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ABSTRACT

The development of high-efficiency low-cost crystalline silicon ribbon
and thin-film solar cells is a key element in achieving the goals of the U.S.
Department of Enmergy National Photovoltaics Program. This report summarizes
the findings of an issue study conducted by the Photovoltaics Program Analysis
and Integration Center at the Jet Propulsion Laboratory, with assistance from
the Solar Energy Research Institute and the Flat-Plate Solar Array Project at
the Jet Propulsion Laboratory. The study team interviewed leading researchers
in crystalline-silicon ribbon and thin-film solar-cell technologies from Federal
agencies and industry that conduct research funded both by the government and
by private investment. The collected data identified the status of the tech-
nology, future research needs, and problems experienced. The data were also
studied and evaluated to assess the potentials of present research activities
to meet the Federal/industry long-term techmnical goal of achieving 15¢ per
kilowatt-hour levelized PV energy cost. Recommendations for future research
needs related to crystalline silicon ribbon and thin-film technologies for
flat-plate collectors are also included.
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PART ONE

EXECUTIVE SUMMARY



EXECUTIVE SUMMARY

The primary research emphasis of the U.S. Department of Energy (DOE)
National Photovoltaics Program is the development of promising new approaches
to photovoltaic (PV) cells, such as thin-film aud multijunction concepts.
Emphasis also is placed on completing the development of designs based on
flat-plate silicon technologies that yield improved conversion efficiencies
and are amenable to automated production. These cells, when used in
flat-plate collectors, should be capable of achieving the following
Federal-industry long-term technical goals for flat-plate collectors:

Module efficiency 132 to 172
Module cost $40 to $75/m?
The Solar Energy Research lnstitute (SERI) and the Jet Propulsion
Laboratory (JPL) manage the Program's research on thin-film and silicon-ribbon

cells and modules, which are potentially lower in cost than today's
Czochralski ingot and cast-polycrystalline silicon cells and modules.

The specific Program milestones listed in the DOE Five-Year Research
Plan are:

FY85 FY86 FY87 FY88
Single-junction polycrystailine 152
thin-film cells 100 cm
Single~-junction amorphous 82 2 12% 2
silicon cells 1000 cm 100 cm
Multijunction amorphous 122 2 18%
thin-film cells 1 cm 1 cm
Flat-plate crystalline-silicon 122 2 142 2 152 2
collectors $100/m $90/m $90/m
Flat-plate thin-film collectors 122 2

$70/m

The research involves strong Government-industry partnerships using
multidisciplinary teams as well as in-house research to support the contracted
efforts.

To assess the status of the research efforts, progress and problems
experienced, and potentials for achieving the projected goals, an issue study
was conducted by the JPL Program Anulysis and Integration (PA&I) Center with
the support of key persons at SERI and the Flat-Plate Solar Array Project
(PSA) at JPL. The study involved an industry survey to (1) review current
progress compared with the objectives and goals, (2) examine the problems and
prospects for meeting the goals, and (3) analyze the collected data to better
define the 1esearch needs to achieve the goals.



Highlights of the study findings are:

(1)

(2)

(3)

(4)

(5)

(6)

(7

Unlike the present-day silicon sheet technologies, both the
silicon-ribbon and the thin-film cell and module technologies have
the potential to achieve the long-range goals for flat-plate
modules.

Among the silicon-ribbon cell and module technologies, the
web-process and EFG-process cells are most promising.

The amorphous-silicon cell efficiency goal of 122 with 100 cm?
cells appears to be achievable in 1988 without depending on any
breakthroughs. However, achievement of module efficiency in the
15% range is unlikely with single-junction amorphous silicon cells.

Some degree (=5X) of photon-induced degradaiion may be unavoidable
with a-Si cells.

Polycrystalline thin-film technologies have made remarkable
progress. Large-area (>100 cm?) cells are showing efficiencies
in the 62 range.

The achievement of 15% efficiency small-grain polycrystalline
thin-film and amorphous-silicon modules requires considerable
research effort and almost certainly requires multijunction
devices.

Extensive research efforts are still required in the areas of
materials and materials property theory and analysis, as well as
measurement techniques and standardization for reliable evaluation
of cell and module performance.

Future PV research needs based on the PA&I Center issue-study data are
summarized for three projected module technologies:

(1)

Ribbon Silicon Sheet

(a) Establishment of high growth rate with minimum stress
buildup in ribbons. Growth dynanics modeling and
experimental growth rate verification require continued
research,

(b) Improvement of ribbon quality in both crystallographic and
electrical properties. Better control of grain boundaries
and twin-plane formation must be achieved. Reduction of
grain boundaries, defects, and impurity effects by
passivation or otherwise will further improve ribbon-cell
erficiency.

(¢) Continuous ribbon growth using continuous melt replenishment
and closed~loop growth control should be demonstrated
jointly with industry.



(2)

(3)

Amorphous Silicon

(a)

(b)

(c)

(d)

(e)

(£)

Amorphous-silicon alloys with high band gap and amorphous
alloys with low band gap require continued research for
eventual integration into high-efficiency tandem cells.

Transparent conducting oxide (TCO) materials require
increased attention to improve optical and electrical
properties. The interaction between TCO and a-Si should be
carefully considered to ascertain device durability.

Early establishment of baseline film deposition processes
with standardized deposition parameters is highly

degirable. Cell performance with respect to fabrication
processes can be rcadily calibrated, and the direction for
future advancement can also be determined with relative ease.

Analytical efforts for cell and matecrial modeling must be
continued to understand cell performance and to identify
areas for improvements. Photon-induced degradation is one
such area.

Experimental work in multijunction amorphous silicon cells
should be increased. The work can be done in parallel with
single-junction work, since synergism may be expected to
accelerate the progress.

Module-related research should continue steadily at an
increasing rate with strong joint funding by industry. The
timing should be such that a-Si technology industrialization
for power applications can be achieved smoothly in the early
1990's.

Polycrystalline Thin Films

(a)

(b)

(c)

Research efforts focused on CulnSe, and CdTe cells must be
continued so that cousistent results are experimentally
achievable. Clean deposition systems, well-defined source
materials, and well-controlled deposition processes are
required for consistency.

t~alytical effort coupled with theoretical and diagnostic
activities must be strengthened. Polycrystalline materials
are obviously complex in crystallographic and electronic
properties. Stoichiometry, impurity content and grain
structures of polycrystalline materials all have strong and
hitherto unexpliained effects on cell performance.

Research toward high-efficiency tandem polycrystalline
thin-film cells requires strengthening, since tandem cells
are almost _ertainly needed to achieve high module



efficiency with polycrystalline thin films. Combinations of
differing polycrystalline cell technologies as well as
polycrystalline and amorphous combinations should be
researched.

The issue study team findings regarding the development of silicon
sheet, polycrystalline thin-film and amorphous-silicon technologies are
consistent with those developed by the Electric Power Research Institute
(EPRI) in a report by an ad hoc advisory committee*. Conclusions of that
report are summarized in Table E-1.

Table E~1. Development Characteristics of Photovoltaic Technologies

Tandem Crystalline
Development Amorphous Silicon Polycrystalline

Characteristic Silicon Sheet Thin Films
Probability of Meeting high medium high
Cost Targets
Probability of Meeting medium high low
Efficiency Targets
Probability of Meeting medium high medium
Reliability Targets
Margin for Meeting Targets high low low
Time to Resolve Technical
Uncertainties 10 years 10 years 20 years
Level of Complementary high high low
Development Efforts
Degree of Private R&D high medium low
Investment
Availability of Near-Term high high medium
Markets

Based on EPRI's projections, the crystalline-silicon sheet technology
has the highest probability of meeting within 10 years the efficiency and
reliability requirements for utility applications that are consistent with the
long-term technical goals.

*Photovoltaic Power System Research Evaluation, a report of the EPRI Ad Hoc
Photovoltaics Advisory Committee, EPRI AP-3351, Electric Power Research
Institute, Palo A'te, California, December 1983.




Inasmuch as the silicon-sheet technology is the most mature, the
uncertainty level in predicting its probability of success is lower than that
of other technologies. The result is that all elements of the technology,
from low-cost silicon material production to the fabrication of highly
reliable modules, must achieve individual goals to reach the overall target.

Thin-film technologies, on the other hand, are not likely to have a
strong impact on the electric utility market until after 1995, as these
technologies are relatively new and are still considered to be in a research
status. Their potentials for success, therefore, are projected on a basis of
a number of uncertainties and long-range expectations. Thus, the probability
of meeting the targets is high for tandem-junction a-Si technology, but the
attainment of this potential reguires significant continued research to solve
a number of technology problems for thin-film modules.
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SECTION I

INTRODUCTION

Photovoltaic (PV) power systems have a number of advantages that make
them an appealing option for grid-connected power generation. These include
the potential for low maintenance requirements, low noise, no pollution and no
fuel requirement. The primary factors now limiting the use of PV systems are
low module efficiency and high cost.

The U.S. Department of Energy (DOE) National Photovoltaics Program has
undertaken to develop PV rystems that can become cost-competitive with other
grid-connected power-generating systems. The goal of this program is to
develop, for industry commercialization, PV systems that can generate
electricity at a 30-year levelized cost of 15¢ per kilowatt hour. Two photo-
voltaic collector approaches have emerged with the potential to achieve this
goal: flat-plate collectors and concentrator collectors. The Federal-industry
long-term technical goals for these collectors are:

Flat-Plate Concentrator
Collector efficiency 132 to 17% 23% to 29%
Collector cost $40 to $75/m2 $90 to $160/m2
System life expectancy 30 years 30 years

These goals can only be achieved with low-cost, high-efficiency solar
cells for collectors. For flat-plate collectors, silicon ribbon and thin-film
multijunction cells with efficiency in the 15% to 20Z range will be required.
For concentrating collectors, the most viable options are high-efficiency (25%
to 35%) multijunction cells, produced at relatively low cost. Current
single-junction laboratory cell efficiency, theoretical efficiency and the
projected and potential efficiency in the future are listed in Table 1 for a
number of cell materials. As can be seen from the projected and potential
efficiencies, thin-film and amorphous single-junction cells are marginal for
achieving module efficiency goals.

Over the past eight years the Solar Energy Research Institute (SERI) and
the Flat-Plate Solar Array project (FSA) at the Jet Propulsion Laboratory (JPL)
have been engaged in the research of silicon-ribbon, single-junction and thin~-
film multijunction cell technologies and related module research to achieve the
flat-plate collector long-range goals. To assess the status of silicon-sheet
and thin-film technologies and the potentials for meeting the flat-plate solar-
cell and collector goals, an issue study was made by the JPL Program Analysis
and Integration (PA&I) Center with the assistance and su:pport of SERI and FSA.
The study team members are:



Table 1. Single~Junction Photovoltaic Cell Performance Potentials

Small-Area Laboratory Cell Efficiency, %2

Cell Materials (1984) Theoryb Projected Possible
(1986-88) (1990's)
Single-Crystal
Silicon 19 26 21 22
Silicon (100X) 21 30 24 26
GaAs (1 sun) 22 28 22-24 25
GaAs (500X) 24 34 26~-28 30
Amorphous Silicon 11 16-20 13-14 15
CulnSe,/CdS 11 25 12-14 15
CdTe/cCdS 11 28 12-14 15

8Concentration Ratio = 1 sun (1X) unless designated otherwise (500 sun
concentration ratio = 500X)

bBest estimates for single-crystal cells except for amorphous silicon

PA&I Center SERI FSA
K. Shimada, Leader A. Hermann A. Morrison
E. Costogue E. Sabisky A. Briglio
R. Ferber T. Surek R. Daniel
J. Milstein
E. Witt

The purposes of this issue study are to assess the status of
silicon-sheet and thin-film technologies, to examine their potentials for
meeting the DOE program goals for flat-plate collectors, and to identify
research needs for continued development.

The team's approach included compilation of silicon ribbon and thin-film
cell and module research status through industry visits and/or teleconference
interviews; analysis of data to determine technological progress, and
identification of technological problem areas and continuing research needs.
Following is a list of interviews conducted by PA&I Center team members:

2



Visits:

Boeing Co. 8/9/84 Roger Gillette
Electric Power Research Institute 8/10/84 Roger Taylor, Ed DeMeo
Stanford University 8/10/84 Richard Swanson
Energy Conversion Devices, Inc./ 8/15/84 Maset Izu, others
Sovonics (see Appendix A)
Westinghouse Electric Corp. 8/16/84 Don Roberts, others
(see Appendix A)
Solarex Corp. 8/17/84 John Corsi
Chronar Corp. 8/17/84 George Self,
Alan Delahoy
ARCO Solar, Inc. 9/18/84 Don Morel

Teleconferences:

Ametek, Inc. 9/11/84 P. Meyers
Eastman Kodak, Co. 9/11/84 Y. Tyan
Institute of Energy Conversion 9/12/84 J. Meekin
Southern Methodist University 9/12/84 T. Chu
Spire Corp. 9/10/84 V. Delal
Minnesota Mining and

Manufacturing Co. 9/16/84 F. Jeffrey
Mobil Solar Energy Corp. 9/13/84 K. Ravi
Arthur D. Little, Inc. 9/13/84 E. Sachs
Energy Materials Corp. 9/13/84 ). Jewett
Solavolt International 9/12 & 9/19/84 A. Lesk, W. O'Connor
Monosolar, Inc./Standard Oil Co. 9/11/84 B. M. Basol

of COhio

Exxon Research and Engineering Co. 10/11/84 T. Moustakas

University of Illinois 10/18/84 J. Thornton

This survey involved the participation of a wide cross section of the
photovoltaics community, including technical managers and researchers from
photovoltaics companies, university researchers, governmental researchers and
Government R&D project managers. The opinions and recommendations of the
persons interviewed are reflected in this report. The interviewees are
intimavrely familiar with the silicon-ribbon and thin-film technologies, and
with their problems and their potentials for meeting the DOE goals.
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SECTION I1
OBJECTIVES AND APPROACH

The DOE National Photovoltaics Program objectives are to develop PV
technologies that can become competitive for grid-connected power generation.
A long-range goal of the Program is to prepare industry for commercialization
of photovoltaic systems that can generate electricity at a 30-year levelized
cost of 15¢ per kilowatt-hour. The PV systems that have the potential of
meeting the program objectives are flat-plate collectors and concentrator
collectors.

For flat-plate silicon collectors, the most common approach today uses
wafers of single-crystal silicon that are processed into cells, which are
assembled into modules. Single-crystal silicon wafers are produced today by
the Czochralski method, in which a single crystal of silicon is grown in
cylindrical shape and sliced into individual wafers. To reduce the cost of
producing PV devices, a number of new processes are being developed, such as
silicon ribbon processes that produce a planar sheet directly from the melt,
and thin-film PV cell deposition techniques. These sheet and thin-film cell
technologies are compatible with projected large-area, low-cost production
processes.

Over the past few years, significant technical advances have been made
in flat-plate collectcrs due to the large and direct financial investment made
in R&D by both government and industry. These technical advances have made
possible the development and sales of PV products in a rapidly growing number
of applications.

Widespread grid-connected applications can only become a rzality when
the following technical goals, which are specific PV Program milestones, for
flat-plate collectors are achieved:

FY85 FY86 FY87 FY88
Single-junction polycrystalline 15%
thin-film cells 100 cm?
Single-junction amorphous 8% 12%
silicon cells 1000 cm? 100 cmr?
Multijunction amorphous 122 18%
thin-film cells 1 em? 1 cm?
Flat-plate crystalline-silicon 12% 14% 15%
collectors $100/m2 $90/m2 $90/m?2
Flat-plate thin-film collectors 12%
$70/m?
. . - Y BLANK
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Two research centers in the National Photovoltaics Program organizations,
SERI and FSA, have the vesponsibility for conducting research to advance the
state of the art for flat-plate collectors.

A. SERI ADVANCED RZSEARCH AND DEVELOPMENT CENTER

SERI's research activities are directed toward advanced photovoltaic
material technologies, which include research on amorphous materials,
polycrystalline thin films, cadmium sulfide/copper binary and ternary
materials, combinations of gallium arsenide and other III-V high-efficiency
materials, polycrystalline silicon, and other PV materials and devices. The
two major tasks related to the issue study are the Amorphous Thin-Film
Research Task and the Polycrystalline Thin-Film Research Task. Another
relevant task is the High-Efficiency Concepts Task; almost half of its budget
is devoted to high-efficiency III-V thin films for flat-plate collectors. The
specific activities in each task involve management of subcontracted research
and coordination of in-house research activities complementary to
subcontracted efforts.

The research activities involve strong government-industry partnerships
using multidisciplinary teams. The requirements for such research are based
on the fact that various parts of thin-film PV devices are strongly
interdependent and cannot easily be isclated. This is a consequence of the
thin~film nature of the technology; surfaces and interfaces piay a major role
in the properties of the devices. Research in single-junction solar cells is
expected to meet the near~term DOE goals for thin-film PV modules and also to
provide the basis for the longer-term development of multijunction stacked
solar cells. Multijunction stacked solar cells have the potential of meeting
higher efficiency goals.

The Amorphous Thin-Fi.m Research Task performs research in accordance
with the plans of the Amorphous-Silicon Research Project (ASRP) office at
SERI. The research activities are grouped into five major areas: Material
Research, Cell R&D, Submodule R&D, Process Development and Module R&D. The
ASRP project is organized into two primary and five secondary research
activities. The primary research activities are single-junction solar cells
and multijunction stacked sclar cells. The five secondary research activities
are material deposition rate, alternative material deposition methods,
light-induced effects, device testing and reliability, and supporting research
such as theory development, plasma kinetics and transparent conductors.

A number cf amorphous-silicon deposition processes are being evaluated at
SERI. One experimental system is a capacitance-coupled glow-discharge
apparatus that is being used for developing new types of alloys such as
a-SiSn, a-Si:N and others. Another deposition system is a standard
glow-discharge apparatus that has been extensively modified for device work.
Still another is an R&D-type multichamber deposition apparatus.

The Amorphous-Silicon Research Project office conducts research and
development through industry contracts, to understand and improve photovoltaic
propertics and to increase conversion efficiency of single-junction and
multijunction amorphous-silicon cells.
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The objective of the Polycrystalline Thin-Film Research Task is tn
support research directed toward the achievement of high (near 15%) efficiency
in polycrystalline thin-film CulnSej~ba.ed cells, in thin-film CdTe cells,
or in thin-film cascade cells based on these families of materials. These
cells are to be depcsited by a method that is potentially scalable to
high-throughput production. An additional objective is to demonstrate the
long-term stability of these thin-film cells. Tr: SERI in-house effort
objectives are to develop promising polycrystalline thin-film solar-cell
materials and devices by: (1) studies on stoichiometry, carrier concentration
and crystallograpnic structure for CulnSe; thin films; (2) studies of
diffusional processes between the two layers of CulnSe,; (3) fabrication of
CulnSe,S,_, thin films to gain an increase in V,., as compared with that
of CulnSey; (4) fabrication of state-of-the-art CdS/CulnSe, devices; (5)
exploration of new ternary materials from II-IV-V, compounds by initiating
studies of thin-film evaporation and its stoichiometric control, and of the
optical and electrical properties of promising candidates; (6) exploration of
CdTe thin-film deposition work by hot-wall evaporation techniques.

The efforts are expected to produce the following results: (1)
understanding of the mechanisms controlling the near stoichiometric growth of
CulnSe, thin films; (2) understanding of the necessary stoichiometry and
structure of CulnSe; to achieve high efficiency; (3) understanding of the
role, if any, of the two CulnSe, layers; (4) increasing the photovoltage
above 0.45 V by modified CulnSe, material; (5) identification of new
thin-film materia’s that have promising PV properties.

B. FLAT-PLATE SOLAR ARRAY PROJECT

The Flat-Plate Sclar Array Project makes continuing efforts in advanced
silicon-sheet technology and has initiated efforts in amorphous-silicon and
other thin-film technologies, which include deposition scale-up research and
exploratory testing of thin-film amorphous-silicon cells and modules. Work is
also being done to identify generic thin-film cell and module reliability
izsues to enhance performance, repeatability of measurement and understanding
of degradetion. Specific activities involve management of small subcontracted
efforts and the conduct of in-house research complementary to subcontracted
efforts.

The primary objectives of FSA's Advanced Silicon Sheet Task are to
resolve generic impediments to improvement of ribbon growth speed and
quality. The critical problems remaining in achieving high-speed growth of
shaped silicon sheet by the dendritic web and edge-defined film-fed growth
(EFG) methods include the limitations of crystallization rate. A key problem
is residual thermal stresses and subsequent strain associated with high growth
speed, large ribbon width and minimum ribbon thickness. The tasks also
include development of ribbon technologies that show promise though the
experimental research activities at SERI such as low-angle silicon sheet
growth (LASS), developed by Energy Materials Corp. (see FSA Project Management
Reports for lists of active relevant contracts).

The objective of the Amorphous-Silicon Deposition Task, which is
primarily an in-house effort, is to develop and construct a large-area




multichamber amorphous-silicon deposition system to assist in the development
of electrodes and plasma-controlling systems and to evaluate and control
chamber-to-chamber cross contamination. The testing and reliability
assessment activities include a variety of environmental and endurance tests
of thin-film cells and modules and definition of key failure mechanisms and
possible research avenues for achieving accurate repeatable measurements for
reliability improvements and assessment of degradation. Both tasks are

conducted in cooperation with the Amorphous-Silicon Research Project Office at
SERI.



