NASH T27- 77525

Q.-/)

A Reproduced Copv

OF NASA-TM-77825 19850015933

NAsa T7H— 77825

Reproduced for NASA
by the
NASA Scientific and Technical Information Facility

LiekARY SUPY

Gei 101965
LA LLIY WLSeARCH CrMITER

LIBRARY, NASA
“IAMPTON, VIKGINIA

SFilo 672 Aug 65



-
NASA TECHICAL MEMORANDUM NASA TM-T77825
CONTRIBUTION TO THE THEORY OF STATIONARY SEPARATION AREAS
G. I. Taganov
Tronslation of "K teorii statsionarnykh sryvnykh zon," Izvestiya
AkadeniYoNauk SSSR, Mekhanika Zhidkosti i Gaza, Sept.-Oct. 1868,
pp. 3-19.
(LRSL-THE-77825) CCBIFIBUIICH IC THL THICEY LB8S9=2L248
OF STITICDARY SUEZBRATICH BRERS (National
Lcronautics and Sgacs adeiristration) 3¢ p
HC &£Q3/787 BGY ¢sci z0p Unclas
¢3/3¢ 21610
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON, D.C. 20546 APRIL 1985
’ "’g:?‘zn\
ST,
GV 50
@ (AL 2\
B MW =
':»‘;' ('*afg"g“. sV G
@, Uil B S .
% L ,O\S'
L ;) ?.‘ .
\‘éaiﬂggzcnﬁﬂiji

i B MY TR N WD R IR

AN YJ’~¢?/

2487

e (275

e e o e e i ar

DS SAFARTIN NI o o Brare e o T




‘o

(AJ

‘v
) STANDARD TITLE PAGE
1. Report No. 2. Government Accession Na, 2. Recipient’s Ceotolop No.
NASA TM 77825
4. Title ond Sub.lilh . 5. Report Dote

ADPRIL 19885

CONTRIBUTION TO THE THEORY OF STATIONARY
SEPARATION AREAS A

6. Perlorming Digonization Code

7. Author(s) 8. Paetloming Orgonizotion Report Na.

“G. I. Taganov
10. Work Unit Ho.

11, Contiect or Grent Ho.

9. Performing Orgonizotion Nome ond Address NASA~4006

The Corporate Word 13. Type of Report ond Period Covered

1102 Arrott Building . Translation
Pittshurgh, PA.1E322

12. Sponsoring Agency Nome ond Address

NATIONAL AEROMNAUTICS AND SPACE ADMINISTRATICN

V4. Sponsoiing Agency Code
WASHINGTON, D.C. 20546 ronseting fgeney O

15. Supplementery Hotes

Translation of "K teorii statsionarnykh sryvnykh zon, Izvestiya
Akademiya Nauk SSSR, Meknanika Zhidkosti i Gaza, Sept.-Oct. 1968.
pp. 3-19 (A63-12570)

14. Abstract

Analycis aimed at determining the region of existence of steady flows with
a closed area of separation for Eeynolds numbers at which flow in the
reqgion of viscous mixing can be described by the Prandtl's equations.

The boundary conditions for the flow in the separation region are selccted
so as to simplify the flow pattern in this region, making it possible to
use the methods of hydrodynamic analysis. A rule for determining stabl -
steady flows with separation areas is forrulated which is well suited for
~analyzing laminar §10w§Aand,can be applied to turbulent flows in some
areas. :

e

17. Key Yords (5:!::!26 vy Author(s)) 8, Distilbution Srctemens
unlimited
1C. Secusity Clausil, {of this repart) 9. Sscurity Clossif, (of thia paps) 21. to. of Peges 2. Puea
Unclagsified Unclassificd 39
[}

HASA-HO

N

.

-t e e




CONTRIBUTION TO THE THEORY OF STATIONARY SEPARATION AREAS

G. I. Taganov

Experience shbws thﬁt the pattern of steady flow around 3%
a bluff body with & closed sepasration area is disrupted at
subsonic current velocity at R numbers from 10! to 102 when the
flow is laminar in nature. In addition, expericence denonstrates
that, at supersonic current speed, there is a stable, steady
flow pattern if there are laninar stegnation zones adjacent to
the body (a stagnation zone behind a reverse ledge on the body's
surface, a stagnation zone in front of the smooth ledge on the
body's surfece, a forward separation area formed by the tip of
the centerbody, a stagnation zone forred when there is a
descending jump on the body’s surface) at high R numbers on the
order of 104-106.

Thus, experience indicates that, for certain ranges of change

in M4 and R nurbers under specific boundary conditions, steady

solutions to equations for the movement of o viscous liquid cxist

and are reliable. Outsidc these ranges and under different
boundary conditions, f{low arqund a body with a clozed scparation
area is more (Karrcan’s vortex street at M<<1l) or less (pulsing in
close wake behind a body at M>1) clearly defineble as steady in
nature. There is still no theoretical proof of the existence of

stable steady flows with separation areas in these ranges.

Here we attempt to find the region of existence of possible
steady flows with a closed separation ares in a range of R
numbers such that flow in a viscous nixing area can be described
by Prandtl’s equations. Linmit conditions for flow within the

separation area are set so that the flow pattern within the area
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is considerably simplified and it becomes possible to use

hydrodynamic analytical methods.

The first part of this article (points 1-4) studies the field
of possible steady flows for an incompressible fluid. It is
shown that only under special boundary conditions within the
separation area (ideal dissipator) does flow near a smooth slab
approach Kirchhoff's flow with quies-ent fluid within the zone if
R approaches infinity. The drag coefficient for the "slab +
ideal dissipator" systen is cx*n/(n+4), i.e. nearly half the

value obtained by Eirchhoff for an ideal fluid.

Qualitative study of the field of possible steady flows in
plane cxH has made it possible to detect the existence of a
certain region which has degenerated into a line with an upper
lirit on the R number of atout 102. In this region steady flows
possess a particuler flow configuration if vortical attachnent is

not viscous,.

The existence of a connection beiween flow configuration in
the region of non-viscous vortical attachment and the reliability

of the steady solution is traced in part two (points 6-7), both

for individuel solutions obteined by methods of the linear theory

of hydrodynamic stability and for well-known experirental
naterial obtained over a wide range of R numbers at sub- and
supersonic current velocitiea. This review makes it possible to
formulate a rule fer selecting stable stcady flows with
separation areas and to use it to esnalyze cocparable flous --

both laminar and,. in some cases, turbulent.

1. Degenerste flow in a separation zone. We will consider
the pattern of a steady flow with closed separation area behind a
body past which a current of incompressible fluid flows at R
nucbers such as R=u_d/v (u_ is the velocity of the unpcrturbed

current, d - the transverse dimension of the body), at which the
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Figure 1 /4

thickness of the boundary layer is less than the size of the body
(cf. figure 1).

We can identify the following typical lines and areas in the

upper half-plane of the flow.

