345. As R

decreases, uk rises, and for a certain limit R, value Rlin, POp

........,, becomes zero. The value Uk, corresponding to this lirait R

14
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Figure 5 _

G. t---.

number is found from (1.12) when _0p=0. For U=0.587, Uklim=l.23,
and the corresponding value for pressure resistance in the

separation area is

P_ -- P" -- I _h: = --0.52 "

?.
Let us calculate E and c corresponding to the limit

lir_ x _ '

steady flow around a slab with degenerate flow in a separation ¢

area. Using results calculated to solve the problem of :,

streamlining a slab according to Error' system [4], when pk = ._ .:

-0.52, we have T k equal to about 15 u k equal to about !.23, Cxl

equal to about 0.88+0.52 and, from (1.8) and (1.9), c x equal to .i:_ -- :
about 0.62. i]

_ :

Then, substituting these numerical values into (1.12), we• ,_

obtain an Rli m of About' !20. Thus, in plane Cx,R (cf figure 5)• _ :_

all steady flows around a .slab with degenerate flow in the _-':;

separation area lie on curve Be, extending fro._,an /illm of about ,.!

I0_ to II+-. Along this curve, c for the "slab + ideal :v <

diss;oator", system varies from about O. 62 to about 0.44. -_!_
;!

2. Nondegenerute circulation flo_ in a separation area. Let

us now consider a f!ow in a separation zone with an imperfect

" dissipator which permits the existence of circulation motion in a

separati..n area. Batche!or [5] showed that a flat flow of a .:_

nonviscous fluid _ith constant vortex value over the entire

circulating flow region, except for a thin layer close to the ,!
i

boundary of the region whose thickness approaches zero when :!

P..-. o.
:.I

15 _;



Let us consider a boundary separating circulation flow with 1

constant vorte× from external flow with a zero vortex value. If i

velocity on the boundary line is less than velocity of the !

e×ternal potential flow at this line, a viscous mixing layer

develops if _ does not equal zero. Friction stress on the i

dividing streamline of the viscous nixing layer causes the

boundary layer of the circulation flow to accelerate, ii

Let us place a dissipator across the streamlines of this !
!

circulation flow boundary layer which is being accelerated and,

consequently, is experiencing a positive increase in Bernoulli I

• constant. Let the dissipator take not all, but only the I

additional =onentum gained by this boundary layer when expose_ to t

friction stresses on the dividing streamline and let it release _!

fluid with the same Bernoulli constant distribution across the I

streamlines as was in this layer before it accelerate near the I
• I"

dividing streamline. The presence of a dlssipator _ith these _"

properties in the separation area with circulation motion /I0 i_:

ma]:esit possible to satisfy equations for energy and _onentun. I'
_ !i

The velocity of the external potential flo_¢ uk and the
velocity at the boundary layer of the circulation flo_ with

constant vortex Ub=Ub/U" along the co_mon boundary are related by ithe equation

A=_ _-_c0nst (2.1)

resulting from the equality of static pressure in the external

and internal flo_ at each point on the boundary [S]. The

constant introduced into (2.1) can be used as an independent

16
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:!

:!
parameter defining flow and, accordingly, dissipator properties, a

An ideal fluid model describing the external potential flow
I

. near a body with a separation area with circulation flow in it

and accounting for all viscous effects is built similar to that

in point 1. The dissipator in a viscous flow will be a sink flow

of mass; in the ideal fluid model, a sink flo_; of impulse with

something like the power of a sink flow of mass will correspond

to it. Strictly speaking, the location of this sink flow should

correspond to the location of the dissipator in the separation

zone (in this it differs from degenerate flow).

Figure 6

The currents of mass in any radial cross section of -:

circulation flow in an ideal fluid model are identical (cf.

figure 6). Calculation of parameters for flow in a viscous

mixing layer (defining U(1), 65_(1), 6e$(1)) is complicated ,
because thedifference in velocities on the boundaries of the

layer, as well as static pressure, varies along £he viscous

layer.
"7

There are also calculating problems in finding flow in an

ideal fluid model, resulting because one region of flow satisfies

Laplace's equation, while the other -- the inner -- satisfies l

a If a portion of the friction surface of the body acts as a

dissipator, then parameter _ is defined by the condition ,

valid for a boundary layer periodic in terms of 1 at high R

numbers.

17



Poisaon's equation• fie can approximately replace flow with
y

constant vortex equivalent to it in terms of current of impulse
•

by N. A Lavrent'yev's potential ring [7] and seek a solution to r,

• the problem in the class of harmonic functions• Numerical

" calculations are carried out in this approximation.