SECTION III

SILICON-RIBBON SHEET RESEARCH STATUS

To reduce the cost of producing crystc'line-silicon photovoltaic devices,
several advanced silicon-sheet production processes are being developed.
Generically referred to as ribbon processes, they produce crystalline-silicon
sheet directly in the form of a planar sheet instead of in the form of a
cylindrical ingot that must be subsequently cut into planar form, as with the
Czochralski method. These include the dendritic-web (commonly referred to
simply as the web) process, ribbon-to~-ribbon (RTR), edge~defined film-fed
growth (EFG), edge-supported ribbon (ESR) and low-angle silicon sheet (LASS)
processes. Excepting the web process, the silicon sheets produced are
polycrystalline in form, being composed of numerous large (i.e.,
centimeter-size) single crystals of silicon. It is hoped that the resulting
polycrystalline sheets can be as attractive economically as those that are
strictly single-crystal, as it appears that there is a trade-off between
crystal size, cell efficiency, and production cost.

Cell efficiencies as high as 16.7% have been reportedl with material
produced by the dendritic-web process, the only ribbon-growth process that
produces gingle-crystal sheet. The developera of this process have projected
a production cost of $0.48/W, ($75. 8/m?, 1980 $) at production levels of
25 MW_/year. Such efficiencies and costs, if realized in large-scale
production, would make these modules very attractive when compared with the
U.S. PV Program cost and performance targets.

The ribbon technologies examined in this study are edge-defined film-fed
growth (EFG) as developed by Mobil Solar Energy Corp. (MSEC, or Mobil);
dendritic~web silicon, developed at Westinghouse Electric Corp; edge-supported
ribbon, being developed by Arthur D. Little, Inc. (ADL); ribbon-to-ribbon
(RTR), being developed by Solavolt International; and low-angle silicon sheet,
being developed by Energy Materials Corp. (EMC). Other ribbon technologies
are being developed, primarily outside the United States, such as
ribbon-against-drnp (RAD), variants of silicon-on-ceramic (SOC),
wmeniscus-coated substrates, etc. None of these, however is likely to achieve
cell and module performance and costs within the envelope provided by the five
presently or formerly National Photovoltaics Program-supported technologies
that are examined in this study.

All of the ribbon-growth processes have certain generic technology issues
associated with them that are the principal foci of current PV Program ribbon
R&D. Chief among these technology issues is ribbon stress and resultant
buckling. Other concerns are impurity, defect-related winority carrier
lifetime limitations and growth-furnace throughput limitations. Satisfactory
solutions to these R&D problems must be developed soon for ribbon technologies
to become major components of the 1990's PV product-offering mix. Summaries
of the ribbon technologies examined are presented in the following
paragraphs. See Appendix A for information collected from tie interviews.

lg, Campbell, Westinghouse Electric Corp., private communication,
August 16, 1984.



A. DENDRITIC-WEB SILICON

Dendritic-web silicon sheet, developed by Westinghouse Electric Corp.
(see Reference 2), is the only one of the ribbon processes that has the
potential to produce an effectively single-crystal silicon sheet. In this
process, two single-crystal silicon dendrites formed from a single-crystal
seed are propagated downward in the [211] crystalline direction into a
supercooled melt at the rate of ribbon withdrawal. A liquid silicon film
forms between the two dendrites, which are both part of the same single
crystal. This film freezes a few millimeters above the melt with the same
single-ciystal structure as possessed by the growing dendrites. For stable
growth, a set of twin planes forms in the plane of the web surface, but buried
in the interior of the web. The web surfaces are both (111) crystallographic
planes, as shown in Figure 1.

Temperature control in the growth region is es:iremely critical in this
process. There must be supercooled regions extending well down into the melt
in the regions where the dendrites are growing. The supercocling region at
and near the surface where the web forms must be very small to enable smooth
meniscus—-controlled liquid-web takeup without any spontaneous crystallite
nucleation. All nucleation must occur on the leading-edge surface of the
freezing web itself if stable single-crystal web growth is to occur.
Typically, ribbon widths of 5 to 6 cm are grown at a linear rate of
1 to 1.5 cm/min with a thickness of 150 um. Peak web-growth speeds of
3 cm/min have been demonstrated recently at the same width and ribbon
thickness.

Recently a three-year web-growth R&D program has been initiated with
Westinghouse to resolve generic growth impediments and to demonstrate
capabilities consistent with DOE and electric-utility requirements. The

DENDRITE SEED
BUTTON

[~ BOUNDING DENDRITES

WEB
TWIN PLANES

——7—DENDRITE H-ARM REGION
DENDRITE TIP AND

TRANSITION REGION

Figure 1. Westinghouse Electric Corp. Dendritic-Web Process
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program is supported jointly by DOE, through FSA; by the Southern California
Edison Co., by EPRI, and by the Pacific Cas and Electric Co. Late in March
1984, ribbon was grown for 8 1/2 hours with continuous melt replenishment
(constant melt level), producing a piece of single-crystal ribbon a little
more than 6 meters in length (the longest previous continuous growth was for
about three hours). In the same time period, another test was made in which a
9.6-m ribbon was grown without melt replenishment, the longest to date. In
this test, the ribbon was grown using a growth configuration that has been
well characterized but which tends to prodrce material with higher stresses
than later growth configurations. Using the latest growth configuration
(J460L), a 6-m ribbon was grown with melt replenishment. An initial check was
made at the center of the ribbon and it was found to have negligible residual
stress. Work continues to define the growth-control parameters that can lead
to resolving the generic growth impediments. Two different growth
configurations have been extensively modelled, one having a vertical radiation
shield as the top element of the thermal control and the other having a
thinner 1id configuration, in which the second 1id is replaced by a hot cavity.

Although only modest reduction in stress was obtained using the vertical
element, the results indicate that such elements can be used for thermal
control. New growth configuration were also tested using both static and
dynamic shield configurations. The results are in general agreement with
model predictions.

B. EDGE-SUPPORTED RIBBON

One other type of ribbon growth, ESR (see Reference 3), developad by
ADL, is similar to web growth. For web, as described above, a pair of
elongated silicon crystallites, or dendrites, extends into a silicon melt. As
the dendrites are raised, a web forms between them and soiidifies. In
edge-supported ribbon, graphite (or a similar material) replaces the silicon
dendrites.

Edge-supported ribbon growth has been done in both an unseeded and a
seeded mode. Unseeded ESR occurs when no single-crystal silicon seed is :rig-
inally in contact with the melt. This has not been successful, mainly because
grain boundaries form at the graphite filamente and propagate horizontaily
across the web. A seeded version of ESR has been developed (Figure 2) in
which the seed crystal is oriented to cause vertical grain boundaries to pro-
pagate downward from the seed into the web. The crystallographic boundaries
adjacent to the filament block the growth of horizontal grain boundariee
emsnating from the graphite. Thus, large grains (abovt 1 cm wide) grow verti-
cally and cells were obtained with up to 13.8% efficiercy in research
samples. The ribbon growth, as demonstrated by Arthur i:. Little, Inc., has
heen stable with no critical temperature-control requirements and no die
problems. The ribbon grown was 5.5 cm wide at 2.5 cm/min growth rate. Cells
fabricated from this material have measured 12.5% efficiency. This effort is
presently receiving no government funding and corporate support is continuing
at a relatively low level. Arthur D. Little, Inc., plans to commercialize the
process.
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Figure 2. Edge-Suppcrted Ribdbon Process ;

c. RIBBON~TO-RIBBON

The RTR sheet proceis developed by Solavolt (see Reference 4) is not in
the same ribbon category as the other ribbon processes, since the initially
formed silicon sheet is not crystallized directly from a melt. In this
process, a thin sheet of fine-grained polycrystalline silicon is formed by
chemical vapor deposition from chlorosilanes onto a foreigu substrate such as
molybdenum. However, as-deposited gilicon cheet or ribbon does not have
satisfactory electronic properties, due to its grain structure, for good solar ,
cells. i

" - —

Subsequently, the as-grown ribbon is subjected to a second processing !
step, as shown in Figure 3, in which a very narrow region is melted by a !
scanning laser beam or electron beam. As the ribbon is passed through this
melt zone, which is similar in some respects to a flrat-zone crystal remelt
process, a large-grain polysilicon ribbon with the desired electronic
properties is grown from the melted region.

Photovoltaics Program support of this process ended in 1980 and
development continues on a proprietary basis. Therefore, information on
current technical performance of the prucess in terms of material quality and
throughput rates is not publicly available. Solavolt International claims to
have made enouzh progress, however, that it plans to introduce RTR module
products in 1985.

D. EDGE-DEFINED FILM-FED GROWTH

Mobil Solar (previously Tyco Solar Energy Corp. and Mobil Tyco Solar
Energy Corp.) has been develcping the EFG ribbon process for more than 10
years. At this point, the EFG ribbon process is the only ribbon process that
can be considered toc be commercial. Mobil Solar ie now manufacturing and
supplying EFG modules to the user community at nearly 200 kW per year.
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Figure 3. Solavolt International Ribbon-to-Ribbon Process

The EFG prccess depends on a silicon-wetted graphite capillary die, as
shown in Figure 4. This die is immersed in the silicon melt, which is
typically contained in a graphite crucible. To start ribbon growth, a seed
ribbon crystal is brought into contact with the top of the wetted die and
vertical withdrawal is begun at 1 to 2 cm/min.

Ribbons of 5 ¢m and 10 cam width are routinely pulled in single and
multiple die pullers developed with the help of Photovoltaics Program R&D
funds. Mobil Solar has developed, using corporate funds, a variant of the
process that has become the preferred production growth approach. In this
process, a single closed-form nine-sided die is used. With this arrangement,
all ribbon-growth edge effects are eliminated and a closed, nine-sided silicon
tube is pulled (Reference 5). Currently, nonagons 5 cm on a side can be
pulled up to 5.5 m long; typical thickness is 13 miis at a growth rate of 100
cm?/min. Cells produced from the ribbon measured an average efficiency of
11% with highest efficiencies up to 14X%.

Approximately 150 m of ribbon (three 5.5 m nonagon tubes) can be grown
from a given crucible setup before replacement of the crucible assembly is
necessary. Nomagon facets are now cut into wafers by laser or diamond saw,
with diamond saw giving the best results. At present, EFG sheet is grown from
non-symmetric dies so that the carbon inclusions (SiC) are concentrated near
the rear surface of the sheet. Mobil Solar claims that EFG growth rates can
be tripled in the future by going to 10 cm nonagon facets and by increasing
linear pull speed by 50%.

The EFG growth objectives are similarly hampered by ribbon stress
problems. Construction of a simplified ribbon-growth system has been

13
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Figure 4. Mobil Solar Energy Corp. Edge-Defined Film-Fed Growth Process

completed to test the stress model and to investigate means of achieving
low~stress growth configurations. Preliminary trials and several successful
growth runs have been achieved. Ribbon widths were 5 c¢cm, and growth speeds
were of the order of 1 cm/min. Additional measurements cof stress distributions
in EFG material have been obtained at the University of Illinois at Chicago
using shadow-moire interferometry. Preliminary characterizations of defects
in ribbon grown at speeds of less than 1 cm/min shows that the dislocation
density is very low over significant regions of cross section and that regions
of high dislocation density occur in bands. Stress studies have shown that
stress distributions at distances greater than 1 mm from the melt interface
are independent of growth interface conditions. A fiber-optic probe that
Mobil has designed, constructed, and calibrated may be used for detailed
temperature profile measurements during growth.

E. LOW~ANGLE SILICON SHEET

This method of horizontal ribbon pulling (Figure 5) is being developed
by Energy Materials Corp. (Reference 6), based in part on work initiated in
Japan (Reference 7). The efforts at EMC are funded by DOE and by private
investors. One advantage of the LASS method is that the extended interface
between the melt and ribbon aids in the potentially high-speed production of
a stable, uniform siliccn sheet. Another is that simple passive thermal
controls are used, replacing the complex and sensitive active heating and
cooling elements used to stabilize growth in other methods. Linear rates of
more than 55 cm/min and area rates of more than 400 cm?/min have been
attained for short periods during the pulling of a ribbon 33 m long, 5 cm
wide, and 0.5 mm thick; 10% cell efficiency has been demonstrated.

Attaining adequate ribbon smoothness is a major problem. Most ribbon
surfaces are covered with dendritic structures. SCmall areas of planar growth
are now being achieved and it is hoped that (hese areas can be made to grow
stably over the entire ribbon surface. If this is accomplished, there is also
some hope for single-crystal ribbon growth in the future. A clean -room
facility has recently been constructed at EMC for better growth control.

14
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F. RIBBON CHARACTERISTICS SUMMARY
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Tables 2 and 3 summarize the 1984 status of the ribbon technologies.

Table 2.

Ribbon Characteristics:

1984 Status

Characteristics EFG RTR Web ESR LASS

Growth Rate, 10-30 30-90 10-30 10-90 90-700

mn/min

Maximum Width, mm 1003 75 60 50 50

Minimum Thickness, um 150 100 80 80 300

Maximum Length, cm 600 ? >1000 >100 >1000

(aonagon)

Crystal Structure =4 mm poly- =2 mm poly- single- large- dendritic
silicon silicon crystal grain poly-
inclusions =10%D/cm with twins  poly- silicon

silicon

Solar-Cell 7-14 10-13 13-16 10-14 9-13

Efficiency, % (11 avg) (11.5 avg) (14.5 avg)
Technology/Skill high high high low --=---

8EFG sheet is now grown by Mobil Solar Energy Corp. in a closed

nonagon tube with each facet 50 mm wide.
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Table 3.

Ribbon-Growth Parameters

EFG RTR Web ESR LASS
Meniscus Height, mm 0.3 1 7 7 -—
Thermal Control, 2, crucible -— 0.2, 5 -——
oc and die Profile
Critical
Surface Morphology SiC incl: smooth very smooth, irregular,
rippled smooth bowing dendritic
Impurity Sources die, feed hot zone filaments, crucible
crucible ribbon parts crucible
Impurity Kg=1 Kg =1 Ko<Kg<l Kg<Kg<l Ko<Kg<l
Segregation®
Use of Impure Solar- no no possibly possibly possibly
Grade Silicon
Areas of Concern freezes, feed growth bowing, crystal-
stresses silicon rate, contamina- growth
sheet stresses tion control
purity for smooth
surface
8K,: effective segregation coefficient

Kg: equilibrium segregation coefficient
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SECTION IV

THIN-FILM RESEARCH STATUS

A. AMORPHOUS-SILICON ALLOYS
1. Beckground

Research on amorphous-silicon properties has been conducted in
U.S. laboratories and abrcad since 1968. It was demonstrated experimentally
that, contrary to general opinion, amorphous materials, particularly
hydrogenated amorphous gilicon, can be grown that have the optical-electronic
properties necessary for use in thin-film solar cells. The first hydrogenated
amorphous silicon PV cell was produced in 1974 by RCA, and was the subject of
a 1977 U.S. patent (Reference 8). In July 1976, DOE issued a subcontract to
RCA to support the research and development of amorphous silicon for
applications in photovoltaics.

Cne type of p~i-n amorphous-silicon {u-5i) solar cell and
interconnection scheme is shown in Figures 6 and /. The p layer used in
recent a-Si cells generally consists of hydrogenated amorphous gilicon carbide
doped with borcn. The intrinsic or i layer is normally undoped and consists
of hydrogenated amorphcus silicon deposited to a thickness of 0.5 to 1.0 um
(1 pm = 0.00004 in.). The intrinsic layer is the active layer, where the
ahsorbed solar radiation generates charge carriers (electrons and holes). The
n layer consists of hydrogenated amorphous silicon doped with phosphorus and
is typically 0.1 um in thickness. The doped layers contribute little to the ;
electrical current of the solar cell, but are responsible for determining the
voltage cf the device and providing low-resistance contacting layers. The
total thickness of the different layers shown in Figure 7 (except for the
glass and metal layers) is quite small, approximately 1 um.

Thin-film amorphous-silicon devices can be deposited on large-area,
low-cost substrates (e.g., glass, plastic3, and metals). Curreant techniques
for depositing thin films include glow discharge, reactive sputtering, and
chemical vapor deposition. Figure 7 is an artist's conception of
series-connected cells as components of a large-area photovoltaic module
produced on a single substrate.

The principal meterials being examined in current amorphous-materials
R&D activities (cee Reference 9) are hydrogenated amorphous silicon, amorphous
silicon~carbon and silicon-germanium alloys, microcrystalline phosphorus-
silicon-hydrogen, and microcrystalline boron-silicon-hydrogen. The baseline
device structures are p-i—n cells. Thin-film preparation approaches are
currently glow-discharge (dc and ac) deposition. Glow-discharge deposition
using higher-order silane gas is also being investigated for high growth
rates. Chemical vapor deposition (CVD) using higher-order silane gases is the
only otner preparation method currently supported by the DOE-SERI program.
The optoelectroric properties of amorphous materials are being studied by
several methods, with an emphasis on minority carrier diffusion length and
photon-induced instability.
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2. Efficiency Status

The historical trend of the efficiency of p-i~n solar cells for
small and large areas is shown in Figure 8. The most rapid progress in cell
efficiency has occurred since 1978. For small-area (1 cm?) solar cells, the
cell efficiency was 42 in 1973, reached 10.1% in July 1982, and in 1984 was
reported to be at 10.72 (Reference 10). (More recently, and not shown on the
figure, achievement of an 11.52-efficient cell was reported by Sanyo Electric
Co. in October 1984). These achievements were for p-i-n type solar cell
structures with the amorphous material grown by glow-discharge deposition.
For larger-area solar cells, the p~i-n cell efficiency was 2% in 1979 for an
area of 30 cm?, and it is now greater than 62 for a total area of 107
em?. United States companies not under government contract have reported
conversion efficiencies greater than 8% for an area of 100 cm?.

Table 4 gives performance data on the best reported single-junction
p-i-n amorphous silicon solar cells having an area of at least 1 cm?. The
cell structure used by all four groups is the same. Four other research
groups —— Komatsu Electronic Metals Co., Ltd., Kyoto Ceramic Co., Ltd.
(Kyocera), Sanyo, and Taiyo Yuden Co., Ltd. -- have reported efficiencies

1M T T T T T T T T
).

104 ./C -

o} (3-JUNCTION CELL) ‘/

® SMALL AREA { €1 cm?) (. f(

8 O LARGE AREA (250 cmz)’/

JS

~
T

, %
1

CELL EFFICIENCY
[¢,)
T
Seo
\
1

0 | ] 1 | S I J |
7976 77 78 79 80 81 8. 83 84 8%

CALENDAR YEAR

Figure 8. Efficiency of a-Si p-i-n Solar Cells Prepared by Glow Discharge
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Table 4. Performance of Best Reported Single-Junction p-i~n Amorphous-
Silicon Solar Cells at Least 1 cmZ in Area (Reference 9)

Voc sc FF, Eff., Area,
" ’ 2
Structure mV mA/cm p 4 4 cm

Glass/TCO/p(a-SiC:H)- 830 18.3 68.9 10.5 1.05 Tokyo Denki
i-n(a-Si:H)/Me Kagaku Co., Ltd.

Glass/TCO/p(a-SiC:H)" 840 17.8 67.6 10.1 1.09 RCA
i-n(a~Si:H)/Me

Glass/TCO/p(a~-SiC:H)- 850 16.1  71.0 9.7  4cm?  ARCO Solar, Inc.
i-n(a-Si:H)/Me

Glass/TCO/p(a-SiC:d)- 870 15.5 68.4 9.2 1.0 Fuji Electric Co.

i-n(a-Si:H)/Me

Note: In addition to the above, recent information from Japan indicates that
Fuji Electric Co. has produced 11.1% efficient 1 cm? cells and Sanyo
Electric Co. has produced a cell with 11.5Z efficiency.

above 10%, but over smaller areas. The highest efficiency is 10.5%, reported
by Tokyo Denki Kagaku Kogyo Co., Ltd., for an area of 0.032 cm?, 1In

Table 5, the best individual PV parameters achieved in different years, with i
calculated efficiencies using these parameters and a range of actual !
experimental efficiency values achieved in that year, are shown. '

These data have been on® of the bettcy baromzters for predicting future
trends. According to E. Sabisky of SERI, the calculated efficiency obtained
in this 'manner wa- 6.7% in 1979 and is now over 14X -- a doubling in potential
efiiciency. 1lhis can be compared with actual experimental values of 4.3% in
1979 and 10.7Y% in 1984 -- again, a doubling in actual efficiency. The
short-circuit current density (Jg.) remained near 14 mA/cm? for 1979,

1980, and 1981.

The increase in Jg. that occurred from 1981 to 1982 was caused by twe
developments. The first was the successful use of a new p-type material
(boron-doped hydrogenated amorphous silicon carbide), which increased the
collection efficiency in the optical wavelength region of less than 0.3 um.
The p-type material previously used (boron-doped hydrogenated amorphous
silicon) absorbed some of the incoming light without contributing to the
conversion efficiency. The second development was the integration into the |
cell structure of a highly reflective back-surface electrode such as an n-type
microcrystalline-silver back contact. This permitted more optical absorption
in the cell by increasing the equivalent path length for the longer-wave-
length photons.
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Table 5. Best Individual Parameters of Single-~Junction p-i-n Amorphous-
Silicon Solar Cells

Best Parameters

Voe > Jse» FF, Calculated Possible Experimental
mv mA/cm? % Efficiency, % Year Efficiency, %
990 18.8 76 14.1 1984 10.0 - 10.7
950 16.7 74 11.7 1982 7.5 - 10.1
910 14.0 70 8.9 1981 6.6 - 7.5
900 14.0 66 8.3 1980 5.0 - 6.6
800 14.0 60 8.7 1979 4.0 - 5.0

Other research advances were also responsible for the increase in Jg.
from 1982 to 1984. One was the successful integration in the cell structure
of a thin, texturized surface layer between the transparent conductor and the
amorphous silicon. The texturized layer provides better utilization of
incoming light by reducing reflection and lengthening optical paths in the
amorphous-silicon material. In addition, researchers demonstrated that a
thick, intrinsic amorphous-silicon layer of at least 1 um, rather than the
conventional thickness of 0.6 um, improved cell efficiency. As a result, the
present cells have better photovoltaic properties than those previously used.
The successful use of thicker intrinsic amorphous silicon layer decreases the
need for a highly reflective back contact. As experimental values of current
density ha'e recently reached as h1gh ac 19 mA/cm® (very close to
theoretical values of 20-22 mA/cm? for an optical band gap of 1.7 eV), there
is little room for further increase in short-circuit current density.