The dividing streamline of the current with fluid segments AB

and BC and .a segment of the body boundary AC; regions:

1 -- outer potential current; 2 -~ outer viscous boundary layer
and wake; 3 -- inner viscous mixing layer; 4 -- viscous flow with
nearly constant vorticity; 5 ~-- viscous boundary layer near the

rigid boundary of the body with a vorticity opposite in sign;

6 -- attachrent. At points on segnent AB of the dividing
streamline the fluid has a velocity of up, and friction stress T
is applied clockwise to the fluid moving within the zone. 1In
segnent CB, fluid velocity is uy; friction stress equals zero.

In segrent CA, velocity equals zero, and friction stress applied

to the fluid acts counterclockwise.

During steady flow in a separation area, friction forces in
segment AB should equal the viscous dissipation of encrgy within
the closed arca.

Py ;.;I S 2 or\2 " Su\? o JOr\a o
B Y [N — -2 — o | —
S » ()= f [(iz’x)-{ (0y).{(6y+6:)] (1-1)
Ab r -
Here dl is an arc element, dj is an element of the cross

section of the area, F is the area of the crocs section limited
by line ABCA.
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Analysis of values introduced into the integrated expression
on the right side of equation (l1.1) shows that, if R numbers
increase, when the thickness of regions 3 and 5 decreases,
velocity gradients in them noticeably exceed the velocity
gradient in the core of the‘flow. Most of the dissipation occufs
in these regions, and most energy dissipates in that part of

region 3 which is adjacent‘to section AB of the streanline.

We will try to find conditions under which the pattern of
flow within a separation area may be fundamentally simplified.
To obtain such a degenerate flow within the separation area, we

need to:

1) prevent energy dissipation in region 4;

2) minirize dissipation in region 5;

3) precicely deternine energy dissipation (E(a))}.‘B in that
part of region 3 which is adjacent to the styéamline AB,

4) concentrate dissipation

y | ASB 15 (1) % ()l — (B9) 45

; P e SOV
P : l =< T
' f’ 4 z R L Tj}ﬁ\faﬂ Figure 2

inadecuate to provide a balance in segment CB of region 3, by
causing dissipation in an additional element -- an energy
dissipator. It is sssumed that this additional element, firmly
connected to the hody, creates a region with high velocity
gradients within the separation area, in which dissipetion
inadequate for balance (4) occurs and that it accepts and
transnits to the body the momentum of the backward jet moving
toward the body from the attachment regior. The shape and
dimensions of the dissipator aure immaterial to further
discussion -- it is considered to be a black box with the ability
to reduce the value of Bernoulli constants corresponding to

different backward jet streamlines tc assigned values.
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Figure 2 shows a flow arising in the presence of an ideal
dissipator, which dissipates almost all the kinetic energy of the
backward jet and assumes the entire momentum of the backward jet

gained in segment AB of the dividing streanline.

It is easy to see that, in this case, degenerate flow /5
(without a circuletion core) occurs at constant pressure over the
entire region limited by the dividing streamline, except for the

attachment region.

A viscous mixing layer develops here at constant pressure and
constasnt outer flow velocity. The tangential component of inner
flow velocity on the border of the viscous mixing layer equals
zero. Note that there are precise self-similar solutions under
conditions close to those considered [1, 2]. We will calculate
the residual kinetic energy contained in the backward jet, which
nust be dissipated in the dissipafor, as well as the backward jet

monentun which the dissipator must assume.

Let us calculate parameters of the inner part of the viscous
rixing layer in cross section 5, located at the end of the
seperation area, but in front of the attachment region in which

the flow will be regarﬁed as nonviscouc and eddying.?

The force of the outer current at the dividing streanline
(1.1) is partially dissipated when the quiescent fluid

accelerates and is partially used up in creating motion whose

kinetic energy in cross section S cquals ¢
1/sp S nt(n)dn
-—
1 It is possible to regard flow in the stagnation point region

as nonviscous and vortical because of analysis of Navier-

Stokes equations in this area. (This has bcen shown, for

exanple, in a paper by V. V. Sychev at the 8th Symposium on

tfiodern Problems of Fluid and Gas Mechanics. Poland, Tarda,

18-23 September, 1967.) ’
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where n is the normal to the dividing streamline. This residual
kinetic energy should dissipate in the dissipater with an error
on the order of (v’/up)z, where v' is the velocity of the fluid
drawn into the viscous mixing layer from the quiescent fluid in
the separation area and the level of dissipation in the section

between cross section S and the dissipator.

Let the non-self-similar viscous mixing layer in cross-
section 1 have a certain momentum. It will remain the same in
cross-section 2 dowstream as well, but will increase in the inner
part of the viscous mixing layer in cross-section 2 and decrease
by the same amount in the outer part, since the momentun gafned
by the inner part of the mixing layer at the area of dividing
streamline 12—11 will be

AV = f v (l)dl
L

and the momentum lost by the outer current will be AV.

If the thickness of the momentun lost at the beginning of the
separation area in the outer current is other than zero, then in
cross section S, the momentum gained by the inner part of the

current will equal

| [pj:.idn]"=[p§: U(uh-—u)d'n]f—‘- [p:S: x,x(u,\—r.z);!n]0 (1.2)

where up is the velocity at the outer boundary of the mixing
layer. If we use the concept of momentum loss thickness 6%% and
introduce the'concept of the momentum gain thickness of the inner
part of the viscous mixing layer 6 ¥¥, deternined by the /6
relationship

¢

putdeo? == p § w2y : (1.3)

—0




then from (1.2) we have
(6+°%)s = (6°%)5 — (&°%)o (1.4)

The combination of the constant prescure region behind the
body and the inner potentiél flow region was studied using the
theory of cavitation flows. At present, there is a mathemati-
cally noncontradictory pattern for flow with a backward jet
(Efros' flow [3]), which ensures combination of the constant

Pressure zone

behind a body and inner potential flow over a wide range of
static pressures within the zone (cf. figure 3). However, a
hydrodynesnically noncontradictory outer potential flow around the
body with constant pressure behind it nmust be plotted, in which
viscous effects within the closed separation area and viscous
effects in the outer part of the nixing layer (displécement

effect) would be accounted for.

In approximating momentum equations of the bourdary layer
theory, flow in the inner part of the viscous mixing layer with
degenerate flow within the area is equivalent to flow in a fluid
layer with Bernoulli constant for outer potential flow and with a

thickness equal to momentun gain thickness d+#*.
Consequently, the thickness of a backward Jet with a velocity

constant in terms of cross section and corresponding to the

pressure in the constant pressure zone in ideal fluid model ¢°

DY F PN
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must equal the momentun assunption thickness in cross-section S
of the viscous flow:

6° = (5+°':)5 (1.5)

Tractive force T, acting on an ideal dissipator in a viscous
degenerate flow2, must equal tractive force T°, which acts on
flow within fhe constant pressure zone in an ideal fluid wmodel of

flow with a backward jet.

In viscous degenerate flow, the ideal dissipator is a flow of
impulse, but not a flow of mass. In the ideal fluid potential
flow which models the subject viscous flow, sink flow of impulse
which equals the power of the sink flow of impulse in an ideal

dissipator, is, of course, sink flow of mass.

Presure drag X, acting on a body in viscous degenerate flow
nust equal pressure drag acting on a body in an ideal fluid model

X,0.