' 3. The P,egion of _tationary flo;, in plane exit. Without data
from numerical calculations on flow tvith circulation motion

• within a separation area, we will try to qualitatively evaluate

: the location in plane cxH of stationary flows which satisfy

various values for parameter A (cf. figure 5). Steady flows with

an ideal dissipator in the separation area for which %-0
correspond to points on curve BC. According to calculation,

parameter A varies monotonically along the curve, according to

calculation, from AB of about 1.52 to AC equ'Qi to I. The lower i_I
boundary of the region of stead), flow with circulation motion in

the separation zone in plane Cx,// must be curve An, which

corre=ponds to a maxii_ally weah dissipator (friction on the back

side of the slab). It is easy to sho_ that the drag of a slab

streamlined in the separation area corresponding to points on

curve AD is on the order of the friction drag in the saree slab,

past which a current flows at the same R number, but below zero _ :

incidence, i.e. curve AD is close to curve L, described by the I
equation c =2(1.328R-1/2i. o |

Parameter A on curve AD cannot become zero when R number is

finite, since the finite friction i_.pul_e on the back side

of the slab which decelerat_ the circulation flo_ within the

area and t'heabsence in this case (_k2-_b2=O) of an accelerating
impulse from the internal flow at the dividing streamline would

violate the equality l_--k2-_b2=Oand' create a new circulation flow

with a A>O. Parameter A can become zero only if the

decelerating friction monentum on the back side of the slab i

. becomes zero, i.e. if R.- (point D). If R _-, A, _;hich de=cribes i
dissipator efficiency, passes through all values bet_;een zero at ',

point D(cx-_O) and unity at point C(Cx-_/_+4 ). Keepin_ thi_ in [

18



mind and relying on the distribution of A calculated along curve 1BC, we can expect that the behavior of lines h =const in plane

CxR is close to that presented in figure 5. 1
- !

We will now determine how the shape of the separation area i

close to the slab and the flow close to it vary when R+" as Ii
dissipator effiency decreases, i.e. during movement from point C I

toward point D. Point C represents an infinitely long separation I
area, as indicated above. The unlimited size of the separation

area for points located between C and D when R.- results from the

finite nature of cx at these points.

Even an approach to point D along curve AD does not

contradict the assertion that a flow corresponding to point D t

also belongs to a class of flows with unlimited separation area Ii

dimensions. The length of the separation area must increase in

flo_ corresponding to points or, curve AD if R+-; otherwise the

accelerating momentum, applied to the circulation flow at the Ii

" -1/2(_2 ) woulddividing streamline approaching zero as R -_b 2 1 k, [

decrease more quickly than the i_pulze of friction on the back

side of tile slab approaching zero _hen E-t/2

. Flows with a vorticity n of about u /b, where b is the

transverse dimension of the area, correspond to all points of

segment CD, except degenerate flo_? in the area corresponding to

point C. Since the size of the arcs increases _ithout limit when

R.-, flo_: within the separation zone at a distance on the order

of d from the slab approaches local potential.

Consequently, at the tangential discontinuity separating the

. separation area, it is not vorticity, but the Bernoulli constant

that is disrupted if h>O.

• The shape of the separation area in plane xy when the fluid

in the separation zone _s quiescent, taI_en from Xirchoff's weli-

19



known solution, is given in figure 7.

If we assume the existence in this contour of a potentiali

/I flot_with A>O, then pressure at the stagnation point on the back

/// side of the slab will become greater than p . It will also

increase in the angular •region of the sub_ect contour adjacent to

the slab. To fulfill the condition of equality of static

pressures for both sides of the contour, it must deform -- the

curvatu,-e of the contour in the angular region must decrease as

Compared with initial curvature. As parameter A decreases, the

curvature of the contour should diminish (cf. figure 7). _;'ecan

find the shape of the separation area contour fro_ the solution

of the problem of strearalining a slab with two oncoming clean

currents for which the difference in Bernoulli constants is set

when _.tatic pressu'res are equal and the fluid contour is !i
•_

impenet rnble, t!
I:
i

i
""_'- Streamlining a slab with two oncoming clean currents with

identical Bernoulli constants (h=O), }Jhich provides a local flow :

pattern near the slab, a pattern correspondin_ to point D on

plane Cx,}_ , is worth discussing. !

It is easy to be sure that the conditions of the problem are

satisfied by a potential flu_;whose flow function is

( = o_,_ ) (3.1)

Coefficient k from the condition that velocity is limited at

;_



an infinite (to the scale of dimension d of the slab) distance

from the slab should approach zero, and flow near the slab should

become quiescent (cf. figure 8, a).