Recent improvements ia solar-cell conversion efficiencies result from
intrinsic amorphous-silicor material with better transport Eropert1es.
Table 6 shows (a) the electron drift mobility was 107! -1072 cm?/v-s in
1970 and is now 2.5 cm?/V-s and (b) the hole diffusion length was
0.02~0.2 um in 1980 and is now near 1.3 um (Cct. 1984). Also, the early
consensus of device modelers was that holes were collected only from those
generation regions of high electric field. The reason for the significant
improvement in transport properties and solar cell performance is being
investigated. There is no doubt that the level of impurities has been reduced
and that this accounts for some improvement. However, it is more plausible
that the major influence on material properties is changes in the microscopic
structure.

3. New Multiyear Amorphous~Silicon Research Contracts
The DOE Amorphous-Silicon Research Plan calls for advancing the
state of the art by means of multiyear subcuntracts based on strong

Government-industry partnerships. Implementation of the plan began early in
1983 when multiyear, competitive procurements were issued for single-junction
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Tatle 6. Transport Properties of Undoped Amorphous Silicon

Year

1970 1977 1980 1983
Electron Drift 107! to 1072 107} to 1072 2.5
Mobility, (note 1) (note 2) (note 3)
cmZ/V + 3 at 300K
Hole Drift 1072 to_
Mobility, 3 x 107°
em2/V « s at 300K (note 4)
Hole Diffusion 0.02 to 0.2 0.02 to 0.2 1.2 to 1.3
Length, pm (note 5) (note 5) (note 6)
Note 1: P. LaComber, W. Spear
Note 2: R. Crandall
Note 3: R. Street
Note 4: Depends on field; R. Street
Note 5: Staebler, Crandall, Wronski
Note 6: Cresner, Moore, Goldstein, Szestak

cells and submodules, and for multijunction cells. The procurements were
weighted toward the near-term single-junction solar cell technology. The
objective of the single-junction initiative is to improve the understanding of
and the efficiency of cells and submodules using single-junction p-i-n type
cells based on material grown by the glow-discharge deposition method. The
objective of the multijunction initiative is to establish a base of knowledge
that can help achieve efficiencies greater than 20%, in the long term. in
amorphous-silicon alloy materials ir stacked cells.

The competitive procurement process was completed on February 1, 1984,
when the final subcontract was signed. Subcontracts were awarded to four
organizations: Chronar Corp., Minnesota Mining and Manufacturing Co. (3M),
Solarex Corp., and Spire Corp.

Figure 9 shows the different technical approaches taken by the companies
to achieve the program goals. Amorphous silicon material for single-junction
solar cells will be deposited using three-chamber reactors, and msterial for
multijunction solar cells will be depusited using six-chamber vreactors.
Yirect—current or RF glow discharge with two or three electrodes will be used
to generate the plasma.

The total program cost over the three-year life of the subcontracts is

$18.8 million, with approximately 70% of the total cost contributed by the
Government and about 30X co: tributed by the industrial subcontractors. Some
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Figure 9. Technical Approaches of New Multiyear Tnitiatives in
Amorphous Silicon

subcontractors are developing multichamber deposition systems to fabricate the
solar cells entirely with company funds, and the cost of this work is not
included in these values. The SERI/DOE program goals are to demonstrate
stgble p-i-'n solar cells of at least 12% (AM1) efficiency with areas of at
least 1 cm? in 1986, a stable submodule of at least 8% (AM1) efficiency

having a total area of a least 100 cm?, and proof-ofi-concept multijunction
amorphous-silicon alloy thin-film solar cells that wiil lead to achieving an
18% efficiency goal by 1988.

The enhanced U.S. Government program plays a major leadership role in
continuing the technolegical development of thin-film amorphous-
silicon solar cells. Companies such as 3M have now joined with the Government
to develop single-jurction solar cells, and Polaroid Corp. is providing Spire
Corp. with additional resources in its research into multijunction
amorphous-silicon alloy solar cells. The significant amorphous-silicon
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Amorphous Silicon

subcontractors are developing multichamber deposition systems to fabricate the
solar cells entirely with company funds, and the cost of this work is not
included in these values. The SERI/DOE program goals are to demonstrate
stable p-i--n solar cells of at least 12% (AM1l) efficiency with areas of at
least 1 cm? in 1986, a stable submodule of at least 8% (AM1) efficiency

having a total area of a least 100 cm?, and proof-oi-concept multijunction
amorphous-silicon alloy thin-film solar cells that wiil lead to achieving an
18% efficiency goal by 1988.

The enhanced U.S. Government program plays a major leadership role in
continuing the technolecgical development of thin-film amorphous-
silicon solar cells. Companies such as 3M have now joined with the Governmert
to develop single-jurction solar cells, and Polaroid Corp. is providing Spire
Corp. with additional resources in its research into multijunction
amorphous-gsilicon alloy solar cells. The significant amorphous-silicon
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technology developed at RCA, under long-term Government and RCA support, has
been successfully transferred to Solarex Corp. to continue the development of
eingle-junction solar cells under subcontract to SERI. 1In addition, two small
businesres, Chronar Corp. and Spire Corp., are included in this

Govern..~ st-industrial effort.

4, Other Amorphous-Silicon Research Activities

In addition to the rcsearch activities covered in the previous
section, other research efforts include the investigation of the basic
properties of hydrogenated amorphous silicon and amorphous-silicon alloy
materials, light-induced effects, high deposition rates, and alternative
deposition options. These efforts are funded either by DOE or by corporate
resources.

Glow-discharge (GD) deposition of amorphous silicon using higher-order
silane gases is being carried out at Brookhaven National Laboratory and
Vactronics Corp. The program is investigating optical and electronic
properties of amorphous silicon produced at a deposition rate of at least 20
A/s. The intrinsic amorphous-silicon material now being produced by glow
discharge using silane gas is deposited at a typical rate of 2 to 4 A/s. A
deposition rate of 4 A/s required 42 min to grow a l-um~thick film, whereas a
deposition rate of 20 A/s would require only ¢ min to grow the same film.
Experimental data have alreauay shown that glow-discharge deposition using
higher-order silane gases can produce high—quality material at high deposition
rates.

Light-induced effects are being studied at the University of Oregon,
Massachusetts Institute of Technology (MIT), and Xerox Corp. The effect of
light soaking in a~Si:H ssmples deposited either in an ultra~high-vacuum {(UHV)
system or in a conventional deposition system has been studied by measuring
the change in dangling-bond density using electron-gpin resonance (ESR).
Although the UHV~deposited samples have lower impurity levels (by one to two
orders of magnitude) than the impurity concentraticns in conventionally
deposited samples, the light-soaking effect was found to be nearly identical.
This indicates that impurities play a minimal role in generating the
light-induced effects in a-Si:H samples with normal impurity levels. The
contribution of impurities to the density of light-induced defects is
significant only when the impurity level in a-Si:H is higher than about 1X.
Recent data presented by Sanyo Electric Cu. (Japan) are somewhat at variance
with this finding. Sanyo has zhown a strong relationship between
light-induced change and oxygen content. A lesser effect has also been
correlated with the nitrogen content in the film.

The potential of chemical vapor deposition (CVD) is also being
evaluated. Both low-pressure (LPCVD) and atmospheric-pressure (APCVD)
deposition methods are being investigated at Chronar, at the Institute of
Energy Conversion (IEC), and at Harvard University. Current studies are
restricted to CVD using higher-order silane gases. The higher-order silane
gases decompose at relatively low temperatures (below 300°C), and, as a
result, the films contain large amounts of hydrogen and canu also be deposited
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at very high deposition rates. APCVD-prepared films have been grown at deposi-
tion rates above 30 A/s, and LPCVD-prepared films were grown at rates up to

15 A/s. Diagnostic Schottky barrier cells and p-i-n type cells were fabricated
using material grown by both LPCVD and APCVD. Short-circuit current densities
of 10 wA/cm? have been achieved, demonstrating a good quality of material.

In addition, the optical band gap of presently prepared material is reported

to be 0.1 to 0.2 eV below that of glow-discharge-prepared material. Lower-
band-gap material not obtained by the glow-discharge process is probably better
suited for high-eff:ciencv cells. Light-induced effects in CVD-prepared films
appear to be less than for glow-discharge-prepared films, although the film
quality has not yet reached that of glow-discharge-deposited filma. CVD is
widely used in the semiconductor industry, is readily scalable, and is a
simpler process than the glow-discharge process. Thus the use of this process
could reduce costs substantially.

Stacking solar cells with different band gaps in series optically and
electrically can potentially convert more solar radiation to electricity.
Individual cells in the stack can be made of various amorphous-silicon-alloy
materials with passivators such as hydrogen or fluorine to achieve different
optical band gaps. Hydrogenated smorphous silicon has been studied
extensively and is the basis on which the stsndard amorphous-silicon stacked
cell is designed. Materials being considered include a-SiGe:H and #-SiSn:H
(both for the low bard-gap cell) and a-SiN:H (for the high-band-gap cell). A
two~layer a-Si:l material with two different-thickness layers in series, and
with a a-SiGe:H low-band-gap cell, produced the best results. The results
reported are 8. 52 efficiency for an area of 100 cm? (Voc = 2.22 V,

Jge = 6.41 mA/cm?, FF = 0.604). Theoretical conversion efficiencies for
the multiband-gap cell are above 20%.

A newer type of solar device that is an outgrowth of the conventional
thin-film materials has recently been proposed. This new structure is
composed of amorphous materials consisting of an amorphous superlattice of
alternating layers (30 to 1000 A thick) of hydrogenated amorphous silicon
alloys. The amorphous and thin-film nature of these materials opens research
to a whole new class of compound materials not readily available in the past.
This new technology has great potential in many areas, including highly
efficient PV devices. Research in amorphous silicon alloy materials is being
conducted at Harvard University, Xerox Corp., North Carolina 3tate University,
and SERI.

Harvard University is developing materials that can reduce the
electrical contact resistance between the transparent conducting oxide and the
amorphous layers. Diffusion barriers are also being developed to prevent
coi:taminants in glass substrates from affecting the performance of the
transparent conducting layer. The Naval Research Lsboratory is conducting
nuclear magnetic rcsonance (NMR) and clectron-spin resonance experiments on
amorphous materials to determine the bondiag configurations of boron and
phosphorus in the doped amorphous msierials. The University of Colorado is
characterizing the plasma in glow-discharge reactcrs to correlate various ions
and radical species with film properties.
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5. Industry Survey Highlights

Highlights of the industry survey conducted by the study team are
summarized in Table 7. For detailed information, see Appendix B. Based on
the data coilected, single-junctiou a-Si:H solar cells are now repeatably fab-
ricated to show 101 to 11% efficiency in small-area (<1 cm?) cells by
Solarex and Arco Solar, Inc. These cells are fabricaced by a glow-discharge
deposition process in multichamber systems. Chronar, 3M and Spire, which cur-
rently fabricate their cells in a single-chamber glow-discharge deposition
system are all constructing multichamber deposition systems in which cross-
doping of p, i, and n layers can be greatly reduced. Energy Conversion
Devices, Inc. (ECD), has already developed and marketed its Ovonic P-ocessors
with wultiple chambers. One such unit in Japan fabricates multijunction cells
for pocket calculators.

Large-area (>100 cm?) single-junction series-connected solar cells
alzo are being fabricated by most organizations to develop technologies
required for the fabrication of practical a-Si modules. Chronar recently
succeeded in fabricating 100-cm? submodules having 6% efficiency (DOE/SERI
goal for 1984). Such submodules typically consist of series-connected
subcells using laser patterning. Chronar has also initiated marketing of
10 x 10 cm battery-charger modules. Efficiency of 10 x 10 c¢cm submodules that
are currently being fabricated by Chronar, ARCO Solar and ECD appear to be in
the 52 efficiency range. The DOE/SERI a-Zi Project schedules of 12%, 1 cm?
in 1986, 7%, 100 cm? in 1985, and 8%, 1000 cm? in 1986 appear to be real-
izable by a better use of optical trapping, improvement of TCO films, better
control of doping profiles and advancement in laser-patterning technology.
Amorphous-silicon cel) fabrication on a flexible substrate, which is being
pursued by 3M, is also making a good progress; experimental cells are now
being fabricated in its single-chamber glow-discharge deposition system.

Industry opinions were that the near-term market for stand-alone
applications could be competitively shared by a-Si modules of 10Z efficiency
provided that their costs become lower then those of crystalline-silicon
modules, which already have efficienciee higher than 10%Z. ARCO Solar empha-
eizes the importance of achieving this a-Si cost-competitiveness with
crystalline-silicon technology within five years. Other a-Si ccmpanies appear
to share that opinion.

The large long-term market, on the other hand, should be for
grid-interactive systems where module efficiencies in the range of 15% are
required. Here the multijunction a-Si cells become the key element for
guccess.

Currently, multijunction cell research is in a very early stage. A
combination of a-Si or a-3iC and a-SiGe is by far the most actively
investigated. In fact, ECD-Sovonics h#s already commercialized similar
multijunction cel!s for pocket calculators where only a modest efficiency
improvement over the single-junction cell efficiency would suffice. ‘lthe
corporate multijunction cell-efficiency goal of ECD-Standard Oil Co. of Ohic
(Sohio) is 15%Z in three to five years, and Spire is aiming toward similar
efficiencies in two to three years under the SERI subcontract. If the current
progress in low-band-gap material research and the baseline a-S5i cell research
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continues, and if the commitment made by DOE and U.S. corporations continues,
multijunction cell efficiencies in the 15% range can indeed be realized in
three to five years. However, the achievement of 15% a-Si modules in five
years is difficult to project, since module technology is still in a very
early stage of development.

B. POLYCRYSTALLINE THIN FILMS
1. Background

Polycrystalline thin-film PV cells are candidates to achieve the
Federal-industry long-term (late 1999's) technical goals for flat-plate
modules. Among several polycrystalline materials that have been considered
for PV applications, CulnSe; and CdTe are the most vigorously investigated
under DOE-SERI and PV industry funding. Those materials are known to have a
large light-absorption coefficient, one to two orders of magnitude larger than
that of crystalline silicon, for the wavelengths of PV interest (Figure 10).
Therefore, the cells can be made in thin-film form, requiring considerably
less semiconductor material than crystalline silicon. Typically the films are
deposited on inexpensive substrates by vacuum or electrodepcsition or by CVD,
all of which are amenable to low-cost processes.
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Typical single-junction cells have a CdS window on top of CulnSej; or
CdTe, as shown in Figure 11. The band-gap energies (E ) of those two
materials are such that the cascading of cells could increase the resultant
cell efficiency substantially. A possible cascaded multijunction cell
consists of CdS/CdTe and CdS/CulnSej, as shown in Figure 12. Other
combinations, including amorphous silicon/CuInSe2 and CdTe/amoiphous-silicon
germanium, can aiso be considered.

The 1987 SERI efficiency goal of 15% with 100 cm? cells is considered
achievable by further improving the electronic and material properties of
existing polycrystalline thin films. For example, an increase of band-gap
energies and corresponding open-circuit voltages has been proposed to increase
CulnSej cell efficiency. Open-circuit voltages of 570 mV, short-circuit
current densities of 35 mA/cmz, and fill factors of 0.75 should be
attainable in CulnSej-alloy-based cells. Similar improvement should be
attainable for CdTe-alloy-based cells, with which open-circuit voltages of 850
mV, short-circuit current densities of 23 mA/cm? and fill factors of 0.75
are considered possible. Successful cascading of cells would further increase
the probability of achieving the 15% efficiency goals.

2. Copper Indium Diselenide

Research on copper indium diselenide (CulnSe;) cells is being
conducted at The Institute of Energy Conversion (IEC), University of Delaware,
Poly Solar and the University of Illinois in addition to Boeing Co. The 11%
efficiency of small-area cells is comparable with that of amorphous-silicon
thin-film cells. The stability of the CulnSe; cell is known to be excellent;
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the degradation of the CulnSe) cell has aiready been shown to be minimal in

a simulated environmental test conducted at Boeing under constant illumination
and elevated temperature for 9000 hours. Encouraged by the cell-efficiency
improvements and the good cell-stability data, Boeing has envisioned the
fabrication of polycrystalline thin-film modules consisting of submodules,
each of which contains 12 subcells that are series-connected, as shown
schematically in Fig. 13. Recently, Boeing successfully fabricated a 4 x 4
in. CulnSep cell having an effective area efficiency of 6.1%. Plans for
production and marketing of modules, which were considered by the
Boeing-Sovolco joint venture, were suspended because the Sovolco joint venture
with Reading & Bates, Inc., was dissolved irn May 1984. Boeing is continuing
commercialization R&D, using its own funds, and may license the manufacturing
in the future.

Boeing's vacuum-evaporated cell is a thin-film polycrystalline
heterojunction with a CulnSej absorber and a large-band-gap (2.5 eV) (CdZn)S$
window (Reference 11). The CuTnSe, layer is deposited in a2 two-layer
(high-resistivity and low-resistivity) configuration, but mixing takes place
during deposition. The layers in the final CulnSej celi are homogeneous
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Figure 13. Baseline Photovoltaic Module (Boeing Co.)

within 0.5 atomic-percent measurement error. However, sub-percentage
inhomcgeneities (if they exist) could be responsible for significant
variations in electronic properties. The final cell-layer composition and
electronic properties are now under close study.

Boeing fabricates CulnSej films by means of an open-boat
vacuum-evaporation system. The elemental flux from the heated boats is
measured by electron-impact emission spectroscopy, and a feedback loop is used
to control the temperature of the boats and the evaporation rates.

The Institute of Energy Conversion is also fabricating high-efficiency
CulnSej devices, using a feed-forward system of controlled Knudsen cell
effusion sources, wherein temperature and aperture are carefully calibrated
and designed to deposit the desired films. The effusion cell design has
demonstrated large—area scalability, which is important for the future
commercial scaleup of CulnSej; manufacturing. A small-area (0.09cm?)
CdS/CulnSe, cell fabricated by the effusion system has achieved 9.6%
efficiency.

Recently, IEC also fabricated a 3.0% efficient, multijunction,

CiTe/CulnSe)y cell, and is the first organization that has actually cascaded
two thin-film polycrystalline cells in a two-terminal configuration.



3. Cadmium Telluride

Cadmium telluride (CdTe) is a prime PV cell candidate, due to its
ideal direct band gaz (near 1.5 eV), high optical absorption coefficient
(greater thanm 2 x 10%/cm at the edge of the energy band), and relative ease
of deposition.

In 1982, Eastman Kodak Co. reported a polycrystalline thin-film CdS/CdTe
device with 10.9% efficiency. The Kodak experimental cell, which had the
structure shown in Figure 14, was such that it would be mass-producible by
using steps shown in Figure 15. The experimental Kodak cell was fabricated by
a close-spaced sublimation (CSS) system in which the sublimation source and a
heated substrate were placed with a small gap between them.

Ametek, Inc., has been developing CdTe cell technology for a number of
years. The technique used is to fabr1cate cells in an electrolytic tank using
electrodepos1t1on, Small-area (2 mm2) cell efficiency of 8.6% and
large-area (10 cm?) cell efficiency of 6.2% have been reported. The cell
structure is metal-insulator-semiconductor (MIS). A similar CdTe
electroplating process is being developed by Monogram Industries Research
Laboratory (Monosolar). Recently, Monosolar was purchased by Sohio/British
Petroleum Co. Ltd. for possible future commercialization of the CdTe cell and
modvle technology.

A Japanese company, Matsushita Electric Industrial Co., reports an
active-area efficiency of 12.8% for small-backwall n-CdS/p-CdTe cells made by
screen printing. However, due to the placement of electrodes, the actual
total-area efficiency is substantially less. According to the recent report
(October 1984), an all-screen-printed multicell module, 30 x 30 cm, achiecved
module efficiency of 5.4%. !

Under SERI sponsorship, Southern Methodist University (SMU) is
developing indium tin oxide (ITO)/p-CdTe hetervjunction cells. Cell
efficiency of 8.2% has been achieved for cell areas of 1 cm? (Reference '
12). The CdTe was deposited by CVD on a Sb/W/graphite substrate, and the ITO !
was ion-beam deposited. Further improvement is expect2d in the area of ohmic {
contact with p-CdTe, and in use of lower-cost substrates.
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Figure l4. Thin-Film CdS/CdTe Solar Cell (Eastman Kodak Co.)
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P-CdTe/n-CdS devices have also been fabricated at Stanford University
and in-house at SERI using hot-wall vacuum evaporation (HWVE). The most
recent results from Stanford have shown 4.7% efficient CdS/CdTe
heterojunctions in which both materials were deposited by HWVE.

A major objective in the SERI-DOE program is to make a stable low-
resistance contact to p-CdTe. One possible solution is the use of an
antimony-doped CdTe interlayer incorporated between the p-CdTe and the back
contact. Interface resistance has been reduced to about 3.5 ohm-cm? using
this method.