The displacing effect a viscous boundary layer developed at =a
rigid profile has on potential flow is, as we know, determined by

the arrangement on the surface of the profile of hypothetical

sources, which ensure that potential flow deviates by
displacenent thickness 6%. Hypothetical sources in an actual P
viscous flow do not have a current of impulse. In an ideal fluid

model, the current of mass from these sources also bears the

current of inpulse.

In the case considered -- flow with a free boundary -- [T
current from sources afranged close to the dividing streanline
deforms not only exterior potential flow, but also the contour of

the constant pressure zone. To obtain from Efros’ flow an ideal

2 Here and henceforth, T, X;,» and X represent total forces

valid for two flow regions divided by the plane of synmetry.

10




fluid model in which viscous effects in the internal and external
part of the viscous layer are accounted for in case of degenerate
flow in the separation area, sources must be placed close to the
free boundary bectween cross sections 0 and S. These sources nust
ensure that a random cross section 1 has a mass flow rate of
puk(6+** + Ge#), where 6+$* and de* are, respectively, momentun
gain thickness and displacement thickness of the outer part of

the viscous mixing layer in this cross-section (cf. figure 4.)

Figure 4

Indeed, let us extend line L from point N, the dividing
streanline of Efros® current (cf. figure 3) in cross section S,
to point 0, so that the current of inmpulse in each section of
each layer limited by line L and the free boundary will equal
puk2(6+t*)1 and, correspondingly, the current of nass will equal

Then for the external flow, line L will become the line of
sink flows through which rassflows equel to {—puk(0+$$)1} can
. successfully pass. To account for the displacing effect of the
external paert of the viscous layer, we nust arrange along this
line both sourcez which compensate for sinkflow on the line with
a flow rate of puk(6+*$)1 toward cross section 1, and sources
which account for the displacing effect of the external part of
the viacous nixing layer with a massflow of puk(det)1 toward
cross section 1, i.e. with a total massflow toward section 1

b 4 X
equal to puk(6+~# + 6e¥)1.
If in the first approxination we disregard the effect of

viscous layer displacement on the configuration of the constant

pressure zone, then error in calculating transverse dimension b

11
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of the constant pressure zone will be on the order of
-1/2
Ge*/b Rb .

in direct use of Efros’ flow in a first approximation of
external potential flow near - body with degenerate flow in the
separation aréa, as the preceding indicates, the outer part of
the viscous mixing layer' is characterized by negative
displacement thickness, equal to the momentum gain thickhess of
the inner flow, 6+**. In other words, an additional error in
determining the transverse dimension of the constant pressure

zone, on the order of about Rb_l/z, is permitted.

We will now determine in the first approximation (without
regard for actual displacement) <, for a "flat slab-ideal
dissipator" system as a function of R number, assuming that the
initial momentum loss thickness (6*#)0=0 and flow in the viscous

mixing layer is self-similar.

In this case, with regard for (1.4), tractive force acting on
the ideal diszipator is by definition equal to the total backward
Jet monentum (since the axial component of the velocity of tﬁe.
fluid from the dissipator equals zero)

U, T = pus2(6%F)s (1.6)

Pressure dray acting on a bluff body, X, is about equal to
XIE' Pressure drag acting on a body in Efros’ flow is related to

backward jet thickness GE by a ratio obtained from the equation
for momentun (cf. [4])

XlE " uh)uk
‘2““"””"5("*'5? 2o (1.7)

With regard for tractive force acting on the flow of fluid /8
in a backward jet 1/2TE=PUPGE’ the coefficient for total force of
drag acting on the "body + backward Jet" system will be

12
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and the coefficient of pressure drag acting on the body is, from
(1.7)

. _ 374 uu) uy
ea=d-g\ It )

(1.9)
where d is the size of the body.

The dimensionless velocity at the current dividing line in a
self-similar solution [1, 2] will be
Us=-2 =0507

and friction stress orn the current dividing line (from [2]) will
be

Tp = 0.2¥ppund /1
’ ’ ' (1.10)

where 1 is the length of the arc along the dividing streanmline

from section O to the subject section.

The configuraticn of the flow, and then also for a given R
nunber, can be determined from (1.5), since the length of cavity
1k as a func*ion.of backward jet thickness is known from the
solution of the problen of streamlining a body with backward jet
dEzfl(lk). From the self-similar solution for a viscous nixing
layer, we can obtain the function (6+t*)s=(6** s> fl(lk) for a

given R nunmber.
Integrating (1.10) along the dividing strcamline to cross
section S, located distaace 1k from the beginning of the mixing

layer, we obtain an cquation for the momentum loss thickness of

the external part of the viscous mixing layer

pur?(6**) g = 0.4Yppusly (1.11)

13
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from (1.11) into (1.8),

Substituting the equation for ¢
given (1.5) end (1.6), we find

E

Cx == 1.6[.\';'51‘""3"’*. Ik = lg/d, Uy == uy / Ux (1.12)

Here Tk is the dimensionless length of the cavity in an Efros

flow, Ek is the dimensionless velocity at the free boundary.

F:om (1.8) and (1.9) we have cx:cxl/(1+;k)' As we know [4],
when 1k approaches infinity, then in an Efros flow near a flat
plate 2GE/d*n/s(ﬂ+4), and i approaches 2n/(n+4), about 0.88,
i.e. it tends toward & Kirchoff value for drag coefficient. It
is easy to see that (1.5) is satisfied if R approaches infinity.
Consequently, flow in a separation area with an ideal dissipator
approaches a Kirchhoff flow when R approaches infinity, and,

according to (1.8), when u, approaches u_, the drag coefficient

for the "plote + ideal disgipntor" systen, approaches cx=ﬂ/(n+4)
or about 0.44, i.e. o value half that obtsined by Kirchoff for a
separation area with a2 quiescent fluid at »=0. This is an
accurate result, since error fron disregarding the effect of
displacement approaches zero if the increase in the size of the

constant pressure zone is unlimited.

The limitation on the region of existence of stationary /9
flows in terms of R number imposes the condition pOp 2 p_, vhere
pOp is total pressure at the dividing streamline for a nonviscous
vortical flow in the attachument region. From Bernoulli equations
used in the region of nonviscous attachment to the dividing
streanline and to the streamline for the inner potential flow, it

follows that

Do

= =p°”'_pm
® o Yo ?

=1-5~=(1—.Uz), . ‘ (1.13)

When R approaches infinity and U=0.587, ;bp=0.345. As I

decreases, uy rises, and for a certain limit R, value Rlim’ pOp

becomes zero. The value Uy correspending to this linit R

14
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number is found from (1.13) when ;Op=0' For U=0.587, Eklim=l.23,
and the corrcsponding value for pressure resistance in the

separation area is
- ph = DPe - ;
= = — = —0.52
P Y A .

Let us calculate Hlim and c, corresponding to the limit
steady flow around a sleb with degenerate flow in a scparation
area. Using results calculated to solve the problea of
streaplining a slab according to Efros’ systen [4), when P =
-0.52, we have Tk equal to about 15, Ek equal to about 1.23, Ce1
equal to about 0.88+0.52 and, fron (1.8) and (1.9), c,, equal to

about 0.62.