Thus the limit condition for the flow of a viscous fluid /12

near a slab with a separation zone when R.- is in fact, as

Batchelor first stated [6], by cx.O. However, the flow pattern

turned out to be quite different from that assumed. Nonetheless,

the resulting flow near the slab satisfies hydrodynamic equations

and provides another description of Dalamber's parmdox for flow

around a slab: it accounts for the need to form a separation

area because of the effect of viscosity, which is usually
disregarded (cf. figure 8, b).

Let us turn now to the other end of region ABCD -- to small R
numbers.

Curve AB is tile boundary of the region of possible steady

f!ews. Its points represent limit flows for which the equation,r 1.

J _Op=(POp-P.)/i/2pu a in the region of nonviscous vortex
; attachment becomes zero.

.. Using calculations of the change in POp along curve BC, which

• varies monotonically in R number from (pop)B=O to (POp)C=0.345,"
and taking into account that POp approaches 1 when parameter
approaches zero, we can construct the preferred pattern for

locating lines POp ="coast in the region ABCD (cf. figure 5).

Of course, when analyzing flows in the region of low
I

numbers, we must keep in mind that the original assumption that

,"i flow in a viscous mixing layer can be described by Prandtl's

equation and that circulation flow within an area can be ]

described by Eiler'sequations are invalidated for a certain I

value Rmin, and if R<Rmin, flow is described by Navier-Stokes i
equations. I

I
i
i
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4. Unique features of flow in the region of nonviscouc

vortical attachment _,_henP0p=0. Figure 9 presents possible
alternative_ for pressure distribution p--p=

along the plane of flow symmetry for nonviscous attachment of

vortical currents in a separation area behind a body, which

correspond to various points in region ABCD and _ts boundaries.

At the maxima for these curves, _¢ehave P=P0p' and the position
of the maxinun along the x-axis determines the position of the

stagnation point behind the separation area along the y-axis..

I'.
j •

" ¢ Figure 8

If, for flo_¢s 1 and 2, for which P0o>0, tile stagnation point
lies farthest from the separation zone, then for flow 3, for

which __Pflp=0'three types of pressure distribution curves along
the pinna of symrletry are conceivable: 3a -- pressure maximum

lies _ithin the flo_;, but there must be at least one pressure

_°_J " ' " " ° i'

i

. _.... minimum downstream of it; _b -- pressure maximum is achieved
t_ithin the flow, but downstream of it, pressure is constant and

/' equals pressure at an infinite distance; 3c -- the stagnation I
//

, point lies an infinite distance fro_ the stagnation zone. Using

•J A. A. Nihol'skiy's theorem [8] on the monotonic nature of the

.....-_ change in the slope of the velocity vector durin_ movement of a
gas along the equal pressure line in a flat subsonic vortical

flow, we can show that flow conditions described by curves 3a and

3b are impossible in the case we are discussing.



• o - . ._ ... .

]P ; Figure 9

\

€

I j

If we extend the constant pressure line near the assumed

minimum pressure lying downstream of the pressure maximum
|

correspondin_ to condition _a, then the ends of this constant

pressure curve lying on the plane of symmetry will be

represented by identical velocity vector slope values, and this

will contradict Nikol'skiy's theorem, which requires that

velocity vector slope increase if the length of tne equal !

.... pressure line is finite.

If _ve extend the constant pressure line from the point

" correspondin_ to the assumed pressure maximum in _b, then it goes

into infinity, where the velocity vector slope is also equal to

the velocity vector slope at the plane of symmetry, i.e. we will i

arrive at the contradiction already discussed.

Consequently, when _0p=0, the nonviscous vortical flow in the ! !
attachment region has a configuration (cf. figure i0) such that I

the stagnation poi'nt does no_ lie in the finite region of the i__i

.flow. In this flow configuration, the dividing streamline '!"-_
I

(denoted in figure I0 by the thich line) limits the thin tongue {

of the nonviscoum backflo_ extending downstreaD to infinity. !

Figure i0 I

Thus, points on boundary AB of region ABCD (cf. figure 5)

represent steady stalled flows _-¢hosestagnation point does not

lie in [he finite region of the flow when attachment is

23
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_" nonviscous and vortical. In other words, these flows have a

_ configuration in attachment regions significantly different from

il that of a flow with a stagnation point in the finite attachment
region, which is typical of flows filling the entire region ABCD.

ii The existence of a connection between the configuration of a

flow in the nonviscous attachment and the stability of a

i! region
steady flow with a separation area is traced in points 6 and 7.

L

iI 5. Steady flows _ith separations areas when bI>l. ffhenH>l,
I only part of the total loss in momentum caused by base drag lies:1
} in the vortex wake. Most of the momentum loss is caused by the

r,_ wave drag of the fluid contour of separation area X2 and lies in
i_ waves moving downstream from the separation area boundary.

