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FOREWORD

This Interim Report describes the work completed under the Long-Life, High-
Performance Fuel Cell Program, NASA Contract No. NAS3-22234 from 28 May 1981
through 31 October 1984 by the Power Systems Division of United Technologies
Corporation.

The NASA Project Manager for this contract was Mr. Dean W. Sheibley. The
contributions of Mr. Sheibley and other members of the Electrochemistry Branch
Staff at NASA - Lewis Research Center are gratefully acknowledged.

The Project Manager for Power Systems Division was Mr. Ronald E. Martin. Power
c"	 Systems Division personnel who directed the tasks performed in this program

Included Mr. W. F. Bell, Dr. J. Powers, and Dr. D. A. Landsman.
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ABSTRACT

United Technologies Corporation has been conducting a multi-task experimental
program sponsored by Lewis Research Center of NA jA directed toward advancing
the state-of-the-art of alkaline electrolyte fuel cells. The goal of the program was
the development of an extended endurance, high performance, high efficiency fuel
cell for use in a multi-hundred kilowatt Regenerative Fuel Coll for use in a future
orbiting Space Station.

A design definition study of a Regenerative Fuel Call energy storage system was
conducted. The study Identified system weight, volume, efficiency and an approach
to system reliability. Pictorial representations of the system were prepared. The
results of study are reported separately under NASA CR-174802.

This technology advancement program has identified a low-weight cell design and
cell components with increased performance and endurance. Three 0.508 ft'
(471.9cm') active area multi-cell stacks were assembled and endurance tested at cell
temperatures between 140°F (60°C) and 180°F (82.2 0C), current densities to 400
amps/ft' (430.6mA/cm') and 60 psia (41.4N/cm') reactant pressure. These full-size
endurance tests have demonstrated (1) the long-term performance s'ability of the
platinum-on-carbon catalyst configuration, (2) the suitability of the lightweight
carbon electrolyte reservoir plate, (3) the stability of the free standing butyl
bonded potassium titanate matrix structure, and (4) the long-life potential of a
hybrid polysulfone cell edge frame construction.

A 18,000-hour demonstration test of multi-cell stack to a continuous cyclical load
profile was conducted. A total of 12,000 cycles was completed, confirming the
ability of the alkaline fuel cell to operate to a load profile simulating Regenerative
Fuel Coll operstion. An Orbiter production hydrogen recirculation pump employed
in support of the cyclical load profile test completed 13,000-hours of maintenance
free operation.
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Laboratory research endurance tests at 200°F (03.3°C) avid 200 amps/ft' (215.3
mA/cm') has demonstrated the suitability of the butyl bonded potassium titanate
matrix, perforated nickel foil electrode substrates, and carbon-ribbed substrate
anode for use in the alkaline fuel cell.

Corrosion testing of materials at 250°F (121.1°C) in 42 9a wgt. potassium hydroxide
has Identified Ceria, Zirconia, Strontium Titanate, Strontium Zirconate and Lithium
Cobaltate as candidate matrix materials.
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i. SUMMARY

This Interim report documents the activity and results of a multi-year analytical and
experimental program to Improve endurance capability and performance and reduce
weight of hydrogen-oxygen alkaline electrolyte fuel cells for a low earth orbit Space
Station application. Work was carried out at the laboratory level on cell components
and in fuel cell evaluation tests. Long-term endurance tests of full-size advanced
technology multi-cell stacks at both steady and cyclical load profiles were
conducted. A Regenerative Fuel Cell system design study was completed and is
reported in the separate cover (NASA-CR-174802).

Objectives

The primary development objectives of the program were to:

s Develop a cell separator (matrix) structure which is capable of operating
20,000-hours in an alkaline fue, cell operating on hydrogen and oxygen at
60 psia (41.4 N/cm') reactant pressure and 250°F (121.10C).

s	 Develop lower cost electrodes which have the potential to operate for
20,000-hours in a hydrogen-oxygen alkaline fuel cell operating at 60 psia
(41.4 N/cm 2 ) reactant pressure and a cell temperature of up to 250°F
(121.1°C).

• Endurance test advanced technology six-cell stacks to a cyclical load
profile consisting of 60-minutes at open circuit followed by 30-minutes at
200ASF (215.3 mA/cm'), with a program goal of 20,000-hours of testing.

• Provide program support for the integration, checkout and initial perfor-
mance demonstration of the Orbiter X-708 fuel cell powerplant as part of
the alkaline breadboard energy storage system.

1-
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Results

A design definition study was conducted to identify design issues related to the
development of a multi-kilowatt Regenerative Fuel Cell System (RFCS) for use in a
future space station operating In low earth orbit.

RFCS characteristics were determined for module power ratings of 10kW to 50kW as
a function of efficiency. For a 100kW space station, with 33kW modules the RFCS
specific weight and	 volume are	 19.9-23.2	 watt-hours/pound	 (43.8-51.1

watt-hours/kg) and 278-283 watt-hours/cubic foot (9817-9994 watt-hours/cubic

meter), respectively, at an overall charge-discharge efficiency of 50 percent. The
i corresponding values for a 55 percent efficiency are 15.9 - 19.3 watt-hours/pound

(35.1-42.5 watt-hours/kg) and 258 - 270 watt-hours/cubic foot (9111-9535

watt-hours/cubic meter).

A six-cell stack of 0.508 ft' (471.9 cm') active area cells was endurance tested to a

continuous cyclical load profile consisting of 60-minutes at open circuit followed by

30-minutes on load in a simulation of a Regenerative Fuel Cell load profile. A total

of 18,05 4 hours of operation was completed at a stack coolant inlet temperature of

140°F (60°C). Test results showed improved performance stability with a

performance fall-off with time of less than 4 microvolts per hour throughout the

test.

Two, 0.508 ft' (471 9 cm') active area advanced technology four-cell stacks com-

pleted 3,500 and 3,000-hours of operation respectively. The performance of cells

featuring platinum-on-carbon catalyst anodes, lightweight carbon electrolytes

reservoir plates, bonded potassium titanate matrices and hybrid polysulfone edge

frames were stable, exhibiting no significant change in performance during

endurance testing.

Fine particulates and organic membranes were evaluated as candidate matrix mate-

rials with respect to corrosion resistance, manufacturability, and cell operation.

4
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The hybrid, polysulfone cell edge frame has demonstrated reduced corrosion rates

such that electrolyte carbonation with time was reduced by 40 percent compared to

standard fiberglass/epoxy frames. The difficulty of achieving uniform edge frame

ictures has limited the use of the structure in multi-cell stacks. Further

elopment of this concept is required.
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Corrosion testing of materials at 250°F (121.1°C) in hot aqueous potassium
hydroxide has identified Carla, Zirconia, Strontium Titanate, Strontium Zirconate
and Lithium Cobaltate as candidate matrix materials. The successful fabrication of
bonded particulate matrices from these materials was limited because of cracking and
low bubble pressure. However, a laboratory research cell incorporating a butyl
bonded strontium titanate matrix successfully completed a planned 5000-hour test.

Porous Nafion3, polyantimonic acid and commercial-grade polybenzimidazole were

evaluated as candidate matrix materials. Laboratory research cells incorporating

these mate -ials as matrices exhibited rapid voltage fall-off with time.

In previous work, potassium titanate (PKT) was shown to be very stable in hot

aqueous potassium hydroxide, PKT samples exhibited less than 70 of the weight loss

of asbestos in 250°F (121.1°C), 420 wgt KO H. In this program, high strength,

high bubble pressure, "mat-type" matrix was developed by bonding PKT with butyl

rubber. Full-size potassium titanate matrix with bubble pressures in excess of 30

psi (20.7 N/cm') have been successfully endurance tested. Full-size cells

incorporating butyl bonded PKT matrices have shown a 60 percent reduction in

electrolyte carbonation compared to asbestos and a 'n percent reduction compared to

advanced asbestos.

Porous carbon electrolyte reservoir plates have been shown to be stable in the

anode environment. This stability was demonstrated in laboratory research cells

and multi-cell stack endurance tests. Incorporation of the carbon electrolyte

reservoir plate will reduce the weight of a standard production cell by nearly fifty

percent.

I
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Polyphenylene Sulfide (PPS) has been Identified as a candidate cell edge frame

material. Samples of PPS after 1000 hours of c3rrosion testing -in 250°F (121.1°C)

have shown a negligible weight loss compared to fiberglass/epoxy samples with a 20

percent weight loss.

Laboratory research cell endurance testing of cells inco-porating gold-plated nickel

photo-fabricated foil substrates has shown that the foils are a viable replacement

for the expensive gold-plated fine-wire nickel screen currently employed. The cells

completed over 4300 hours of endurance testing.

Laboratory research cells incorporating supported platinum catalyst anodes have

demonstrated the potential for long-life during endurance testing. Laboratory test

results provided the confidence to incorporate the anode catalyst into the long-term

six-cell stack which completed 18,054-hours of testing.

Twenty-four laboratory research cells incorporating carbon ribbed substrate anodes,

with the potential to reduce cell weight and cost were endurance tested. Test

results indicate the carbon ribbed substrate anode concept is feasible.

Long-term endurance testing of five research cells incorporating bonded potassium

titanate matrices has demonstrated the stability of matrix configuration at

temperatures up to 250°F (121.1°C).

The ribbed nickel substrate cathode which has the potential to improve operational

reliability was endurance: tested in laboratory research cells and the substrate was

shown to be stable at cathode potentials.

Research cell endurance testing has ind icated that a selectively voet-proofed anode

configuration improves cell tolerance to electrolyte volume variations resulting from

changes in operating conditions.

•4-
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Conclusions

•	 The ability of the alkaline fuel cell to operate in a cyclical mode,
representative of a Regenerative Fuel Cell Energy Storage System (RFCS)

was demonstrated. Cyclical testing has shown the potential of the
platinum-on-carbon catal y st anode for extended endurance.

•

	

	 The lightweight carbon electrolyte reservoir plate (ERP) was shown to be
suitable for use at the anode of the alkaline fuel cell.

• A high bubble pressure corrosion-resistance, bonded potassium titanate
matrix was developed. The matrix configuration has the potential to
extend cell endurance by reducing the quantity of corrosion products that
accumulate in the cell.

• A new cell edge frame which has reduced contribution to electrolyte
carbonation is required. Corrosion-resistant frame materials for reducing
carbonate formation and extended cell endurance capability have been
identified.	 4

•	 Improved alkaline fuel cell components were identified from laboratory
research cell endurance tests. These components include the carbon 	 {

ribbed substrate anode and the perforated nickel foil substrate which
offer benefits of low-weight, low-cost, and improved reliability.

5-
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II. INTRODUCTION

Background

United Technologies Corporation has maintained an active program of fuel cell

research, development, production and delivery since 1959. The activity includes

fuel cells which use phosphoric acid or molten carbonate electrolyte and fuel cells

which employ alkaline electrolyte.	 The alkaline electrolyte fuel cells operate on

hydrogen and oxygen and have been developed for aerospace and undersea

applications. The current status of the twenty-five years of research and

development is represented by the 12kW fuel cell powerplant shown in Figure 1 for

the Space Shuttle Orbiter and a 30kW unit for the U.S. Navy.

The development history of alkaline electrolyte fuel cells and the technology ad-

vances from continuing technology programs sponsored by NASA at United

Technologies Corporation is presented in Appendix B.

I W C N-104621

Figure 1. Orbiter 12-kW Fuel Cell Powerplant
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Program Scope

a

	

	 The work being done under this contract continues the National Aeronautics and
Space Administration - Lewis Research Center sponsored program to advance the

'

	

	 state-of-the-art of space power alkaline electrolyte fuel cell technology. The con-
tinuing program establishes a broad-based technology from which complete fuel cell

q

	

	 systems could be developed for application to future space missions. The emphasis
of the present program is to develop a high performance, high efficiency fuel cell

'

	

	 for application in an orbiting space station in which very long-life is the primary
design goal.

Facilities and Test Conditions

During the past twenty years, United Technologies has established facilities and
assembled equipment to conduct research, development and manufacture of fuel
calls. These facilities are presently being used to manufacture 12kW Space Shuttle
Orbiter units and other units up to 4.8 mW for Government and Commercial cus-
tomers. Complete fuel cell powerplants up to 1 mW class can be tested with exist-
Ing equipment. These facilities are housed in a 200,000 square foot building located
In South Windsor, Connecticut.

Under the program, improved cell components were identified and Incorporated into
tho alkaline fuel cell and evaluated. The evaluation tests are initially conducted in
subscale laboratory research cells. Based upon laboratory test results, the most

promising components are incorporated into 0.508-ft' (471.9cm') active area

multi-cell stacks for long-term endurance evaluation.

Multi-cell stack endurance tests were conducted at temperatures up to 200°F
(93.3°C) at reactant pressure of 60 psia (41.4 N/cm') and at current densities up
to 400 ASF (430.6 mA/cm'). A six-cell stack was endurance tested to a continuous
cyclical load profile consisting of 30-minutes at 200 ASF (215.3 mA/cm') followed by
60-minutes at open circuit.

-8-
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The multi-cell stack endurance tests were conducted in test facilities originally built
for the Apollo fuel cell program and continuously modified to meet the requirements
of the present cells. During the program, two test stands were completely
refurbished to improve operating reliability, modernize facilities and upgrade the
test facility to handle long-term endurance testing of multi-cell stacks to a cyclical
load profile.

Exploratory evaluation of candidate cell components was conducted in subscale 2 x 2
Inch (5.08 x 5.08 an) active area laboratory research cells at cell temperatures up
to 250°F (121.1°C) and atmospheric pressure.

Cell endurance tests were conducted employing dynamic water removal, t'iat is cell
product water was removed by recirculating hydrogen.

.T.
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111. STACK EVALUATION TESTING

The multi-cell stacks endurance tested during the program incorporated 0.508 ft'

' t (471.9 cm') active area cells with a planar dimension of 8.55 x 8.55 inches (21.7 x

21.7 cm). The stacks are designed to operate with dynamic water removal, that is,

•	 product water is removed from the cells within the stack by recirculating hydrogen.

The multi-cell stacks consisted of four or six unitized electrode assemblies connec-

ted electrically in series through three different types of separator plates.

Each unitized electrode assembly consists of an anode and cathode separated by a

electrolyte containing matrix with a porous electrolyte reservoir plate adjacent to

the anode. All these elements are unitized into a structurcl frame which is fab-

ricated of a plastic reinforced fiberglass structure. The unitized electrode assembly

is shown in Figure 2.
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In the multi-cell stack, there are three types of separator plates, a combination

plate, a hydrogen plate, and an oxygen plate. These plates are machined out of

l magnesium sheets for light weight and then gold-plated to insure good contact

resistance and good corrosion characteristics. These plates contain flow fields,

which provide for the circulation of hydrogen, oxygen and coolant. The unitized

electrode assemblies and separator plates are constructed with internal manifolds.

Metering ports are machined in the plates so that there is a uniform distribution of

hydrogen and oxygen and coolant In the respective flow fields of each cell. The 	 i

components of the multi-call stack are presented In Figure 3.

A combination separator plate Is installed between every other anode and cathode.

The metering ports on one side of the separator plate admits hydrogen to the anode

and on the other side of this plate, metering ports admit oxygen to the cathode.

Between the alternate cells there are two separator plates, an oxygen plate and a
L

hydrogen plate. The oxygen plate has metering ports which admits oxygen to the

adjacent cathode. The hydrogen plate has metering ports in one side which admits

hydrogen to the anode and metering ports on the other side to admit coolant be-

tween the oxygen plate and hydrogen plate. The separator plates contain molded

seals which seal the spaces between separator plates and unitized electrode assem-

blies so that there is no mixing of hydrogen and oxygen or coolant and no leakage

of these fluids from the stack.