Then, substituting these numerical vealues into (1.12), we
in of about 120. Thus, in plane cx,R (cf. figure 5)

all steady flows around a slab with degenerate flow in the

obtain an Rl

separation area lie on curve BC, extending from an Rlin of about

<

102 to R+=. along this curve, c_ for the "slab + ideal

o~

dissioator" system varies from about 0.62 to about 0.44.

2. Hondegenerute circulation flow in a separation area. Let
us now consider a flow in a separation zone with an imperfect
dissipator which permits the existence of circulation motion in a
separati.n area. DBatchelor [5] showed that a flat flow of a
nonviscous fluid with constant vortex value over the entire
circulating flow region, except for a thin layer close to the
boundary of the region whose thickness approaches zero when

R+e,
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Let us consider a boundary secparating circulation flow with
constant vortex from external flow with a zero vortex value. If
velocity on the boundary line is less than velocity of the
external potential flow at this line, a viscous nixing layer
develops if p does not equal zero. Friction stress on the
dividing streamline of the viscous pnixing layer causes the

boundary layer of the circulation flow to accelerate.

Let us place a dissipator across the streamlines of this
circulation flow boundary layer which is being accelerated ana,
consequently, is experiencing z positive increase in Bernoulli
constant. Let the dissipeator take not all, but only the
additional monentum gained by this boundary layer when exposed to
friction stresses on the dividing stresmline and let it release
fluid with the sane Bernoulli constant distribution across the
strearmlines as was in this layer before it zccelerate near the
dividing streamline. The presence of a dissipator with these
. properties in the separation area with circulation motieon /10

nakes it possible to seatisfy equations for energy and nonentun.

The velocity of the external potential flow Ek ard the
velopity at the boundary leyer of the circulation flow with

conétnnt vortexAub=ub/u°° along the common boundary are reclated by

the equation

C A = @) — U 2== consl (2.1)

resulting from the equality of static pressure in the external
and internal flow at cach point on the boundary [6]. The

constant introduced into (2.1) cen be used as an independent

16
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paraneter defining flow and, accordingly, dissipator properties.3

An ideal fluid model describing the external potential flow
near a8 body with a separalion area with circulation flow in it
and accounting for all viscous effects is built similar to that
in point 1. The dissipator in a viscous flow will be a sink flow
of mass; in the ideal fluid nodel, a sink flow of impulse with
something like the power of a sink flow of mass will correspond
to it. Strictly speaking, the location of this sink {low should
correspond to the location of the dissipator in the separation

zone (in this it differs from degenerate flow).

Figure 6

The currents of mass in any radial cross section of
circulation flow in en ideal fluid model are identical (ef.
figure 6). Calculation of parameters for flow in a viscous
mixing layer (defining U(1l), &x¥(1l), 6e$(1)) is complicated
because the differcnce in velocities on the boundaries of the
layer, as well as static pressure, varies along the viscous

layer.

There are alco calculating problems in finding flow in an
ideal fluid model, resulting because one region of flow satisfies

Laplace’s equation, while the other -- the inner -- satisfies

3 If a portion of the friction surface of the body acts as a

dissipator, then paraneter A is defined by the condition

valid for a boundary layer periodic in terms of 1 at high R

nunbers.
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Poisson’s equation. We can approximately replace flow with
constant vortex equivalent to it in terms of current of impulse
by M. A. Lavrent’yev’s potential ring [7] and seek a solution to
the problen in the class‘of harmonic functions. Numerical

calculations are carried out in this approxinatiocon.

3. The Region of stationary flow in plane ¢ R Without data
from numericel calculations on flow with 01rcu1at10n motion
within a separation area, we will try to qualitatively evaluate
the location in plane ch of stationary flows which satisfy
various values for paremeter A (cf. figure 5). Steady flows with
an ideal dissipator in the separation area for which ﬁgso
correspond to points on curve BC. According to calculation,
paraneter A varieé.monotonically along the curve, according to
calculation, fronm AB of about 1.52 to AC equai to 1. The lower
boundary of the region of steady flow with circulation motion in
the separation zone in plane cx,H nust be curve AD, which
correcponds to a maxiially weak dissipator (friction on the back
side of the slab). It is easy to show that the drag of a slab
streanlined in the separation areca corresponding to points on
curve AD is on the order of the friction drag in the sanme cleb,
past which a current flows at the same R nupber, but below zero
incidence, i.e. curve AD is close-to curve L, described by the
equation ¢ =2(1.328H—I/25. ' o -

X : o § u(@a—rer)enk =0
~e

Parameler 4 on curve AD cannot become zero when R number is
finite, since the finite friction impulse on the back side ya9s
of the slab which decelerat~tc the circulation flow within the
area and the absence in this case (1, 2—ub2 =0) of cn accelerating
impulse from the internal flow at the dividing streamline would
violate the equality ukz—ub2=0 and create a new circulation flow
with a 8>0. Parameter & can becone zero only if the
decclerating friction momentum on the back side of the slab
becomes zero, i.e. if R (point b). 1IFf R*w; 8, which describes
dissipator efficiency, passes through all values between zero at

point D(cx+0) and unity at point C(cx*ﬂ/ﬂ+4). Keeping this in
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mind and relying on the distribution of A calculated along curve
BC, we can expect that the behavior of lines A = const in plane

ch is close to that presented in figure 5.

fle will now determine how the shape of the separation area
close to the slab and the flow close to it vary when R*> as
dissipator effiency decreases, i.e. during nmovement from point C
toward point D. Point C represents an infinitely long separation
area, as indicated above. The unlimited size of the separation
area for points located between C and D when R+~ results from the

finite nature of c, at these points.

Even an approach to point D along curve AD does not
contradict the sssertion that a flow corresponding to point D
also belongs to a class of flows with unlimited separation area
dipnensions. The length of the separation area nust increase in
flow corresponding to points on curve AD if R7=; otherwise the
accelerating nmomentum, applied to the circulation flow at the
dividing streerline approaching zecro as R_l/z(ﬁhz—ﬂbz)fh, would
decrease nore quickly than the impulse of friction on the back

side of the slab approcching zero when R_l/z.

Flows with a vorticity 0 of about u_/b, where b is the
transverse dimension of the area, correspond to all points of
segment CD, except degenecrate flow in the area corresponding to
point C. Since the size of the arca increases without limit when
R+, flow within the separation zone at a distance on the order

of d from the slab approeaches local potential.
Conscquently, at the tangential discontinuity separating the
separation area, it is not vorticity, but the Bernoulli constant

that is disrupted if 8>0.

The shape of the separation area in plane xy when the fluid

in the separation zone is quiescent, taken from Xirchoff’s well-
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known solution, is given in figure 7.
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If we assunme the existence in this contour of a potential
flow with A>0, then pressure at the stagnation point on the back
side of the slab will becomne greater than p_. It will also
increase in the angular region of the subject contour adjacent to
the slab. To fulfill the condition of equality of static
pressures for both sides of the contour, it nust deform -- the
curvature of the contour in the angular region nust decrease as
¢cenpared with initial curvature. £4s peraneter A decreases, the
curvature of the contour should diminish (cf. figure 7). We can
find the shape of the separation area contour from the solution
of the problen of streamlining a slab with two onconing clean
currents for which the difference in Bernoulli constants is set
when static preSéu}és'ére eéual and the fluid contour is
inpenetrable.