_i Base drag of a flat body of finite length will be

_:_ 'hX= p.a._6,o_+ 'hX:

i! The coefficient of bcttom drag related to the velocity head
i_ of an unperturbed flo_;and to the finite dimension d of the 'body
t! in tilebase shear region _,;ilIthen be"ii

::' €_ = 25.'*/d c,,

" If (6_)_=0 and flow "inwake behind the shear re_ion is

considered nonviscous and vortical, then wave drag in the fluid
contour ofthe separation zone can be written as

..

" :: llere Cx2 f is the coefficient for the _ave drag of the fluid

• contour of the separation area related to the height of the fluid

ledge d-2_ ,.

Clearly, the wave portion of base drag depends on the shape

. of the separation zone's fluid contour and wave displacement

thic[fness. The development of wave drag, which is a function of

the separation zone's fluid contour, and separation zone contour

24



as a function of circulation flow intensity within the area make

- it much more complicated to find possible steady flows in plane

c R over a wide range of changes in dissipator properties.
x

However, for degenerate flow within the area, i.e. if an ideal

dissipator is present, the problem is considerably simpler and

possible constant-property flows can be found. We will limit

ourselves here to discussin_ the case of a degenerate flow within

the area when R+ _ and 6_=0. The self-similar precise solution

for a laminar layer on the dividng boundary mixing a jet of

compressed gas with a quiescent gas when _p =const from [2, 14]

gives us

=d=. X_ (5.1)

Total pressure on the dividing streamling in the non- /14
viscous attachment re_ion is calculated from

. L

r "-' l'"-'. ",'' P(_") _,(_) t - _),= ,,,, --
L ,,,+ip. p(_,)p(k.) ¢" (5.2)j -

Static pressure within a separation area which has a straight

boundary is constant over the entire area; 6 #_:./d.Oand _ $/d.O

..... . when R.-, while Cx_Cx2 f. Static pressure in the area, _;'hich
determines base drag is in this case obtained fron the ratio

.. \ ._ _; _(_,).. , (5.3)
', _ p. p{k..)

, <€-.,)
\;_ Figure IIi _ --';

i

. ,!

• i] From (5.1)-(5.3) for a given t , we can calculate pk/p. which

:: corresponds to possible steady flows when R+- in plane c R (cf.
!_ x

V
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figure ii). Point D represents POp/P >i, point C corresponds to

. the limit flow with a separation area POp/P =I and limit values

(pk/P.)lim with Cxlim.

- We can show that flow configuration in a nonviscous vortical

attachment region •with infinitely long return flow tongue

corresponds only to limit flow POp/P =I, just as to limit flow

Pop=O when M.O. All remaining steady flows with POp/P >I contain
a stagnation point in the finite region of the nonviscous

vortical attachment region.

Using the theorem of monotonic change in velocity vector

slope along a constant pressure line located in the subsonic

region of a flow adjacent to the plane of symmetry, i.e. assuming

that we can always select a constant pressure line close enough

to the proposed minimum pressure that this line is within the

subsonic region of the flow, we will establish that such a

pressure minimum is impossible, i.e. that condition 3a (cf.

figure 9) is impossible.

The hypothesis that condition 3b can exist implies that

pressure must be constant over the entire subsonic region of a i
flow located downstream of a constant pressure line extended from I
the point of the assumed pPessure maximum. But this in turn I
requires that both pressure in the supersonic region and velocity

vector slope be constant. Durin_ flow around a flat

Af=f

/
/ _--T.

body of infinite length with curved shock waves upstream, this

requirement cannot generally be fulfilled. The configuration of

flow in a nonviscous vortical attachment region, correspondin_ to

limit f]o_ with POp/P =I, is shown in figure 12.
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6. On the existence of a relationship bet_een configuration

of flow in a nonviscous vortical attachment region and flow

stability. As we know, study of the stability of a given steady

flow in terms of low velocity and pressure perturbations

depending on time and coordinates presents a difficult _

hydrodynamic problem which, within the framework of the linear

theory, can be solved only for individual simple configurations

of viscous steady flows. Study of the rtability of viscous

steady flow with a separation area Of complex configuration also

presents problems which are yet to be overcome. However, study

of the hydrodynamic stability of nonviscous steady fluid flows

involves fewer mathematical difficulties. Therefore, we do have

some results, obtained with the theory of hydrodynamic stability

for several nonviscous flows of incompressible fluids of complex

configuration with partially free and partially rigid boundaries

which contain regions of jet attachment or connection [9, I0].