F•
The unitized electrode assemblies and separator plates are assembled and com-

pressed between 3/4 inch (1.9 cm) thick stainless steel end plates by titanium tie

rods. The end plates are electrically isolated from the cells and separator plates

by a non-conducting plastic insulator plate. The separator plates at each end of

the stack contain special extensions for attachment of positive and negative load

cables. A multi-cell stack setup for performance testing is shown on Figure 4.

1	 • 12-
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Figure 4.

Multi-Cell Stack Test Set-Up
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Figure 3. Multi-Cell Stack Components
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SECTION III.A

A. Long-Term Six-Call Stack Endurance Test Rig 39578-1

The NASA-Lewis Slx-Cell Stack Endurance Test Rig 39578-1 was comprised of six,
0.508 ft' (471.9 em') active area "Orbiter-type"ype cells. The stack was endurance
tested for 16,800 hours to a continuous cyclical load profile, shown in Figure 5
which simulates a Regenerative Fuel Coll energy storage system operating in
low-earth orbit. The endurance test goal was 20,000-hours.

A total of 18,054 hours of testing including 18,000 hours of cyclical operation
simulating 12,000 cycles of Regenerative Fuel Cell operation was completed. The
test was conducted at 140°F (60°C) coolant inlet temperature and a 60 psia (41.4
N/cm') reactant pressure.

The off-load, open circuit, and on-load, 200 ASF (215.3 MA/cm') cell voltage
remained stable at less than 4.0 microvolts per hour voltage reduction throughout

F the test-confirming the ability of the alkaline fuel cell to operate in a cyclical mode,
trepresentative of a Regenerative Fuel Call Energy Storage System.

The NASA-Lewis Six-Cell Stack Rig 39578-1 Endurance Test was voluntarily ter-
minated upon completion of 18,054 hours of cyclical operation in order to conduct a
teardown inspection of the rig to provide technical information to assist in speci-
fying the cell configuration for the next planned long-term endurance test rig.
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ELAPSED TIME - Nouns 	 63.25

Figure 5. Continuous Cylical Load Profile
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Figure 6.

NASA-Lewis Cyclical Load Profile
Test Facility X535
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SECTION III.A.1

1. Test Facility Preparation

Refurbishment of test stand X535 was undertaken to improve test stand operating

reliability, modernize facilities and upgrade, the test stand to handle long-term

endurance testing of multi-cell stacks at steady-state and to cyclical load profiles.

The long-term endurance test of NASA-Lewis Six-Cell Stack Rig 39578-1 was con-

ducted in test stand X535.

1 
The NASA-Lewis Cyclical Load Profile Test Facility X535 is shown in Figure 6.

Redundant systems including the coorant pump, reactant scrubber, heaters and

instrumentation were incorporated into the test stand.
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The Automatic Data Acquisition and Recording (ADAR) system was expanded to

Incorporate a caution and warning and automatic test stand shutdown when opera-

ting parameters or shutdown limits were exceeded. In addition, the ADAR system

has back-up channels to monitor shutdown parameters to ensure that the test stand

should Indeed be shutdown. This approach minimizes the opportunity for instru-

mentation and or ADAR equipment malfunctions leading to an unnecessary stand

shutdown,

A summary of the work completed on X535 in preparation for the long-term cyclical

endurance test follows:

•	 Reactant pressure regulators and stand control valves were cleaned.

• Shut-off valves were installed around critical stand components, such as

the coolant pump, hydrogen pump and scrubbers. These valves would

permit replacement of these components during the open circuit portion of

the operating cycle.

v	 Increased insulation was installed on the, coolant loop to reduce heat loss

and improve temperature control.

•	 Redundant hydrrgen and coolant preheaters were installed in the test

stand.

•	 A long-life double-pole load contactor was installed in the test stand.

•	 Backup temperature controllers were provided in the test stand.

A pump for circulating hydrogen was installed. Recirculating the hydrogen stream

more closely will resemble space station operation and reduce electrolyte exposure to

CO and CO, contamination in the hydrogen. The only hydrogen added to the

recirculating system makes up for consumption in the fuel cell stack.

.17_
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SECTION III.A.2

2. Stack Cell Configuration

The cell configuration for the Long-Term Six-Cell Stack Endurance Test Rig 39578-1

j is presented In Table I. Eight cells were fabricated providing two spares for use
as replacements during the endurance test. New magnesium separator plates were
employed in the assembly of the stack.

TABLE I. CELL CONFIGURATION - RIG 39578-1

i

•	 Cathode
• Catalyst	 90 Au-10 Pt
s Loading	 20 mg/cm' (Nominal)

•	 Matrix
• Material	 Advanced Reconstituted Asbestos
e Thickness	 20-mils (0.51 mm)

•	 Anode
• Catalyst	 10% Pt Supported on Carbon
• Loading	 0.5 mg/cm' (Nominal)

j	 •	 Electrolyte Reservoir Plate
e Material	 Porous Nickel
e Thickness	 51 mils (1.3 mm)

e	 Edge Frame
• Material	 Fiberglass/Epoxy

I

The stack was filled with 23% wgt KOH by following a laboratory electrolyte fill
procedure. This procedure involves flushing the stack wit' hydrazine diluted
electrolyte with a thermal cycle to operating temperature. Following the hydrazine

I

t
diluted electrolyte flush, the stack is flush refilled with 23% wgt KOH.

r
r -18-
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Upon completion of the electrolyte fill, rig 39578-1 shown in Figure 7 was

delivered to test stand X535 for a performance checkout test and commencement of

the planned endurance test.

1 WC N-97521

Figure 7. NASA-Lewis Six-Cell Stack Long-Term
Endurance Test Rig 39578-1
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SECTION III.A.3

3. Evaluation Test Results

The Long-Term Six-Cell Stack Endurance Test Rig 39578-1 was constructed with six
"Orbiter-Type" 0.508 ft' (471.9 cm') active area cells, featuring platinum-on-carbon
catalyst anodes, gold platinum catalyst cathodes and advanced asbestos matrices.

Rig 39578-1 completed a total of 18,054 hours of testing which Included 18,000-hours
of operation to a cyclical load profile consisting of 60-minutes at open circuit fol-
lowed by 30-minutes on-load. The 18,000-hours of cyclical operation simulates
12,000-cycles of a Regenerative Fuel Cell Energy Storage System operating in low
earth orbit. The endurance test was conducted at a coolant Wat temperature of
140°F (60°C) and a reactant pressure of 60 psia (41.4 N/cm').

The performance history of rig 39578-1 for 16,800 hours of testing at 200 amps/ft'
(215.3mA/cm') is presented on Figure 8, The average cell performance following
18,054 hours of operation was 0.885 WC at 100 amps/ft' (107.6 mA/cm'). The
individual cell performance at 18,054 hours ranged from 0.818 WC to 0,933 WC.
The average cell open circuit was 1.104 WC.

The endurance test of rig 39578-1 was voluntarily terminated after 18,054-hours of
operation in order to conduct a teardown inspection of the rig to provide technical
information to assist in specifying the cell configuration for the next planned
long-term endurance test rig.

A teardown inspection plan for rig 39578-1 has been prepared. The teardown will
be conducted under the continuation of the Lewis Research Center technology
advancement program.

['r.-ire were only three performance anomalies identified during the endurance test.
The anomalies were a reduced open circuit (0/C) voltage on Cell No. 5, apparent
port plugging on Cell No. 2 and a low performance incident on Cell No. 6.

.20-
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Figure 8. NASA-Lewis Six-Cell Stack Long-Term Endurance Test
Performance History (Rig 39578-1)

	

4
_•I	 The O/C voltage of Cell No. 5 experienced a slow but steady decline during the

last 10,000-hours of operation.	 There are two possible explanations for the	 fi

reduction with time of Cell No. 5 O/C voltage. A reactant gas-to-gas leak or an

{ internal electrical short could explain the anomaly. An internal electrical short was

suspected, since there was no evidence of performance instability or temperature

increase that would be expected with a gas-to-gas leak. Performance checkout

tests conducted prior to shutdown indicated an equivalent short of 1.2 amps/ft'

(1.3 mA/cm') which is considered to be insignificant.

A greater performance recovery following reactant purges on Cell No. 2 was

primary evidence of port plugging. Other than a reduced performance level due to

inert buildup, the port plugging on Cell No. 2 did not interfere with the

continuation of the endurance test.

21-
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A sudden low voltage occurred on Cell No. 6 at 16,800-hours. At this point, the

voltage on Cell No. 6 could not be maintained at 200 amps/ft' (215.3 mA/cm').

Following the incident, the load was removed and rig 39578-1 was maintained at

temperature, at open circuit, overnight. The low voltage could have been the

result of port plugging and/or performance sensitivity of the cell to electrolyte

concentration induced by variation in stack operating conditions. As a result of

the low voltage incident, the cyclical endurance test was completed at an on-load

current density of 100 amps/ft' (107.6 mA/cm').

Data generated during the planned teardown investigation will be available to help

in identifying the causes of the endurance test performance anomalies.
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SECTION 111.13

B. Advanced Technology Four-Cell Stack Rig 39673-1

° A The Advanced Technology Stack Rig 39673-1 was assembled with four-cells incor-
porating supported platinum-on-carbon catalyst anodes, butyl bonded potassium
titanate matrices, and low weight carbon electrolyte reservoir plates. All cells
within the stack are constructed to the same cell configuration.

A total of 2860 hours of testing at an endurance load of 100 ASF (107.6 mA/cm'), a

coolant inlet temperature of 180°F (82.2°C) and a 60 psia (41.4 N/cm') reactant

pressure has been completed during the program. The endurance test is continu-

ing.

Test results to date verify the suitability of the supported catalyst anode, bonded

potassium titanate matrix and carbon electrolyte reservoir plate for use in the

alkaline fuel cell. The supported platinum catalyst anode as a result of its perfor-

mance stability has the potential to extend endurance. The corrosion-resistance

bonded potassium titanate matrix should contribute to an extended cell endurance

capability. The low weight of the carbon electrolyte reservoir plate would reduce

the weight of a standard production cell by nearly one-half.

At 2208 load hours, a low voltage on Cell No. 1 and an increase in the coolant exit

.;
temperature led to stopping the endurance test. Pressure testing conducted follow-

ing cooldown to ambient confirmed reactant cross leakage on Cell Nos. 1 and 4.

Inspection of these cells revealed no significant frame discoloration or visual evi-

dence of leakage. These two cells were subsequently replaced and the endurance

test of the stack resumed.

The average cell performance following 2,860 hours of testing is 0.952V at 100 ASF.

formance was 0.956V.

23-
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SECTION III . B.1

1. Test Facility Preparation

Refurbishment of Test stand X531 was undertaken to improve test stand operating

reliability, modernize facilities and upgrade the test stand to handle long-term

endurance testing of multi-cell stacks at steady-state and to cyclical load profiles.

The 5000-hour endurance test of NASA-Lewis Four-Cell Stack Rig 39673-1 is being

conducted in test stand X531.

The NASA-Lewis Cyclical Load Profile Test Facility X531 is shown in Figure 9.

The refurbishment of test stand X531 was similar to that performed on test stand

X535 discussed in Section III.A.1 in which the NASA-Lewis Six-Cell Stack

Long-Term Endurance Test Rig 39578-1 was conducted.

`F

r	 ^

M

MCN-131")
Figure 9. NASA-Lewis Cyclical Load Profile Test Facility
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SECTION I I I. B.2

2. Stack Cell Configuration

The description of the cell configuration evaluated in the Advanced Technology
Four-Cell Rig 39673-1 is presented in Table II. Six cells were fabricated providing
two spares for use as replacements during the endurance test. Used magnesium

separator plates were employed in the assembly of the stack.

TABLE II. CELL CONFIGURATION - RIG 39673-1

•	 Cathode
• Catalyst
• Loading

•	 Matrix
• Material

• Thickness

•	 Anode
• Catalyst
• Loading

•	 Electrolyte Reservoir Plate
• Material
• Thickness

•	 Edge Frame
• Material

90 Au-10 Pt
20 mg/cm' (Nominal)

96% Potassium Titanate
'41 Butyl Rubber

20-mils (0.5 mm)

10% Pt Supported on Carbon
0.5 mg/cm' (Nominal)

Porous Carbon (Nickel Impregnated)
70 mils 0.8 mm)

Fiberglass/Epoxy

A photograph of the carbon electrolyte reservoir plate is shown in Figure 10.

-25-
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Figure 10. Lightweight Carbon Electrolyte Reservoir Plate

A method for fabricating 0.508 ft' (471.9cm') active area free standing butyl

rubber bonded potassium titanate matrices was identified during cell unitizing trials.

A total of 50 full-size, mat-type matrices were fabricated during these trials.

Repeatable bubble pressure measurements of over 20 psi (13.8 N/cm') were obtained

on the matrices from the final fabrication lot.

The hydrogen side (anode) and oxygen side (cathode) of an assembled cell is shown

on Figure 11. The cathode featured standard "Orbiter-type" foils at the inlets to

permit water-vapor back diffusion for inlet humidification.

Two laboratory research cells, incorporating the electrodes and matrix configuration

j	 of the four-cell stack, were constructed to identify an electrolyte fill procedure.

Test results confirmed that the standard laboratory fill procedure, discussed below,

was the best approach.

The stack was filled with 2396 wgt potassium hydroxide by following a laboratory

electrolyte fill procedure. This procedure involves flushing the stack with hydra-

zine diluted electrolyte with a thermal cycle to operating temperature. Following

26-
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the hydrazine diluted electrolyte flush, the stack is flush refilled with 23o wgt.

KOH.

Upon completion of the electrolyte fill, the stack was delivered to test stand X531

for a performance checkout test and commencement of the planned endurance test.

Figure 11, Assembled Cell Configuration For Four-Cell Stack Rig 39673-1

-27-
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3. Evaluation Test Results

The advanced technology four-cell Rig 39673-1 has completed 2860-hours of a plan-
A	 ned 5000-hour endurance test. The test is being conducted at a coolant inlet

temperature of 180°F (82.2°C) a 60 psia (41.4 N/cm') reactant pressure and a

steady-state load of 100 amps/ft' (107.6 mA/cm').

The performance history of Rig 39673-1 is presented on Figure 12. The Initial

average cell voltage was 0.956 V at 100 amps/ft' (107.6 mA/cm') and following

2860-hours of testing average cell voltage is 0.952 V/C. A cell voltage profile over

the course of the test is presented on Figure 13. The endurance test is continu-

ing.

	

TOTAL LOAD TIME — Nouns	 105.96

Figure 12. Advanced Technology Four-Cell Stack Rig 39673-1
Performance History
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LOAD Ay0 COOL COOL H2
DATE TIME TIME AMPS WC IN OUT D.P.

06-17-84 834 42 49.84 .056 181 105 167

q 6-27. 94 1705 1000 48.40 .966 170 194 158
08-19, 84 0106 2031 WAG .053 178 103 166

O 193994 1854 2882 49.69 .052 176 193 157

0.980

0.940
J
O

W
ca
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J
J
L3 0.900

A CELLS 1 AND 4 REPLACED
AT 2759 LOAD HOURS

0.860 1 	 1	 1	 1	 1

1	 2	 3	 4
CELL POSITION

101.95

Figure 13. Advanced Technology Four-Cell Stack Cell Voltage Profile
(Rig 39673-1)
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At 2208 load hours, a low voltage on Coll No. 1 and an Increase in coolant exit
temperature led to stopping the endurance test. Internal reactant cross-leakage

was suspected. Pressure testing conducted following cooldown to ambient confirmed
reactant cross-leakage on Cell Nos. 1 and 4. Inspection of those cells revealed no
significant frame discoloration or visual evidence of leakage.

Two spare cells from the program containing bonded potassium titanate matrices and
graphite electrolyte reservoir plates were used as replacements In the four-cell
stack, Following completion of an electrolyte fill of the replacement cells and stack
reassembly, the endurance test was resumed.