Additionally, a new electroless method for the deposition of p-CdTe
films has been developed. The electroless method is based upon short-
circuiting the thin-film substrate to an easily oxidizable redox component
(e.g., Al, Cd) in the electrolytic bath. This method shows promise for
routine low-cost film deposition, since it obviates the instrumentation for
potentiostatic or galvanostatic control.
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4. Industry Survey Highlights

The industry survey results are presented in Appendix A, with
highlights in Table 8. It is apparent that current R&D work is concentrated
on conversion efficiency improvement using relatively small-area cells
(<1 cm?), and that the module-related work is still in the planning stage.
Highest cell efficiencies achieved are 11.5% with a 0.2 cm? CulnSe, cell
and 10.9% with a 1 cm? CdTe cell (DOE-SERI's 1984 goal is 12.5%, with 1
cm? cells). Pertinent data for these cells are shown in Table 9.

A number of researchers surveyed believe that most thin-film research
has been basad on empirical results, and better understanding of the materials
physics and chemistry involved is required to achieve reliable high-efficiency
devices. There was general agreement that for high-efficiency modules above
12%, multijunction cells such as CdTe/CulnSe; will be required in tandem
structures. Optimism exists that a thin-film polycrystalline cell (CulnSej)
with 12% efficiency is achievable in the near future. Such a cell technology
counld be capable of producing a 9%-efficient iarge-area single-junction module.
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Table 9. Polycrystalline Thin Films 1984 Status

Cell Vor® \ Jsc’ m.A/cm2 FF Efficiency, % Stability
(cd, zZn)S/ 0.437 38.5% 0.65 11 Excellent:
CulnSe, Boeing
(Boeing) Battelle

SERI outdoor
CdS/CdTe 0.755 16.7 0.648 10.9 Back contact
(Kodak) photodegradation

not solved

d4Highest current of any PV cell

.

<

.
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SECTION V

FUTURE FESEARCH NEEDS

A. RIBBON SILICON SHEET

Several silicon-ribbon processes have been under development by the
National Phoiovoltaics Program and by industry for more than 10 years.
Extensive research efiorts are continuing on the more promising of these
technclos ies, which include EFG, web, RTR, ESR and LASS. At this point,
modules made by the EFG process have been commercially available for more than
a year and RTR modules are expected in be available to the marketplace in 1985.

Continuing research is still needed in support of all of the
ribbon-silicon technologies, however. Among the remaining research issues
are: (1) minimization of ribbon stress, especially at high growth rates; (2)
the value of and stability of hydrogen passivation in ribbon materials; {(3)
understanding and minimization of twin-plane and grain-boundary electrical
activity; (4) understanding of and minimization of impurity and inclusion
problems, such as SiC inclusions in material grown from graphite boats or
dies, and (5) the development of growth monitoring and controls that allow
full closed-loop ribbon growth. All of these factors should lead to high cell
efficiency in production. The following paragraphs touch briefly on needed
research in these areas.

Ribbon stress is being studied extensively under current contracts withn
the University of Kentucky, Westinghouse, and others. Considerable progress
has been made in understanding of the cooldown dynamics of both the plastic
and the elastic regions for typical EFG and web ribbon-growth geometries. The
region starting at the solidificatiorn interface and proceeding though tte
plastic region to the beginning of the elastic region still needs much study
to develop an understanding sufficient to guide experimental growth
researchers in improving the growth process throughput to an economic
position. For example, web ribbon typically is now grown at 6 to 8
em?/min. Steady-state growth of low-dislocation, low-stress web ribbon must
achieve 20 to 30 cm?/min in automated, closed-loop-controlled furnaces to
achieve DOE targets and economic application. Research is needed on the
formation of dislocations at the growth interface, the movement or annealing
of dislocations throughout the plastic region, and the formation of or
annealing of dislocations during ribbon cooldown.

Hydrogen passivation using a Kauffman ion engine has been showa to
improve efficiency significantly for EFG, RTR and web ribbon cells. The
detailed improvement mechanisms are not yet well understood. In some cases,
it is clear that grain-boundary electrical activity is being passivated, but
in others, such as in the treatment of web cells, the mechanisms are not yet
understood. In the web case, hydrogen-passivated cells have shown a markedly
increased red response, indicating an apparent bulk material minority carrier
lifetime improvement of a factor of two or more. 1Is this real? and if so, how
did the hydrogen diffuse through the bulk of this single-crystal material?

Can hydrogen-passivated cells retain their hydrogen-enhanced performance for a
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20-year or 30-year module life? 1I1f the answers to these research questions
verify the velue of hydrogen passivation, then research is also needed to
develop practical, scalable, continuous hydrogen treatment processes.

Recearch leading to an understanding of the electrical behavior of grain
boundaries has been under way for some years. Much has been learned, but
there are still many unanswered questions. Since all ribbons but web are
polycrystalline, a good knowledge of grain boundaries, their activity, and
passivation is essential. All ribbon materials also contain twin planes
within crystallites. Moreover, the web process requires the presence of
buried twin planes parallel to the ribbon surfaces. Little research has been
done on the electrical and crystallographic properties of these twin planes.
Can the twin planes effectively getter, pin, or terminate dislocations during
cell processing? Do they serve as a getter for impurities? Can these twin
planes be used to advantage in cell efficiency improvement? There is some
evidence to suggest that, at least for web, these twin planes can serve to
getter both unwanted impurities and dislocations. If these twin planes can be
deliberately grown near the rear surface of the ribbon, can cell efficiency be
improved through twin-plane gettering? Much research remains to be done to
gain sufficient understanding to answer these questions.

Inclusions in silicon ribbons, particularly in those grown in furnace
environments containing graphite, have been a significant problem in the
past. In particular, EFG ribbon has had significant problems with um-sized
SiC precipitates, which tend to shunt p-n junctions and lower minority-carrier
lifetime. Unfortunately, graphite seems to be the only die material that wets
adequately for this ribbon process. Recent research progress (by use of
asymmetric dies, for example) has been good in minimizing the inclusions and
chifting them toward the back side of the ribbon. More research is needed,
however, to develop ways to eliminate such inclusions completely. As long as
any precipitate inclusions exist in ribbon materials, they will tend to limit
cell performance significantly.

Automatic growth monitoring and control for continuous closed-loop
ribbon growth is essential. This is an especially critical R&D issue for
those ribbons that have very tight thermal manageme¢nt requirements and
relatively slow growth rates. The web growth process is an example with both
of these characteristics -- slow growth rate and extremely tight growth
temperature-profile control requirements. Without automatic monitoring and
control, it is doubtful that web can ever be commercialized. The National
Photovoltaics Frogram has recently initiated a task-force effort at JPL to
addicss the monitoring and control issue. This task force is composed of an
FSA team with instrumentation and sensing expertise drawn from the JPL
spacecraft-related sensing-specialist corps. It is expected that this R&D
team will function over the next year to accomplish the task objectives.

An additional R&D task, which applies to all crystalline silicon sheet
and cell technologies, is high-efficiency cell R&D. High-efficiency
performance is essential for ribbons. Most polysilicon ribbons should have
the potential to produce cells about 1% to 2% lower in efficiency than those
produced on Czochralski wafers. Significant research efforts are essential to
tailor the high-efficiency cell processes now being developed for the
less-than-ideal sheet material typically produced by most ribbon processes.
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For silicon ribbon technologies to reach their potential, the research
efforts described above must be funded at an adequate level over thc next two
or three yzars. If research funding in ribbon-related areas drops below
present levels, the necessary technology base may not develop in time to
achieve the Program goals.

B. AMORPHOUS-SILICON DEVICES

National Photovoltaics Program R&D activities and plans for a-Si as
outlined in the SERI Amorphous-Silicon Five-Year Research Plan are considered
satisfactory for achieving the DOE Five-Year Research Plan objectives, based
on the data collected for the issue study. However, if lower-than-planned
research allocations occur in this area, the program may not acquire important
knowledge needed for the a-Si technology base.

Both the DOE Five-Year Research Plan and the SERI Amorphous-Silicon
Research Project Five-Year Research Plan have established goals of 12%
efficiency for 100 cm? single-junction cells and 18% for 1 cm? multi-
junction cells by the end of FY88. Although 18% may not be achieved by 1988,
considering the present level of funding of the Program, successful
multijunction cells of greater than 15% should be available by that time.
Appendix B contains abstracted sections from the Amorphous-Silicon Research
Project Five-Year Plan. This appendix outlines the National Photovoltaics
Program approach to goals accomplishment. Once these goals are achieved,
additional K&D effort will be needed to complete the understanding of module
performance and expected module service life. Additional effort to develop
successful large-area high-efficiency modules will also be required in the
1988-1990 period. The thin-film module R&D needs and projections are further
addressed in Section VI.

Five major technical needs must be met before any PV technology can be
expected to produce significant amounts of power in the U.S. electric grid:

(1) Higher conversion efficiencies.

(2) Stable, durable devices.

(3) The ability to scale up to larger unit device sizes.

(4) Field demonstrations over scvera' years.

(5) A cost-competitive product.

These issues indicate that a significant amount of research is needed
before amorphous silicon technology can hope to affect the U.S. electrical-
energy economy, even though a-Si products based on current technology may
represent profitable business activities in consumer electronic applications.

A task force was convened early in FY83 to address the technical issues

and to recommend the Federal effort in a-Si R&D through 1986. The research
budget allocations are shown in Table 10.
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Table 10. Amorphous-Silicon Budget Recommendations, Millions of Dollars

Fiscal Year

1984 1985 1986
R&D Category
Materials Research 3.4 (2.4) 3.7 3.1
Cell R&D 4.3 (3.3) 4.4 4.6
Submodule R&D 1.2 (0.5) 1.4 1.8
Module R&D 0.3 (0.1) 0.5 0.6
Process Development 0.4 (0.2) 0.7 1.2
Module Pilot Plant 0.0 (0) 0.0 0.0
Federal Amorphous-
Silicon Budget,
Annual Totals 9.6 (6.5) 10.7 11.3

(Actual budget allocations in parentheses)

Examination of the PV Program FY84 amorphous silicon research
allocations, shown in parentheses in Table 10, shows that the total is less
than that recommended by the task force, but the task force recommendations !
were based on a significantly larger total PV Program R&D budget than was
actually the case for FY84. The relative distribution of funds is consistent
with Task Force recommendations. Milestone accomplishment, however, will
probably be delayed u. der this level of funding.

The Issue Study staff has come to the conclusion that current PV Program
R&D activities and plans for a-Si are reasonable as outlined in the SERI
Amorphous-Silicon Research Project Five-Year Research Plan.

The five major R&D activity areas identified in the Amorphous Silicon
Research Project plans are:

(1) Materials Research.

(2)  Cell R&D.

(3) Submodule R&D.

(4) Module R&D.

(5) Process Development.
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Based on issue-study collected data, specific future research needs in
these activity areas are:

(1)

(2)

Materials Research

(a)

(b)

(c)

(d)

Low bandgap materials including a-SiGe and other alloys.
A-SiGe has already been used for a bottom cell of tandem

.amorphous cells. It has desirable characteristics, and the

effects of Ge addition for lowering the band gap are already
under investigation. With a-SiSn, it has been established
that the band gap can be lowered from 1.8 eV to 1.1 eV by
the addition of a relatively small amount ( 10%) of tin, but
electronic properties of the resultant material are very
poor. Continued research with low-band-gap amorphous alloy
materials is needed for eventual development of efficient
multijunction cells.

Impurity effects in p, i, and n amorphous materials.
Systematic investigation of impurity and alloying effects
with elements such as C, O and N is required in
amorphous-silicon-alloy p, i and n materials that are
prepared in a clean and well-characterized deposition system.

Transparent conducting oxide (TCO) materials. Research
should be strengthened on TCO materials, vhich are currently
limited to ITO and SnOy, mainly because of existing
experience. New materials require exploration, and problems
with existing materials, such as the indium diffusion from
ITO into a-Si, must be investigated.

Film deposition processes. It is important to obtain good
characterization of gas and reaction kinetics in deposition
system, as well as the film property characterization.

Cell Research and Development fo

(a)

(b)

(c)

Establishment of clean cell deposition systems.
Contaminant-free and cross-doping-free deposition systems
must be developed to obtain understanding of the effects of
different contaminants on cell performance.

Establishment of cell-perforwrance measurement standards.
Early estabiishment of consensus standards is desirable
because it provides agreed-upon cell performance measurement
procedures.

Effects of microcrystalline layers. Microcrystalline
silicon layers have shown good optical properties as a
window, and have also exhibited good electrical properties
for ohmic contact. Relationships between microcrystalline
film properties and deposition parameters require further
research.

43



(d) Improved understanding of photon-induced performance
degradation. Continue research on the Staebler-Wronski
effect to minimize cell-performance degradation.

(e) High-efficiency, multijunction cell research. It is neces-
sary to develop multijunction thin-film cells to achieve cell
efficiencies of 182 or higher. An early increase in multi-
junction cell research effort is recommended.

(3) Submodule R&D

Trade-off studies between large-area single cell and integrally
connected small subcells. Although such a study presently has a
low priority, future definition of the subject trade-off and its
experimental verification is needed for subsequent module
development. Such factors as fabrication cost, yield, submodule
performance, module integration and long-term durability must be
considered.

(4) Process Development

Process development has low priority at present, as its directions
will be contingent upon progress in areas discussed above. In
addition, process development in the PV industry and in related

a-Si industries (xerography, for example) should be tapped so that
related, well-developed technologies can be integrated in the
process-development phase of the Amorphous-Silicon Research Project.

(5) Module R&D

Module R&D must be considered in a similar manner as process
development. However, the module cost-estimate studies should
continue at low level to provide information for materials, cell,
and submodule R&D. Another issue to be examined is the long-term
interaction of available organic pottants such as EVA with active
amorphous cell layers.

C. POLYCRYSTALLINE THIN-FILM DEVICES

It is believed that the role of DOE in the R&D of a-Si should also apply
to the other two leading thin-film photovoltaic technologies, CdTe and
CuInSey. Specifically, the bulk of the efforts for these two technologies
should also emphasize primarily materials research, cell R&D, and submodule R&D
thro  zh 1986. For the II-VI and II-IV-V) related thin-film polycrystailine
technologies, Figure 16 displays the expected research directions. CdTe alloy
and CulnSej-based heteroiunction structures form the basis for the projected
continued research efforts. These efforts include:

-- Optimization of single-junction cells by investigating CulnSejp,
CdTe, and selected alloys of each.

-- New research into complex cell geometries such as polycrystalline
cascade devices for flat-plate applications.
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SINGLE-JUNCTION DEVICES: 1984
CulnSey, CdTe, ALLOYS, 12. 5
NEW WINDOW/ABSORBER

byt
iy

MATERIALS 1 em?
1986 =
CulnSe, - BASED MULTIJUNCTICNS: 15% |
1 cm |
CdTe FRONT CELL |
2-TERMINAL WIDE-BAND-GAP - 1
FRONT CELL 1987
15%
CdTe FRONT CELL 100 cm?
4-TERMINAL WIDE-BAND-GAP i
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i
ADVANCED |
DEPOSITION
RESEARCH

Figure 16. Opportunities in Polycrystalline Thin-Film Solar Cells

== The development of alternative heterojunction-partner (window)
materials, including n-ZnO, n-Cd0, n-Sn0; and new p-type materials.

-- The development of improved low resistance contacts, especially to
p-CdTe.

-- The development of low resistivity p-type CdTe.

—-=- Advanced deposition research, including fundamental studies and
studies of area-scalable device deposition techniques such as
sputtering or electroplating.

1. Single-Junction Cells

At present the most promising single-junction cells are CulnSej
and CdTe, which have achieved efficiencies above 10%; other materials
(Zn3Py, CujSe) have not been very successful. Therefore, current
program priorities embrace CulnSe; and CdTe.

To achieve a 15% CulnSej device it is necessary to enhance fill factor
from about 65% to 75% to improve open-circuit voltage from 0.44 V to about
0.57 V. A major research direction that can be pursued to reach these goals
is to produce CulnSep alloys that have band gaps of 1.2 to 1.4 eV. If
present CulnSe, materials properties (defects, composition) can be
maintained or bettered, a higher V, . should be produced. Given the high
absorption coefficient of selected CulnSe, alloys, short-circuit current
should remain near the optimum. With a large band-gap window (perhaps wider
than the 2.5 eV gap of CdZnS) and wider-band-gap cells, current densities
could be about 35 mA/cm? or more.
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Progress with CdTe requires a different strategy. Major problems with
CdTe are poor contacting and high bulk resistivity. High resistivity is
thought to be due to electrically active grain boundaries and low carrier
concentrations in the p-type material. Significant progress should be
expected if these problems can be solved or reduced. One approach is the
introduction of Hg or Sb to produce higher p-type conductivity and better
contacting. This also lowers the bandgap, forcing a trade-off between reduced
Voc and greater current.

2. Multijunction Cells

Multijunction polycrystalline cells have not been investigated
adequately. Only recently IEC successfully demonstrated a two-terminal
CdTe/CulnSe; two-cell stack, showing both voltage addition (more than 1 V)
and an increasc of several mA/cm? current density.

Two-terminal and four-terminal stacked polycrystalline cells have
trade-offs similar to single-crystal analogs. In two-terminal devices,
current must be matched, and deposition process limitations may be
significant. In four-terminal devices, the cells must be separately
contacted, intercell reflection may need to be reduced, and extra insulating
layers may be required.

For four-terminal devices, where current-matching is not necessary, the
total achievable efficiency of a two-cell device is the efficiency of the top
cell plus a fraction of the normal AMl efficiency of the bottom cell. To a
first approximation (if the spectral response of the bottom cell is flat), the
efficiency of the bottom cell is its normal (AM1) efficiency times the =
fraction of the sunlight that reaches it when it is under the top cell. For !
instance, at AMl, a CulnSe, cell beneath a CdTe cell can receive about 35% ‘
of the incident solar photonsz. Thus, the achievable efficiency of a
CdTe/CulnSe) four-terminal device would be the AMl efficiency of the CdTe
cell plus 35% of the AMl efficiency of the CulnSe; cell. If the band gap of
the top cell could be raised to near 1.75 eV without sacrificing efficiency,
about 50% of the light could reach the bottom cell, raising the combination's
total efficiency substantially.

Figure 17 shows a simple estimate of the practical, achievable
efficiencies of CdTe/CulnSe) four-terminal devices. Note that efficiencies
near 15% are within reach, given separate cells that are 11% efficient.

The performance of two-terminal devices is limited by the need to
equalize the currents generated in the cells to achieve optimal performance.
One might consider that allowing 50% of the spectrum to reach the bottom cell
would equalize currents, but CulnSe; is such a good current generator that

2This is a conservative estimate based on counting photons between given
intervals (the various band gaps) in the AMl direct normal solar spectrum.
The actual percentage of photons reaching the CulnSe; cell may vary between
35% and 45%, depending on spectral content. At AMl.5, similar photon
counting suggests a 40% spectral fraction.

46



1 T | 1 I |
14 15% 4-TERMINAL WITH
B 50% LIGHT IN EACH CELL

UNITY SLOPE

R
5 13 .
4
w
Q
T 12 =l
.
w
o 17% TOTAL
o EFFICIENCY
8 1k
o 15% TOTAL
S EFFICIENCY
10 —
13.5% TOTAL
7 EFFICIENCY
9l 1 1 ] 1

= |
9 10 1 12 13 14 15

BOTTOM CELL EFFICIENCY, %

Figure 17. Estimate of Expected Efficiencies of Four-Terminal CdS/CdTe on
CdS/CulnSe; Optically Stacked Cells for Various Separate Cell

Efficiencies, Assuming that 35% of the Sunlight is Reaching the
Bottom Cell

something less than 50% might be appropriate. Even the simplest calculations
for expected efficiencies from two-terminal devices are complex in that they
depend on the actual quantum efficiencies and physical properties of the
separate cells. However, some simple projections can be made for the
CdTe/CulnSe, devxce. A two-terminal version with V,. about 1.25 V, Jg.

about 16 mA/cm , and FF of about 0.75 would be 15% eff1c1ent. All of these
parameters seem possible for cascade cells: 0.8 V and 0.45 V have been
achieved individually for CdTe and CulnSe, cells; at a 40% spectral

fraction, at least 16 mA/cm? should be available from CulnSej; and FF

rises in CulnSe) devices for lower cell currents.

In practice, initial cells are likely to be limited by light losses in -
the top cell. Sub-band-gap light that should theoretically pass through the
top cell may still be absorbed, scattered, or reflected. These losses occur
because of below-band-gap absorption in gap states near the band edge,
scattering by impurities and grain boundaries, and interfacial reflections.
Ancther required research task is the optimization of a transparent back
contact for use in top-cell devices, especially for p-CdTe. Further
optimization of the individual cells for use in cascade devices should provide
opportunities for performance enhancements.

3 New Window Materials

Cadmium sulfide has been the most frequently used heterojunction
partner with thin-film polycrystalline absorbers. Zinc has been alloyed with
CdS to make Cdl_xanS, raising the band gap. However, resistivity rises
rapidly as Zn is added, and materials have not been made with Zn/Cd ratio

3preliminary outdoor test measurements at SERI on (Cd, Zn)S/CuluSe; cells
show an increase in fill factor at lower light intensities.
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greater than 0.2 and band gap over 2.5 eV. There are substantial reasons for
developing new n-type heterojunction partners (window materials):

(1) To optimize single-junction top cells by letting the maximum
number of solar photons reach the junction, and to better match
various absorbers in terms of interface properties. Figure 18
shows several selected highly conductive, highly transparent
window materials currently under investigation. Note the
substantial fraction of photous lost by using CdS as the
heterojunction partner.

(2) To allow the maximum amount of light to reach the high-band-gap
top cell of a cascade device, especially where the top cell is the
one limiting the current.

(3) To match new windows to bottom cells in cascade designs, where
bandgaps can be as low as that of the top-cell absorber. For
instance, n-CdSe or n-CdTe might be potential bottom-cell windows
for p-CulnSey beneath a CdTe top cell.