!

Stresmlining a slab with two onconing clean currents with
identical Dernoulli constants (4=0), which provides a local flow
pattern near the slab, a pattern corresponding to point D on

plane cx,R, is worth discussing.

It is easy to be surc that the conditions of the problen are

satisfied by a potential flow whose flow function is

{ o oy ) (3.1)

Uer— = = J2, Ve s i Ly

¢ = —~kxy
L gy orx

Coefficient k from the condition that velocity is limited at
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an infinite (to the scale of dimencion d of the slab) distance
from the slab should approach zero, and flow near the slab should
become quiescent (cf. figure 8, a).

Thus the limit condition for the flow of a viscous fluid /12
near a slab with a separation zone when 'R+~ is in fact, as
Batchelor first stated [6], by ¢ *0 However, the flow pattern
turned out to be quite dxffercnt from that assuned. Nonethelcss,
the resulting flow near the slab satisfies hydrodynanic equations
and provides another description of Dalawber’s paradox for flow
around a slab: it accounts for the need to form a separation
area because of the effect of viscosity, which is usually

disregarded (cf. figure 8, b).

Let us turn now to the other end of region ABCD -- to snpall R
nunbers.

Curve AB is the boundary of the region of possible steady
f1PW°. Its points represent limit flows for which the equation

pOp (pOp P, )/1/29u 2 in the region of nonviscous vortex

attachnent becomes zero.

Using culculatlons of the change in pO along curve BC, which
varies monotonically in R nunber fron (p0 ) =0 to (pop)c=0.345,
and taking into account that po approachea 1 when paraneter
epproaches zero, we can conﬂtruct the preferred pattern for

locating lines FOp =" const in the region ABCD (ef. Tigure 5),

Of course, when analyzing flows in the region of low R
nunbers, we nust keep in mind that the original assunption that
flow in a viscous rixing layer can be described by Prandtl’s
equation and that circulation flow within an area can be
described by Eiler’ ~equations are invalidated for a certain
value Rmin’ and if R(Rmin, flow is described by Navier—Stoke;

equations.
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4. ﬁnique features of flow in the region of nonviscouc

vortical attachment when ; =0. Figure 9 presents possible
Op

alternatives for pressure distribution p—p

P ou

along the plane of flow symmetry for nonviscous attachment of
vortical currents in a separation area behind a body, which
correspond to various points in region ABCD and its boundaries.
At the maxima for these curves, we have F:SOP' and the position
of the maxinun clong the x-axis determines the position of the

stagnation point behind the separation area along the y-axis. .

‘/q\“” Figure 8
N
¢

If, for flows 1 and 2, for which ;b°>0, the stagnation point
lies farthest from the separation zone, then for flow 3, for
which 50p=0, thrce types of pressure distribution curves along
the plane of symmeiry ure conceivable: 3a -- pressure naxinun
lies within the flow, but there must be at least one pressure
ninimun downstream of it; Sb —-— pressure maximum is achieved
within the flow, but downstrecam of it, pressure is constant and
equals pressure at an infinite distence; 3c -- the stagnation
point lies an infinite distance from the stagnation zone. Using
A. A. Nikol’skiy’s theorem [8] on the monotonic nature of the
change in the slope of the velocity vector during movement of a

gas along the equal pressure line in a flat subsonic vortical

flow, we can show that flow conditions described by curves 3a and

3b are impossible in the case we are discussing.




Figure S

v

If we extend the constant pressure line near the assumed
minimun pressure lying downstream of the pressure maximum

corresponding to condition 3a, then the ends of this constant

pressure curve lying on the plane of symmetry will be (13.

represented by identical velocity vector slope values, and this
will contradict Nikol'skiy’s theorem, which requires that
velocity vector slope increase if the length of tne equal

pressure line is finite.

If we extend the constant pressure line from the point
corresponding to the assumed pressure maximun in 3b, then it goes
into infinity, where the velocity vector slope is also equal to
the velocity vector slope at the plane of synmetry, i.e. we will

arrive at the contradiction already discussed.

Consequently, when Eop=0, the nonviscous vortical flow in the
attachment region has a configuration (cf. figure 10) such that
the stagnation point does not lie in the finite region of the

.flow. In this flow configuration, the dividing streanline
(denoted in figure 10 by the thick line) limits the thin tongue

of the nonviscous backflow extending downstrean to infinity.
:\>>\—— Figure 10
—_—
——-———"';—_————_- .

Thus, points on boundary AB of region ABCD (cf. figure 5)
represent steady stalled flows whose stagnation point does not

lie in the finite region of the flow when attachment is
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nonviscous and vortical. In other words, these flows have a

configuration in attachment regions significantly different fronm
that of a flow with a stagnation point in the finite attachment

region, which is typical of flows filling the entire region ABCD.

The existence of a connection between the configuration of a
flow in the nonviscous attachment region and the stability of a

steady flow with a separation area is traced in points 6 and 7.

5. Steady flows with separations sareas when K>1. VWhen M>1,
only part of the total loss in momentum caused by base drag lies
in the vortex wake. Most of the momentum loss is caused by the
wave drag of the fluid contour of secparation area X2 and lies in

waves noving downstrean from the separation area boundary.

Base drag of a flat body of firite length will be
X = polln?Bu® + 1/,X,

The coefficient of betton drag related to the velocity head
of an unperturbed flow and to the finite dlmcnalon d of the body

in the base shear region will then be
=200 fd 4,

If (6**)6=0 and flow in wake behind the shear region is
considered nonviscous and vortical, then wave drag in the fluid

contour ofthe separation zone can be written as

€s, === cxzy (§ —25.%/4) .

1

Here Cypog is the coefficient for the wave drag of the fluid

contour of the separation area related to the height of the fluid
ledge d-26_x.

Clearly, the wave portion of base drag depends on the shape
of the separation zone’s fluid contour and wave displacement
thickness. The developnent of wave drag, which is a function of

the separation zone'’s fluid contour, and separation zone contour
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as a function of circulation flow intensity within the area make
it much more complicated to find possible steady flows in plane
ch over a wide range of changes in dissipator properties.
However, for degenerate flow within the area, i.e. if an ideal
dissipator is present, the problem is considerably simpler and
possible constant-property flows can be found. We will limit
ourselves here to discussing the case of a degenerate flow within
the area when R+~ and 6%%=0. The self-similar precise solution
for a laminar layer on the dividng boundary mixing a jet of

cbmpressed gas with a quiescent gas when pp = const from [2, 14]
gives us B
e A s
ua/ce Ax (5 .1 )
Total pressure on the dividing streamling in the non- /14

viscous attachment region is calculated from

o -3

FPop Cp(M) . >\'—i TH—I' e
T T o v I’(l)==[i——————)3] "=
Pe P(LP)p(Aﬁo) g \

(83

Static .pressure within a separation area which has & straight
boundary is constant over the entire area; ¢_*%/d*0 end &_%/d40
when R-e, while Cy¥Cyoype Static pressure in the area, which

deternines base dreg is in this case obtained fron the ratio

:1% plia)- . (5.3)
' Pe  Plhe) '
i ) .
f
. Figure 11
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From (5.1)-(5.3) for a given A_, we can calculate pk/peo which
"corresponds to possible steady flows when R+~ in plane ch (cf.