The test objectives are to demonstrate the potential of the supported catalyst anode

-	 and the corrosion resistant butyl bonded potassium titanate matrix to extend cell
R ; endurance capability. in addition the suitability of the carbon electrolyte reservoir

plate which would reduce the weight of the standard production cell by nearly fifty
percent is boing demonstrated.
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SECTION III.0

C. ADVANCED TECHNOLOGY FOUR-CELL STACK RIG 39493-1

The Advanced Technology Stack Rig 39493-1 was assembled with four-cells Incor-

porating supported platinum-on-carbon anodes, advanced asbestos and asbestcll'

reinforced potassium titanate matrices, and low weight carbon electrolyte reservoir

plates.

A total of 3,500-hours of testing at an endurance load of 100ASF (107.6 mA/cm'), a 	 J

coolant Inlet temperature of 180°F (82.2°C) and a 60 psia (41.4 N/cm') reactant

pressure was completed.

The performance stability of the supported platinum catalyst anodes demonstrated

their potential for extended endurance. Testing has also shown the low weight

carbon electrolyte reservoir plate is suitable for use in the alkaline fuel cell.

A

I

1

I
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1. Stack Cell Configuration

The description of the individual cell configuration evaluated in Advanced Tech-
nology Four-Cell rig 39493-1 is presented in Table III.

Cell numbers 1 and 4 were constructed with advanced asbestos matrices and hybrid
j	 polysulfone cell edge frames. The advanced asbestos matrix configuration was

developed by Power Systems Division under the Orbiter Fuel Cell Contract with
L Rockwell International. The hybrid polysulfone frame was developed under a Lewis

Research Center program (reference 7) for a small passive water removal fuel cell
approach. Cell numbers 2 and 3 were constructed with matrices composed of 800
potassium titanate reinforced with 20$ asbestos.

TABLE III. ADVANCED TECHNOLOGY FOUR-CEL i- STACK RIG 39493-1
t

Electrolyte
Cell Anode Cathode Reservoir
No. Catalyst Catalyst Matrix Edge Frame Plate

1 Pt/C AuPt Asbestos Hybrid Polysulfone Carbon

i_ 2 Pt/Pd AuPt Potassium Titanate
Asbestos Epoxy/Fiberglass Nickel

i
3 Pt/C AuPt Potassium Titanate

Asbestos Epoxy/ 'Fiberglass Carbon

4 Pt/C AuPt Asbestos Hybrid Polysulfone Nickel

1	 I	 .32•
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SECTION III.C.2

2. Lvaluation Test Results

The second advanced technology four-cell stack rig 39493-1 completed 3,500 hours

of operation at a coolant inlet temperature of 180°F (82.2 0C), a 60 psia (41.4

N/cm 2 ) reactant pressure and a current density of 100 ASF (107.6 mA/cm 2 ). The

endurance test was conducted under NASA Contract No. NAS3-21293 (Reference 4).

Reactant cross-pressure tests, conducted prior to the planned resumption of the

endurance test following a four-month shutdown due to a lack of a contract, re-

vealed the presence of reactant cross-leakage within the stack. This leakage

precluded further endurance testing.

The performance history of rig 39493-1 is presented in Figure 14.

The stack incorporates cells featuring platinum-on-carbon catalyst anodes, gold-

platinum catalyst cathodes, asbestos reinforced potassium titanate matrices and

carbon electrolyte reservoir plates. A detailed description of the four-cell stack

construction can be found in Table III, Section Ili.

A teardown inspection of the stack and individual cells was conducted under the

program. The following discussion summarizes the findings of the inspection.

The exterior of the stack appeared to be in good condition. There were scattered

small white deposits, probably potassium carbonate, at the junction of the cell and

magnesium separator plate. These deposits could result from the carbonation of

potassium hydroxide residue left in these areas following cell electrolyte filling.

Pressure testing of the stack revealed no reactant or coolant to external or re-

actant-to-coolant leakage at the stack operating pressure of 60 psia (41.4 mA/cm2).

As expected, internal reactant leakage was observed.

33-
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Rig 39493-1 Performance History
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The next step in the teardown was to disassemble the stack. Visual inspection of
the cell edge frames found them to be in good condition. There was some evidence
of discoloration and leaching of the epoxy from the frame especially on the cathode
side. The leaching and discoloration of the frames has been observed on previous
cells which had been endurance tested and is considered normal.

The individual cells were mounted between plexiglass end-plates for reactant cross
pressure testing. Testing revealed that Cell No. 4 had an internal reactant leak.
Cell No. 4 had been identified prior to teardown as the most likely cell to be
experiencing internal reactant leakage. This cell prior to stopping the stack
endurance test had experienced a reduction in open-circuit voltage and a depression
in Tafel performance; both indicators of an electrical short or reactant cross
leakage.

Inspection of the gold-plated magnesium separator plates found them to be in good
a condition. All the metering ports, oxygen, hydrogen, and coolant were open and
Iclean.

A summary of the results from the inspection of individual cells is presented in the
following discussions.

Cell No. 1 „o

• There were indentations observed in the carbon reservoir plate (ERP)
from the adjoining separator plate. These indentations, which did not
affect cell performance, more than likely resulted from the use of avail-
able "soft" carbon ribbed substrate (ERP) and the assembly of the cells
between existing separator plates.

•	 There was a slight discoloration along the bottom of the ERP.

-35-
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i
. Evidence of potassium carbonate was observed around the O, inlet foil.

The highest electrolyte concentration, occurs at the Os inlet. The

purpose of the foils at the 0 2 Inlet is to prevent localized dryout.

However, precipitation of potassium carbonate around the periphery of the

foil is not unusual due to reduced water-vapor pressure (elevated electro-

lyte concentration) in this location.

Cell No. 3

	• 	 Indentations In the carbon ERP from the adjacent separator plate were ob-

served. These indentations were similar to those found in Cell No. 1.

	

e	 Potassium carbonate deposits were noted around the Os inlet foil.

Cell No. 4

	

0	 The cathode separated from the hybrid polysuifone frame in the area of

the hydrogen exit and coolant exit manifolds.

	

•	 Cell edge frame discolored in the area where the cathode had separated

from the frame.

	

•	 Crosspressure test confirmed this cell to have reactant cross leakage.

Cell No. 1 (Hybrid polysulf one frame) and Cell No. 2 (Fiberglass/epoxy frame) were

submitted to the laboratory for a carbonate analysis of the cell electrolyte. Table

IV presents the results of the carbonate analysis.

36-
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TABLE IV. SECOND ADVANCED-TECHNOLOGY FOUR-CELL STACK

CARBONATE ANALYSIS

v Conversion of
Edge Frame	 ERP	 KOH to K2CO3

Cell No. 1	 Hybrid Polysulfone	 Carbon	 12.0

Cell No. 2	 Fiberglass/Epoxy	 Nickel	 20.8

The results of the carbonate analysis of cell No. 2 were consistent with past test

results of fiberglass/epoxy frame cells. The 42 percent lower carbonate level of

Cell No. 1 with the hybrid frame is consistent with the results from the hybrid

frame cell in the First Advanced-Technology Stack, Rig 39461-1, reported in

NASA CR-165417. In addition the carbonate results verify that the carbon ERP

and the platinum-on-carbon catalyst anode are stable and do not contribute

significantly to carbonation of the electrolyte.

i
Cell No. 4 was mounted in a clear plexiglass test fixture to identify the site of the

internal reactant leak. The reactant side of the cathode was filled with water and

the anode was pressurized with nitrogen. The leakage site was identified to be at

the electrode edge of the cell frame in the middle of the coolant-exit manifold by

observing nitrogen bubbles in the water at the site.

Reactant cross leakage occurred as a result of insufficient encapsulation of the

electrodes and matrix by the hybrid polysulfone frame. The frame construction

employs numerous thin polysulfone "strips" for the encapsulation and sealing

which are difficult to maintain in alignment during cell unitizing.
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IV. FUEL CELL MATRIX RESEARCH

An experimental program was conducted to identify an alternate matrix

configuration. The objective of the work was to identify a matrix configuration

capable of operating on hydrogen and oxygen at a 60 psia (41.4 N/cm 2 ) reactant

pressure at a cell temperature of 250°F (121.1°C).

The primary approach was to fabricate and evaluate fuel cell matrices comprised of

fine particulates bonded with organic resins. A secondary activity was to evaluate

the suitability of microporous membranes for service In hydrogen-oxygen alkaline

electrolyte fuel cells.

The candidate matrix particulate and binder materials that were evaluated under the

program are identified in Table V.

Table V. Candidate Matrix Particulate And Binder Materials

•	 Candidate Particulate Materials

• Potassium Titanate (PKT)

• Silicon Carbide (SIC)
• Zirconium Oxide (Zr02)

•	 Candidate Binder Materials
• Butyl Rubber
• Polysulfone
• Polyphenylsulfone (PPS)
s Polyethersulfone (PES)
s Teflon

Corrosion tests in hot aqueous potassium hydroxide were conducted to identify

alternate corrosion-resistant particulate materials. Matrices were fabricated from
these materials by bonding them with butyl rubber or Teflon. These matrices
were incorporated into laboratory research cells and performance evaluated.

PRECEDING PAGE BLANI{ NOT FILNMD	 ^flc	 (t{jt,^1lC16VSLIti SLl N6
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The particulate materials corrosion tested in 420- wgt potassium hydroxide of 250°F
(121.1°C) are presented in Table VI.

Table VI. Advanced Matrix Particulate Materials

• Polyetherimide
o Ceria, CeO,
o	 Zirconia

'I	s 	 Lithium Aluminate, LIAIO2
F	 • Strontium Titanate, SrTiO,

o	 Lithium Titanate, Li2TIOa
` I	 • Strontium Zirconate, SrZrOa

•	 Lithium Stannate, L12SnO3
s Lithium Cobaltate, LICoO,

.`

	

	 • Lanthanum Cobaltate, LaCoOa
a lanthanum Manganate, LaMnOa
e Magnesium Zirconate, MgZrOa

E

li An exploratory evaluation of bonded polyantimonic acid and fibrous polybenzimida-
zole matrices was conducted. The evaluation of these corrosion-resistant materials
consisted of fabrication trials to develop a matrix structure culminating in

s	 research cell endurance testing of cells incorporating the matrix.

'	 r

An advanced composite matrix consisting of a potassium titanate layer deposited
onto an advanced asbestos layer was evaluated. The corrosion resistance of the
potassium titanate layer in the composite matrix reduces electrolyte contamination
thereby improving the long-term performance characteristics of the alkaline fuel
cell.
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Time (Hrs) C rystal Phase (Bv XRD)

0 1000 f.c.e. CeO2

250 No Change

500 No Change

1000 No Change

3000 No Change

Material

CeO2

Grain Size (By SEM)

No Change

No Change

No Change

No Change
^u.

A. PARTICULATE MATERIAL CORROSION TESTS

The particulate and binder materials identified in Table V have demonstrated corro-
sion-resistance in hot aqueous potassium hydroxide. The early fabrication trials
conduc+ed under the program culminated in the successful development of a free-

I
	 standing butyl rubber bonded potassium titanate matrix with a bubble pressure

greater than 20 psi (13.8 N/cm2).

Corrosooi, testing of the particulates identified in Table VII was conducted to Identi-
fy alternate particulate matrix materials. The materials were corrosion tested for
3000-hours to the procedure outlined in Section IV.H.1.. Periodically during the
corrosion test, samples were subjected to Scanning Electron Microscopy (SEM) and
X-Ray Diffraction (XRD) analysis. Corrosion test results are summarized in Table
VII.

Table VII. Particulate Material Corrosion Test Results

ZrO2 0 800 Monoclinic ZrO 2 ; 200 Cubic ZrO2
250 750 Monoclinic ZrO 2 ; 250 Cubic ZrO2
500 80% Monoclinic ZrO 2 ; 200 Cubic ZrO2

1000 800 Monoclinic ZrO 2 ; 200 Cubic ZrO2
3000 800 Monoclinic ZrO 2 ; 200 Cubic ZrO2

No Change
No Change

No Change

No Change

LIA1O2	 0	 95-970 Tetragonal T- LiA1O2

2-1% -T-Al2O2
2-10 (K, Li) 2 Al 2 0 4 - yH2O
10 LiAlsO.

41-

I



t"V"'

Power Systems Division	 FCR-6853

Table VII. Particulate Material Corrosion Test Results (Cont'd)

Material	 Time (Hrs) Crystal Phase (By XRD) Grain Size (By SEM)
LiA1O 2	250 50o Tetragonal T-LIA1O2

450 (Li, K) 2 Al 2 O 4 - yH 2 O Agglomeration and
56 Hexagonal rAlS10 4 Grain Growth

500 500 (Li, K) 2 Al 2 O4 - yH2O
40% Tetragonal T-LIA1O 2 Continued
106 Hexagonal KAISiO 4 Grain Growth

1000 1000 Hexagonal KAIS1O 4 Smoothing of
Agglomerated Grains

3000 906 Hexagonal KAIS1O 4 No Further
10% Hexagonal T-(Li, K) 2 Al 2 O 4 - yH 2 O Change

SrTiO,	 0 100% Cubic SrTiO,
250 No Change No Change
500 No Change No Change

1000 No Change No Change
3000 No Change No Change

L1 2 TiO,	 0 956 Monoclinic 1-12TiO3
50o Li 4GeO 4 Type Structure

250 No Change Agglomeration
500 No Change Grain Growth

1000 No Change Smno*.hing of
Agglomerates

3000 906 Monoclinic Li 2 TiO 3 No Further
106 Li 4 GeO 4 Type Structure Change

.42-
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Table VII. Particulate Material Corrosion Test Results (Cont'd)

Material Time (Hrs) Crystal Phase (By XRD) Grain Size (By SEM)
SrZrOa 0 100o Orthorhombic SrZrO3

250 954 Orthorhombic SrZrO 3 Grain Growth
50 Contaminant

500 100% O^thorhombic SrZrO 3 Grain Growth
1000 9873 Orthorhombic SrZrO 3 Same

20 Contaminant

f 3000 100% Orthorhombic SrZrO 3 Same

L1 2 Sn0 3 0 95% Hexagonal L12SnO3
516 Tetragonal SnO

250 9590 Hexagonal L1 2 SnO 3 N.A.
50 Tetragonal SnO

500 Dissolved N.A.

1000 Dissolved N.A. 

i'
3000 Dissolved N.A.

I

LICo03 0 95o Hexagonal LiCoO 3 Agglomerates
i 5of.c.c. Co3O4^

250 No Change No Change	
i

500 No Change No Change

1000 1004 Hexagonal LiCoO 3 No Change

3000 95% Hexagonal LiCoO3

50 f.c.c. CoaO 4 No Change

LaCoO 3 0 95% Hexagonal LaCoO3

5% Hexagonal La(OH)3

250 604 Hexagonal La(OH) 3 Grain Growth and

307a Hexagonal LaCoO 3 Needle Formation

5%f.c.c. Co304

500 Same as 250 Hours Same
1000 900 Hexagonal La(OH)a Grain Growth

3000 10% Hexagonal LaCoO 3 Smaller, Rod-Shaped

No Sample Particles

43-
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Tablo VII. Particulato Material Corrosion Test Results (Cont'd)

Material	 Time (Hrs) Crystal Phase (By XRD) Grain Size (By SEM)

LaMnO,	 0 754 Hexagonal LaMnOa

256 Hexagonal La(OH)a

250 704 Hexagonal LaMnC 3 Grain Growth

304 Hexagonal La(OH)3

500 756 Hexagonal LaMnC 3 Grain Growth and

256 Hexagonal La(OH) 3 Smoothing

1000 556 Hexagonal LaMnOa Agglomeration

454 Hexagonal La(OH)3
3000 556 Hexagonal LaMnOa

3596 Hexagonal La(OH) 3 Same

104 Orthorhombic LiLa02

MgZrOa	 0 75 v/o fcc Zr02

(MgO-ZrO 2 ) 15 v/o Monoclinic Zr02

10 v/o fcc M90
250 85 v/o fcc Zr0 2 Slight Grain

10 v/o Monoclinic ZrO 2 Growth

5 v/o fcc Mg(OH)2
500 85 v/o fcc Zr0 2 Same

10 v/o Monoclinic Zr02

5 v/o fcc Mg(OH)2
1000 80 v/o fcc Zr0 2 Rod Formation,

10 v/o Monoclinic Zr0 2 Agglomeration
10 v/o fcc Mg(OH)2

3000 80 v/o fcc Zr0 2 Grain Growth,
10 v/o Monoclinic Zr0 2 Agglomeration
10 v/o fcc Mg(OH)2

i

b.	
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Samples of polyethermide completely dissolved in 250-hours exposure at 250°F

(121.1°C) to 420 wet. potassium hydroxide.