In addition, it is important to develop p-type windows to match n-type
absorbers in four-terminal devices, where the polarity of top and bottom cells
do not have to be the same, or for single-junction cells, to match with
several alternative n-type absorbers that have not yet been optimized.

The p-type window materials would be useful in a number of specific cell
designs where n-type absorbers may be advantageous, because they are
frequently easier to contact. For example, n-CdSe might be usable as a good
top-cell absorber at 1.7 eV if a high-conductivity, high-band-gap p-type
window could be developed. Also, a substantial number of n-type absorbers
(n-CdTe, n-CulnSej) exist and have not been exploited because of a lack of a
p-type window.

4. II1I-V Thin Films

In addition, the family of III-V semiconductor< has been selected
as the basis of study for thin-film cells for the Advanced High-Efficiency
Concepts Task based on the combination of high performance, controllability of
physical properties, and weli-developed research efforts. The research can be
broken up into three broad cverlapping areas. These are thin films, III-V
films on silicon, and multijunction thin-film cells. In the first area,
several concepts are under study for preparing polycrystalline films primarily
for single-junction cells, as described above.

The second area includes heteroepitaxial growth of III-V's on silicon
and offers the potential of building upon the mature silicon photovoltaic
technology. Higher efficiencies could be obtained from the modules by adding
a III-V layer to the silicon and a dramatic increase in performance could be
achieved by using a high-band-gap alloy with an active silicon cell to form a
two-junction cascade cell. The existing crystalline silicon module technology

would remain largely unchanged for this multijunction flat-plate cell and
module approach.
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It is quite possible that the goals of 20% efficient multijunction
thin-film cells can be achieved through continued improvements in the active
semiconductor layers. The current program structure is directed toward
obtaining these improvements. To push efficiencies significantly above
present levels, solar-cell structures must be improved. Looking at recent
improvements in efficiency in single-crystal silicon cells, it can be seen
that the cell structures are much different from those of five years ago. The
new crystalline silicon cells take advantage of effective surface passivation
techniques, reduced recombination velocity near contacts, improved
antireflection coatings and optical trapping. Conversely, for GaAs cells, the
basic designs of planar, single-junction cells are largely unchanged over the
last five years. New structures cannot be implemented without continuing
I1I-V materials research to develop the necessary components of the
structure. As was and is being done in silicon, the III-V photovoltaic
researchers can benefit from participation with the non-PV community in
establishing better understanding and control of all aspects of the mate-ials.
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SECTION VI

MODULE TECHNOLOGIES

A. RIBBON-MODULE TECHNOLOGY

The ribbon technology chosen for this investigation is based on the
dendritic-web growth process being developed by Westinghouse (see
Section III). The processes that were analyzed are essentially those used by
Westinghouse for the Module Experimental Process System Development Unit
(MEPSDU) contract (1980). Since there is continuing process development, the
results shown here are conservative; however, these module results can be
considered typical for use with all ribbon technologies. The module packaging
(encapsulation) technologies considered here are similar to those used at
present by a number of crystalline-silicon module manufacturers. EVA is the
module laminant with glass superstrate. No further design discussion is
necessary here because of the similarity to today's commercial practice.
Rather, the advancements or changes from present practice will occur
principally in module assembly automation as annual module manufacturing
volumes increase.

The projected advanced web growing process is considered an early 1990's
technology. The advanced web grower will be capable of producing 16.3%
encapsulated-cell-efficiency ribbon (15% module efficiency) at a rate of
30 cm?/min. For this projected process, the cost of the silicon feedstock
material is assumed to be $14/kg (1980 $) by 1990. This commercially scaled
plant will be capable of producing 27 MW/yr of 60 x 120 cm modules. A more
complete description of the processes can be found in Reference 13.

Recent cost analyses for manufacture of silicon web modules have shown a
projected cost of $76/m? (1980 $). The two most expensive module
manufacturing process steps completely dominate the cost: advanced web growth
and module lamination. The web-growing process is nearly one third of the
total technology cost, with nearly half of the web-growing process cost being
the materials cost. Similarly, the laminating process is approximately one
fifth of the total technology cost, with nearly 70%Z of that cost being the
materials and more than half of the materials cost being the cost of the glass
superstrate.

For a 15% efficient module, the module cost-per-watt rating is 50.5¢/W.
The highest-efficiency web modules manufactured to date (30 x 120 cm) are
13.2%, with 12.5% mcdules being typical. These are among the highest
flat-plate module efficiencies attained veing current technology.

B. AMORPHOUS-SILICON MODULE TECHNOLOGY

Amorphous-silicon module design and cost assessment is in progress at
SERI, and preliminary results are contained in a report (Reference 14) that
includes the leading module design being investigated, and the requirements
and assumptions for the module design. A separate discussion on bypass-diode
protection that offers a design consideration to protect against cell failure
resulting from reverse bias (negative voltage) is also included.
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1. Design Requirements

Previous studies of solar-cell modules have served to define the
technical requirements for durability, performance and safety. Technical
requirements that an amorphous-silicon module will have to meet for general
commercial applications are discussed here.

The outdoor environment under which any PV modules, including
amorphous-silicon modules, must operate places important structural
requirements on design. The modules can be expected to encounter various
physical or environmental loads in their lifetimes, including the effects of
wind, seismic activity, and snow and ice buildup. Amorphous-silicon modules
must withstand physical shock from hail, thermal shock from changes in air
temperature and sclar heating, and abrasion and soiling from environmental
contaminants such as dust and smog. The solar cells and interconnect layers
within the modules must be protected against moisture. Other environmental
factors limit the choices of materials used in module construction.

Several design requirements relate to the modules' electrical
operation. Electrical isolation must be considered within the solar-cell
structure, the module, and the array, for abnormal conditions of current
surges and excessive voltages that could occur for various off-nominal
operation and/or failure modes. Electrical failures should not result in
fire, safety hazards, or failure propagation beyond the initial point of
failure. If a failure has occurred, the module design should allow for easy
fault detection and replacement.

Safety requirements set specific limitations for operating voltages,
materials, and physical characteristics. The solar cells and electrical
connections should be insulated so that they do not pose an unnecessary hazard
to persons from electric shocks. Materials used in construction should not
endanger the environment or operating personnel, even if the module is
accidentally damaged. The need to be able to handle the modules safely during

installation and replacement limits the size and weight of acceptable module
designs.

Technical design characteristics generally must be traded off against
the need for low production costs. Similarly, trade-offs exist between meodule
efficiency, size, and production costs. All of these must be considered in
the design of amorphous-silicon modules. The only aspect of module design
that will be dealt with explicitly in this section is the optimization of
module output given certain cell characteristics, voltage requirements, and
dicde protection requirements. Module dimensions and materials are given
conditions for the analysis.

2. Module Concept

Monolithic series-connected c:1ls within a module differ
significantly from those in a module based on the current crystalline silicon
technology. The solar cells are a thin film of amorphous silicon material
deposited on a substrate, rather than slices of crystalline silicon ingot.
Cell interconnections are made with films of aluminum and transparent
conductive oxide material ratlier than with grids of metal sintered to the
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cell's surface. Because the cells are made by the deposition of films, their
design characteristics are governed by the nature of the materials and the
desired output from the module.

The design of the module has the advantages of potentially low
fabrication costs, low and uniform current density and high voltage in a single
module. Individual solar cells considered here are thin strips running the
entire width of the module. The narrow width of the solar cells is governed
by the sheet resistance of the transparent conductive oxide. The long solar
cells provide an internal parallel connection redundancy, thereby adding to
the module's reliability. The large-area module is assumed to be 4 x 4 ft.,
approximately 120 x 120 cm.

3. Assumptions for Module Design

Characteristics of the solar-cell material are based on the
research work performed at RCA under SERI contract. The assumption is that
large-area commercially produced cells in 1995 will be able to match the
performance of today's small-area cells produced under laboratory conditions.

The cells' current, voltage, and associated electrical parameters taken
from the RCA work and additional assumptions used in the module design are
listed below:

Open-circuit voltage (Voc) = 0.84 volts
Short-circuit current density (Jsc) = 17.8mA/cm2
Fill factor (FF) = 0.676
Efficiency (Eff) = 10.1%

Cell area = 1.09 cm2

Reverse-bias voltage of the cell (VRMAX) = -6.7 volts
Diode forward voltage drop (VFD) = 0.7 volts

Sheet resistance of transparent
conductive oxide, (PTCO) =5 /0

Gap width between cells (w) = 100 um

4. Module Design Analysis
Key parameters of module design, cell width, and the maximum
number of cells in a bypass group, dependé on the characteristics of the

amorphous-silicon solar cells and the TCO.

The optimum cell width (Wopp) is calculated as Wopr = 0.49 cm. The
maximum number of cells in a bypass group (Ny,y) is calculated, on the basis
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of allowable reverse bias of the cells (Vpyax), as Nyax = 8. These
results in combination with the .ssumptions made about the solar cells allow
us to calculate the following module characteristics:
Cell width + cell gap width = 0.49 + 0.01 = 0.5 cm
Number of series connected cells in module = 120/0.5 = 240 cells
Module operating voltage = 240 x 0.63 = 151 150 volts
Module open-circuit voltage = 151 x 0.84/0.63 = 201 200 volts
Module short-circuit current = 120 x 0.5 x 17.8/1000 = 1.07 amps
Module operating current = 120 x 0.5 x 16/1000 = 0.96 amps
Module power = 150 x 0.96 = 144 watts
Module packing fraction = 0.49/0.5 = 0.98

5. Module Configuration

A possible configuration of a 120 x 120 c¢m module without a
built-in diode is shown in Figure 19. However, it can still contain one
discrete bypass diode placed at the end of the module.

The cell interconnection is shown in Figure 7. If further evaluation
indicates a need for protective diodes within the module, the configuration
showr in Figure 20 may be a solution.

Calculations indicate that a bypass diode should be installed in the .
module across every eight cells. Since each cell in the module will generate !
about 1 ampere, the bypass diode should be rated to carry at least 1 ampere.

In this configuration, the aluminum metallization of every eighth cell
is extended toward the end of the mocdule for bypass diode connections. This
extended aluminum will be .hicker so it can car' 1 ampere.

To have room on the module for the bypass diodes, a l.5-cm space is
provided along one side of the module. This is a loss of approximately 1% of
active cell area. This module schematic is shown in Figure 21.

14 e— 0.5 cm

120 cm
(4 ft)

L - 120cm____
(4 ft) ~
Figure 19. Monolithic Amorphous-Silicon Module
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Figure 21. Module with Bypass Diode Across Every Eighth Cell

5. Cost Assessment

Amorphous-silicon module cost estimates are being developed by
SERI, based on conceptual designs. The preliminary data indicate chat those
costs per unit area may be about a factor of 2 lower than those of the silicon
ribbon module. These estimates assume large-scale production in the 1995
period and must be considered preliminary, as the amorphous-silicon module is
in the early stages of development. A description of the conceptual module
production process steps and cost breakdown is contained in Reference 4.
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C. THIN-FILM POLYCRYSTALLINE MODULE TECHNOLOGY

The thin-film polycrystalline module design is taken from a SERI
Research Report (Reference 15).

In this report two module concepts are reviewed. The major difference
between the two is that one uses metal grid current-collection fingers for the
front contact and the other uses a transparent conductive oxide. The cell
design is basically similar to that described in the discussion on amorphous
silicon, i.e., monolithic deposition, scribed cell divisions, and
series-connected module design. The design requirements described in the
section of amorphous-silicon module are also appropriate here. The use of
bypass diodes also is considered.

1. Module Concept

As with the amorphous-silicon module, the thin-film polycrystalline
module consisted of a large area of monolithic series-connected cells. The
solar cell used in the module design is the Boeing (CdZn)S/CulnSe; cell shown
in Figure 22. The Al grid contact is shown in the cross sectional view of the
metal grid fingers mentioned above.

Parameters representing the material properties and cel] characteristics
were projected ou the basis of current technology and future expectations
based on achievement of the goals set forth in the National Photovoltaics
Program Five-Year Research Plan. A list of important cell and module
parameters used in the design of the modules is given below:

Cell and Module Parameters

Cell efficiency 15%

Cell open-circuit voltage 0.570 Vv

Cell short-circuit current density 0.035 A/cm2
Cell operating voltage 0.456 V

Cell operating current density 0.03281 A/cm2
Module dimension 4 x 4-ft.
Transparent conductive oxide sheet resistance s Q0

For a monolithic module design, calculations can be made to find the
cell width and contact design that will optimize module performance. The
calculations are based on the information in the list of cell and module
parameters given above, along with process constraints such as the minimum
possible gap between cells and other practical considerations in module
construction. The subject is well covered in Reference 16.

The module's design must begin with the selection of its basic
structure. 7Two factors tend to dominate the selection of a structure. The
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Figure 22. Cell Structure Showing Deposition Temperatures
and Material Composit >n

first is the relatively high sheet resistivity of the window side of the solar
cells. The typical approach to overcoming this problem is a metallic grid on
the surface to collect the photocurrent. For moderate-sized solar cells, the
grid shades about 10% of the active area, resulting in a corresponding loss in
power output. For a large-area module as proposed in this study, the shading
losses would be even larger. The second factor entering into the selection of
the structure for the modules is the potential for low manufacturing costs.
The structure must be simple enough that processing steps and handling are
held to a minimum. Furthermore, fabrication requirements should be consistent
with relatively low-cost high-volume manufacturing techniques.

To use the monolithic module structure design for (CdZn)S/CulnSe;, a
few changes are necessary and desirable because of the difference in material
from amorphous silicon. The most important change is in the way the solar
cells are made. Fabrication of the amorphous-silicon module begins with the
deposition of the antireflection coating and the top contact on what will be
the front cover glass. The solar cells are constructed from the top down. For
(Cdzn)S/CulnSey solar cells, the proposed fabrication order is reversed. The
heterojunction between (CdZn)S and CulnSe, probably cannot tolerate the 450°C
temperature at which the CulnSe, is deposited. Therefore, modules would be
constructed on a supporting substrate with the back contact, antireflection
coatiang and glass cover being the last steps in mcdule production.

Another module structure change is to replace the TCO front contacts
with metallic grid fingers, as shown in Figure 23. The contacts are tapered
fingers of metal that extend over one edge of a solar cell, forming a series
connection with the back metallization of the adjacent solar cell. A TCO
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Figure 23. Monolithic Module Design for CulnSe;/Cd(Zn)S Solar Cells

contact is considered as an alternative design structure because there has not
been enough research work done on this type of mcdule to establish which is
the most effective contact design. A complete discussion of each process step
can be found in Reference 16.

After completion of the module design effort, a sequence of
manufacturing steps was developed to produce the modules on a commercial
scale. Cost estimates were developed for each manufacturing step. Some of
the manufacturing process descriptions and cost information were taken from
SERI's Advanced Photovoltaic Module Costing Manual. The Jet Propulsion
Laboratory Solar Array Manufacturing Industry Costing Standards (SAMICS)
methodology was used for the preparation of the remaining cost estimates.
Format A process descriptions were developed for the manufacturing steps and
cost estimates were calculated using the SAMICS Improved Price Estimation
Guidelines (IPEG) equation.

2. Module Cost Assessment

At present, polycrystalline thin-film cost estimates are being
developed by SERI, based on conceptual designs and on module technology that
is still in the early stages of development. Preliminary cost estimates
indicate that the polycrystalline thin-film module cost is about the same as
that of the amorphous-silicon module. These estimates assume large-scale
production in the 19Y5 period, and the confidence level is similar to that for



the amorphous-silicon module. A description of the conceptual module
production process steps and cost breakdown are contained in Reference 14.

D. MODULE TECHNOLOGY ISSUES

A number of important issues relevant to cost projections and their
implications for future research and developmen:t of thin-film cells and
modules were uncovered during the analysis:

(1) The overall module cost estimate is sensitive to material thickness
and deposition rates for individual processing steps. The most
important example is the CulnSej deposition step, where very
little is known about deposition rate limitations or required
material thickness. If the deposition rate for this processing
step were doubled, total module costs would be reduced. Processing
cost estimates for the (CdZn)S solar cell layer, front and back
cell contacts, and the antireflection coating display similar
sensitivities to these assumed parameters.

(2) The heterojunction between (CdZn)S and CulnSe; cannot tolerate
temperatures as high as those at which the CulnSe;, is deposited,
making it necessary to construct the cells on a substrate rather
than on the back of a glass front cover.

(3) The module design work indicated that metal grid contacts have a
distinct advantage over TCOs for the front cell contact, except
possibly in the area of contact degradation (corrosion due to
moisture, etc.). Transparent conductive oxide films have not been
developed with properties as good as those assumed in the module
design analysis (95% light transmittance and sheet resistance of
5% or less). The light transmittance might be further reduced by
increased material thickness. It may be necessary to deposit
extra contact material to ensure adequate thickness at the edge of
each cell where the TCO goes over a corner on its way to making
contact with the back metallization of the next cell. Another
problem stems from the poor conductivity of the TCO. Cells must
be made narrower in width to lower the resistance losses in the
top contact, but the packing efficiency drops because the gap
between cells is fixed. Finally, the gap between cells is
actually larger for the TCO module design because an additional
scribing step is required to isolate the top contact after
deposition. The last two problems reduce the active cell material
area by around 3%, compared with the module design using metal
finger grid contacts.

(4) Questions remain about the deposition methods selected for the
CulnSej solar-cell layer. Two different methods were
considered: evaporation and reactive sputtering. The evaporation
method relies on a new technique to control material evaporation
rates, using Knudsen cells. Controlling the evaporation rate and
composition of the deposited cell material may still be a problem
using this approach. Copper is the most difficult to control
because of the high temperature required (1400°C). Unfortunately,
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even less is known about the potential of the alternative method,
i.e., reactive sputtering. Preliminary work has been promising,
but cell efficiencies are well below those produced by
evaporation. The process descriptions in the referenced SERI
report are for considerably higher deposition rates and larger
deposition areas than have been demonstrated.

(5) Bypass diode protection was included in the module design using
metal-grid front contacts and also in the design using TCO front
contacts. No additional manufacturing process steps were required
to construct the bypass diodes in the module with metal grid
contacts. The diodes and interconnects were constructed of the
same materials as the solar cells and the back and front
contacts. For the module design employing TCO front contacts, an
additional masking step and metal deposition step were required to
complete the interconnection of the bypass diodes.

(6) Although material costs are important in the final module cost,
the cost of the semiconductor materials is not significant.
Materials used to encapsulate the module are the principal
material costs. Glass for the back substrate and for the front
cover and the materials used in the edge seal raise the
encapsulation system's share of total module cost. A more
siguificant finding was the small contribution made by the
solar-cell deposition steps to the total cost of materials used.
Indium and selenium are expensive materials and might have been
expected to influence the final module cost estimate heavily.

E. THIN-FILM MODULE RELIABILITY

A key area of concern with thin-film module design is developing a
technology base to integrate the emerging thin-film cells and materials into
reliable 30-year-life modules. This section reports on the JPL thin-film

reliability and engineering activity to accelerate the development of this
technology base.

The research areas associated with achieving reliable thin-film power
modules can be divided into two general groups: those associated with
achieving long-term reliability, and those associated with achieving needed

module electrical performance (cell integration and module engineering
research).

1. Reliability Research

Achieving 30-year-life thin-film modules requires solutions to the
same generic problems as those facing crystalline-silicon modules. These
include galvanic and electrochemical corrosion of cell metallizations,
photothermal degradation of encapsulants, voltage breakdown of electrically
insulating encapsulants, delamination of encapsulants, hot-spot damage to
cells and encapsulants, front-surface soiling and glass breakage. Because of
the thin metallization layers inherent in thin-film cells, they are likely to
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be much more sensitive to damasge due to corrosion mechanisms. Similarly,
hot-spot heating of cells is likely to be affected by the low cell shunt
resistances from point defects and the greater susceptibility to junction
shunting due to cell overheating. Glass breakage is substantially complicated
by the common application of an electrically-conductive tin oxide layer, which
requires a 400°C processing temperature that tends to remove glass temper.

In addition to these module-level failure mechanisms, there are a number
of issues relative to the intrinsic reliability of the thin-film cells
themselves. Light-induced degradation of cell efficiency and point defects
(junction shorts) are areas of active research at SERI and elsewhere in the
cell-physics community.

2 Cell Integration and Module Engineering Research

The s»cond major challenge to achieving application-ready
thin-film power modules is electrically integrating the cells in a way that
avoids major performance losses due to the high series resistance, variable
efficiency, and numerous point defects (junction shorts) generally encountered
in thin-film cells. Research topics include developing analytical methods for
calculating the performance impact of the abovementioned loss mechanisms and
arriving at cell geometry and interconnection circuits that control losses to
tolerable levels. Reliable attachment of leads to thin-film cells is a major
problem, as typical crystalline-Si methods such as soldering and ultrasonic
bonding lead to extensive cell performance degradation. Measurement methods
for quantifying electrical performance of thin-film cells and modules are
poorly defined at present, due to the lack of stable cells to serve as
reference cells, to the highly varied spectral response characteristic of i
different cells, and to the absence of solar simulators that have accurate |
spectral irradiance distributions. The industry now relies on outdoor
sunlight measurements, a technique that is not suitable for large-scale
production.
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SECTION VII

CONCLUSIONS

The PA&I Center study team, with the assistance of SERI and JPL team
members, have studied the collected data on silicon sheet and thin-film cell
and module technologies and, based on their judgment and on the opinions and
comments of the researchers interviewed, have arrived at the following summary
statements:

A. GENERAL

(1) Unlike the wafered-silicon cell technologies, which are limited
by the sawing process, both the silicon-ribbon and the thin-film
cell and module technologies have the potential to achieve the
long-range goals for flat-plate modules if the Government
continues vigorous support of its National Photovoltaics Program
by funding as planned (in the DOE Five-Year Research Plan) or
proposed by the responsible task managers at SERI and JPL.
Funding at or less than the current level will jeopardize the
timely achievement of the long-range goal. Continued strong
support of the Program by the industry is also a key need to
maintain progress momentum and to ensure the success of the
program.