25

R S daeitsd



A RS \h&luw.ﬁme—m.«mmf—m-’(rd-se-\,’«\;-“t.‘ ST s e r—

RS
N
AR iR >

BN

figure 11). Point D represents POp/p~>1’ point C corresponds to
the limit flow with a separation area pop/pw=1 and limit values

(PL/P)yip With Cypip-

We can show that flow configuration in a nonviscous vorticai
attachment region with infinitely long return flow tongue
3orresponds only to limit flow pop/p“=1, just as to limit flow
pdp=0 when M*0. All remaining steady flows with pop/pw>1 contain
a stagnation point in the finite region of the nonviscous

vortical attachment region.

Using the theorem of monotonic change in velocity vector
slope along a constant pressure line located in the subsonic
region of a flow adjacent to the plane of symmetry, i.e. assuming
that we can always select a constant pressure line close enough
to the proposed minimum pressure that this line is within the
subsonic region of the flow, we will establish that such a
pressure minimum is impossible, i.e. that condition 3a (cf.

figure 9) is impossible.

The hypothesis that condition 3b can exist implies that
pressure must be constant over the entire subsonic region of a
flow located downstream of a constant pressure line extended from
the boint.of thc'éséuméd'pbessure maximun. But this in turn
requires that both pressure in the supersonic region and velocity

vector slope be constant. During flow around a f{lat

Mef .
o S Flgure 1

body of infinite length with curved shock waves upstream, this
requirement cannot generally be fulfilled. The configuration of
flow in a nonviscous vortical attachment region, corresponding to

limit flow with POp/pwzl’ is shown in figure 12.
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6. On the existence of a relationship between configuration

of flow in a nonviscous vortical attachment region and flow
stability. As we know, study of the stability of a given steady
flow in terms of low velocity and pressure perturbations
depending on time and coordinates presents a difficult
hydrodynamic problem which, within the framework of the linear
theory, can be solved only for individual simple configurations
of viscous steady flows. Study of the rtability of viscous
steady flow with a separation area of corplex configuration also
presents problems which are yet to be overcome. However, study
of the hydrodynamic stability of nonviscous steady fluid flows
involves fewer mathematical difficulties. Therefore, we do have
some results, obtained with the theory of hydrodynamic stability
for several nonviscous flows of incompressible fluids of complex
configuration with partially free and partially rigid boundaries

which contain rcgions of jet attachment or connection [9, 10].

The potential flows of incompressible fluids with both /15
free (p = const, p’=0, where p is static pressure at the
boundary, and p is the density of the medium adjacent to the
subject flow) and straight rigid boundaries which 2re studied inr

these references include:

a) flows which are-stable or neutral to minor perturbations
over the entire range of change in wave nunber of the imposed
perturbed flow, except onc isolated wave number, for which the
flow is unstable. A typical feature of the configuration of
these flows is the lack of a stagnation point in the finite

region of the main flow;

b) flow which is stable or neutral to minor perturbations.
The stagnation point of this flow lies on a rigid boundary of
finite length;

c) flow which is unstable for nminor perturbations over a wide

range of wave number changes and has a stagnation point within
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the finite region of the main flow;

sladt

d) flow which is unstable for minor perturbations over a wide
range of wave nupber changes and has a stagnation point on a
rigid boundary of infinite length in the finite region of the

main flow.

v anie E s M St a2

Thus, for the potential flows of incompressible fluids with
partially free and partially rigid boundaries reviewed in these

articles, instability occurs if the stagnation point lies in the

B N -

finite region of the main flow and not on a rigid boundary of
finite length. On the other hand, flows with a stagnation point

o tside the finite region of the main flow are virtually stable. i

This result of the linear theory of hydrodynenic stability is

important for analyzing the causes of instability of flows with

separation areas, which has bcen observed in experipents with

e

specific ranges of R and M numbers for specific boundary
conditions within the separation area. Since nonviscous flow in
the stream attachment region beyond the separation area which we
have discussed is close in configuration to that class of flows
with partially free and partially rigid boundaries studied in the
theory of hydrodynemic. stability, the conditions given above
which deternine the stability or instability of potential flows

musl be considered when analyzing the flow we are considering.

The assumed position of the stagnation point in the
nonviscous attachment region behind the sepzration arca, a finite ;
distance from the separation area in the plane of synmetry (or on’
the rigid boundary of infinite length when attachment is to the
flat surface of an extended body beyond the nonsymmetric
separation urea) creates a situation in which potential analogs g
of the subject flow are unstable. On the other hand, we must
bear in mind that potential analogs of the subject flow are
stable, if nonviscous vortical flow in the attachment region

bevond the separation areca does not contain the stagnation point

28



in the finite region, and the configuration of the flow with an

infinitely long backflow tongue develops.

If we use the hypothesis that the instability of a nonviscous
flow in an attachnent region (caused, as shown by the examples of
flows studied by the linear theory of hydrodynamic stability, by
the configuration of flows in the attachment region) is the main
reason for the instability of the entire viscous flow with
separation area, then the rule for deternining stable steady
flows with separation asreas will be that velocity in the finite

region of the nonviscous vortical attachment not be zzro.

The validity of this hypothesis can be determined (at least
at present) only by using the determination rule to compare the
ranges of existence of stable stalled flows with the ranges of
existence of stable steady flows observed in experiments over a
wide range of changes in R and M numbers. Let us make this

conparison,

1. Incompressible fluid. According to calculations in points

1-4 for flow cround a flat slab with a separation area, the
region of steady flows which satisfy the selection rule is
linited by an B number of about 1.2 x 102. This R number
corresponds to a strong dissipator in the separation area. If
the dissipator’s efficiency decrecases, the R number at which a

stcady flow with separation area is disrupted diminishes.

We know that experimeatal R numbers at which a steady flow is
disrupted (called critical R* nunber in literature), measured in
wind or hydrodynanic tunnels are a function of the ratio of
transverse dimension d of a cylindrical body to height H of the

cross section of the working part of the tunnel.

Thus, according to [11), steady flow around a round-scction
cylinder with a scparation area is preserved up to R*:BO when
d/H=0.025 and to R*=62 when d/H=0.10. Therefore, calculated R$
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values determined for an unrestricted current must be conpared
with experimental data obtained at small d/H values.® With
regaord for this circumstance, it follows fron experimental data
for flow around a round-section cylinder with a weak dissipator
(friction on the back side of the cylinder) that R* is about 30.
If a dividing slab whose length is comparable to the length of
the separation area is placed within an area with a plane of flow

synmetry, steady flow is extended to higher R numbers.

In this way Acrivos and his associates [12] shccessfully
increased R* several times to about 170 when d/H=0.05 (recent
experiments by Acrivos® with small d/H values give an R* of about
100). Calculation of the force of friction applied to a dividing
slab on the backward jet side shows that tractive force exceeds
half the nmomentum of a backward Jjet whose parameters were

calculated for a.degenerate flow.