Corrosion test results presented in Table VII have revealed five particulate mate-

erials as corrosion-resistant since there was no appreciable change in crystal

i structure after 3000-hours immersion in 420 wet. potassium hydroxide at 250°F

(121.1 0C). These materials are Ceria, Zirconia, Strontium Titanate, Strontium

Zirconate and Lithium Cobaltate.

Employing Teflon g or butyl rubber as a binder, bonded particulate matricos were

fabricated from each of the corrosion resistant particulates.

Three polytriazole samples and a triazole modified styrene-isoprene copolymer re-

ceived from the University of Florida were corrosion tested in aqueous potassium

hydroxide. These materials were tested for 100-hours at 250°F (121.1°C) in 420

wet. KOH. Post-test examination revealed that the three polytriazole samples

completely disappeared. The copolymer sample lost 2.50 in weight and turned

brown. Test results indicate that these materials are unsuitable for use in the

alkaline fuel cell.

-45.
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B. BONDED PARTICULATE MATRIX FABRICATION

The size range nf matri.v particulate materials required to achieve acceptable

bubble pressure (BP) is a function of particle size and mean pore size (MPS).

Work completed under Reference NASA CR-134818 by United Technologies showed

that the !-ubble pressure is related to the mean pore size of a uniform, completely

wettable matrix by the relationship:

42
BP( psi) — MPS (P)

This relatiortsWp assumes densely packed, uniform and spherical particles. As an

example to a •.hieve a 45 psi (31.0 N/cmx ) bubble pressure, the fabricated matrix

should have a mean pore size of approximately one micron (u) or less. Therefore

where possible, particulate materials employed under the program were in the one

mic ron size range.

I Utilizing the particulate and binder materials identified in Table V, four matrix

fabrication techniques were evaluated. The techniques included direct filtration,

curtain coating, screen printing and spray coating.

Matrices fabricate.-, by direct filtration were the most uniform in structure with

the highest repeatable bubble pressure. This method involves filtering a matrix

slurry directly onto the electrode substrate or onto a filter paper substrate to

produce a handleable, free-standing matrix mat.

Curtain coating and slipcasting were evaluated as ter.1 p iques to fabricate

matrices. A laboratory scale curtain coater was employed initially; however, it

was found to have insufficient capacity to produce uniform matrices. Slip casting

with a Doctor blade produced uniform matrices with thickness up to 15 mils.

Matrices were fabricated from inks formulated from PTFE/PKT, PTFE/SIC,

PPS/PKT, PPS/LrO 2 , and Butyl rubber/PKT. However, the maximum bubble

pressure achieved using this technique was 15 psi (10.3 N/cm').

-46-
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Screen printed roatrix samples prepared by employing a thickening agent yielded

thicknesses of only 3 -5 mils (.08-.13 mm) in contrast to a desired thickness of 10

to 20 mils (0.5mm).

The spray coating technique of matrix fabrication was ruled out as a viable

technique because of poor mixing, uneven structure, and difficulty in depositing

the material onto a standard alkaline fuel cell electrode substrate.

The laboratory fabrication trials revealed that matrices fabricated from the

particulate potassium titanate and the binders Teflon  and butyl rubber

consistently demonstrated the most uniform structures. Work completed under the

program focused upon improving the bubble pressure of bonded potassium titanate

matrices.

Typical properties of the potassium titanate fibers employed in the matrix work

are presented in Table VIII.

Table VIII, Potassium Titanate Fibers
Typical Properties

• Color Whize i
• Bulk Density 0.1	 - 0.2

• Specific Gravity 3.1	 - 3.5

• Melting Point 1250 - 1310°C

• Tensile Strength >700 kg/mm'	 i
I

• Specific Heat 0.72

• Specific Surface Area 1.5	 - 2 mZ/g

• Electric Resistance 3.3 x 10"cmg

• Hardness 4

• Water Content <0.7%

• Odor None

t'
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A scanning electron microscope (SEM) photograph was taken of the potassium

x1tanate fibers manufactured by Otsuka Chemical Co.. A SEM photograph of the
fiber is shown in Figure 15. The average fiber diameter of the Otsuka potassium
titanate is 0.411 with a length to diameter of 20 to 1. This data indicates that
this material as a non-woven mat should be able to sustain a bubble pressure of
45 psi (31.0 N/cm').

Typical properties of the Butyl Rubber (Butyl Latex, BL-100) employed as a
binder are presented in Table IX.

Table IX. Butyl Rubber (Butyl Latex BL-100)
Typical Properties

• Color	 White
• Total Solids Wt. a	 620 (range 61 - 63)

•	 Specific Gravity	 0.95

•	 Density lbs./gallon 	 7.9

•	 pH	 5.5 (range 4.5-6.5)

•	 Particle Size, Microns	 <1 (ra;ige 0.1-0.8)

• Surface Tension at 70°F, dynes/cm	 38

• Viscosity, Brookfield LVT #3 Spindle
at 12 RPM	 2500 (range 1800-5000)

•	 Film tensile strength, psi uncured	 35

• Odor	 None

The long-term corrosion resistance of butyl rubber was evaluated. Test samples

of pure butyl rubber film showed no significant deterioration in a 5000-hour

corrosion test at 250°F (121.1°C) in 420 wgt. potassium hydroxide. However, the

test samples became appreciably more tacky between 3000 and 5000 hours.

-48-
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OF POOR QUALITY

Figure 15. SEM Photograph of Potassium Titatiate

A 10-mil (.25mm) thick 950 potassium titanate 5'o Teflon 
1) 

matrix was filtered onto a

standard platinum-palladium anode and gold-platinum cathode for evaluation in a

laboratory research cell.

Matrices comprised of 960 potassium titanate and 406 butyl rubber were prepared for

evaluation in laboratory research cell endurance tests.

The matrix coating consisting of potassium titanate and butyl rubber were mixed

with water and the resultant slurry was filtered directly onto each of the elec-

trodes. The matrix on the anode was 10 mils (.25mm) thick, 700, porous and had a

32 psi (22 N/cm') bubble pressure when filled with water. The matrix on the

cathode was 10-mils (.25mm) thick, 700 porous, and exhibited a bubble pressure in

excess of 50 psi. Standard asbestos ^:z^crices have Nubble pressures in excess of

50 psi (34.5 N/cm'). The cathode catalyst layer is thicker and more uniform with

smaller holes in the layer compared to the anode catalyst layer, which accounts for

the difference in bubble pressure.

4
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In regards to the handleability required for full-size cell unitizing, the butyl
rubber bonded matrix is more resilient, scrape-resistant, and rub-resistant than
the Teflon bonded potassium titanate matrix. The butyl bonded matrix was
preferred for incorporation into 0.508 ft' (471.9 cm') active area cell unitizing
trials.

Scanning electron micrographs of potassium titanate matrices show that the Teflon
and butyl rubber binders are uniformly distributed throughout the structure.
Micrographs of a 950 potassium titanate/5o Teflon matrix indicated uniformity of the
binder, as the presence of the binder is not readily apparent in Figure 16.

The uniform distribution of binder is also seen in the micrographs of a 920 po-
tassium titanate/8o butyl rubber matrix shown in Figure 16. Laboratory size
matrices comprised of 960 potassium titanate/4u butyl rubber exhibited a bubble
pressure in excess of 50 psid (34.5 N /cm').
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Four particulate materials identified as corrosion resistant under Section IV.A

were formulated into matrices by bonding with Teflon  or butyl rubber. Bonded

strontium titanate, ceria, strontium zirconate and lithium cobaitate matrices were

fabricated by a technique which deposits a water dispersion of ceramic particulate

and binder onto an electrode substrate. The formulation of the matrices and the
n e	

research cell that each was incorporated into are identified in Table X.

Table X. Advanced Matrix Configurations

No.
	

Particulate
	

Binder
	

Research Cell No.
i

1 96% SrTI0 3 490 Butyl Rubber RC-77

2 9610 CeO 2 46 Butyl Rubber RC-76

3 9610 LiCoO, 410 Butyl Rubber RC-92

Strontium zirconate was found to reject butyl rubber in the slurry and segregated

during filter deposition. Strontium zirconate bonded with Teflon  was found to be

brittle and prone to cracking. Therefore further work with SrZrO, was stopped.

Each matrix configuration identified in Table X was deposited onto a standard

" gold-platinum catalyst cathode and platinum-palladium catalyst anode. Approxi-

mately 10-mils (.25mm) of the matrix was deposited onto both the anode and

cathode, for a total matrix thickness of 20-mils (5mm). A discussion of the test

results from the research cell endurance tests is presented in Section V.
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C. MEMBRANE EVALUATION

The approach taken in the evaluation of membranes was to Identify a commercial

membrane which is known to be compatible with the aqueous potassium hydroxide

environment.

Two microporous membranes, a fluorocarbon and a polysulfone-based material

showed high initial bubble pressure, at greater than 64 psi (44 N/cm') bubble

pressure and water take-up values similar to the asbestos matrix. Table XI

presents a summary of the membrane bubble pressure and water-takeup

measurements.

t

Table XI.	 Membrane Bubble Pressure Results

Water
Thickness	 Bubble Pressure Takeup

Membrane	 mils (mm)	 psi (N/cm') n wgt Remarks

Teflon	 6(.2)	 - 4 Leaked

Fluorocarbon Based (FP-W) 	 4(.1)	 >64(44) 50

r.
Polysulfone Based (HT-100)	 5(.1)	 >64(44) 60

Corrosion testing of the FP-W and HT-100 membranes at 250°F (121.1°C)	 in	 420
t-^,- wgt potassium hydroxide revealed that both membranes became brittle and broke

Into small fragments.	 The fluorocarbon based membrane became brittle after only

48-hours	 and	 the	 polysulfone-based	 membrane	 by	 200-hours. The membrane

' supplier suggested that the embrittlement problem resulted from 	 the loss	 of	 a

plasticizer.

A wettable Teflon membrane revealed zero bubble pressure. This membrane con.

sisted of a thin porous Teflon film laminated onto a perforated backing. Post-test

examination revealed that the low gas pressure applied at the startup had ruptured

the porous Teflon film covering several of the perforations.

-54-
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The compatibility of an acrylic polymer/weak acid (NF-WA) microporous ion ex-

change membrane was concluded after several hours exposure to hot aqueous

potassium hydroxide. The material was found to have such low strength, and

general incompatibility with the electrolyte that a meaningful test could not be

performed.
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l D. POROUS NAFIONG MATRIX

A microporous Naflon© XR perfluorosulfonic acid resin sheet was developed several

years ago for evaluation under the Power System Division commercial acid fuel cell

program. The sheet was 10 mils (.25mm) thick, 80 percent porous and exhibited

bubble pressures In excess of 60 psi (41.4 N/cm 2 ) when filled with aqueous

potassium hydroxide.

Corrosion testing of the Nafion© revealed that samples of the material lost 13 per-

cent of their weight after both 3000 and 5000 hours of exposure to 42% wgt. KOH at

250°F (121.1 0 C). However, scanning electron micrographs revealed heterogeneous
i

attack, Indicating an inhomogeneous composition.

Lewis Research Center identified a potential sour-9 for samples of improved porous

Nafion. A sheet of Teflon screen reinforced microporous Nafion perfluorosulfonic

acid resin membrane, 2 ft (0.6m) by 1.5 ft (0.5m) by 20 mils (.5mm) thick was

purchased.

A 3000-hour corrosion test at 250°F (121.1°C) of samples of the Teflon reinforced

membrane was conducted. Table XI  presents corrosion test results.

Table XII. Nafion Corrosion Data
C•
G:

a

Time-Hours	 Weight Change - a

	

250	 -5.4

	

500	 -4.2

	

1000	 -5.9

	

3000	 -9.8

Although moderate weight loss was observed after 3000-hours of electrolyte expo-

sure, there was no apparent loss in strength or deterioration in visual appearance.

Test results indicated that the membrane was compatible with potassium hydroxide.

•56-
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'	 A research cell, RC-64 incorporating a Teflon  reinforced Nafion a membrane was

constructed and evaluated. Unfortunately the performance level was unstable and

there was a corresponding increase in cell internal resistance (IR). A test summary

of RC-64 is presented in Appendix A.

1 E	 There was no further work conducted under the program on Nafion 0 membranes.

•57-
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E. BONDED POLYANTIMONIC ACID MATRICES

Lewis Research Center of NASA had suggested that polyantimonic acid (PPA) might

be a candidate matrix material based upon its reported chemical stability in hot

aqueous potassium hydroxide.

A sample of PPA was prepared in the laboratory from a procedure outlined in the

literature. The material was similar in appearance to potassium titanate powder.

Two matrices were fabricated. One sample consisted of 5o wgt. Teflon bonded PPA

and the second sample employed asbestos as a reinforcing fiber. These samples

were incorporated into laboratory Research Cells RC-81 and RC-82 and evaluated.

A test summary is presented in Appendix A.

Cell performance for both cells was low and exhibited rapid fall-off with time. No

further work with PPA matrices was conducted under the program.

A matrix structure with adequate bubble pressure and chemical stability will have to

be fabricated before additional work with PPA matrices can be conducted.

-58-
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F. POLYBENZIMIDAZOLE MATRICES

Polybonzimidazole (PBI) was Identified as a candidate matrix material on the basis of

low weight loss from corrosion tests in hot aqueous potassium hydroxide reported in

NASA CR-159653. These tests, however, revealed considerable variation in test re-

sults and variation in physical makeup and color of samples. In addition endurance

testing of research tolls containing PBI matrices showed rapid voltage fall-off with

time.

Since the initial evaluation, commercial grade PBI fibers have become available.

Exploratory evaluation of matrices fabricated from commercial grade PBI fibers was

conducted to re-evaluate the suitability of PBI for use in the fuel cell.

A free-standing, mat-type PBI matrix was fabricated in the laboratory and Incor-

porated into Research Cell RC-78 for evaluation. A test summary of RQ-78 is

presented in Appendix A.

The inability to achieve acceptable performance characteristics was suspected to be

due to poisoning of the catalyst by some decomposition product from the organic

fiber. Test results reconfirm that PBI in the available forms is unsuitable for use

in the alkaline fuel cell.

•59-
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G. COMPOSITE MATRIX

The composite matrix consists of a potassium titanate layer deposited onto; an ad-

vanced asbestos layer. A sketch of the alkaline fuel cell incorporating the compo-

site matrix is shown on Figure 17. The asbestos layer provides structural integrity

and the high bubble pressure.