The potential flows of incompressible fluids with both /15

free (p = coast, p'=0, where p is static pressure at the

boundary, and p is the density of the medium adjacent to the

subject flow) and straight rigid boundaries which are studied _n

these references include: }i

a) flows whbch are.stable or neutral to minor perturbations

over the entire range of change in wave number of the imposed

perturbed flow, except onu isolated wave number, for which the

flo_ is unstable. A typical feature of the configuration of

these flows is the lack of a stagnation point in the finite

- region of the main flow;

b) flow which is stable or neutral to minor perturbations.

The stagnation point of this flow lies on a rigid boundary of

finite length;

c) flow which is unstable for minor perturbations over a wide

range of wave number changes and has a stagnation point within
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i
the finite region of the main flow; ,i

d) flow which is unstable for minor perturbations over a wide i
range of wave number changes and has a stagnation point on a

rigid boundary of infinite length in the finite region of the !
!

main flow.

Thus, for the potential flows of incompressible fluids with

partially free and partially rigid boundaries reviewed in these

articles, instability occu_'s if the stagnation point lies in the

finite region of the main flow and not on a rigid boundary of

finite length. On the other hand, flows with a stagnation point

o"tside the finite region of the main flow are virtually stable.

This result of the linear theory of hydrodynamic stability is

important for analyzing the causes of instability of flows with

separation areas, which has been observed in experiments with

specific ranges of R and 51numbers for specific boundary !

conditions within the separation area. Since nonviscous flow in

the stream attachment region beyond the separation area which _e I
have discussed is close in configuration to that class of flows

I

with partially free and partially rigid boundaries studied in the li

theory of hydrodynamic stability, the conditions given above

which determine the stability or instability of potential flows

must be considered when analyzing the flow we are considering.

The assuaged position of the stagnation point in the

nonviscous attachment region behind tileseparation area, a finite

distance from the separation area in the plane of symmetry (or on

the rigid boundary of infinite length when attachment is to the

flat surface of _n extended body beyond the nonsymmetric

separation urea) creates a situation in which potential analogs

of the sub_ect flo_ are unstable. On the other hand, _e must

bear in mind that potential analogs of the subject flow are

stable, if nonviscous vortical flow in the attachment region

beyond the separation area does not contain the stagnation point
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in the finite region, and the configuration of tile flow with an !
infinitely long backflow tongue develops.

_ If we use the hypothesis that the instability of a nonviscous

flow in an attachment region (caused, as shown by the examples of

flows studied by the linear theory of hydrodynamic stability, by

the configuration of flows in the attachment region) is the main

reason for the instability of the entire viscous flow with
J ,,

separation area, then the rule for determining stable steady
flows with separation areas will he that vclocity in the finite

region of the nonviscous vortical attachment not be zero.

The validity of this hypothesis can be determined (at least

at present) only by using the determination rule to compare the

ranges of existence of stable stalled flows with the ranges of

existence of stable steady flows observed in experiments over a

wide range of changes in R and M numbers. Let us make this

comparison.

i
1. Incompre:;sible fluid. According to calculations in points i

1-4 for flow around a flat slab with a separation area, the j!
region of arcady flown which satisfy the selection rule is

limited by an R numl)er, of about 1.2 x 10 2 . Thi_ R number

corresponds to a strong dissipator in the separation area. If

the dissipator's efficiency decreases, the R number at which a

steady flow _ith separation area is disrupted diminishes.

We know that expcrimeatal I numbers at which a steady flow is

disrupted (called critical R, number in literature), measured in
wind or hydrodynamic tunnels are a function of the ratio of

transverse dimension d of a cylindrical body to height II of the

crest: section of the working part of the tunnel.

> Thus, according to [II], steady flow around a round-scction

cylinder with a separation area is preserved up to R,=30 when

d/H=0.025 and to li,=G2 when d/H=0.10. Therefore, calculated R,
I
l
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,I
values determined for an unrestricted current _ust be compared *'_

with experimental data obtained at small d/l! values.4 With ,_

regard for tills circumstance, it follo_s from experimental data 1}

for flow around a round-section cylinder with a weak dissipator i}

J (friction on the back side of the cylinder) that N, is about 30.

If a dividing slab whose length is comparable to the length of

the separation area is placed within an area with a plane of flow _.,

symmetry, steady flow is extended to higher R numbers. !

4 -

, In this way Acrivos and his associates [12] successfully 1

increased R$ several times to about 170 when d/H=0.05 (recent i "

experiments by Acrivos 5 with small d/H values give an R$ of about _ !

I00). Calculation of the force of friction applied to a dividing I ;

"_ slab on the backward jet side shows that tractive force exceeds I _

half the momentum of a backward _et whose parameters were i

calculated for a degenerate flow. i

A dividing slab is thus a strong dissipator, and the _, of 1

about 100 obtained by Acrivos' experiments is comparable to the 1predicted _, of about 120 for flow around a slab with a maximally

strong dissipator. Base drag coefficients when R is i !;

approXimately equal to R, are also co=parable: calculated _k = i _

-0.52, experiment ;k=-0.45. !=':!