(2) Among the silicon-ribbon cell and module technologies, the
web-process and EFG-process cells and modules are most
promising. Their highest cell efficiencies achieved to date are
16.7% and 14% respectively.

2 Amorphous-silicon cells have already been commercialized, at
least in consumer electronics applications that do not demand
competiveness with utility-level energy production. The reported
highest single-junction cell efficiency is 11.5% with 1 cm?
cells. The efficiency goal of 12% efficiency with 100 cm?
cells appears to be achievable in 1988 (SEKI Amorphous Silicon
Research Schedule) without depending on any breakthroughs.
However, the achievement of module efficiencies in the 15% range
is unlikely with single-junction amorphous silicon cells.

(4) Some degree (=5%) of photon-induced degradation may be
unavoidable with a-Si cells.

(5) Polycrystalline thin-film technologies have made remarkable
progress, especially during the past few years, despite the
relatively limited research effort. Although the small-area cell
efficiencies at 10Z to 11% with both CulnSe; and CdTe cells
remained unchanged during the last year or two, large-area
(>10 cm?) cells have begar to show efficiencies in the 6%
range. Cell modeling and cell characterization are also making
good progress.
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(6)

(7)

The achievement of 15% efficiency small-grain polycrystalline
thin-film and amorphous-silicon modules requires considerable
research effort, and almost certainly requires multijunction
devices. Successful future thin-film multijunction cells might
consist of a CulnSej or Ge bottom cell or possibly one of the
innovative chalcopyrite materials with a band gap of 1 eV or less
combined with a thin-film GaAs or GaAlAs high-efficiency top
cell, or CdTe if high enough conversion eificiency is achieved to
enable its use as the top cell. Other combinations may utilize
amorphous and polycrystalline thin {ilms or even an amorphous or
pelycrystalline thin film, each on top of a silicon-ribbon bottom
cell.

Industry opinions were that extensive research efforts are still
required in the areas of materiais and materials property theory
and analysis, as well as measurement techniques and
standardization for reliable evaluation of cell and module
performance.

SILICON RIBBONS

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

The web ribbon process has extremely high module performance
potential; 13.4% efficient 30 x 120 cm modules have been made,
and 16% modules are possible without research breakthroughs.

The web process is limited by growth throughput. Ribbon growth
throughput must be improved by a factor of 2 to 4 and the process
must demonstrate steady-state closed-loop ribbon growth for long
periods of time for successful large-scale production.

If the above growth improvements for web are not achieved by
1986, industry will probably lose interest in further process
development.

The buried twin planes found in web may be beneficial to cell
performance in that they can function as gettering sites for
impurities and crystalline defects during cell thermal processing.

The EFG process has made great progress, especially in the past
year or two. The nonagon growth process now produces adequate
sheet growth rates and still has the potential for improvement by
a further factor of 2 to 4.

Efficiencies of EFG cells now average 1l%, with some cells over
laz.

The only ribbon process now in commercial module production is
EFG. The experience factor gained from this production and field
experience feedback is extremely valuable in guiding future
process research and development.

Solavolt expects the RTR process to become available in modules
early in 1985.
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(9)

(10)

(11)

(12)

(13)

The ESR process is being developed by Arthur D. Little, Inc.
However, the level of experience is very low compared with those
of EFG and web.

Continued low-angle silicon sheet ribbon rescarch over the next
two years should allow evaluation of the potential for growth of
thin, flat-surface ribbon.

There may be some potential for eventual growth of single-crystal
ribbon by the LASS process.

All ribbon processes continue to be limited in growth rate by
stresses and potential buckling. Stress-related modeling and
research should continue and should be closely coupled with
experimental growth research work.

Several cell-performance enhancement approaches such as Kaufmann
hydrogen icn engine passivation and the small-area MIS contact
techniques developed by Martin Green can potentially be applied

to the several ribbon technologies. These techniques have the
potential for efficiency improvement by several percentage points
over those cell efficiencies currently achieved on ribbon silicon.

AMORPHOUS-ALLOY CELLS

(1)

(2)

(3)

(4)

(5)

(6)

Amorphous-silicon cells are now considered a commercial product
for small consumer goods such as watches, radios, calculators,
and small battery chargers. These cells are generally not
packaged to withstand an outdoor environment and do not have high
enough efficiencies for bulk power-generation applications.

Analyses show that amorphous-alloy power modules can be made in
large-quantity production for about $34/m2. Current efficiency
of a 100 cm? submodule is about 8%. Efficiencies for large
modules must achieve 12% or higher to be economic in U.S.
grid-connected applications.

Single-junction large-area amorphous modules are not likely to
achieve greater than about 10%Z efficiency, as small-area cell
efficiency is expected to be limited to about 13% to 14%.

Multijunction amorphous-alloy or amorphous-polycrystalline cells
and modules must be developed to achieve large-area module
efficiencies greater than 12%.

Amorphous-silicon alloys with high band gap as well as amorphous
alloys with low band gap require continued research for eventual
integration into high-efficiency tandem cells and modules.

Transparent conducting oxide materials require increased

attention to improve optical and electrical properties. The
interaction between TCO and amorphous silicon should be examined

carefully to project device durability.
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D.

(7)

(8)

(9)

(10)

(11)

(12)

Early operation of clean cell fabrication systems and
establishment of standardized baseline film deposition parameters
are important to interchange of R&D results. The cell-performance
aspects related to fabrication processes can be readily assessed
once a repeatable baseline process is established. The directions
for future advancement can also be better projected using such a
baseline.

Analytical efforts for cell modeling must be continued to achieve
understanding of cell performance and to identify areas for
improvements. Photon-induced degradation is one such area.

Experimental work in multijunction amorphous silicon cells should
be increased. The work can be done in parallel with
single-junction cell research, since synergism can be expected to
accelerate the progress.

Module-related research must be increased steadily with strong
joint funding by industry. The timing should be such that the
amorphous silicon technology industrialization can be achieved
smoothly in the early 1990's.

Total industry funding of amorphous-silicon-related R&D is of the
order of 10 times the R&D effort sponsored by the National
Photovoltaics Program.

There are now eight significant industrial amorphous silicon R&D
groups in the United States. One or two more large R&D efforts
are likely to emerge in 1985.

POLYCRYSTALLINE THIN FILMS

(1)

(2)

(3)

(4)

Small-area-cell efficiencies are in the 10% to 11% range with both
CulnSej and CdTe cells. Large-area (=100 cw?) cells have
begun to show efficiencies in the 6% range.

Excellent work is now being done in the thin-film polycrystalline
R&D area. Results of research efforts are beginning to be very
significant. If the present rate of progress continues, a basic
understanding of the materials and cell technologies should come
together over the next two to three years for at least CulnSe,
and CdTe technologies. This could lead to a spurt in
cell-performance progress in 1987-1988.

Carrier-collection mechanisms in CulnSe; cells must be resolved
early. Are these cells really heterojunctions or homojunctions?

Much of the present behavior of CulnSe, cells is probably
influenced, or even controlled, by grain—-boundary effects. It has
been postulated that multiple grains are series-connected
electrically by tunnel junctions. Much of the observed behavior
of CulnSej cells, including low V,., might be explained by

such a mechanism. More cell modeling work is required.
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(5) Research toward high-efficiency tandem polycrystalline thin-film
cells requires strengthening, since tandem cells are almost
certainly needed to achieve high mocule efficiency with
polycrystalline thin films. Combinations of differing
polycrystalline cell technologies as well as polycrystalline and
amorphous combinations should be researched.

(6) To increase the rate of development of understanding, it appears
appropriate to focus any possible additional near-term R&D funding
on basic polycrystalline materials research.

(7) A realistic Polycrystalline Thin-Film Project research plan should
be written instead of the existing draft plan.

(8) Module-related R&D has a secondary priority at this time.
However, some mocdule-related research, including materials'
compatibility in modules, fabrication proress scalability and
module-cost estimates should be strengthened.

E. SUMMARY STATEMENT

The conclusions presented in VII A, VII B, VII C, and VII D on the
status and perspective of silicon sheet and thin-film cell and module
technologies have been drafted by the PA&I Center study-team members with the
concurrence of the SERI and FSA study team members. To summarize these
conclusions, the PA&I Center study team members prepared the following summary
statements. These summary statements are personal opinions and
recommendations formulated by the PA&I Center team and do not reflect
managerial views of PA&I Center, SERI and FSA. Therefore, they should be
carefully judged by DOE management for use in directing the DOE PV Program;
consultation with the respective research centers is reccmmended.

(1) Considerable progress has been made with wafered silicon sheet
technologies to improve efficiency, improve reliability, and
reduce cost. However, the wafer technologies will have great
difficulty in meeting DOE PV Program goals for flat-plate
collectors, primarily because of limitations in sawing
technology. Continued support of float-zone research will improve
the present state of the art of wafered-technology cell
performance and is recommended.

(2) Silicon-ribbon technology, especially web ribbon, continues to
show great promise for achievement of higher module efficiency and
reduction of flat-plate module cost to $75/m2 in the early
1990's. Continued support is highly recommended toward solving
the problems of high-speed ribbon growth. Strong industry
participation and cost sharing is essential for continued progr:ss.
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(3)

(4)

(5)

Module efficiencies near 12% using single-junction thin-film
module technology, or amorphous-silicon or polycrystalline
thin-film technologies, could be achieved in the late 1990's.
Module cost in the range of $40/m? may be achieved when
large-scale thin film depositions and module facilities are
developed.

Thin-film amorphous and polycrystalline cell and module
technologies have the potential of meeting the DOE PV flat-plate
module program goals only if cells are formed into multijunction
monolithic structures. Therefore, increased emphasis should be
placed on multijunction cell research.

It is clear that it is too early to pick a winner from among the
various technologies. A winner may not emerge for several years.
There is also a strong possibility that both silicon ribbon and
thin-film single-junction or multijunction modules will have
long-term commercial power generation applications in 1995 and
beyond.
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APPENDIX A

INDUSTRY INTERVIEWS

This appendix contains summary statements collacted during interviews
with selected industry representatives who are involved in research on silicon
ribbon, amorphous cnd polycrystalline thin-film technologies. The information
addresses level of research effort conducted, objectives and status of
research, corporate-sponsored research tasks, and comments regarding U.S.
Department of Energy (DOE) objectives, DOE program direction, needed research
to be funded by DOE in support of industry, corporate plans, and PV industry
needs and expectations.

Interviews were also held with Electric Power Research Institute (EPRI)
representatives on general research issues of interest to the electric utility
industry.

The data sheets are collated as follows:

Ribbon Technoclogy

Westinghouse Electric Corp.
Mobil Solar Energy Corp.
Soiavolt International
Energy Materials Corp.
Arthur D. Little, Inc.

Amcrphous Silicon

Spire Corp.

Chronar Corp.

Energy Conversion Devices, Inc., with Standard 0il Co. of Ohio
(Sovonice Solar Systems)

Solarex Corp.

ARCO Solar, Inc.

Minnesota Mining and Manufacturing Co.

Institute of Energy Conversion (also included in polycrystalline group)

Exxon Research and Engineering Co.

Polycrystalline Thin Film

Ametek, Inc.

Eastman Kodak Co.

Institute of Energy Conversion

Boeing Co. (Sovolco)

Southern Methodist University

Monogram Industrials Reeearch Laboratory(Monosolar) with
Standard 0il Co. of Ohio

University of Illinois

Utility Industry Issues

Electric Power Research Institute




RIBBON TECHNOLOGY SURVEY

ORGANIZATION: Westinghouse Electric Corp.

INTERVIEW:

1.

Pittsburgh, Pennsylvania
Site visit on August 16, 1984, with Don Roberts, Bob
Campbell, Stu Duncan.

Technology category, key words:

Low-cost silicon sheet, silicon ribbon, dendritic web.

Level of effort:

Ribbon-growth-related contracts from the Flat-Plate Solar Array
Project (FSA) $1.1M in 1984.

Utility partner and Electric Power Research Institute (EPRI)
support $1.7M in 1984.

Westinghouse Corp. support $1.3M in 1984.

Objectives:

To develop the silicon dendritic-web crystal-pulling technology to
meet steady-state throughput goals of 30 cm?/min using

continuous melt replenishment and¢ closed-loop growth control. A
module pilot plant is to be set up with a capability of about

1 MW/year. CY84 objective is 10 cm?/min rate for 10 meters pull
to be achieved routinely and repeatably.

Status:

Current peak module efficiency is 13.3%.

Current peak web _ (h speed is =3 cm/min for ribbon 5 to 6 cm
wide and 150 um thick; 1.5 cm/min is a more typical linear growth
rate.

The oxide flaking problem in the growth furmace is nearly solved.

Molybdenum countamination from the susceptor is apgarently not a
problem. Moly concentration in the ribbon is <10 2/cc.

Melt replenishment is now in use in R&D furnaces.

Dynamic shields allow relatively high pull rates after start of
growth.



Plans:
Automatic closed-loop control of growth process.

Improve thermal management in growth region for high-speed,
low-stress growth.

Build 1 MW semi-automated pilot line in 1986€.

TiPdCu cell metallization may be changed to PdNiCu in the future.

Commernts:

Photovoltaics presenta'ions were made to Westinghouse top
management (T. Murrin, D. Danforth). Stronger corporate
commitment is hoped for.

Key ribbon—-growth R&D issues: growth speed, ribbon stress, oxide
flaking, melt replenishment, boat construction, ribbon-growth and
temperaiure-profile sensing, closed-loop growth control.

Low-frequency induction heating is used.

Multiple heat shields above, below, and around the boat control
temperature profiles.

Continuous replenishment not yet in use in production furnaces.
Present sources of silicon shot for replenishment appear adequate.

Westinghouse production cost analyses have indicated that
12%-efficient modules made with ribbon grown at 20 cm?/min. in a
25 MW/year plant can achieve $0.50 to $0.70 per watt (1980 $).
This manufacturing plant could be in place by 1989.

A 10 cm?/min. growth rate in a 1 MW/year pilot plant should
yield modules equal in cost to those made with Cz material.

Westinghouse market studies have shown that Westinghouse could
capture a $425M business share of the PV market in the 1990-2010
period if Westinghouse project goals are met over the next few
years.

Ribbon width is not limited to present widths of 5 tc 6 cm.



RIBBON TECHNOLOGY SURVEY

ORGANIZATION: Mobil Solar Energy Corp.

INTERVIEW:

1.

Waltham, Massachusetts

Telecon with K. Ravi on September 13, 1984.

Technology category, key words:

Silicon ribbon, low-cost silicon sheet, edge-defined film-fed
growth (EFG), nonagon silicon sheet growth.

Level of effort:

Flat-Plate Solar Array Project (FSA) contract: $367,000.

Mobil nonagon development done entirely with Mobil funds.

Objectives:

Low-cost, high-speed quality ribbon sheet and module production
using EFG process.

Status:

Mobil now grows nonagons 2 in. on a side; typical thickness is 13
mils with 100 cm?/min growth rate; 14% cells can now be made;
average is about 11%Z using current process. Hydrogen passivation
also increases cell efficiency by 15% to 30%, but is not a part of
current process sequences.

s i ———
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Comments:
Module production near 200 kW/year.

Nonagon facets are now cut to make cell blanks by two methods,
laser and diamond saw. The diamond saw gives best yields so far.

Potential 16%Z to 17% cell efficiency appears realizable in the
future.

Present EFG sheet is grown from non-symmetric dies so that the

carbon inclusions (SiC) are concentrated near the rear surface of
the sheet.
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Mobil will deliver 37 kW of EFG modules for the Sacramento
Municipal Utility District (SMUD) Phase II installation.

Approximately 480 ft. of ribbon can be grown from a given quartz
crucible setup before change-out of crucible assembly is required.

Growth rate of EFG can be tripled in the future by going to 4-in.
facets and by increasing linear growth speed by 50%.

A-5

)



RIBBON TECHNOLOGY SURVEY

ORGANIZATION: Solavolt, Inc.

INTERVIEW:

(Motorola Inc. and Shell 0il Co., are parent organizations)
Phoenix, Arizona

Phone conversation with Arnie Lesk on September 12, 1984
Phone conversation with Bill O'Connor, President, on
September 18, 1984.
Technology category, key words:
Low-cost silicon sheet, silicon ribbon, chemical vapor deposition
(CVD)-deposited silicon sheet, laser or electron-beam
recrystallization, ribbon-to-ribbon (RTR).
Level of Effort:

No government support since 1981.

Process development done on corporate funds (level unknown).

Objectives:

Maintain a position in the module market while developing RTR
process.

Introduce limited RTR process product to market in 1985.
Produce RTR module products at cost lower than competing module
processes.

Status:

Solavolt is producing on the order of 200 kW per year of
polycrystalline Si modules.

Crystal Systems, Inc., heat-exchange methcs (HEM) ingots provide
about 60% of present production sheet supply; the remainder is
Wacker Silso. The HEM material is wafered at Solavolt
International.

The RTR process is producing better-quality cells than was
expected at this time.

Cell and module initial produ-tica processes are now being
implemented.



Comments:

Solavolt expects to scale up production with RTR when product can
undersell sliced polycrystalline-silicon wafer technologies.

Wafered polycrystalline silicon is today's low-cost PV module
technology.

The RTR process is expected to achieve efficiencies equal to those
achieved with sliced polysilicon processes and within 1% of that
achievable with Czochralski wafers by about 1986.



RIBBON TECHNOLOGY SURVEY

ORGANIZATION: Energy Materials Corp. (EMC)

INTERVIEW:

South Lancaster, Massachusetts
Telecon interview with Dave Jewett, President, on September
13, 1984,

Technology category, key words:

Silicon ribbon sheet, low-cost silicon sheet, low-angle silicon
sheet growth (LASS).

Level of effort:
FSA/DOE PV funding level in 1984 =$296,000.

Venture investor support als> of same order of magnitude as
Federal funding.

Also has FSA contract for low-cost copper-silicon alloy matrix
solar-grade silicon refining process.

Objectives:

Low-cost, very high-growth-rate silicon-sheet process.
Achieve flat or nearly flat sheet surface.

Reduce sheet thickness to 15 mils or less.

Achieve single-crystal or nearly single-crystal growth.

Status:

Ribbon that has plarar surface regions of several cm? can be
pulled.

Recently comileted clean facility for better growth environment
control.

Comments:

Limited partnership exists between EMC and funding partners.



RIBBON TECHNOLOGY SURVEY

ORGANIZATION: Arthur D. Little, Inc.

INTERVIEW:

1.

Cambridge, Mass.

Telecon interview with E. Sachs on September 13, 1984,

Technology category, key words:

Low-cost silicon sheet, edge-supported ribbon (ESR).

Level of effort:
No current National Photovoltaics Program support.

Corporate support continues at relatively low level.

Objectives:

Develop a low-cost ribbon-sheet process capable of producing
cost-effective, high-efficiency PV cells and modules.

Status:

Customers have fabricated 12.5% cells on ESR.

Ribbon growth is stable.

Ribbon 6 cm wide, 2.5 cm/min growth rate, 10-12 mils thickness.

Minority carrier diffusion length is 70 pm.

Plans:

Commercialize ESR process.

Comments:

Ribbon stress remains a critical issue. Federal funding of stress
studies is wasted; the actual ribbon growers should receive all
R&D funding.

Process has no die problems.

Process does not require critical temperature control.



Federal thin-film go. .s are very optimistic.

The whole thin-film module technology area is way off and is
highly overfunded.
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AMORPHOUS-SILICON TECHNOLOGY SURVEY

ORGANIZATION: Spire Corp.

INTERVIEW:

1.

Bedford, Massachusetts

Telecon with Vic Dalal on September 10, 1984.

Technology category, key words:

Multijunction aworphous cell, glow-discharge deposition, SiGe
low-band-gap cell alloy.

Level of effort:

$530K in FY84 from the Solar Enmergy Research Institute (SERI) and
an equivalent amcunt from Spire and Spire's venture partner,
Polaroid Corp.

Sandia National Laboratories now funds Spire for developing
II1-V-based multijunction cells for concentrators.

Objective:

Develop a glow-discharge deposition system and to produce 16%
efficient two-junction or three-junction cells in three years.

Status:

A single-chamber glow-discharge deposition system has been
constructed and is in operation. The chamber wall is
plasma-cleaned to avoid contamination.

A six-chamber deposition system has been constructed one year
ahead of schedule.

Several a-Si:H cells exhibited 6% to 6.5% efficiency, zccording to
the measurements made by the University of Delaware.

P-type, a-SiGe:H alloy films having 1.5-eV band gap have been
successfully deposited. Such a film is an excellent window for an
a-SiGe:H bottom cell (Eg = 1.45 V).

A proof-of-concept multijuncticn cell, p,a-SiC:H/i,n,a-Si:H/p,SiC:
H/i,n,a-Si:H, has been fabricated. The two subcells were
series-connected by a n,a-Si:H/p,a-SiC:H tunnel junction.
Although the cell efficiency was low (=3.2%), the tunnel junction
did function to cascade the open-circuit voltage.
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Plans:
Celis 1 cm? of 12% to 15% efficiency within two years.
Development of a 1.45 eV low-band-gap a-SiGe bottom cell.

Operation of seven-sector multichamber rveactor for stacked-cell
fabrication, to begin in Octcber 1984.

Maximize efficiencies of single-junction cells using a-Si, a-SiGe,
a-8iC or a-Si(Hg) as subcell candidates.