CATHODE

ASBESTOS LAYER

PKT LAYER

ANODE

ELECTROLYTE
RESERVOIR

PLATE

105-15

Figure 17. Composite Matrix Layer

Photomicrographs of long-term endurance cells which have exhibited a greater than

expected performance fall-off with time have revealed an apparent electrochemical

cleansing and material loss in the area adjacent to the anode with the standard

asbestos matrix. The demonstrated stability of the potassium titanate layer in the

composite matrix would not contribute any contaminates to the anode, thereby im-

proving the long-term performance characteristics of the alkaline fuel cell.

Two composite matrices were fabrica' d and incorporated into Research Cells RC-169

and RC-71 and endurance tested. A summary of these research cell tests are

presen ted in Appendix A.

-60-
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Research cell RC-71 successfully completed a planned 5000-hour endurance test.
Test results verify that the reduced silicon-content composite matrix Is suitable for
fuel cell use.

The development of a high bubble pressure, free standing, bonded potassium
titanate matrix which is silicon free and has high temperature capability led to
discontinuing work under the program on the composite matrix.

61-
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Two of the most useful laboratory screening tests for evaluating candidate matrix

ma"erials are electrolyte compatibility and bubble pressure.

Electrolyte compatibility is a measure of a material's corrosion resistance with time

to exposure at 250°F (121.1°C) in 420 wgt. aqueous potassium hydroxide.

Bubble pressure is a measure of the cross pressure at which gas breaks through

the wetted matrix.
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1. ELECTROLYTE COMPATIBILITY TEST PROCEDURE

The resistance of candidate matrix materials to electrolyte was determined by im-
mersing the samples in 42 wgt. u potassium hydroxide at 250°C (121.1°C), the

aqueous potassium hydroxide was contained in a Teflon beaker in a sealed glass

^	 reaction kettle. ?he test apparatus is shown in Figure 18.

— N2
N2 EXIT

N2 SATURATOR I I I	 CONDENSER i = l	 I p AND CONTROLLER

N2

WATER
TEFLON
BEAKER

KOH	 ^ ^ n	 I
n(

TEST SAMPLES	
O	

\\ L	 HEATER

4.1

Figure 18. Material Corrosion Test Apparatus

Fixed quantities of each material are divided into four equal volumes and placed in

5-mil (0.1mm) folded Teflon containment bags. Holes in the tops of each bag allow

KOH free access to the sample. The four bags are then placed in a glass test

vessel containing electrolyte sufficient for total immersion.

Water cooled condenser columns on each vessel maintain proper electrolyte concen-

tration, while temperature is maintained by individual heat lamps with temperature
controllers.
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e

Time and temperature are both monitored by the Automatic Data and Recording

(ADAR) system which Is linked to a Cathode Ray Tube (CRT) display and printer.

Temperatures are read at five-minute intervals, alerting laboratory technicians in

the event temperature fall out of the t3°F (ti .7 0 C) set point band.

Individual test samples are evaluated at 250, 500, 1000 and 3000-hour intervals.

The evaluation consists of a visual inspection, gravimetric, electron microscopy and

X-Ray diffraction analysis.

Corrosion test results form the basis of selecting candidate materials for further

evaluation.

k .64-
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2. BUBBLE-PRESSURE MEASUREMENT TEST APPARATUS

The bubble-pressure measurement test apparatus is shown in Figure 19. The

apparatus consists of two, 4 in. x 4 in. x 0.75 in (10.2 cm x 10.2 cm x 1.9 cm)

plexiglass blocks. One block has a 3/8 in (0.95 cm) hole drilled through Its center

and is connected to a nitrogen supply by means of a threaded metal fitting. The
I 

other block has seventeen 1/8 in (0.3 cm) diameter holes drilled wi*hin a 1 in.

(2.5 cm) diameter circle In the center of the block. The sample matrix supported

on a nickel screen is centered between the two blocks. Rubber gaskets are utilized

to seal off all but a 7/8 in. (2.2 cm) diameter portion of the matrix sample. The

two blocks are clamped together with C-clamps and immersed In a water-filled

container. The matrix sample is allowed to soak for 15-minutes to allow thorough

wetting of the sample. The nitrogen gas is turned on and the pressure is gradual-

ly increased until either a breakthrough occurs, as evidenced by a steady stream of
s .	 bubbles, or the pressure reaches 50 psi (34.5 N/cm'), the pressure gage limit.
W-

105.123

Figure 19. Bubble Pressure Measurement Test Apparatus
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V. FUEL CELL ELECTRODE RESEARCH

The focus of the electrode research activity was to evaluate lightweight, low-cost

electrode configurations with the potential to operate for 20,000-hours in a hydro-

gen-oxygen fuel cell operating at 60 psia (41.4 N/cm') reactant pressure and a cell
I	 temperature up to 250°F (121.1°C).

Endurance testing of laboratory research cells incorporating advanced anode and

cathode configurations and matrix configurations developed under the program was

conducted to demonstrate suitability for use in the alkaline fuel cell. In addition

electrode fabrication and cell assembly techniques were evaluated to identify pro-

cedures which result in reproducible cell performance characteristics.

A platinum-on-carbon catalyst anode was evaluated under the program and has

shown the potential for extended endurance.

A lightweight carbon ribbed substrate anode configuration which reduces standard

production cell weight by nearly 50 percent has been successfully endurance tested.

Bonded potassium titanate matrices have shown stability in research cell endurance

tests at cell temperatures up to 250°F (121.1 0C). Two research cells incorporating

potassium titanate matrices were tested for 1000-hours at 250°F (121.1 1C).

Advanced matrix configurations consisted of bonded Ceria, bonded strontium titan-

ate and lithium cobaltate were successfully incorporated into research cells and

endurance tested.

A perforated nickel foil electrode substrate was designed, fabricated and endurance

tested. This substrate has the potential for low cost, provides cell active area

design flexibility and can be procured as a completed cell component not requiring

in-house remanufacture.

PRECEDING PAGE BLANK NOT PILRIED
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A hydrazine diluted electrolyte fill procedure was identified that contributed to
reproducible platinum-on-carbon catalyst anode cell performance.

A nickel treatment of the carbon ribbed substrate anode was shown to promote the
performance stability of cells incorporating this substrate during endurance testing.

•68•
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A. LABORATORY RESEARCH CELL TEST FACILITY

A half-cell test fixture and a research cell test bench comprise the laboratory

research cell test facility.

The half-cell test fixture consists of an Automatic Performance Evaluator, a

Galvanostat-Potentiostat, associated glassware and a reactant flow and pressure

control panel. In this fixture the performance of novel electrode configurations

such as catalyst, substrate, and fabrication technique can be measured directly to a

hydrogen reference electrode. The half-cell test also provides quick screening of

experimental catalyst formulations and electrode configuration to identify the most

promising for evaluation in laboratory research cell endurance tests.

In addition the laboratory half-cell test fixture is employed as a backup for the

shop production test fixture, and is used to verify production data. The fixture is

also employed to document electrode performance of cells that have completed long-

term endurance tests.

The research cell test bench shown on Figure 20 can simultaneously endurance test

up to four 1, oratory cells with future plans to expand this capability to eight

cells. The enc, rance tests are conducted at ambient pressure at cell temperatures

up to 250°F (121.1°C). The test bench electronic load box is of a special PSD

design and has proven to be extremely reliable. As an example, in twelve years of

continuous operation, the load box has been repaired once.

The test bench reactant systems and heater circuits have been designed to be as

simple as possible to minimize components for improved operational reliability.
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IWGN-9968!
Figure 20. Research Cell Test Facility

All reactants employed on the test bench are scrubbed to remove CO, COz before

introduction into the cells. Special reactant gas mixtures for periodic performance

checkout tests are available on the test bench. In the event of the loss of utility

line power the capability to automatically transfer to facility emergency power has

been provided.

The laboratory test facility also has all the necessary equipment to manufacture

electrodes in a size up to 0.508 square foot (471.9 cm"). This capability permits

quick evaluation of new full-size electrode configurations.

^I
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B. LABORATORY SUBSCALE RESEARCH CELL

TW, cell configuration was the fuel cell test vehicle for the exploratory evaluation
of new cell components. Fuel cell technology advances evaluated in the research
cell Include:

•	 Bonded Potassium Titanate Matrices
•	 Asbestos Reinforced Potassium Titanate Matrices
•	 Bonded Particulate Matrices
•	 Composite Matrices
•	 Organic Membranes

`	 •	 Lightweight Carbon Electrolyte Reservoir Plates
•	 Carbon Ribbed Substrate Anodes
•	 Gold-Plated Photo-Fabricated Nickel Foil Substrate Cathodes
%	 Platinum-on-Carbon Catalyst Anodes

A typical- laboratory research cell test configuration is shown in Figure 21.

The cell	 has an	 active area of 0.028 ft2	 (25.8 cm')	 with	 planar dimensions of 2
inches	 x	 2	 inches	 (5.08 cm x 5.08 cm).	 Stainless steel	 end	 plates provides for
manifolding of reactants and reactant flow fields are machined	 into the plates.	 A
high	 pin	 coverage	 field	 is employed to minimize electrical	 resistance	 and	 current
collector tabs are provided on	 each end	 plate for	 current	 collection.	 The	 end
plates are gold-plated on all surfaces potentially exposed to potassium hydroxide to

c	 retard corrosion.

A non-unitized, Teflon 9) gasket cell edge frame is employed to provide a reactant
seal and maintain cell package structural integrity. Normally the cells are
constructed with 20-mil (0.5mm) thick matrices and 51-mil (1.3mm) thick porous
nickel electrolyte oi3tes in contact with the anode.

The cells operate with dynamic water removal, that is, cell product water is re-
moved by flowing excess hydrogen.

I
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A summary of the research cells tested during the program is presented in Section

V.

Figure 21. Typical Research Cell Hardware Test Setup
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C. RESEARCH CELL TEST SUMMARY

A total of 64 research cells were fabricated and endurance tested. These tests
focused upon the evaluation of cells Incorporating:

•	 Platinum-on-Carbon Catalyst Anodes
•	 Carbon-Ribbed Substrate Anodes
•	 Bonded Potassium Titanate Matrices
•	 Advanced Matrix Configurations
•	 Perforated Nickel Foil Electrode Substrate
•	 Improved Electrode Fabrication and Coll Assembly Procedures

Table XIII summarizes the test results of the 56 research cells that have been
tested. Appendix A presents a discussion of individual research cell endurance
test results.

73
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Table Xill.	 Research Coll Test Summary

Coll Test
No. Cathode Matrix Anode ERP Hours Comments

RC-40 90 Au-10 Pt 2,7-mil ASB Pt Pd 51-mil	 N1 1116 Test
(Au-Plated with 5% Binder (Au-Plated Completedd N1 Screen) NI Screen)

RC-41 90 Au-10 Pt 20-mil ASB Pt Pd N/A 292 Test
(Au-Plated (Reconstituted) (Ribbed Completed
Ni Screen) Carbon

. Substrate)

RC-42 90 Au-10 Pt 20-mil ASB Pt Pd 51-mil	 Ni 2136 Test
(Au-Plated (Reconstituted) (Au-Plated Completed
Ni Screen) Ni Screen

Selectively
Wet-Proofed)

RC-43 90 Au-10 Pt 20-mil ASB Pt/C N/A 25 Test Stopped
(Au-Plated (Reconstituted) (Ribbed Low Performance
Ni Screen) Carbon

Substrate)

RC-43A 90 Au-10 Pt 20-mil ASB Pt/C N/A 338 Test Stopped.
(Au-Plated (Reconstituted) (Ribbed Low Performance
Ni Screen) Carbon

1i Substrate)

RC-44 90 Au-10 Pt 20-mil ASB Pt/C N/A 295 Test Stopped.
(Au-Plated (Reconstituted) (Graphite Low Performance
Ni Screen) Impregnated

Ribbed
Carbon

Substrate)

RC-45 90 Au-10 Pt 20-mil ASB Pt/C N/A 200 Test Stopped.
(Au-Plated (Reconstituted) (Ribbed Internal
Ni Screen) Carbon Cell Short

Substrate
Selectively
Wet-Proofed)

RC-46 90 Au-10 Pt	 20-mil ASB	 Pt/C	 N/A	 648	 Test Stopped.
(Au-Plated	 (Reconstituted)	 (Nickel	 Low Performance
Ni Screen) Treated

Ribbed
Carbon

Substrate)

-74-



V
a

Power Systems Division FCR-6853

Table XIII.	 Research Cell Test Summary

Cell Tes 5
No. Cathode Matrix Anode ERP Hours Comments

RC-47 90 Au-10 Pt 20-mil ASB Pt/C N/A 278 Test Stopped.
(Au-Plated (Reconstituted) (Nickel Low Performance
Ni-Sct eon) Treated,

Ribbed
Carbon

Substrate, 
Selectively

Wet-Proofed)

'i RC-48 90 Au-10 Pt 20-mil ASB Pt/C 100-mil	 Ni 300 Test Stopped.
(Au-Plated (Reconstituted) (Au-Plated Low Performance
Ni Screen) Photo-

fabricated
Ni	 foil)

RC-48A 90 Au-10 Pt 20 mil ASB Pt/C 100 mil	 Ni 37 Test Stopped.
(Au-Plated (Reconstituted) Au-Plated Low Performance
Ni Screen) Photo-

fabricated
Ni	 foil)

RC-49 90 Au-10 Pt 20-mil ASB Pt/C N/A 1250 Test Complete
(Au-Plated (Reconstituted) (Ni-treated
Ni Screen) Ribbed

Carbon
Substrate
with Holes)

RC-50 90 Au-10 Pt 20-mil ASB Pt Pd N/A 1285 Test Complete
(Au-Plated (Reconstituted) (Ni-treated
Ni Screen) Ribbed

Carbon
Substrate
with Holes)

RC-51 90 Au-10 Pt 20-mil ASB Pt/C Ni-Treated 166 Test Stopped.
(Au-Plated (Reconstituted) (Carbon Ribbed Low Performance
Ni Screen) Paper Carbon

Sjbstrat>- Substrate

RC -52 90 Au-10 Pt 20-mil Pt Pd 50 -mil Ni 2225 T3st Completed
(Au-Plated 95o PKT (Au-Plated
Ni Screen) 506 TFE Ni Screen)
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Table XIII. Research Cell Test Summary

Coll	 Test
No.	 Cathode	 Matrix	 Anode	 ERP Hours	 Comments

RC-53 90 Au-10 Pt	 20-mil ASB	 POD	 50-mil Ni 174	 Test Stopped.
(Ni/CO-	 (Reconstituted) (Au-Plated	 Low Performance
Treated	 Ni Screen)
Feltmetal©
Substrate)

Pt Pd	 51-mll Ni 5025	 Test Complete
(Au-Plated
Ni Screen)

Pt Pd	 51-mil Ni 1007	 Test Complete
(Au-Plated
Ni Screen)

RC-54 90 Au-10 Pt	 20-mil
(Au-Plated	 96% PKT
Ni Screen)	 410 Butyl

Rubber

RC-55 90 Au-10 Pt	 20-mil ASB
(Au-Plated	 (Reconstituted
Ribbed Nickel
Feltmetalo)

RC-56 Uncatalyzed	 20-mil ASB	 IL P I;	 51-mil Ni	 2	 Test Stopped.
(Au- Q lated	 (Reconstituted) (Au-Plated	 Low Performance
Ribbed Nickel	 Ni Screen)
Feltmetal)

RC-57 90 Au-10 Pt	 20-mil ASB	 Pt Pd	 N/A	 500	 Test Stopped.
(Au-Plated	 (Reconstituted) (Ni-Treated	 Cell Hardware
Ribbed Nickel	 Ribbed	 Required
Feltmetal)

	

	 Carbon
Substrate
with Holes)

20-mil ASB	 Pt Pd	 51-mil Ni 938	 Test Complete
(Reconstituted) (Au-Plated

Ni Screen)

51-mil Ni	 160	 Test Stopped.
Stand

Relocation

	