Of course, when making this conparison we must l_eep in mind

that the bodies differ in shape. Hog,ever, the correlation

obtained is quite premising for a first attempt, because, as far
as we know, it has never been possible to obtain theoretical

evaluations of the _€ numbers at which Karman's vortex street
occurs since this flow shape was first observed.

Calculated R, values for flow around a body located between

parallel walls increase as d/I[ increases.

This comes to the author from V. V. Sychev.

• -in
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The configuration of cavitation flows is close to that of the i,

subject stalled flows. The fact that cavitation flows with I

closed cavities are steady flows at positive cavitation numbers Q !

- =(P.-Pk)/i/2pu 2 is noi_ commonly known [13]. tIo_ever, using the 1
I

determination rule for cavitation flows lnakes it possible to 1
predict the existence

a'broad region of stable steady I
of

.......... |
cavitation flows when gas is released into a cavity and at i

negative cavitation numbers. In this case, given a nonviscous {
J

connection with various Bernoulli constants, there is generally i
no stagnation point beyond the cavity, or, given a negative i
cavitation number,

pO>p. on all streamlines coming from the i

_,/ cavity. !"
/ |

I

2. isSupersonic velocities. Point 5 showed that, when R.- and Ii. there a strong.dissipator in the separation area, there are IL_
I

_any possible steady flo_s zJhich satisfy equations for gas i .

/ dynamics of a viscou& fluid, for which there are various !

corresponding base I,pressure values
Pk/p • However, only one, I -

i

corresponding to point C (cf. figure II) can be considered a "_i'(
• stable steady flow, since the configuration of the flow in the [

I

nonviscous vortical attachment region which corresponds to point _ .

C satisfies the selection rule. !
!
I_

AS we know, Chapman and associates [14], in careful /17 [::i

experiments on the st_lled flow behind the reverse l_dge on the i [
i

surface of a body at 1.3<M<2.0 for R nunberv from 0.6 x 104 to i :

1.4 x i0_, observed the existence of laminar flow within a !
separation area at these high R numbers, in _hich base pressure I

varies as a function of M number in quite close quantitative i-:

correspondence with values calculated for point C (P0p/p.=l). |i
.. Just as in Acrivos's experiments, the surface of the body behind ,

the ledge adjacent to the separation area is a strong dissipator

in Chapman's experiment, which justifies comparing experimental I
}
i
I
|
!

I
&
!
I

" " - " i

I
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data with calculations for a maximally strong dissipator. B In i

summary, we can conclude that the hypothesis that configuration

of flow in a nonviscous vortical attachment region has a decisive ]
effect on the stability of steady flows with separation areas is I

confirmed by existing experimental data on laminar separation !

areas over a wide range of changes in R and H numbers. This !

makes it possible to apply this hypothesis in theoretical

analysis of stalled flows.
I

" .... 7. On the use of the selection rule in studying stalled
flo_s.

/

I. Turbulent low in a separation zone. As we know, the [
openness of the system of Eeynold's equations which describe

vortical notion does not permit theoretical study of even the

simplest instances of turbulent flows without using e_pirical
"'.." |

quantitative data. In addition, use of empirical data mukes it I_

possible to calculate parameters for averaged turbulent flow for i!

simple flo_¢configuration= (a wall turbulent boundary layer, a _:_.!

turbulent nzxin_ layer on the boundary of a jet flowing out of an [
immersed space, the main portion of a turbulent jet).

I

Note that Chapman's use of the correlation between POp/P_ and !'i

bottom pressure, observed in experiments at supersonic ]
-. velocities (when flow was steady) and used in the ChaI,_an- [
.< I

Korst calculating procedure (this procedure will be discussed If{in I_ore detail later) for interpreting Roshko's experimental

data [15] on bane pressure behind a round-section cylinder

with a dividing slab at an H of about 104, is, in the light

of what has been presented above, unjustified, since, in

" Roshko'sexperiments, flow behind a round-section cylinder

with a dividing slab was periodic (without con&tant

properties) _n nature at these R numbers.

. 32 t
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We might expect that results satisfactory from an engineering

standpoint can be obtained by calculation and by study of complex :.j
configurations of turbulent flow if %hey contain components which

are simple configurations of turbulent flow studed illdetail in

"pure" form.