A dividing slab is thus a strong dissipator, and the R* of
about 100 obtecined by Acrivos’ experiments is comperable to the
predicted R* of about 120 for flow cround a slab with a maximally
atrong dissipator. Base drag coefficients when R is
‘appro&imately equal to R* are also comparnble: calculated Fk=

-0.52, experiment ;k=—0.45.

O0f course, when making this comparison we must keep in mind
that the bodies differ in shape. However, the correlation
obtained is quite premising for a first attempt, because, as far
as we know, it has never been possible to obtain theoretical
evaluations of the R, nunbers at which Karman’s vortex streei

occurs since this flow chape was first observed.

4 Calculated R* values for flow around a body located between
parallel walls incrcase as d/H increases. '
s This comes to the author from V. V. Sychev.
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The configuration of cavitation flows is close to that of the
subject stalled flows. The fact that cavitation flows with
closed cavities are steady flows at positive cavitation nunbers Q
=(p~—pk)/l/2pu~2 is now commonly known [13). However, using the
determination rule for cavitation flows makes it possible to
predict the existence of a broad region of stable steady
cavitation flows when gas is released into a cavity and at
negative cavitation numbers. 1In this case, given a nonviscous
connection with various Bernoulli cons tants, there is generally
no stagnation point beyond the cavity, or, given a negative
cavitation number, p0>p°° on all streamlines coming from the

cavity.

2. Supersonic velocities. Point 5 showed thet, when R+« and

there is a strong .dissipator in the separation area, there are
nany possible steady flows which satisfy equations for gas
dynemics of a viscous fluid, for which there are various
corresponding base pressure values pl/p However, only one,
corresponding to point C (cf. figure 11) can be considered a
stable steody flow, since the configuration of the flow in the
nonpviscous vortical attachment region which corresponds to point

C satisfies the selection rule.

As we know, Chopman and associates [14], in careful yavi
experirments on the stnlled flow behind the reverse ledge on the
csurface of a body at 1.3<M<2.0 for R nunbere fron 0.6 x 10¢ to
1.4 x 10°%, observed the existence of laminar flow within a
separation area at these high R numbers, in which base pressure
varies as a function of M number in quite close quentitstive
correspondence with values calculated for point C (pop/p =1).

Just as in Acrivos’s experiments, the surface of the body behind
the ledge adjacent to the separaticn area is a strong dissipator

in Chapman’s experiment, which justifies comparing experimental
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déta with calculations for a maximally strong dissipator.® 1In
sumnary, we can conclude that the hypothesis that configuration
of flow in a nonviscous vortical attachment region has a decisive
effect on the stability of steady flows with separation areas is
confirmed by existing experimental data on laminar separation
areas over a wide range of chenges in R and M numbers. This
nakes it possible to apply this hypothesis in theoretical
analysis of stalled flows.

7. On the use of the selection rule in studying stalled

flowus.

1. Turbulent low in a separation zone. As we know, the

openness of the system of Reynold’s equations which describe
vortical motion does not permit theoretical study of even the
sinplest instances of turbulent flows without using empirical
quantitative dota. In addition, use of empirical data nakes it
possible to celculate parameters for averaged turbulent flow for
sinple flow configurations (a wall turbulent boundary layer, a
turbulent mixing layer on the boundary of a jet flowing out of ‘an

inpersed space, the main portion of a turbulent jet).

gy 0
e i B & ARV A AN R LT O

6 Note that Chapuan’s use of the correlatiqn between pop/pm end
bottonm pressure, observed in expericents at supersonic:
velocities (when flow was steady) and used in the Chapman-—
Korst calculeating procedure (this procedure will be discussed
in nmore detail later) for interpreting Roshko’s éxperimental
data [15] on base pressure behind a round-section cylinder
with a dividing slab at an R of about 104, is, in the light
of what has been presented above, unjustified, since, in
Roshko’s experiments, flow behind a round-section cylinder
with a dividing slab was periodic (without constant

properties) in nature at these R numbers.
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We might expect that results satisfactory from an engineering

]
]
3

- standpoint can be obtained by calculation and by study of complex

i

configurations of turbulent flow if they contain components which
are sinmple configurations of turbulent flow studed in detail in

"pure"” form.

If these components cannot be identified in pure form in a
turbulent flow of a complex configuration, then quantitative
empirical data for the subject complex configuration of turbulent
flow must be accumulated before calculation. Turbulent flow in a

separation area has a complex configurati~n, but there is still

Wormr S DANEM LSSl o A B S AT A S S TR S

~ little quantitative empirical data for it. Therefore, we will
limit ourselves to discussing degenerate flow in which a
turbulent mixing layer separates external flow from quiescent
fluid within a separation area with constant pressure, since, in
considering turbulent flow with a circulation core, we already
cannot ignore turbulent friction stresses and energy dissipation
within the core, which cannot as yet be calculated because of
lack of quantitative empirical data for a random circulaticn core

contour shepe.

For a completely turbulent flow in a separation area, R

nunber determines only the nature of flow in the boundary la}er ' }

" on the surface of the body up to the flow sepuratlon point and ;

e the thickness of the boundary layer at the beginning of the

turbulent nmixing layer, which in turn define the position of flow

separation on the body’s surface and indirectly affect U and Tp
values. These same equations, which describe flow in a turbulent

miv¥ing layer, do not contain molecular viscosity p and,

consequently, R number.
Let us consider flow around a slab at a (6**)0 which does not

equal zero and an M<Kl with degenerate flow within the separation .

area from a maximally strong dissipator.
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The decisive parameters of a turbulent mixing layer (U, /18 !
Tp) are a function of (6%%) and empirical constant o
(proportional to the angle of expansion of the turbulent mixing

layer). By nmaking judgments similar to those in point 1 to

b ggrv ' N '
' Figure 13
Ch0
A _g . ‘

plotting cx=f(R) for a laminar mixing layer, we can, for a given
(6%%), find possible steady flows for a turbulent degenerate flow
which lie on curve BC on plane cx,l/c (cf.figure 13). Point B, :

as before, corresponds to limit constant-property flow (pop)B=0.

Obviously, only one point on this curve can represent real

flow, since cexp’ the experimental constant for a turbulent

mixing layer, is not a function of the shape of the body and

separation area.
There are threc possible cases.
Case 1:. 1/°exp<(1/°)n -~ the assumed steady flow with

quiescent fluid within the separation area does not exist. Flow

with a circulation core may exist, but it cannot be calculated

without regard for turbulent friction stresses and energy

dissipation within the core.

Case 2: l/aexp>(1/c)B —-- the assumed steady flow with
quiescent fluid within the separation area does not satisfy the

determination rule ard cannot in fact be realized as steady.
Case 3: l/cexp=(1/o)B -~ the assumedsteady flow with

quiescent fluid within the separation area exists and, since it

satisfies the determination rule, can be realized in reality.
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Since (l/c)B is a function of body shape, and l/cexb is

- constant, the probability that the proposed steady flow pattern

with separation area will be observed in experiments with a

<
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random body shape is quite low.