51-mil Ni 1135	 Test Complete
250°F(121.1°C)

r .Y
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RC-58 90 Au-10 Pt
(Au-Plated
Perforated
Ni Foil)

RC-59 90 Au-10 Pt
(Au-Plated
Perforated
Ni Foil)

RC-60 90 Au-10 Pt
(Au-Plated
Ni Screen)

20-mil ASB Pt/C
(Reconstituted) (Au-Plated

Perforated
Ni	 Foil)

20-mil Pt Pd
96% PKT (Au-Plated
4% Butyl Ni Screen)
Rubber
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Table XIII. Research Cell Test Summary

Cell Test
No. Cathode Matrix Anode ERP Hours Comments

RC-61 90 Au-10 Pt 20-mil Pt Pd 51-mil 1135 Test Complete
(Au-Plated 956 PKT (Au-Plated Porous 250°F021.10C)
Ni Screen) 56 TFE Ni Screen) Ni

RC-62 90 Au-10 Pt .0 mil Pt Pd 51-mil 5110 Test Complete
(Au-Plated 956 PKT (Au-Plated Porous
Ni Screen) So TFE Ni Screen) Ni

RC-63 90 Au-10 Pt 20-mil Pt Pd 51-mil 1171 Test Stopped
1 (Au-Plated Advanced (Au-Plated Porous (low

Perforated Asbestos Ni Screen) Ni performance)
S,	 f Ni	 Foil)

RC-64 90 A_	 10 Pt 20-mil Pt P^ 51-mil 241 Test Stopped
' (Au-Plated Micro porous	 (Au-Plated Porous (low

Ni Screen Nafiono Ni Screen) Ni perforryence)

i	 RC-65 90 Au-10 Pt 20-mil Pt Pd 51-mil 1020 Test Complete
(Au-Plated Advanced (Au-Plated Porous
Perforated Asbestos Ni Screen)
Ni-Foil)

'	 RC-66 90 Au-10 Pt 20-mil Pt Pd N/A 1010 Test Complete
(Au-Plated Advanced (Dual Porosity
Ni Screen) Asbestos Carbon Ribbed

Substrate)

RC-67 90 Au-10 Pt 20-mil Pt/C N/A 1300 Test Complete
(Au-Plated Advanced (Ni-treated
Ni Screen) Asbestos Carbon Ribbed

Substrate)

RC-68 90 Au-10 Pt 20-mil Pt/C N/A 806 Test Stopped.
(Au-Plated Advanced (Thin Web (Low
Ni Screen) Asbestos Dual Porosity Performance)

Ni-Treated
Carbon Ribbed

Substrate)
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fable XIII. Research Cell Test Summary

Cell Test
No. Cathode Matrix Anode ERP Hours Comments

RC-69 90 Au-10 Pt Composite Pt Pd 51-mil 500 Test Stopped
(Au-Plated (Asbestos/ (Au-Plated Porous (low
Ni Screen) Potassium Ni Screen) Ni performance)

Titanate)

RC-70 90 Au-10 Pt 20-mil f VC N/A 665 Test Stot.,ped
(Au-Plated Advanced (Dual Porosity, (low voltage)
Ni Screen) Asbestos Ni Treated

Carbon Ribbed
Substrate)

-	 ?	 RC-71 90 Au-10 Pt Composite Pt Pd 5'-mil 5110 Test Completed
(Au-Plated (10-mils (Au-Plated Porous
Ni Screen) Asbestos, Ni Screen) Ni

10-mils
Potassium
Titanate)

RC-72 90 Au-10 Pt 20-mil Pt/C N/A 237 Test Stopped
(Au-Plated Advanced (Ni-Treated (low voltage)
Ni Screen) Asbestos Carbon Ribbed

Substrate) 

RC-73
l

90 Au-10 Pt 20-mil Pt/C 51-mil 1300 Test Stopped
- (Au-Plated Advanced (Ni-Treated Porous (low voltage)

Ni Screen) Asbestos Carbon Ni
Substrate)

I
RC-74 90 Au-10 Pt 20-mil Pt Pd 51-mil 1055 Test Complete

(Au-Plated Advanced (Au-Plated Porous
- Perforated Asbestos Ni Screen) Ni

Ni	 Foil)

RC-75 90 Au-10 Pt 20-mil Pt/C 51-mil 345 Test Complete
(Au-Plated Advanced (Au-Plated Porous
Ni Screen) Asbestos Ni Screen) Ni

-78-
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Table XIII. Research Cell Test Summary

Cell	 Test
No.	 Cathode	 Matrix	 Anode	 ERP Hours	 Comments

RC-76 90 Au-10 Pt 7-mils Pt Pd
(Au-Plated Butyl (Au-Plated
Ni Screen) Rubber Ni Screen)

Bonded
Ce O,

RC-77 90 Au-10 Pt 6-mils Pt Pd
(Au-Plated Butyl (Au-Plated
Ni Screen) Rubber/ Ni Screen)

Strontium
Titanate

RC-78 90 Au-10 Pt Lab Pt Pd
(Au-Plated Made PBI (Au-Plated
Ni Screen) Mat Ni Screen)

RC-79 90 Au-10 Pt 20-mil Pt Pd
(Au-Plated) Advanced iNi-Treated)
Ni Screen Asbestos Dual Porosity

Carbon Ribbed
Substrate

RC-80 90 Au-10 Pt 20-mil Pt Pd
(Au-Plated) Advanced (Ni-Treated)
Ni Screen Asbestos Dual Porosity

Carbon Ribbed
Substrate

51-mils	 496
Porous

Ni

51-mils 1205
Porous

Ni

Test Stopped
(low voltage)

Test Stopped
(low voltage)

51-mils 5200 Test Completed
Porous

Ni

N/A	 1300 Test Completed

N!A	 1200 Test Completed

rR

RC-81	 90 Au-10 Pt Polyanti- Pt Pd
(Au-Plated) monic Acid (Au-Plated
Ni Screen 5a Teflon@ Ni Screen)

RC-82	 90 Au-10 Pt 80o Poly- Pt Pd
(Au-Plated) antimunic (Au-Mated
Ni Screen Acid/20% Ni	 S,_ een)

Asbestos

RC-83	 90 Au-10 Pt 920 Potassium Pt/C
(Au-Plated) Titanate/ (Au-Plated
Ni Screen 8a Butyl Ni Screen)

Rubber

-79- 

51-mils 1	 Test Stopped.
Porous (reactant

Ni cross-leakage)

51-mils 6	 Test Stopped
Porous (low voltage)

Ni

51-mils	 184	 Test Stopped
Porous	 (low voltage)

Ni
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Table XIII.	 Research Cell Test Summary

Cell Test
No. Cathode Matrix	 Anode ERP Hours Comments

RC-84 90 Au-10 Pt 92%	 Pt/C 51-mils 50 Test Completed
(Au-Plated) Potassium	 (Au-Plated Porous

- Ni Screen Titanate/	 Ni Screen Ni
8$ Butyl

- Rubber
f,

RC-85 90 Au-10 Pt 20-mil	 Pt/C N/A 1035 Test Completed
(Au-plated) Advanced	 (Ni-Treated
Ni Screen Asbestos	 Dual Porosity

Carbon Substrate)

1 RC-86 90 Au-10 Pt 20-mil	 Pt/C N/A 1155 Test Completed
u (Au-plated) Advanced	 (Ni-Treated
;I Ni Screen) Asbestos	 Dual Porosity
t Carbon Substrate)

! RC-87 90 Au-10 Pt 20-mil	 Pt/C N/A 500 Test Completed
(Au-plated) Advanced	 (Ni-Treated
Ni Screen Asbestos	 Dual Porosity

Carbon Substrate)
s.
-t RC-88 90 Au-10 Pt 20-mil	 Pt/c NA 505 Test Completer+

(Au-plated) Advanced	 (Ni-Treated
Ni Screen Asbestos	 Dual Porosity

Carbon Substrate)

RC-89 90 Au-10 Pt 20-mil	 Pt/Pd	 51-Mil Ni 1159 Test Continues
(Au-plated) Advanced	 (Au-plated
Ni Screen AsbestosNi Screen

with Carbon Layer

RC-90 90 Au-10 Pt 20-mil	 Pt/C N/A :̂J2 Test Continues
(Au-plated) Advanced	 (Ni-Treated
Ni Screen Asbestos	 Dual Porosity

Carbon Substrate)

RC-91 90 Au-10 Pt 20-mil	 Pt/C N/A 292 Test Stopped
(Au-Plated) Advanced	 (Ni-Treated (low voltage)
Ni Screen Asbestos	 Dual Porosity

Carbon Substrate)
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Table XIII. Research Cell Test Summary

Coll	 Test
No.	 Cathode	 Matrix	 Anode	 ERP Hours	 Comments

RC-92	 90 Au-10 Pt 9690 LICoOa Pt Pd

(Au-Plated) 490 Butyl (Au-Plated
Ni Screen Rubber Ni Screen)

RC-93	 90 Au-10 Pt 20-Mil Pt/C
(Au-Plated) Advanced (Ni-Trr;ated
Ni Screen Asbestos Dual Porosity

Carbon Substrate)

51 -Mil	 1	 Test Stopped

Ni	 (low voltage)

N/A	 141 Test Continues

i!

^I
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1. Platinum-On-Carbon Catalyst Anodes

The supported catalyst has an advantage over the unsupported catalyst confi-

gurations in two important aspects. In dispersing platinum uniformly over the

surface of an inert support, smaller crystallites of the noble metal are obtained and

therefore, a significant higher specific surface area, meter square per gram, is

possible compared to an unsupported configuration. The second advantage is that

the support material, being a structural member of the catalyst layer maintains the

integrity of the electrode even if the catalyst particles sinters or recrystallize.

Endurance testing of platinum-on-carbon catalyst anode cells in a previous program

i
(Reference 8) has shown that the 0.5 mg/cm' platinum supported-on-carbon anode,

loo platinum to carbon has potential for extended endurance. Based upon research

cell test results, this anode configuration was incorporated into the long-term

six-cell stack endurance test rig 39578 which has completed 18,054 hours of cyclical

load profile operation.

Typical performance of platinum-on-carbon catalyst anode cells is presented in

Figure 22.

The focus of the work under this program was to develop a platinum-on-carbon

catalyst layer deposited onto a carbon ribbed substrate anode. This configuration

has the advantages of being lightweight and low-cost and offers the potential for

long-life. Twenty-fivo research cells were fabricated and endurance tested. Test

results from these cells have been encouraging and are showing promise that this

anode configuration is a viable candidate for use in the alkaline fuel cell.

Carbon-Ribbed Substrate Anodes

The porous ribbed anode substrate, provides a single component which provides not

only reactant gas flow fields, but serves as a substrate for the anode catalyst and

an electrolyte reservoir. Since the substrate is carbon, it is both light and inex-

pensive particularly when compared to the gold-plated separator, nickel electrolyte

reservoir plate and gold-plated nickel screens used in the standard production cell.
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The substrate consists of a porous carbon plate which has a parallel rib pattern

machined into one surface. The free area between the ribs serve as the hydrogen

flow field with a stiffening web between ribs. The electrode is formed by

depositing the catalyst layer onto the flat side of the substrate.

a t 	A photograph of the carbon-ribbed substrate is shown on Figure 23.

1.2
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Figure 22. Typical Platinum-on-Carbon Catalyst Anode Cell Performance

Figure 23.

Typical Carbon Ribbed Substrate

(WCN-11030)
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Two varieties of dual porosity substrates were evaluated under the program. In

one configuration the ribs were about twice the density of the web and in the

second configuration the ribs and web have similar densities. Both types of sub-

strated are treated with nickel to render them wettable prior to applying the cata-

lyst layers.

Twenty-four research cells incorporating carbon ribbed substrate anodes were

fabricated and endurance tested. The single porosity substrates are showing

promise as a potential lightweight, low-cost substitute for use at the anode in

present alkaline fuel cell powerplants. Additional work is in progress to identify a

substrate with a smaller mean pore size which will retain electrolyte during launch.

Tolerance to electrolyte volume variat ;on also needs to be demonstrated.

3. Bonded Potassium Titanate Matrices

Laboratory research cell endurance testing of Butyl rubber and Teflon  bonded

potassium titanate matrices has demonstrated their suitability for use in the alkaline

fuel cell.

Significant long-term research cell test results are summarized in Table XIV.

Table XIV. Bonded Potassium Titanate Matrix Research
Cell Test Summary

Cell
Research Cell	 Matrix Compound	 Temp °F (°C)	 Test Hours

52 506 TFE/959a PKT 200 (93.3) 2225
54 4a Butyl/96a PKT 200 (93.3) 5025
60 4a Butyl/96a PKT 250 ;121.1) 1135
61 5a TFE/95a PKT 250 (121.1) 1135
62 5a TFE/959o'  PKT 200 (93.3) 5110

All of the endurance tests presented in Table XIV were stopped following completion

of all test objectives.
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In addition endurance testing has demonstrated the capability of the matrix

configuration to operate at high temperature, up to 250°F (121.1°C).

4. Advanced Matrix Configurations

Six advanced matrix configurations identified under the program and described in

Section IV-A were incorporated into laboratory research cells and endurance

tested. The objective of these tests was to evaluate the effect of the matrix upon

1	 fuel cell performance stability. The six configurations were:

Matrix Configuration	 Research Cell No.

•	 Butyl Bonded Ceria	 RC-76

a	 Butyl Bonded Strontium Titanate	 RC-77

•	 Butyl Bonded Lithium Cobaltate	 RC-92

•	 Porous Nafion 3	RC-64

e	 Polybenzimidazole	 RC-78

The research cells incorporated standard production anodes, cathodes and porous

nickel electrolyte reservoir plates. Therefore any deviation in cell performance

would be attributable to the matrix. The cells were endurance tested at 200

Amps/Ft' (215.3 mA/cm'), 200°F (93.3°C) and ambient pressure.

A summary of test results is presented in the following discussion.

Butyl Bonded Ceria

The endurance test of the bonded Ceria cell (RC-7-') was stopped after 496-hours

due to a greater than expected voltage reduction. Prior to the commencement of

I he test, visual inspection identified a very dense, with some cracks, marginal

matrix structure. Additional matrix fabrication trials will be required to arrive at

a structure suitable for research cell testing.

'I
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Butyl Bonded Strontium Tttanate

A research cell (RC-77) Incorporating a bonded strontium titanata matrix

successfully completed a 5000-hour endurance test.

A review of call performance data Indicated that the majority of the voltage loss
	 ,1

was due to an increase in anode polarization. A po€sibie explanation for

Increased anode polarization is that some unbound particulate may have penetrated

the catalyst layer promoting partial flooding of the electrode.

Strontium titanate, because of the chemical similarity to potassium titanate and

research cell test results, has potential to be a candidate matrix material.

Additional matrix fabrication required to improve the structure.

Butyl Bonded Lithium Cobaltate

The initial performance of the research cell (RC-92) incorporating a bonded

LICoO, matrix was low due to higher than expected internal resistance. After

only an hour of testing gas cross leakage occurred and the endurance test was

stopped,

Based upon test results from .:its exploratory test, LICoO, is unsuitable for use

as a matrix material in the alkaline fuel cell.

Porous Nafiona

The performance of the research cell (RC-64) containing porous Nafion 3 matrix

was very low due to high internal resistance. During testing, cell voltage fell off

with time with a corresponding increase in cell iR.

Test results and teardown inspection of the research cell has shown that porous

Nafion
91
 is unsuitable as a matrix material.
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Polybenzimidazole

An exploratory test of commercial grade polybenzimidazole (PBI) as a matrix material
was conducted. Research cell endurance test results duplicated previous test
experience (Reference 6). A research cell (RC-78) incorporating a PBI matrix
exhibited rapid performance fall-off with time. The material is considered
unsuitable for use as a matrix in the alkaline fuel cell.