If these components cannot be identified in pure form in a

turbulent flow of a complex configuration, then quantitative

empirical data for the subject complex configurationof turbulent

flow must be accumulated before calculation. Turbulent flow in a

separation area has a complex configurati_n: but there is still

). little quantitative empirical d_ta for it. Therefore, we will !

limit ourselves to discussing degenerate flow in which a

turbulent mixin_ layer separates external flow from quiescent !Ii
fluid _;ithin a separation area with constant pressure, since, in

considering turbulent flow with a circulation core, _e already I

cannot ignore turbulent friction stresses and energy dissipation li:

within the core, which cannot as yet be calculated because of

lack of quantitative empirical data for a random circulation core i_

For a completely turbulent flow in a separation ares, R 'i
_ . . .. number determines, only the nature of flow in tile boundary, layer 1!1/

"" on the' surface of" the body up to the flow separation point and

..... the thickness of the boundary layer at the beginning of the

turbulent mixin_ layer, which in turn define the position of flow !

separation on the body's surface and indirectly affect U and T
p

values. These same equations, which describe flow in a turbulent

mi_ing layer, do not contain molecular viscosity _ and,

consequently, R number.

Let us consider flow around a slab at a (6**) 0 which does not
equal zero and an M<<I with degenerate flow within the separation

?" area from a maximally strong dissipator.
a
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The decisive parameters of a turbulent mixing layer (U, _18

Tp) are a function of (6Z_) and empirical constant a
(proportional to the angle of expansion of the turbulent mixing

layer). By making judgments similar to those in point 1 to

&
Figure 13

0 Z
6

plotting Cx=f(R) for a laminar mixing layer, we can, for a given
(6**), find possible steady flows fox"a turbulent degenerate flow

. which lie on curve BC on plane Cx,I/a (cf.figure 13). Point B,

as before, corresponds to limit constant-property flow (pop)B=O. !"

Obviously, only one point on this curve can represent real

flow, since Uexp, the experimental constant for a turbulent
mixing layer, is not a function of the shape of the body and

s_parat ion area.

There are three possible cases. .i

Case I: I/aexp<(i!a) B -- the assumed steady flo_ with -i

quiescent fluid within the separation area does not exist. Flow ,_-!
with a circulation core may exist, but it cannot he calculated {

without regard for turbulent friction stresses and energy i

dissipation _ithin the core.

Case 2: I/sexp>(I/_) B -- the assumed steady flow with
quiescent fluid within the separation area does not satisfy the

determination rule aEd cannot in fact be realized as steady.

Case 3: I/Oexp=(I/a) B -- the assumedsteady flow with
/- quiescent fluid within the separation area exists and, since it

.,/

" satisfies the determination rule, can be realized in reality.
/, o,
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Since (I/a) B is a functfon of body shape, and I/aex p is
.. constant, the probability that the proposed steady flow pattern

with separation area will be observed in experiments with a

- random body shape is quite low.

Thus, calculation of a turbulent separation area using a pure
element -- a turbulent mixing layer -- is correct in those

J particular cases when the two conditions below are simultaneously

satisfied: ?

........ Ub=07 ' (i/_)B=I/_ex p (7.1.)
I 1

" If condition (7.1) is not fulfilled, flow in a separation 1

...." area will be unsteady (i.e. it will possess increased pulsation I

amplitude in the turbulent mixing layer and a frequency i

characteristic different from that of an isolated (pure)

turbulent mixing layer) or will remain steady, but will have a i

circulation core. In either case, calculation based on the

concept of a pure mixing layer is unsuitable.

In view of what has been presented here, it is obvious that

the calculating procedure proposed by I{orst [16] to describe

" " •........ actual turbulent flows with separation areas is incorrect. This

procedure uses the concept of a pure turbulent mixing layer, but,

of the three hydrodynamic equations which describe flow, only one

..... -- tile equation of preservation of mass -- is satisfied.

... Therefore, it is still absolutely necessary to satisfy

.... conditions of type (7.1) to realize the proposed pattern of flo_4

resulting from this complete system of hydrodynamic equations.

It is conceivable that the well-known discrepancy between

v That is, the dissipator's characteristic is close to that of

an ideal dissipator.

f
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calculated data obtained using Korst's method and data fromI

systematic French [17] and English [18] experiments results

because the flow pattern assumed in the calculation procedure

./ cannot be realized in reality due to the fact that conditions of
-/

/ type (7.1) cannot be fulfilled. Note also that the failure /19

/ to satisfy the momentum equation in Korst's procedure leads to a

paradoxical, but clearly unjustified, conclusion that we do not

need to know of the value of the experimental constant o to
exp

calculate base pressure if there is turbulent flow in a

separation area and no mass exchange between the separation area

and the body.

2. Laminar flow in a separation area with unfixed flow

separation point. Experiments on this important class show that

flow in a laminar separation area is steady and has a circulation

core over a wide range of R numbers up $o about 10e if M>I.