Thus, calculation of a turbulent separation area using a pure
element —-—- a turbulent mixing layer -- is correct in those
narticular cases when the two conditions below are simultaneously

satisfied:

4
¢
¥
&
P
1
]
*
]
g
%
2
Y
'g
&
M

u =07, (1/6)p=1/6 (7.1)

If condition (7.1) is not fulfilled, flow in a separation
area will be unsteady (i.e. it will possess increased pulsation
amplitude in the turbulent nixing layer and a frequency
characteristic different from that of an isolated (pure)
turbulent mixing.laycr) or will remain steady, but will have 2
circulation core. In either case, calculation based on the

concept of a pure nixing layer is unsuitable.

In view of what has been presented here, it is obvious that
the calculating procedure proposed by Korst [16] to describe
C - - actual turbulent flows with separation areas is incorrect. This
procedure uses the concept of a pure turbulent mixing layer, but,

of the three hydrodynamic equations which describe flow, only one

—— the equation of preservation of mass -- is satisfied.

Therefore, it is still absolutely necessary to satisfy
- conditions of type (7.1) to realize the proposed pattern of flow
resulting from this complete system of hydrodynanic equations.

It is conceivable that the well-known discrepancy between

7 That is, the dissipator’s characteristic is close to that of

an ideal dissipator.
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calculated data obtained using Korst's method and data fronm
systematic FrenchA[17] and English [18] experiments results
because the flow pattern assumed in the calculation procedure
cannot be realized in reality due to the fact that conditions of
type (7.1) cannot be fulfilled. Note also that the failure (19
to satisfy the momentum equation in Korst’s procedure leads to a
paradoxical, but clearly unjustified, conclusion that we do not
need to know of the value of the experimental constant oexp to
calculate base pressure if there is turbulent flow in a
separation area and no mass exchange between the separation area

and the body.

2. Laminar flow_in a separation area with unfixed flow

separation point. Experiments on this important class show that

flow in a leminar separation area is steady and has a circuletion

core over a wide range of R numbers up to about 106 if M>1.

This flow hés two regions for whicii calculations are done
entircly differently: region I before the separation area to the
flow separation point can be calculated (as is done in many
studies using variations of integral ratio method) regardless of
pressure within the separation area or taper; region IT between

the flow separation point and attachment, containing a

‘circulation cord, whose parameters are a function of the

intensity of the descending jump or of taper. Calculating
viscous flow in region II at high R numbers is a difficult
probler whose solution requires effective metheds which account
for all the features of complex flow with sufficient accuracy,
but which have not yet been found. We might expect that, as
difficulties in numerical calculation of steady flow are
overcome, we will be confronted by the probleﬁ of determining a

single, practicable solution which must be reliable.
In view of what has been presented here, it is conceivable

that determination should also be nade in terms of the

configuration of flow in the nonviscous vortical attachment
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region.  To adapt the determination rule in this case, flow in a

certain finite attachment region must be calculated as vortical
and nonviscous.

37

P 0 ettt 20" o s o<



N A O e N A e e L e OV A e S T T T I T T S N T T e
T < - : . p o T AT e gy sy &

. TN N -
2N D Tt s g, N AT Y o v e nsy

10.

11.

12.

REFERENCES

Lessen, M., On the stebility of the free laminar boundary
layer between parallel streems, NACA, Rep. 978G, 1949.

Lock, R. C. The velocity distribution in the laminar boundary
layer between parallel streams, Quart. J. Mech. and Appl.
Math., 1951, vol. 4, Ko. 1, p. 42

Efros, D. A. Hydrodynamic theory of flat parallel cavitation
flows, Dokl. AN SSSR, 1946, vol. 51, HNo. 4.

Gurevich, M. I., Teoriya struy idecal’noy zhidkc:ti [A Theory
of Jets of an Ideal Fluid], Moscow, Fizmatgiz, 1961.

Batchelor, G. K., On steady laminar flow with closed
streamlines at large Reynolds nuwmber, J. Fluid Hech. 1956,
vol. 1, pt. 2.

Batchelor, G. K., A proposal congcerning laminar wealites behind
bluff bodies at large R numbers, J. Fluid Mech., 1956, vol.
4, pt. 4, p. 386.

Lavrent’yev, M. A., Variatsionnyy metod v krayevykh zadachakh
dlya sistenm uravneniy ellipticheskogo tipa [Variational
Method in Extrenum Problems for Systems of Elliptical Type
Equations], Moscow, Acadeny of Sciences of the USSR Press,
1962.

Nikol’skiy, A. A., On flat vortical movements of gases, in
Nekotoryye tochnyve resheniya uravneniy prostiranstvennykh
techeniy gosa [Some Precise Solution to Equations of Three-
dimenionsal Gas Flow], Tr. TsAGI, 1848.

Ablow, C. M., Hayes, V. D., Perturbation of {ree surface
flows. Technical Report HNo. 1, Office of Naval Research, Ho.
7 onr-35807, Graduate Division of Applied Mathematics, Brouwn
University, 1851.

Fox, J. L., Morgan, G. M., On the stebility of some flows of
an ideal fluid with free surfaces, Quart. Appl. HMath. 1954,
vol. 11, No. 4, pp. 439-456. :

Thon, A., Flow past circular cylinders at low speeds, Proc.
Roy. Soc., 1933, A4 141.

Grove, A. S., Shair, F. H., Petersen, E. E., Acrivos, A., An
experimental investigation of steady scparated flow pest a
circular cylinder, J. Fluid Mech., 1964, vol. 19, pt. 1, p.
GO.

38

Ly A

- Al AR R SRR ST

I

ooy gk smAn e Ad

P s e dand)

A Yo WA iy
N L .

[V e

R R TIL T T

“—




Naate. Tha £ b it an i s ar e T e aed SR YdgEmind oMot B o

s 13.

y
15.
16.
17.

18.

114Q

Sedov, L. I., Ploskiye zadachi gidrodinamiki i aerodinamiki
[Flat problems in hydrodynamics and aerodynamics], Ed. 2,
Moscow, "Nauka," 1966.

Chapman, D. R., Kuehn, D. M., Larson, H. K., Investigation of
separated flows in supersonic and subsonic streams with
enphasis on ?Bg_gggpgi_gﬁ_iggg§iiipn, NHACA Rep. 1356, 1958.

Roshlko, A., On the wake and drag of bluff bodies, J.
Aeronaut. Sci., 1955, vol. 22, No. 2, p. 124.

Korst, H. H., A theory for base pressures in transonic and
supersonic flow, J. Appl. Mech., 1855, vol. 23, No. 4, pp.
563-600.

Carrierc, P., Recent studies by ONERA on problens of
attachrent, Tth Fluid Dynemic Symposium, Jurata, Poland,
1965.

Nash, J. F., An analysis of two-diumensional turbulent base
flow including the effect of the approaching boundary layer,
ARC RY, 1963, No. 3344. A :

33




Cobhanb il Riadi ol * Laacid b et ad

PRIV I PR GRS ST

TN ./ ’

: AT

T \& ..

o . - ..
LT N




T

e
31176 00188 6671

)

7
{ ;