5. Altai nato Asbestos Matrix Configurations

As an approach to Improving the long-term stability of the high strength asbestos
matrix, three alternate configurations were evaluated. Each of the configurations,
identified bel.. N, were incorporated Into laboratory research cells and endurance
tested.

•	 Advanced Asbestos
•	 Butyl Rubber Bonded Asbestos
•	 Composite Matrix

The research cells incorporated standard production anodes, cathodes and elec-
trolyte reservoir plates. A summary of test results are presented in the following
discussion.

Advanced Asbestos

The advanced asbestos matrix configuration was developed by Power Systems
Division under the Orbiter Fuel Cell contract with Rockwell International. Carbonate
analysis of endurance test cells reported in NASA CR-165417 revealed that the
advanced asbestos matrix cells had less than half the carbonate level of standard
asbestos matrix cells.

Advanced asbestos matrix has been incorporated into the cells being fabricated for
the Orbiter Fuel Cell powerplant. In addition, the advanced asbestos matrix is the
baseline configuration for all cell tests conducted under the Lewis program.

87-
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Butyl Rubber Bonded Asbestos

Lewis Research Center of NASA supplied Power Systems Division with a shoot of

fuel cell grade asbestos containing approximately 90 butyl rubber binder. The

matrix was incorporated Into research cell RC-40 and successfully completed a

planned 1000-hour endurance.

The stable performance characteristics obsorved during the endurance confirmed

corrosion test results that the butyl rubber was suitable for use as a matrix binder

in the alkaline fuel cell.

Composite Matrix

The composite matrix consists of a potassium titanate layer deposited onto an ad-

vanced asbestos layer. Two laboratory research cells, RC-69 and RC-71 incor-

porating composite matrices and standard production anodes, cathodes and elec-

trolyte reservoir plates were endurance tested.

The endurance tests were characterized by lower than expected initial performance

and increased anode polarization with time. Electrode flooding or contamination of

the electrode with time are suspected of contr'buting to the unacceptable perfor-

mance characteristics. Additional work would be required to identify a suitable

composite matrix structure.

• 88
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6. ALTERNATE ELECTRODE SUBSTRATES

A porous ribbed nickel and perforated nickel foil structure were evaluated as

candidate electrode substrates.

Porous Ribbed Nickel

A cell incorporating an electrolyte reservoir (ER) adjacent to the anode and cathode

has the potential for improved operational reliability. With this cell design, any

electrolyte expelled during reactant cross pressure incidents would be absorbed by

the ER.	 Upon return to normal operating conditions, the electrolyte would be

transferred back into the cell.

A photograph of the porous ribbed nickel substrate and electrolyte reservoir is

shown on Figure 24.

U

Figure 24. Porous Ribbed Nickel Substrate
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The electrode is formed by depositing a catalyst layer onto the flat surface. The

ribbed surface forms the reactant flow field.

Test results from four laboratory research cells indicate that the ribbed nickel

substrate cathode is stable at cathode potentials even with stored electrolyte, and

does not contribute any additional diffusional loss, when compared to the standard

nickel screen substrate.

Perforated Nickel Foil

The perforated nickel foil substrate has the potential to contribute to a substrate

reduction in cost, provide design flexibility and possibly reduce cell weight.

Figure 25 shows typical configurations of the photo-fabricated nickel foil substrates.

11 MIL DIAMETER HOLE	 25 MIL DIAMETER HOLE

Figure 25. Perforated Photofabricated Nickel Foil Substrate

Laboratory research cell endurance testing of cells incorporating gold-plated nickel

photo-fabricated foil substrates has shown that the foils are an acceptable

replacement for the expensive golf-plated, fine-wire nickel screen presently

employed in production cells.

Figure 26 shows a comparison of the gold-plated perforated nickel foil and standard

gold-plated nickel screen substrate.

ff.,	-90-
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STANDARD GOLD NLA I LO
Ni SCREEN

(W-5 106)

GOLD-PLATED NICKEL
PHOTO-FABRICATED FOIL

I W51071

(j. 1

Figure 26. Electrode Substrate Conparison

In the evaluation of perforated nickel foil substrates, a total of four- re.earch cells

(RC-58, RC-63, RC-65 and RC-74) were constructed and endurance tested. These

cells ccmpleted over 4300-hours of testing.
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7. SELECTIVELY WET-PROOFED ANODE CONFIGURATION

Selective wet-,roofing of the hydrogen electrode consists of covering the gas-side

with a thin film of porous Teflon except where the nubbins of the electrolyte

reservoir plate make contact. The spiectively wet-proofed Teflon pattern

screen-printed on the anode is shown on Figure 27.
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Figure 77. Selectively Wet-Proofed Anode Configuration

The function of the selective wet-proofing layer is to retard the formation of an

electrolyte film on the reactant side of the electrode. This film would create a

gas-diffusion barrier which contributes to lower anode performance.

Research cell endurance testing (RC-42, RC-45, and RC-47) has indicated that the

selectively wet-proofed anode configuration improves cell tolerance to electrolyte

volume variations resulting from changes in operating conditions.

The advent of the very hydrophobic platinum-on-carbon catalyst anode led to
suspending work on wet-proofed anodes. The platinum-on-carbon anode with its
good electrolyte retention characteristics has demonstrated extended endurance
capability.

-92-
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APPENDIX A

RESEARCH CELL TESTING

Exploratory evaluation of new anode and cathode configurations, and advanced
matrix configurations was conducted with sub-scale laboratory research cells. A
complete description of the laboratory research cell is presented in Section V. The
cell active -ea is 0.028 ft' ;26.0 cm') with planar dimensions of 2 inches x 2
inches (5.1 cm x 5.1 cm).

The majority of the laboratory research cell endurance tests was conducted at a cell
temperature of 200°F (93.3°C), a reactant pressure of 14.7 psia (10.1 N/cm') and a
current density of 20U amperes per ft' (215.3 mA/cm').

A total of 64 research cells were constructed and endurance tested during the

i
	 program completing 51,777 hours of testing. A summary of the individual research

cells tested is shown in Table XIII, Section V.

Test results of the individual research cells is presented in the following dis-
cussion.

RC-40 (Butyl Rubber bonded Asbestos Matrix)

Lewis Research Center of NASA provided Power .°;ystems Division with a sheet of 7
mil thick fuel cell grade asbestos containing approximately 5% Butyl Rubber binder.
A double layer of the mat, approximately 14 mils (.36mm) was built into a research
cell and endurance tested.
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The performance history	 of	 RC-40 is	 presented on	 Figure 28.	 RC-40 completed

1116-hours of testing with 	 very	 little voltage fall-off during the	 test.	 The	 initial

cell voltage was 0.922 V at 200 ASF (215.3mA/cm') and after 1116-hours cell voltage

was 0.916 V.	 The endurance test was	 stopped upon	 completion	 of	 the	 planned

1000-hour test.

LOAD TIME - HOURS
105.113
841112

Figure 28. Research Cell (RC-40) Endurance Test

(Butyl Rubber Bonded Asbestos Matrix)

Test results indicate that butyl rubber is suitable for use as a ma*; ix binder in

alkaline fuel cells.

The characteristics (thickness, density and bubble pressure) were determined prior

to the commencement of the endurance test. Table XV lists the characteristics of

the butyl rubber bonded asbestos sheet.

Table XV. Butyl Rubber Bonded Asbestos Matrix Characteristics

Thickness

Density

Bubble Prnssure
Single Ply - 7 mils
Double Ply - 14 mils

0.007 s .003 in. (0.18 s .08mm)

0.767 gms/cc

20 psid (13.8 N/cm')
25 psid (17.2 N/cm')

lO ,,
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For comparison, the bubble pressure of a Power Systems Division fabricated 20-mil

(.51nm) asbestos matrix has demonstrated bubble pressure in excess of 50 psid

(34.5 N/cm').

RC-41 (Carbon Ribbed Substrate Anode)

The individual cells in the Orbiter Fuel cell powerplant are unitized, that is, the

electrodes matrix and electrolyte reservoir plate are bonded together at the edges

by an epoxy-fiberglass cell edge frame. This frame forms a very effective elec-

trical insulating seal and reactant pressure seal. Sealing difficulties experienced on

earlier research cell tests, lead to the evaluation of the Orbiter edge seal approach

in laboratory cells.

In the construction of RC-41, only the reconstituted asbestos matrix (RAM) and the

gold-platinum catalyst cathode were unitized. The anode was a carbon ribbed

substrate with a platinum-palladium catalyst layer.

The performance history of RC-41 is presented on Figure 29.

LOAD TIME -HOURS

Figure 29. Research (RC-41) Endurance Test

(Carbon Ribbed Substrate Anode)

115.114
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The call was initially flush-filled with 230 wgt. KOH at room temperature. The

initial performance of 0.905V at 200 ASF (215.3 mA/cm') was reasonably good, but

there was a greater than expected voltage fall-off initially. On the assumption that

RC-41 had not been adequately wetted with electrolyte, the cell was removed from

the test facility and refilled with 230 wgt. KOH containing a small amount of

hydrazine. This electrolyte fill technique has proven successful in filling past

supported-platinum catalyst anode cells.

On resumption of the endurance, the cell performance was restored to 0.905V at 200

ASF (215.3 mA/cm') and a significant reduction in the rate of voltage fall-off. At

242 load hours, cell performance was 0.885V. At this point a second electrolyte

refill was performed.

Upon return to endurance test condition, cell performance was again restored,

0.905V at 200 ASF (215.3 mA/cm') which remained constant until the endurance test

was stopped at 292-load hours due to a facility vacation shutdown.

Sealing difficulties with RC-41 were minimized, resulting in the conclusion teat the

partial unitization was successful. Test results indicate that the carbon ribbed

substrates are reluctant to wet with electrolyte spontaneously. Subsequent re-

search cell tests, evaluated substrate fabrication techniques which promoted

electrolyte wetting of the structure.

RC-42 (Selectively Wetproofed Anode)

Under an earlier NASA-Lewis sponsored fuel cell technology advancement program

(Reference 4) research cell test results suggested that performance reduction with

time was caused by progressive electrolyte flooding of the platinum-palladium cata-

lyst layer which might be alleviated by selectively wet-proofing the reactant side of

the anode catalyst.

Selective wet-proofing of the hydrogen electrode consists of covering the gas side

with a thin film of porous Teflon  except where the nubbins of the electrolyte

96
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reservoir plate make contact. Anodes incorporating photo-fabricated nickel foil

substrates probably benefit from selective wet-proofing as this electrode confi-

guration operates with a separate electrolyte reservoir plate.

The funct ion of the selective wet-proofing layer is to retard the formation of an

electrolyte film on the reactant side of the electrode. This film would c sate a

gas-diffusion barrier which contributes to lower anode performance.

In order to define a wet-proofing procedure, even though photo-fabricated nickel

foil had not yet been received from the vendot, a selectively wetproofed plati-

num-palladium catalyst anode was fabricated. This electrode was built into RC-42

and endurance tested in the laboratory test facility.

The performance history of RC-42 is presented on Figure 30.

LOAD TIME - HOURS

Figure 30. Research Cell (RC-42) Endurance Test

(Selectively Wet-Proofed PtPd Catalyst Anode)

105-115
841112
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RC-42 was operated on unhumidified reactants, at a current density of 200 ASF

(215.3 mAicm') a call temperature of 200°F (93.3°C) and ambient preosure for the

first 1840-hours of testing. The initial cell performance was 0.902V and after 1840

hours of testing cel; voltage was 0.888 volts.

Retarding the formation of an electrolyte film on the electrode reactant surface

would improve the performance stability of the cell to load and electrolyte volume

changes. To evaluate the stability of RC-42 to these conditions the cell was sub-

jected to the daily "stress test" cycle shown on Figure 31.
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Figure 31. Research Cell (RC-42) Stress Test - Daily Load Profile
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RC-42 completed fifteen "stress test" cycles for a total of 2136-hours of testing.

Retarding the formation of an electrolyte film on the electrode reactant surface

should io,prove the performance stability of the cell to load and electrolyte volume

swings. The "stress test" produces significant changes in the volume of the

electrolyte and would be expected to cause the cell to lose performance if the

electrode was susceptible to flooding. During the "stress test" period of operation

the performance of RC-42 increased 12mV from 0.888V to 0.900V at 200 ASF

(215.3 mA/cm').

Test results indicate that the selectively wet-proofed anode config.iration improves

cell tolerance to load and electrolyte volume swings, in fact cell performance in-

crease during the "stress test".

The endurance test of RC-42 was stopped at 2136-load hours to free-up research

cell hardware for other planned tests.

RC-43 (Carbon Ribbed Substrate Anode)

RC-43 was the first research cell in the program to incorporate a supported anode

catalyst, platinum-on-carbon catalyst layer, on a carbon ribbed substrate. The cell

also contained a 20-mil advanced asbestos matrix and a gold-platinum r-'-tlyst

cathode.

The cell was initially filled with 27% wgt. KOH at room temperature. Upon es ab-

lishing endurance test conditions, the maximum performance achieved was (1.860V at

200 AS7 (215.3 mA/cm'). Unfortunately a stable performance level could not t.-

achieved and the test was interrupted for an electrolyte refill.

Prior test experience has indicated that carbon ribbed substrates do not "wet"

readily with electrolyte and therefore may have insufficient electrolyte with only an

initial electrolyte fill.

i returning the cell to the test stand and resuming test cell performance con-

iued to be unacceptable and all further testing was stopped.

99•

O



Power Systems Division
	

FCR-6853

RC-43A (Carbon Ribbed Substrate Anode)

The construction of RC-43A was identical to that of RC-43.

Prior to assembling the cell, the anode was filled with electrolyte separately by

floating the electrode on a solution of hydrazine-diluted electrolyte. The matrix

was filled with 19% wgt. KOH.

The inability to achieve a satisfactory initial performance resulted in interrupting

the test after 50-load hours. The performance instability suggested that the cell

electrodes were not sufficiently wetted with electrolyte. RC-43A was shutdown and

refilled with 35% wgt. KOH electrolyte.

The electrolyte refill did not produce any significant improvement in performance

stability. The endurance test was again interrupted after 174-hours of testing.

The previous electrolyte fills should nave sufficiently wetted the electrodes with

electrolyte. Therefore the approach taken was to improve hydrogen access to the

electrode due to the possibility that the anoeie was starved of fuel. RC-43A was

disassembled and a series of holes were drilled through the web between channels

of the substrate. The anode was refilled with 270 wgt KOH electrolyte and the cell

was reassembled and returned to the test facility.

Upon return to endurance test conditions a stable performance of 0.808V at 200 ASF

(215 mA/cm') was achieved for 70 load hours.	 However this performance level was

lower than expected and a dilute oxygen	 diagnostic	 test	 was	 conducted	 to help

ascertain	 the cause of the low performance. 	 Test results of the dilute gas test are

presented on Figure 32.
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Figure 32. Research Cell (RC-43A) Dilute Gas Test Results

Dilute gas test results suggests that the majority of the reduced performance was
due to cathode polarization. However, when the cell endurance test was stopped at
338 load-hours, samples of the cathode were half-cell tested showing no sign of
reduced cathode performance. The half-cell tests revealed a normal cathode
performance.
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A likely explanation for the reduced performance of RC-43A is that excess elec-
trolyte was being forced into the cathode resulting in thick electrolyte films in
catalyst pores of the cathode.

Assuming that this hypothesis is correct, there are several approaches which are

available to overcome the deficiency.

•	 Treat the	 ribbed	 substrate	 chemically or physically to enhance its wet-
tability and increase propensity to wick up and 	 retain electrolyte. As an
approach,	 introduce a wettable powder into the pores or alter the surface
condition of the graphite fibers by oxidation 	 or coating with	 a wettable
film.