Continue theoretical and experimental studies of multijunction
cells to improve efficiencies and reduce cell degradation.

Comments:

Achievement of 15% multijunction cell efficiency in two years
should be straightforward.

Large-area submodule efficiency should be 12%.

Cell degradation can be reduced to less than 5% with multijunction
cells because contributing mechanisms, i.e., surface and volume
effects, can be decoupled.

For the low-band-gap cell, a-SiGe:H is crystallographically and
electronically better than a-SiSn:H.

Optimum band gaps of two-junction cells are 1.8 eV and 1.45 eV for
top and bottom cells. Cells p,a-SiC:H/i,n,a=Si:H (1.78 eV), and
a-SiGe cells with 20%Z Ge having 1.5 eV band-gap energy, are being
fabricated and tested individually.

Fully functional modules, 12% to 15%, will be tested in
1989-1990. Similar modules will be available commercially in
1991. It will take $30M research and development funds at Spire
through 1990 to accomplish this.

A multijunction device is superior to a single-junction device
because of wider selection ot cell materials and smaller

photon-induced degradation.

Cell material research should be emphasized over module research
while the technology is still in an early stage of development.

Crystalline superlattice structures may be an alternative to all
amorphous structures.

There is only one multijunction contract with LERI, in comparison
with a multiplicity (redundant) of single-junction contracts.

Promoting of synergisms and increased communications between
research organizations is in order.
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AMORPHOUS-SILICON TECHNOLOGY SURVEY

ORGANIZATION: Chronar Corp.

INTERVIEW:

1'

Trenton, New Jersey
Site visit, Alan Delahoy and George D. Self on August 17,
1984.
Tzchnology category, key words:
Single-junction amorphous-silicon, glow-discharge deposition
(new), CVD (old but continuing), six-pack deposition machine.
Level of effort:

Three-year $6.2M SERI contract (30% cost-shared), single-junction
amorphous-silicon cell and medule development with giow discharge.

Continuation of CVD research contract with SERI at $300K level.

About $200K National Science Foundation grant for high-purity
silane production.

About 12 people are invelved in a=-Si R&D (out of 90 total at
Chronar).
Objectives:

Achievement of 12%, 1 cm? cell and 8%, 30 cm? module in 1986.

Status:

A single-chamber glow-discharge deposition machine that is capable
of fabricating two six-packs (six 30 x 30 cm submodules) in two
hours has been constructed. Six such interconrected deposition
chambers aie installed at the Trentnn plant site, and are
producing 30 x 30 cm submodules.

Small (10 x 10 cm) battery chargers with an active area efficiency
of approximately 4% are now in the market. Subcells are

series-connected using laser patterning.

Submodules 30 cam? are also under development for trickle
charging of batteries in Caterpillar Co.'s construction machinery.

Submodules with areas 107 + 2 cm? ariiieved 6% efficiency (1984
SERI Program milestone).
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A 1 MW/year plant is under construction in the New York area.

A glass/SnCy/p-i-n, a-Si:H/Al cell having 0.07 cm? area has
achieved an AMi efficiency of 6% using p,a-SiC:H with E8 = 2.1
eV.

Research has been initiated on low-band-gap (0.9 eV to 1.4 eV)
ailoys for tandem cells.

Plans

Chronar's target is to have an automated 1 MW/yr pilot plant of
operating in Princeton in 1988 or 1989, and commercial production
starting in 1990.

Construction is planned or under way for 10 1 MW plants (five in
North America, five abroad) in 1985. These plants will operate in
a batch-process mode similar to the present process sequence at
Princeton.

Comments

Stability problems are similar to those of everyone else (x<10%
degradation in 30 h). The thermal cycle tests as well as outdoor
tests are in progress (total of approximately 100 W of modules
exposed at Princeton for four months).

Tandem cells are yet to come but don't know how soon.

Cell efficiency improvement expected at a rate of 1% per year; 8%
in eight years is possible.

Module cost could be $1.00/W in late 1980's, and possibly $0.50/W
with a continuous production process. Current cost is $3.50 to
$4.00/W including $2.C0/W for labor, $0.17/W for glass, $0.20/W
for silicon, $0.80/W for aluminum, plus other consumables.

The a-Si market at 1 MW plant size with 5% module is satisfaciory
for the time being. A large potential remote market alvready
exists in Australia and Saudi Arabia.

The cell efficiency goals that have been widely publicized by DCE

have slowed a-Si market growth. 7The bottom line, which is of
consumers' concern, is the system energy cost.
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AMORPHOUS-SILICON TECHNOLOGY SURVEY

ORGANIZATION: Energy Conversion Devices, Inc. (ECD) with Standard Oil Co.

INTERVIEW:

of Ohio (Sonio) (Sovonics Solar Systems)
Troy, Michigan

Site visit on August 14, 1984; ECD participants, Masat P.
Izu, Vice President, Photovoltaics; Joseph J. Hanak,
Director, Photovoltaic Processes and Products; Wally
Czubatyj, Advanced Device Research; Mike Hack, Theory; Steve
Hudgens, Vice President . Research, and Richard Bleiden.
Technology category, key words:
Multijunction emorphous silicon, glow-discharge deposition,
Rell-to~roll (R-T-R), Cvonic photovoltaic processor.
Level of effort:

iio government funding.

$22M has been provided tc date by Sohio to Sovonics Solar Systems,
the joint venture with ECD.

Sharp ULtd., ECD Sclar Inc. was formed in June 1982 to manufacture
and market z-Si solar cell modules using a 3 MW/yr, six-chamber
Ovonic PV cell processor.

A zotal of 150 people including Svhio employees and staff are
involved in PV R&D in support of Sovonics.

Ob jectives:

Establisn multimegawatt roll-to-roll, a-Si cell and module
production capability.

Near-term (three to five years) efficiency goal of 15% and
far-term target of 30Z with tandem ce’'ls.

Status.

A 3 MW/year Ovonic PV processor has been installed at the Sharp PV
plant in Nara, Jspan. It is manufacturing tandem cells on 30 cm-
wide stainless steel (SS) sheet (6 to 8 wils thick), and

pocket-calculator-cize modu'es are marketed at an unknown volume.

Single-junction, small-are: 2-51 laboratory cell achieved =102
efficiency.
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Multijunction a-Si cells (a-Si/a-SiGe) have achieved efficiencies
better than those of Mitsubishi.

An ECD plant in the Detroit area is about to begin production of
a-Si cells on 40 cm-wide SS sheet at an u.disclosed rate using its
Ovonic processor. The cells are shipped to the Sohio (Sovonics)
module plant in the Cleveland area where they are assembled into
modules.

Theoretical and experimental research on a-Si cell materials and

cells is making good progress. Low-band-gap bottom-cell research
and research to minimize the Staebler-Wronski effect are also in

progress.

A 1.72 eV/1.4 eV cell band-gap combination is found most desirable
for tandem a-Si cells, according to ECD analysis.

Plans
Bring ECD-Sobio a-Si module plants to full production.

Achieve 12% cell efficiency in three years, 15 in three to five
years.

Develop a good low band gap cell material (1.2 to 1.4 eV).

Install an in-line inspection system in the Ovonic processor.

Comments
Continuous roll-to-roll process is the key to cost reduction.

Roll-to-roll process eliminates two-dimensional non-uniformity of
deposited film that occurs otherwise. The non-uniformity in the
film is limited to within 5% of roll edges with R-T-R process.

Silane gas impurity does not pose any problem.

Cell stability is better with multijunction cells. Subcells can
be thin, and thin cells are basically more stable.

Achievement of 15% module efficiency is expected to be very
difficult.

Good morphology of the SS substrate is important to achieve high
efficiency cells. Steel surface defects having a um dimension
propagate into deposited film. Certain suppliers' steel cannot be
used to make good cells.

For commercialization of a-Si modules on a large scale, government

help is needed: i.e., sponsor a few large a-Si array experiments
(such as SMUD).
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AMORPHOUS-SILICON TECHNOLOGY SURVEY

ORGANIZATION: Solarex Corp.

INTERVIEW:

1.

Rockville, Muryland

Site visit on August 17, 1984 with John Corsi, President.

Technology category, key words

Single-junction amorphous silicor, glow-discharge deposition.

Level of effort:

$1,000K in 1984 from SERI; unknown amount of corporate funding.
The Thin-Film Division has approximately 70 persons, including a
few people in production, which is increasing now.

Objectives

The project goals for amorphous-silicon R&D are same as SERI's,
but the internal Solarex goals are more aggressive.

Status

Pilot production of a-Si modules started in January 1984 at the
suburban Philadelphia facility.

Modules having various sizes up to 20 x 20 cm have been fabricated.

An unknown quantity of calculator modules have been shipped to
Hong Kong and Taiwan.

Battery chargers (12 x 13 cm) have been built.

An in-line production machine has been assembled and is being
debugged.

Plans:

Increase a-Si module production.
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5.

Comments :

A 10% efficient, $0.50/W large-volume production, low-cost module
is possible in 1990.

A 15% module is desirable but difficult to achieve.
A 62 to 7% efficient module is highly probable in 1990.

Early a-Si modules will have 5% to 6% efficiencies, good enough
for battery chargers. As efficiency improves, a-Si modules will
begin to take over some (=50%) of the crystalline silicon market
in the 1990's. If the DOE goals are met by then, a-Si could do
better.

The a-Si market for the next few years will be production-limited
rather than market-limited.

No specific research is conducted on multijunction cells at this
time.

Long-term government funding, as in many foreign countries, is
more desirable. Current DOE funds are spread too thin and
multiyear continuity is not assured.

Crystalline-silicon product cost is limited by the cost of
polycrystalline silicon. True low-cost production success of the
Union Carbide Corp. refining process is questionable unless the
fluidized-bed reactor (FBR) succeeds.

Ribbon silicon can be a viable technology if ribbon-growth
problems are solved.

Leave the technology development to industry. Government should
help develop the market.

Solarex has cancelled plans for a one-shot utility PV
demonstration deal such as the 1 MW PV power plant that had been
planned, mainly due to probable discontinuation of the Federal PV
tax credit.
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AMORPHOUS-SILICON TECHNOLOGY SURVEY

ORGANIZATION: ARCO Solar, Inc.

INTERVIEW:

Woodland Hills, California

Site visit on September 18, 1984 with Don L. Morelg
Director, Advanced Research.

Technology category, key words:

Single-junction and multijunction amorphous silicon,
glow-discharge deposition, CulnSej;.

Level of effort:
All corporate funding.

One hundred persons in PV R&D including supporting staff. Eighty
are scientists and engineers. Approximately 20 are in crystalline
silicon, 40 in amorphous silicon and 20 in polycrystalline thin
films. Analytical and QA-related staffers service all areas.

Manufacturing capability for crystalline-silicon modules and
systems has been demonstrated with Hesperia, California, 1 MW and
Carissa Plains, California, 4.75 MW systems.

Recent reorganization that reduced major ARCO Solar divisions to
three divisions caused PV activities to move under the Metals
Division for a short time. The PV activities have recently been
shifted back under the same vice president in the Chemicals
Division as before.

Status:

Single-junction, laboratory-size (=1cm?) a-Si cells have 10% to
11% efficiency.

A single-junction, 30 x 30 cm module has shown 7.9% module
efficiency and 9% active area efficiency, according to SERI
measurements in October, 1984. A large module, 30 x 120 cm, was
5% efficient.

Single-junction, a-SiGe cells with =5% efficiency fabricated.

Addition of Ce in Si matrix causes rapid decrease of Eg. Ge
percentages up to 40% appear to be practical.
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A multijunction a-Si/a-Si cell 4 cm? achieved a conversion
etficiency of 7%. Top cell thickness is approximately 200 A.
With such a thin cell, sub-band-gap absorption is not a problem.
There is no difficulty in fabricating an a-Si tunnel junction.

Amorphous materials including SiC, SiGe and others that are
candidates for cells, are being systematically investigated.

Research on TCO materials is not limited to ITO; ARCO has not made
any a priori choice for the TCO material.

Plans:

Improve laboratory cell efficiency to 13% to 15%.

Develop a-Si modules with 10% efficiency at a cost that customers
are willing to pay.

Improve the module efficiency--cell efficiency ratio, from 2/3 up
to 3/4.
Comments:

The utility market is well defined by the utility sector in terms
of required efficiency and cost in $/m2.

Other a-Si markets, which are international, are difficult to deal
with.

A 10% module efficiency at a satisfactory cost (to the customer)
is a realistic target. z

The thin-film market will start to develop for remote
applications, which are more sensitive to cost than efficiency.
However, when thin-film efficiency exceeds crystalline and
thin-film cost becomes comparable with crystalline cost, the
crystalline modules will be out of the marketplace. This could
occur in five to 10 years, more like five years than 10 years.
The market-penetration time element is crucial for the thin-film
technology's survival.

An Eg of 1.85 eV for the top cell and 1.2 eV for the bottom cell
is a theoretical optimum.

To make a TCO with less than 15 /0 is not easy. Optical
transmission and the yield both begin to suffer.

Not enough attention has been paid among the a-Si community to TCO
development.
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Similarly, more work is required in the superstrate-substrate
area. Glass and stainless steel may not necessarily be the best
choices.

The ARCO Solar CulnSe; cells are similar to those of Boeing.
CdTe work has been put "on the back burner" for now.

Development of measurement standards for proper calibration of
spectrum-sensitive amorphous-silicon cells should be funded by the
government.

Current government support in advanced materials and devices has
been spread too thin.

Any serious (and large) PV organizations will do the production
scale-up development by themselves. Results coming out of the
government-sponsored research on the above subject are of marginal
value to large PV companies, since they already have the needed
R&D results. Only the small companies will benefit from such work.

A-21



AMORPHOUS-SILICON TECHNOLOGY SURVEY

ORGANIZATION: Minnesota Mining and Manufacturing Co. (3M)

INTERVIEW:

1.

St. Paul, Minnesota

Telecon with Frank Jeffrey on September 6, 1984.

Technology category, key words:

Single-junction amorphous silicon, glow-discharge deposition,
polyimid substrates, integrated subcells, roll-to-roll process.
Level of effort:

In 1984, $765K from SERI equivalent funding from 3M.

About 16 persons (five investigators, two managers and nine
supporting staff).

Objective:

Construction of a three-chamber deposition system for substrates
up to 15 x 15 cm.

Demonstration of 12%-efficient, 2.5 cm? cells. Subsequent
demonstration of 8% submodules, 100 cm?.

Uniform i, n and p a-Si film deposition over areas up to 1000
cm2.
Status:

An open-zone roll-to-roll deposition system (single chamber)
capable of handling 10 cm-wide substrates is in operation.

Cells 5 mm? having a microcrystalline n-type top layer have been
fabricated on a polyimid film and tested. An efficiency of 6.0%
has been achieved.

Deposition rates up to 6 A/s have been achieved using monosilane.
Depth profiling showed four orders of magnitude reduction of the

boron concentration within 200 to 400 A in the i-layer using the
current open-zone deposition system.
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6.

Plans:

Construction of a three-chamber deposition system.

Achievement of 7% cell efficiency by the end of 1984.
Continuation of cell fabrication and cell degradation research.
Long-range development of the roll-to-roll module fabrication
system.

Comments:

Company management is strongly supportive of the effort.

Remote stand-aicne applications would be the near-term market.
Low level of government funding to educational institutions for
basic PV research is causing shortage of graduates for hire in PV
research.

Development of suitable high-temperature polymer substrates is a
generic problem, but various companies are making reasonable

progress -- not an insurmountable problem.

Good substrate morphology is very important.
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AMORPHOUS-SILICON TECHNOLOGY SURVEY

ORGANIZATION: Exxon Research and Engineering Co.

INTERVIEW:

Annadale, New Jersey
Telecon on October 11, 1984, with T.D. Moustakas, Corporate
Research Laboratory.

Technology category, key words:

Amorphous materials, sputtering, glow-discharge deposition,
molecular beam epitaxy (MBE).

Level of Effort:

Corporate funding provided for fundamental research on amorphous
materials, including amorphous silicon.

Seven to eight persons are involved in the thin-film materials !
research.
Objective:

Advance understanding of amorphous material properties and
superlattice structures.

e ——

Status

A single-chamber sputtering system is in cperation for deposition
of a-Si films.

A SS/n-i-p, a-Si:H/ITO cell (1 cm?) having microcrystalline n 3‘
and p layers achieved an efficiency of 5.5% in 1983; Jgo = 13 |
mA/cm?, Voc = 0.86 V, FF = 0.5. The deposition required

remo~al of the specimen from the chamber after each layer

deposition for system cleaning.

Currently, Exxon is only pursuing fundamental research on
amorphous materials and not on solar cells.
Plans:

Terminate the sputter deposition work, and initiate MBE research
for superlattice fabrication involving crystalline III-V compounds.
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Comments:

Amorphous-silicon cells could potentially achieve cell
efficiencies closer to theoretical values than is the case with
crystalline-silicon cells. For example, 122 practical efficiency
and 152 theoretical efficiency with a-Si versus 152 practical
(19%, M. Green) and 30X theoretical efficiency with crystalline
cells.

Single-junction a-Si cell efficiency of 15X can be achieved in
three to five years.

Voc and FF are key arcas for improvement.

Resistivity of TCO ceu be roduced from 10£)/(Jby doping ITO with
Sb or F.

Research is needed on wide-band-gap materials; 1.9 eV a-Si:H has
already been obtained by sputtering. Other materials such as
silicon nitride and silicon oxide are also candidates.

Photon-induced degradation problem can be solved, and

multijunction cells would have less degradation than
single-junction cells.
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POLYCRYSTALLINE THIN-FILM TECHNOLOGY SURVEY

ORGANIZATION: Ametek, Inc.

INTERVIEW:

Paoli, Pennsylvania
Telecon on September 11, 1984, with P. Meyers and followup
with Frank Schmidt, Vice President, Research

Technology category, key words:

CdTe, Schottky barrier cell, MIS structure, electrodeposition.

Level of effort:
No government funding ir FY84.

Commercial production for Ametek instrumentation applications.

Objective:

Technology development for commercial production of specialty CdTe
PV devices; Schottky barrier cell using electrodeposition method.

Status:

Ametek CdTe cells have achieved efficiencies of 8.62 with a
2-mm-dia-dot cell and 6.2% with a 10 cm? cell respectively. The
cell structure is substrate/electrodeposited Cd (1 to 2000 A
thick)/electrodeposited CdTe (2 um thick)/oxide film insulator/Ni
Schottky barrier (2 to 300 A thick)

N~type CdTe has 0.5 um crystal grsin size and 1.45 eV band gap.

Plans:

Fabricate small-area ceil assemblies (30 to 10" cm?) at 70%
production yield for flat-plate arrays for ure in
Anetcek-manufactured instrument products. Th: efficiency goal for
the production modules is 5%.

Comments:

The current Schottky barrier cell configuratior is not suitable
for 10% to 12% cells.
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Tandem cells are not in Ametek's activity plans at present.

Cancellation between photogenerated majority carriers, which
diffuse against the electric field, and the minority carriers,
which drift along the field, tend to limit the open-circuit cell
voltage.

Government funding should be for materials research, tax credits
to stimulate PV consumer purchases, and market development.
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POLYCRYSTALLINE THIN-FILM TECHNCLOGCY SURVEY

NGANIZATION: Eastman Kodak Co.

INTERVIEW:

1.

Rochester, New York

Telecon on September 11, 1984, with Y. S. Tyan on 9/11/84.

Technology category, key words:

CdTe, close-spaced sublimation (CSS).

Level of effort:

Kodak discontinued most research on CdTe solar cells in FY84.
Kodak's research laboratory is keeping the PV activity in the
standby position with a minimum number of personnei.
Objective:

The objective was to achieve 12X efficiency with CdS/CdTe cells.

Status:
A 10.5% efficient, thin-film CdS (0.1 um thick)/CdTe (4 um thick)
cell was fabricated by CSS in 1982. The film was deposited on a
Nesatron (soda-lime glass coated with doped Iny03) substrate.
Sn0, deposition by CVD was experimented with in order to reduce
high film resistivity encountered with 1n20§. The new cell

).

using SnO achieved 10.9% efficiency (0.1 cm

PV research is continuing at a minimum level.

Plans:

If the PV market outlook improves, Kodak would probably come back
into the PV R&D arena.

Comments:

A 12% efficient CdS/CdTe cell is achievable without much
difficulty.

A-28



Kodak will not be interested in PV unless there is a sizable
market. Therefore the research work had been directed toward
process scale-up by making use of a "simple, monolithically
integrated thin-film solar-cell array" (16th IEEE PV Specialists
Conference, 1982).

Multijunction cell work was considered but not done at Kodak.

Advanced materials such as CdTe have not been fully developed and
therefore a demonstration experiment involving thin-film modules
is not recommended for government funding at this time. However,
Kodak will nct enter into the PV market unless a successful
experimental system demonstration has already been made.
Potential PV market exists in developing countries such as
Communist China and India where electricity is not available in
many parts of the country and is badly needed, especially in
remote areas.
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POLYCRYSTALLINE THIN-FILM TECHNOLOGY SURVEY

ORGANIZATION: Institute for Energy Conversion (IEC)

INTERVIEW:

1.

University of Delaware
Newark, Delaware

Telecon with John Meakin on September 12, 1984.

Technology category, key words:

CulnSep, CdTe, heterojunction, multijunction, amorphous silicon,
CVD.

Level of effort

Funding of $613K in FY84 from SERI for CulnSe,-based tandem-cell
research.

Seeking private funding for CujS cell development

Thirty-five persons total: 15 in polycrystalline thin-film, 10 in
a-Si, 10 supporting both areas.

Objective:

Achieve 15% submodule efficiency with a tandem cell, i.e.
CdTe/CuInSey, in FY9C.