This flow has two regions for whici, calculations are done

entirely differently: region I before the separation area to the

flow separation point can be calculated (as is done in many

studies using variations of integral ratio method) regardlezs of

pressure within the separation area or taper; region II between

the flow separation point and attachment, containing a

..... circu'lati0n core, whose parameters are a function of the

intensity of the descending jump or of taper. Calculating

viscous flo_ in region II at high R numbers is a difficult

• problem whose solution requires effective methods which account

for all the features of complex flow with sufficient accuracy,

but which have not yet been found. We might expect that, as

' difficulties in numerical calculation of steady flow are

overcome, we will be confronted by the problem of determining a

single, practicable solution which must be reliable.

. In view of what has been presented here, it is conceivable

that determination should also be made in terms of the

configuration of flow in the nonviscous vortical attachment

11/
/

i
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region. To adapt the determination rule in this case, flo_ in a

certain finite attachment region must be calculated as vortical
and nonviscous.

T

37



REFERENCES

3

1. Lessen, M•, On the stability of the free laminar boundary
layer between parallel streams, NACA, Rep. 979, 1949•

l

2. Lock, R. C. The velocity distribution in the laminar boundary
layer between parallel streams, Quart. J. Mech. and AppI.
Math., 1951, vol. 4, No. i, p. 42

3. Efros, D. A. HydrodynaDic theory of flat parallel cavitation
flows, Dokl. AN SSSR, 1946, vol. 51, No. 4.

4. Gurevich, M. I., Teoriya struy ideal'noy zhidk¢=ti [A Theory i
of Jets of an Ideal Fluid], Moscow, Fizmatgiz, 19Gl.

5. Batchelor, G. K., On steady laminar flow with closed
streamlines st large Reynolds number, J. Fluid Mech. 1956,
vol. I, pt. 2.

6. Batchelor, G. K., A proposal concerning laminar we]:esbehind
• . _bluff bodies at large R numbers, J. Fluid Mech , 1956, vol

4, pt. 4, p. 386.

7. Lavrent'yev, bl.A., Variatsionnyy metod v krayevykh zadachahh _
dlya sistem uravneniy elliptichesko_o tipa [Variational |
Hethod in Extremum Problems for Systems of Elliptical Type
Equations], Hoscow, Academy of Sciences of the USSR Press, _

- 19G2. _,
i

8. Nikol'_kiy, A. A., On flat vortical _ovements of gases, in
Nekotoryye tochnyve resheniya uravneniy prostranstvennykh
techeniy gasa [Some Precise Solution to Equations of Three-
di,aenionsalGas Flow], Tr. TsAGI, 1949.

:-_" 9. Ablow, C. M., Hayes, _7.D., Perturbation of free surface 12
flows. Technical Report No. I, Office of Naval Research, No.

/ 7 onr-35807, Graduate Division of Applied Mathematics, Brown/

/ University, 1951.
!
/
/ 10. Fox, J. L., Morgan, G. [4.,On the stability of some flows of
L an ideal fluid with free surfaces, Quart. AppI. Hath. 1954,
"/ vol. II, No. 4, pp. 439-45S.

II. Thom, A., Flow past circular cylinders at low speeds, Proc. _
• _oy. Soc., 1933, A 141.

12. Grove, A. S., Shair, F. H., Petersen, E. E., Acrivos, A., An
experimental investigation of steady separated flow past a _"

. circular cylinder, J. Fluid Mech., 1964, vol. 19, pt. I, p.
60.

28



j

/

/

! /

' 13 Sedov, L. I , Ploskiye zadachi gidrodinamiki i aerodinamiki/ • .

[Flat problems in hydrodynamics and aerodynamics], Ed. 2,
Moscow, "Nauka," 1966.

_!_14_Chapman, D. R., Kuehn, D. M., Larson, H. K., Investigation of
o sepurQted flows in supersonic and subsonic streams with

emphasis on the effec_ transition, NACA Rep. 1356, 1958.

15. Roshko, A., On the wake and drag of bluff bodies, J.
Aeronaut. Sci., 1955, vol. 22, No. Z, p. 124.

16. Korst, H. H., A theory for base pressures in transonic and
supersonic flow, J. Appl. r{ech.,1956, vol. 23, No. 4, pp.
593-600.

17. CarrJere, P., Recent studies by ONERA on problems of
attachment, 7th Fluid Dynamic Symposium, Jurata, Poland,
1965.

/

i 18. Nash, J. F., An analysis of two-dimensional turbulent base
flow including the effect of the approaching boundary layer,

ARC RM, 1963, No. 3344.

/
..

/

39





3 1170 00188 6671
S-i