Status:

A small-area (0.09 cm?) CulnSe,/CdS cell achieved 9.5%
ELH-lamp efficiency.

A small-area (0.09 cm?), CuInSe;/CdS-CdTe/CdS tandem
heterojunction cell achieved 3.0% ELH-lamp efficiency. The
practical efficiency limit is 21%, according to a calculation.

A scalable deposition system for CulnSe; using feedback-
controlled resistance heaters with Knudsen sources is in operation.

A program is being developed for module engineering.

Plans

Achievement of highest possible subcell efficiencies. This is
required for a 15% efficient tandem cell.

Continue development of scalable film deposition schemes.

A-30

A i .., B s o i St Sl

T ——

e LT e——



Comments:

Many people are not aware of the progress in, and underestimate the
potential of, polycrystalline thin-film cells for both single-junction
and multijunction cells.

A broad range of subcell combinations is available for tandem
structures, e.g. CdTe/CulnSej and polycrystalline thin-film plus
amorphous thin film.

Module efficiencies larger than 12% are still 10 years away.

Reproducibility of desired characteristics of the production-scale cells
depends upon uniformity of the source material quality and deposition
uniformity. This requires appropriate engineering analysis and
experimentation.

Ten-percent-efficient a-Si modules are achievable, but there are
stability problems.

Thin-film semiconductor fabrication has been based largely upon

empirical results. Better understanding of the physics and chemistry
involved in thin-film fabrication is required.
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POLYCRYSTALLINE THIN-FILM TECHNOLOGY SURVEY

ORGANIZATION: Boeing Aerospace Co. (Sovolco)

INTERVIEW:

Seattle, Washington

Site visit on August 9, 1984, with Roger Gillette, Solar
Systems.

Technology category, key words:

CulnSej, CdZnS, heterojunctions, multijunction devices.

Level of effort:
Funding of $260K in FY84 from SERI.

Ten persons, including technicians, and other supporting staff are
involved in thin-film research.

Boeing bought out the Reading & Bates, Inc., interest in the
Sovolco venture in May 1984. Thereafter Boeing continued module
commercialization, thin-film cell and cell-assembly research and
development. The commercialization will probably be done by a
Boeing licensee.

Objective:

Boeing's internal objective is to achieve 12% efficiency in 1984
and 13% in 1985 with a CdZnS/CulnSej cell.

Status:

After the achievement of 1l%-efficient CulnSe,;/CdZnS in 1983,
large-area (10 x 10 cm) submodules have been fabricated and
tested. The submodule consists of four 2.5 x 10 cm cells
producing 1.6 V,. output. An effective area efficiency is 6.1%
under ELH lamp illumination without AR coating. The submodule

structure is glass/Al grid/nZnCdS/pCulnSej;/Mo/Ta/glass with the
thin-film cell thickness between 0.3 and 0.4 mil.

Four of the 10 x 10 cm experimental submodules were made into a
square module using ultrasonic bonding for interconnection.
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Plans:

Fabrication of 60 x 120 cm modules, each consisting of eight

30 x 30 cm submodules. The submodule contains 12 30.5 x 2.5 cm
cells, and the design output voltage and current are 15.6 V and
4.1 A at Ppay (64 W). The module efficiency target is 9%.

Comments:

EVA laminate's reactions with moisture and with CulnSe, require
further research.

The stability of CulnSe, cells appears good. The material is
already known to be stable at high temperatures, and Boeing
experimental cells have been durability-tested during the past
year.

Boeing will start multijunction cell research in the near future.

A reliable measurement standard is needed. The current standard
cell is a silicon cell.

Boeing strongly desires government funding for research on in-line
deposition process development, cell patterning development, and
process scaleup.

According to Strategies Unlimited, the module sales price targets
are $2.16/W at 5.5 MW/year volume in 1990 and 31.64/“p at 20
MW/year volume in 1993, including marketing and profit. The
Boeing (Sovolco) target module cost in 1990 is $1.05/W at 5.5
MW/year volume; 982 yield is expected after initial cell burn-in.
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POLYCRYSTALLINE THIN-FILM TECHNOLOGY SURVEY

ORGANIZATION: Southern Methodist University (SMU)

INTERVIEW:

1.

Dallas, Texas

Telecon with T. L. Chu on September 13, 1984.

Technology category, key words:

CdTe, heterojunction, CVD.

Level of effort:
Funding of $271K in FY84 from SERI

Funding from SERI in other related areas is $135K in FY84 for
Close-Spaced Vapor Transport of CulnSej to Poly Solar, with Chu
of SMU as the principal investigator.

Objective:

The objective of the CdTe research is to demonstrate the
fabrication of CdTe heterojunction cells using a CVD technique.

Cell efficiency goals are 10% in 1984, 11%Z in 1985 and 12% in
approximately three years with lab-fabricated large-area cells.

Status:

A1l cm? ITO/p-CdTe heterojunction cell achieved an AMl
efficiency of 7.2%. The substrate is Sb/W/graphite.

The CVD-fabricated CdS/p-UdTe cells had poor characteristics,
possibly due to chemical reactions at the interface.

Plans:

Attainment of improved resistivity uniformity with p-CdTe films.

Desirable resistivity range is 20 to 50 ohm-cm. The current value

is in the 100 ohm-cm range.

Formation of good ohmic contact with p-CdTe using an antimony
interlayer.

Development of steel substrates to replace graphite.

Comments:

None.
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POLYCRYSTALLINE THIN-FILM TECHNOLOGY SURVEY

ORGANIZATION: Monogram Industries Research Laboratory (Monosolar)

INTERVIEW:

1.

with Standard 0il Co. of Ohio (Sohio)
Inglewood, California

Telecon with Bulent M. Basol on September 11, 1984.

Technology Category, key words:

CdTe, hetercjunction, electrodeposition.

Level of effort:

British Petroleum and Sohio, Cleveland, purchased Monosolar in
July 1984; Current CdTe R&D is conducted under Sohio funding at

the Monosolar Research Laboratory site in Inglewood, California,
with B.M. Basol as a consultant through the end of 1984.

Objective:

Commercialization of thin-film cell and module by Sohio.

Status:

Achieved 9.35%, AMl1.5 efficiency with CdS/CdTe thin-film cell with
an area of 0.02cm2.

Achieved 8.7% active area efficiency with a large-area (2.1 x 2.1
cm) cell.

The above cells were fabricated by the electro-deposition process.

Plans:
Transfer of Monosolar activity to Sohio.

Improve cell efficiencies to 10% or higher.

Comments:

Require more data on cell stability.
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POLYCRYSTALLINE THIN-FILM TECHNOLOGY SURVEY

ORGANIZATION: University of Illinois

INTERVIEWED:

Urbana, Illinois
Telecon with John Thornton, formerly with Telic Co., on
October 18, 1984.
Technology category, key words:
CulnSe;, magnetron reactive sputtering, multijunction thin-film
cells.
Level of effort:
Subcontract with SERI under negotiation.
Contract with EPRI under negotiation, ~$100K.
Total contract value through 1933 at Telic is $962K.
Currently, three post-doctorate researchers plus five students are
involved in PV work at the University o¢f Illinois. Two persons
were in PV research at Telic in 1983.
Objective:
Advance understanding of magnetron sputtering technology for its
scalability and deposited-film quality.
Status:
Demonstrated reactive sputtering of Cu+In in HjSe.

A reactively sputtered Culnfe; cell achieved an efficiency of 4%
(3 x 3 mm cell) with Jgc = 35 mA/cm?.

Ten-foot-long in-line deposition system for fabricating four 2.5 x
2.5 cm (CdZn)S/CulnSe; cells, which was built at Telic, has been
transferred to University of Illinois.

Module cost study at Telic, done jointly with SRI, indicated that
a module cost of $0.30/HP at 25 to 50 MW/year is possible using
the magnetron sputtering technology.

Assumed cell and module efficiencies were 10% and 8%,

respectively. Systems would cost $2/wp installed at the utility
site.
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5.

Plans:
Start subcontract-funded research at the University of Illinois.

Conduct ion-assisted deposition for SERI to improve cell
morphology and performance.

Investigate a-Si filu fabrication using both sputtering and
glow-discharge deposition methods.

Conduct tandem-cell research for a-Si (1.7 eV) + CulnSe,
(1.0 eV) cell structure in four-terminal configuration.
Comments:

Reactive sputtering using a magnetron is a scalable process, as
has been demonstrated by the sheet-glass industry.

Reactive sputtering is better suited than boat evaporaticn for

fabricating higher-order compounds such as ternaries and
quarternaries.
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C. ELECTRIC POWER RESEARCH INSTITUTE

The Electric Power Research Institute (EPRI) has interest in
photovoltaics as a potential power generation source for utilities. Over the
past years EPRI has funded a number of studies and workshops to review the
photovoltaics technology research status, and to focus research objectives on
utility needs in addition to funding modest research tasks to advance the
state of the art. On August 10, 1984, a visit was made to EPRI to interview
Ed DeMeo and Roger Taylor on utility objectives and prospects and on EPRI
opinions about the potentials for ribbon and thin-film technologies.
Highlights of their comments:

-- The 15% average efficiency goal for flat-plate modules is conside:ed
essential for utility penetration. For thin-film devices, 15% mcdule
efficiency can only be achieved with multijunction cells.
Multijunction cell modules may be constructed with a low-band-gap
cell using CulnSej or crystalline silicon and with a high-band-gap
cell using CdTe or amorphous silicon.

-- Polycrystalline thin-film single-junction modules are not expected to
achieve efticiencies higher than 12% and cannot become competitive
with higher-efficiency silicon devices, although they are potentially
of lower cost per watt or per unit area.

-- At present, amorphous-silicon research has a critical-mass effort
compared with the other thin films. Four issues must be resolved:

(1) Efficiency

(2) Stability and degradation

(3) Low-band-gap alloys (a key area in the EPRI program)
(4) Deposition scale-up

-- Basic materials research is still needed to enhance the understanding
of cell performance and of the limitations of thin-film devices.

-- For silicon-ribbon technology, web (the only single-crystal-material
ribbon) is the front runner and has the best chance of meeting the
DOE long-range goal. Presently the web program is asking the rignt
questions, is receiving the support of the Technical Advisory
Committee, has the right management support, and hence is expected to
make rapid progress.

~-= Th - Electric Power Research Institute is a partner in the web-ribbon
research project jointly with DOE, Weetinghouse, Souther: California

Edison Co. an¢ Pacific Gas and Electric Co.

-- The estimated commercial-applications time scale for ribbon and
thin-film technologies is as listed below:
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Ribbon-Silicon Power Modules

Research: one to two years
Pilot line: two to three years
25 MW production linec* 5 to 7 years

Thin-film Power Modules

Research: five years
Pilot line: two to four years
Commercial production: 10 years

The future of the photovoltaics industry will depend on corporate
staying power. The next one to three years will determine the
long-term winners. Cost-shared programs with industry are critical
over the next few years.

A report of an ad hoc photovoltaics advisory committee on Photovoltaic

Power Sys

cem Research Evaluation was recently published by EPRI. Highlights

of that report are worth noting:

The ad hoc PV advisory committee members represent a wide spectrum of
the PV community, including managers of PV companies; university,
industrial and Government researchers; electric utility industry
representatives, and Government R&D program managers. The review
took place in the context of carefully examined criteria for
energy-significant use. (In this context, energy significance
implies aggregate installed capacity of at least 10 GW ). Cost and
performance criteria for flat-plate panels are: efficiency target of
14% to 17% (25°C) and cost target of $100 to $125/m2, based on
providing utility-quality power at a current-dollar levelized bus-bar
energy cost of $0.15/kWh. The cost is based midway between projected
energy costs for new power plants burning oil and coal. The review
also included an examination of the outlook for PV industry
development as self-sustaining businesses. The EPRI conclusions
regarding the R&D posture appropriate for the crystalline silicon
sheet, amorphous-silicon and polycrystalline thin-film technologies
are shown in Table A-1. The major concern for the silicon sheet
technology was whether it can meet the cost targets for utility
application. The concerns for the amorphous-silicon and other
thin-film technologies were whether they can meet the efficiency
goals and demonstrate long-term module reliability.

The EPRI-sponsored amorphous-silicon rescarch is aimed at an improved

fundament

al understanding of amorphous materials and devices. Three areas of

investigation are currently being pursued:

(1)

(2)
(3)

Research to develop low-band-gap amorphous-silicon alloys that
possess both good optical and electronic properties.

Studies of the kinetics of amorphous film deposition processes.

Development and application of physical and device models for
amorphous-silicon alloy materials and cells.
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Table A-1. Developmert Characteristics of Photovoltaic Technologics
as Projected by EPRI

Tandem Crystalline
Development Amorphous Silicon Polycrystalline

Characteristic Silicon Sheet Thin Films
Prcbatility of high medium high
Meeting Cost
Targets
Probability of medium high low
Meeting Efficiency
Targets

Technical
Probability of medium high medium
Meeting Reliability
Targets
Margin for Meeting high low low
Targets
Time to Resolve 10 years 10 years 20 years
Technical :
Uncertainties

Management j
Level of high high low !
Complementary
Development Efforts -
Degree of Private high medium low
R&D Investment
Availability of high high medium

Near-Term Markets

The EPRI thin-film cell research is all aimed at the development of
high-efficiency tandem-junction cells with a goal of greater than 15Z module
efficiency. The work is pursued through centracts with industry and academic
institutions (no in-house research) and is structured to provide development
guidance through improved theoretical understanding. Present (1984-1985)
funding is about one million doilars per year.
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APPENDIX B

EXCERPT FROM THE SERI AMORPHOUS SILICON FIVE-YEAR
RESEARCH PLAN

I1I. THE TECHNICAL PLAN

The ASRP project is organized into two primary and five secondary
research activities (see Table 2), not to be confused with the five major
categories of Materials Research, Cell R&D, Submodule R&D, Process
Development, and Module R&D. The two primary research activities are
(1) single-junction solar cells, and (2) multijunction, stacked solar cells.
The five secondary research activities are (1) material deposition rate;

(2) alternative material deposition methods, such as chemical vapor deposition
(CVD); (3) light-induced effects; (4) device testing and reliability; and

(5) supporting research, such as theory, plasma kinetics, and transparent
conductors. The two primary research activities involve strong government/
industry pesrtnerships made up of multidisciplinary teams whose objective is to
achieve improved photovoltaic device efficiencies. Such multidisciplinary
research is required because the various parts of thin film photovoltaic
devices are strongly interdependent and cannot be pursued effectively in
isolated projects. This is a consequence of the thin film nature of the
technology, whereby surfaces/interfaces play a major role in the properties of
the device. Research in single-junction solar cells will lead to meeting the
near-term DOE goals for thin film photovoltaic modules and will also provide
the basis for the longer-term development of multijunction, stacked solar
cells. These multijunction devices are needed to meet the longer-term
efficiency goals, above 20%, of the DOE program. The five secondary
activities relate to specific tasks in support of the two primary activities
and provide a mechanism for investigating newer opticns.

Table 2. Amorphous Silicon Research Project Activities

Primary Activities

o Single-junction solar cells
o Multijunction, stacked solar cells

Secondary Activities

o Light-induced effects

o Material deposition rate

o Alternative deposition methods

o Device testing and reliability

0 Supporting research: theory, plasma kinetics, etc.




Single-Junction Solar Cells

The objectives of this activity are to improve the understanding and
efficiency of single-junction amorphous silicon solar cells and to bring the
U.S. technology base to a position where U.S. industry can remain competitive
in the international arena. This is to be accomplished by strong government-
industry partnerships, including federal program support for at least three
multidisciplinary industrial teams to improve the conversion efficiency of
single-junction solar cells, address stability and reliability questions, and
perform the research required for making proof-of-concapt, intraccnnected,
single-junction solar cells (submodules). University and DOE research center
resesrch prujects will be supported by the federal program to augmeut.
industrial contract efforts. The multidisciplinary teams will be selected by
competition from the private sector; multi- year contracts will be awarded,
pending availability of funds, to achieve time-phased goals. The success of
the research program and the essential deployment of the technology by
industry will be enhanced by (i} requiring a serious commitment from the
participating organizations, as evidenced by substantial cost-sharing (at
least 302) of the total progran costa; and (2) strengthening the supporting
government research program, which addresses specific technical problems and
newer, high-risk options that the private sector cannot recasonably be expected
to undertake.

Government-sponsored research has identified the glow-discharge method
28 the best technique yet discovered for growing amorphous material for a-Si
thin film solar cells. Consequently, the deposition method to be used by the
selected multidisciplinary teams is currently restricted to this
glow-discharge method. Multichamber deposition systems will also be developed
for growing individual amorphous silicon layers (p-type, i-type, and n-type).
Multichamber decposition systems permit control over the material properties of
the individual layers and reduce cross-contamination of the layers
considerably. Research results from the secondary research activities will be
incorporated into the project as necessary.

——— e —
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Multijunction Solar Cells

Theoretical calculations show that single-junction amorphous silicor
solar cells using today's amorphous materials have a theoretical conversion
efficiency limit of 18%-20Z. The practically achievable conversion efficiency
of single-junction solar cells is estimated to be 13%-15%. The federal
long-term technical goal (Table 1) for flat-plate ghotovoltlic systems is a
module efficiency/cost combination of 13% at $40/m? to 17% at $75/m?. To
increase the probability of meeting the long-term technical goals, solar cell
devices such ae stacked cells, which consist of two or three single-junction
solar cells in a vertical stack, offer potentially much higher conversion
efficiencies. The theoretical limit of the multijunction stacked solar cell
is almost 30%. However, several effects reduce this theoretical limit to a
practical limiting efficiency of 20Z-25Z. 1In addition to the higher
efficiencies possible with stacked cells, these devices may be inherently more
stable than a single-junction "thick" p-i-n cell because of the thinner layers
of active, or intrinsic, material in each of the individual p-i-n cells that
make up the stacked device. Stacked-cell efficiencies are currently limited
by the quality of the allcy material, which in turn limits the current from
devices utilizing this material.



In addition to the conventional stacked solar cell concept, an advanced
research concept, "amorphous semiconductor superlattices," was recently
introduced. The amorphous semiconductor superlattice consists of alternating
layers 8 A to 1200 A thick of hydrogenated amorphous semiconductors such as
silicon, germanium, silicon nitride, or silicon carbide. The material
composition is controlled by periodically changing the composition of the
reactive gases in a plasma reactor without interrupting film growth. Using
this thin film technology, a solar cell could be fabricated that has improved
properties and higher conversion efficiencies.

The objective of the research activity in this area is to perform
research both in specific areas of amorphcus silicon alloy materials and
deposition techniques, and in the structure of stacked cells, to achieve solar
cell efficiencies of greater than 20% in the long term. This will be
accomplished by government/industry/university partnerships that include
federal program support for at least two multidisciplinary teams with
multiyear contract awards, pending availability of funds, having time-phased
research goals. Cost-sharing of at least 20% is required to enhance the
probability of success and to achieve an effective technology transfer to the
private sector. This project will be supported by the secondary research
activities. High-efficiency, multijunction solar devices offer conversion
efficiencies potentially above 20% in the long term. However, it must be
recognized that some significant research successes arz required to achieve
the technical goals; thus, this activity involves greater risk than the
single-junction, but iower efficiency, approach.

Milestones

Goals and milestones for the federal amorphous silicon program were
selected after extensive analysis that involved current U.S. and foreign
technology, U.5. industries, DOF laboratcries, universities, and other
research-oriented institutions. Principal milestones (see Figure 6 for
program schedule) are as follows:

FY 1984

0 Single-junction submodule efficiency of 6% achieved for an area of
50 cmZ.

0 Design compieted of multichamber deposition systems for preparing

single- and multijunction solar cells.

FY 1985

o Single-junction submodule efficiency of 7% achieved for an area of
100 cm?.

o Multichamber deposition systems operational.

o Multéjunction solar cell efficiency of 122 achieved for an area of
1 cm®.



Project Milestone A
Project Decision Point A

Activity

| 1985

| 1987

FY84

FY85

FY8&

Fya7

FY88

Single-.!unction Solar Cells

1. Materials Research

Deposition Method

A
(Select)

Stabi'ity (light-induced)

a
(Assess)

Deposition Rate

A
(Select Method)

2. CellR&D

Achieve Etficiency
with Deposition Rate Goals

A
12% (1 cm?)

A
10% (1 cm?)(20 A/s)

A
13% {1 cm?)

3. Submodule R & D

Achieve Efficiency
and Size Coals

A
6% (50 cm?)

A
7% (100 cm?)

A
8% (1000 cm?)

A
12% (100 cm?)

4. Process Dev. & Module R&D

Mu'tichamoer
Deposition System

A
(Design)

A
(Operational)

A
(Assess)

Achieve Efficiency
and Size Goals

A
(AssessR&D)

—

‘*
9% (10.000 cm?)

Multijunction Solar Cells

1. Materials Research

Preparation and Evaluation

A
(Imtiate E;<1 5 eV)

A
{Imtiate E; 1.7 eV)

A
(Assess/Select)

Ceposition Methad

A
Select

Stability (hight-induced)

A
(Assess)

Deposition Rate

A
(Assess)

2.CelilR&D

Achieve Efficiency Goals

A
12% (1 cm?)

A
18% (1cm?)

Research Multichamber
Deposiiion System

A
(Design)

A
(Operational)

A
(Assess)

3. Submodule R & D

Achieve Efficiency
and Size Goals

A
13% (100 cm?)

4. Frocess Dev. & Mocule R&D

Deposition System

A
(Evaluato)

Achieve Efficiency
and Size Goals

a
(Assess 3& D)

“EMiciency and size milesiones for module require substantial industry participation
Note Liticiencies are measured at 23° C and AM 1 5

Figure 6.
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