1'^1
°r..
..

•	 Reduce the Teflon content of the anode catalyst layer.

!7 The approach taken by Power Systems Division was to introduce a wettable material
into the carbon structure.

RC-44 (Carbon Ribbed Substrate Anode)

As an approach to improving the electrolyte-wetting characteristics of the sub-
strate, the anoc!e ribbed substrate was impregnated with 2-3 mg/cm' of graphite
prior to depositin g the catalyst layer. The resultant anode, a gold-platinum cata-
lyst cathode and 20-mil (.5mm) reccnstituted asbestos matrix were assembled into

research cell RC-44.

The maximum performance achieved on RC-44 was 0.856V at 200 ASF (215:3
mA/cm'). In the subsequent 84-hours of testing, which I ncluded an electrolyte.
refill, cell voltage continued to fall off. A total of 295-hours of testing was com-
pleted on RC-44 and the test was stopped because of the inability to achieve a
satisfactory performance level.

Prior to stopping the endurance test, a series of reactant cross pressure tests were
conducted to help identify the electrode responsible for the low performance. The

102-
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anode and cathode reactant cavity were individually subjected to 5 psi (3.4 N/cm')

over pressures. Increasing the reactant pressure on the cathode had no effect on

cell vo! •age; however, increasing the reactant pressure on the anode resulted in a

45 mV increase at 200 ASF (215.3 mA/cm') in cell performance. Test results

indicate that the anode was operating at a flooded condition.

RC-45 (Carbon Ribbed Substrate Anode)

Research cell RC-45 was constructed with a platinum-on-carbon catalyst anode,

deposited 4,n a carbon ribbed substrate which had been selectively wet proofed with

Teflon layer at the catalyst substrate interface. There was no special treatment of

the substrate to promote electrolyte wetting. However the individual cell com-

ponents, matrix and electrodes, were filled with electrolyte prior to cell assembly

and the assembled cell was flush filled with 23`b wgt. KOH before the start of the

endurance test.

The peak performance of RC-45 was 0.860V at 200 ASF (215.3 mA/cm'). A dilute

oxygen test performed at 32-load hours, Figure 33, revealed that the cell was

experiencing some reactant cross leakage or a small internal short. 	 The

performance anomaly forced the endurance test to be stopped after 200-hours of

testing.
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Figure 33. Research Cell (RC-45) Dilute Oxygen Test
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RC-46 (Carbon Ribbed Substrate)

This cell was constructed with a platinum-on-carbon anode catalyst on a nickel-

impregnated carbon ribbed substrate, a gold-platinum cathode catalyst layer on a

gold-plated nickel screen and a 20-mil (.51mm) thick reconstituted asbestos matrix.

The cat 'lode and matrix of RC-46 were unitized into a fiberglass/epoxy edge frame.

The performance characteristics of RC-46 with time matched past test experience of

research cells fabricated with ribbed-substrate anodes, that is, the cells lose

performance from the initial level, however a majority of the performance is restored

following dilute-oxygen tests or by electrolyte filling. Test results from dilute

oxygen tests reveal only a small change in the performance of the cathode as shown

in Figure 34. The majority of the reduced performance occurs as an increase in

anode polarization, as shown on Figure 35.
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Figure 34
	

Re%;arch Cell (RC-46) Dilute Oxygen Test, Cathode Potential
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LOAD TIME
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841212

Figure 35. Research Cell (RC-46) Dilute Oxygen Test, Anode Polarization

The endurance test was stopped after 648 load hours because of the inability to

maintain an acceptable performance level.

The nickel impregnation of the carbon ribbed substrate resulted in a structure with

improved electrolyte wetting and improved performance stability.

RC-47 (Carbon Ribbed Substrate Anode)

The construction of RC-47 was identical to that of research cell RC-46 except that

the carbon ribbed substrate had a selectively wet-proofed layer at the catalyst-

substrate interface.

The inability to achieve a satisfactory performance level forced stopping the endu-

^^^^^ test after 280-hours of testing.
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RC-48 (Photo-Fabricated Nickel Foil Substrate Anode)

This research cell incorporates the first anode under 	 a program on a perforated,

°	 photo-fabricated nickel foil. 	 The nickel foil was a commercially available material.

•
The sample foil purchased measured 12 x 18 x 0.003 in. (30.5 x 45.7 x .008 cm)

and had a hole pattern of 0.005 in (0.013 cm) diameter circular openings with a

0.005 in. (0.013 cm) web, arranged in a square array. In order to protect the

substrate during operation in the cell, the photo-fabricated foil was gold plated. A

photomicrograph of the gold-plated foil and of a standard gold-plated nickel screen,

at the same magnification, is shown in Figure 36.

P+

Figure 36. Electrode Substrate Comparison
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RC-48 was constructed with a supported platinum catalyst anode, gold-platinum

catalyst cathode and a 20-mil (.5mm) thick advanced asbestos matrix. A 100-.nil

(2.5mm) porous nickel electrolyte reservoir plate was insta!led on the gas side of

the anode.

The initial cell performance was 0.848V at 200 ASF (215.3 mA/cm'). A dilute-

oxygen test, shown on Figure 37 at 108 hours showed that the cathode was essen-

tially activation controlled and that the deviation of the cell performance from the

Tafel curve was attributable to the anode.

105-98

Figure 37. Research Cell (RC-48) Dilute Oxygen Test Results

The performance slowly fell-off with time and the endurance test was stopped at

300-load hours due to low performance. The final cell performance was 0.821V at

200 ASF (215.3 mA/cm') and 200°F (93.30C).
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When fabricating the anode catalyst layer on the perforated-nickel foil substrate,

there appeared to be little penetration of the catalyst into the holes resulting in the

catalyst layer being confined to one side of the substrate. In RC-48, the anode

was operated with the catalyst layer adjacent to the matrix. With this cell confi-

guration, electrolyte transfer between the catalyst layer and electrolyte reservoir

plate may have been restricted.

RC-48A (Photo-Fabricated Nickel Foil Substrate Anode)

The cell construction of RC-48A was identical to that of research cell RC-48. In

the assembly of the cell, however the anode catalyst layer was next to the

electrolyte reservoir plate.

Reversing the anode catalyst layer did not improve performance. the performance

of RC-48A was lower than RC-48. The endurance test was stomped after 37 hoursF,	
of testing.

i
Test results from RC-48 and RC-48A indicate that the configuration of the perfo-

rated nickel foil is far from ideal for use as an electrode substrate. Geometric

calculations showed that the open area was less than fifteen percent which could

restrict the transport of both electrolyte and reactant gas. Further calculations

showed that by increasing the size of the holes and arranging them in a close-

' packed array, a porosity of at least fifty percent could be obtained. An order for

the revised configuration nickel-foil was placed to be evaluated in further research

cells.

RC-49 (Carbon Ribbed Substrate Anode)

Impregnation of the ribbed carbon substrate with nickel oxide, formed from thermal

decomposition of an	 aqueous	 nitrate wash coat, has	 been shown	 to	 improve	 the

wettability of the substrate.	 This procedure was employed in preparing the anode

ribbed carbon substrate in RC-49. In addition,	 in order to improve the gas supply

to the anode catalyst	 layer,	 a	 series of holes was drilled in the web of the sub-

strate.
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The endurance test of RC-49 was begun in the laboratory and attained a peak

performance of 0.875V at 200 ASF (215.3 mA/cm l ) after 16 load-hours. After

112-load hours of testing cell voltage was 0.840V At this point in the test, the

load was removed and the anode was purged with nitrogen and then exposed to

oxygen for two-minutes. On resumption of the test, cell performance was 0.864V.

The performance recovery suggests that the lower cell voltage with carbon ribbed

substrates may be due to the accumulation of oxidizable impurities on the catalyst

surface. Also, raising the anode-to-oxygen potentials may have caused the catalyst

layer to take-up more electrolyte and increase working area.

The performance history of RC-49 is presented on Figure 38.
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Figure 38. Research Cell (RC-49) Endurance Test - Nickel

Impregnated Carbon Ribbed Substrate Anode
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ii	 At 457-load hours the endurance test of RC-49 was interrupted for the-Christmas
holiday. At this point the cell was flush-filled with 23% wgt. KOH electrolyte.

Instead of returning the cell to the laboratory test facility, which can only operate
at atmospheric pressure, the cell was transferred to a commercial endurance test
bench, where the cell could be operated at elevated reactant pressure. Very good

performance has been seen on alkaline fuel cells with carbon electrolyte reservoir
plates when operated at elevated reactant pressure (reference NASA CR-165417).
The voltage fall-off with time experienced at ambient pressure is attributed to a
redistribution of the stored electrolyte which leads to increased anode polarization.

The initial performance at 200 ASF (215.3 mA/cm') 60 psia (41.4 N/cm'), and 200°F
(93.3°C) upon achieving stabilized operating conditions was 0.942V. During the

E 763-hours of testing at 60 psia (41.4 N/cm') for a total of 1250 total test hours,
kthere was no loss in cell performance. The performance at the completion of the
yJ:	 planned endurance test was 0.942V. The stable performance of RC-49 during the
t

	

	 60 psia (41.4 N/cm') reactant pressure demonstrates the suitability of the carbon
ribbed substrate anode for use in the alkaline fuel cell.

RC-50 (Carbon Ribbed Substrate Anode)

Research cell RC-50 was fabricated with a platinum-palladium catalyst layer on a
nickel oxide impregnated, carbon ribbed substrate with holes drilled through the
web to the catalyst layer. The substrate was identical to that employed in RC-49.
The platinum-palladium catalyst layer was the same as that used in the Space
Shuttle Orbiter fuel cell powerplant.

In contrast to earlier performance evaluation tests of carbon ribbed-substrate

anodes at atmospheric pressure, the performance stability of RC-50 at ambient
pressure in the laboratory test stand was very good. The initial performance was

0.896V at 200 ASF (215.3 mA/cm') and at the completion of the test at 1357 load
hours, having exceeded the 1000-hour program test goal, the cell voltage was

0.878. The performance history of RC-50 is shown on Figure 39.
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Figure 39. Research Cell (RC-50) Endurance Test

Nickel-Treated Carbon Ribbed Substrate Anode

The stable performance demonstrated during the test is an indication that the anode

polarization losses experienced with previous platinum-on-carbon catalyst layers on

graphitized ribbed substrates tested at ambient pressure have occurred at the

catalyst layer/substrate interface.

RC-51 (Carbon Paper Substrate Anode)

RC-51	 was	 built for a	 brief exploratory test to determine if	 there would be any

change in anode behavior if the platinum-on-carbon catalyst layer was applied to a

thin	 non-ribbed carbon	 paper	 and	 was	 run	 in	 conjunction with	 a nickel-treated

111-
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ribbed carbon electrolyte reservoir plate, in effect employing two carbon components

to perform the separate functions of supporting the catalyst layer and
accommodating changes in electrolyte volume.

Two variations were tested. The first with the electrolyte reservoir plate ribs
facing away from the anode and a second with the ribs facing the anode. The
latter configuration appears to be the better arrangement, but in neither case was
the performance acceptable.

A total of 166-hours of testing at 200°F (93.3^F), 200 ASF (215.3 mA/cm') and

atmospheric pressure completed.

RC-52 (Bonded Potassium Ti t:,nate Matrixi

A 95% wgt potassium titanate /506 wgt Teflon bonded was incorporated into RC-52.

A total of 2225 hours of testing at 200 ASF (215.3 mA/cm'), 200°F (93.3°C) and
atmospheric pressure. The test was stopped in order to relocate the laboratory

test facility.

The performance history of RC-52 is presented on Figure 40. The initial cell
voltage was 0.909V and after 2225 hours cell performance was 0.886V.

The performance characteristics with time of RC-52 was similar to that experienced
by RC-54 and RC-60 which contained identical electrodes. Test data from dilute
oxygen diagnostic tests conducted on RC-54 and RC-60, which are discussed later,
indicates that the voltage fall-off with time was principally due to a decrease in
cathode activity and an increase in anode polarization.

Test results from the endurance test of RC-52 indicates that the Teflon-bonded
potassium titanate matrix is stable in the alkaline fuel cell environment. In addi-
tion, the bonded potassium titanate matrix cells have consistently shown higher
performance than standard asbestos cells because of lower internal resistance (iR),
8 mV @ 100 ASF (107.6 mA/cm') for potassium titanate matrix cells compared to 11
mV for asbestos matrix research cells.
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Figure 40. Research Cell (RC-52) Endurance Test - Bonded

Potassium Titanate Matrix

RC-53 (Ribbed Nickel Substrate Cathode)

Research call RC-53 was the first cell during the program to incorporate a ribbed

nickel substrate. The substrate was machined from a nickel felt material and

subsequently coated with nickel-cobalt spinal. A 20 mg/cm' loaded gold platinum

catalyst layer was deposited on the substrate.

The endurance test was stopped after 174 hours because an acceptable performance

could not be attained.

113.
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The low performance experienced on RC-53 appears to be typical of the performance

experienced on past research cells incorporating cathode catalyst layers supported

on nickel, or nickel coated with a protective oxide film. The low performance is

attributed to a low electrical conductivity at the catalyst/substrate interface.

RC-54 (Bonded Potassium Titanate Matrix)

A 4% wgt Ltutyl rubber bonded/96$ wgt potassium titanate matrix was incorporated

into research cell RC-54.

A total of 1660 hours of testing exceeding the 1000 hours program test objective

was completed. The final cell performance was 0.889 volts at 200 ASF (215.3

mA/cm') compared to a initial v oltdoe of 0.913 volts. The performance history of

RC-54 is presented on Figure 41.

Endurance testing of RC-54 was Stopped in order to relocate the in-house labora-

tory test facility.

The performance characteristics of RC-54 were similar to RC-52, in fact, at the

shutdown of RC-54 at 1660-hours, the cell voltage was identical to RC-52 at the

same load time. Test results indicate that both the butyl rubber binder and

Teflon ID 
binder are stable for 1660 hours in a 200°F (93.3°C) fuel cell. Additional

testing will be required to verify the long-term stability of these binders in the

fuel cell environment. However, from the stand point of ease of manufacture and

mechanical strengt.. the butyl rubber bonded potassium titanate matrix may be

preferable to the Teflon a_ bonded Matrix.

RC-55 (Ribbed Nickel Substrate Cathode)

Research cell RC-55 was the first cell to operate successfully with a ribbed sub-

strate cathode. The substrate was machined from a nickel felt material, identical to

the substrate employed in RC-53, except in RC-55 the substrate was plated with

electroless gold prior to applying the cathode catalyst layer. The catalyst consisted

of gold-platinum with a loading of 20 mg/cm'.

-114-
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Figure 41. Research Cell RC-54 Endurance Test - Butyl Rubber

Bonded Potassium Titanate Matrix

The cell completed at total of 1007 hours of testing. The test was stopped upon

completion of the planned 1000 hour test.

The performance history of RC-55 is presented on Figure 42. The initial cell
voltage was 0.921V at 200 ASF (215.3 mA/cm z ) and at the completion of the test,
performance was 0.896 volts. The voltage fall-off with time on RC-55 was similar to
previous laboratory research cells incorporation of gold-plated nickel screen

substrate cathodes. There was no evidence in the test data that the ribbed nickel

felt substrate contributed to the voltage fall-off. 	 In addition the substrate
.I

'. ^	 • 115-

1



Power Systems Division FCR-6853

0	 JOO	 000	 1200	 1000	 2000

i
J
O

W
W
FJ
O
7
J

ti

appeared to be stable at cathode potentials as cell iR remained constant at 11 mV at

100 ASF (107.6 mA/cm'). An 11 mV iR is consistent with past test experience.

LOAO TIME — HOURS	 105.102

Figure 42. Research Cell RC-55 Endurance Test - Gold-Plated
Ribbed Nickel Felt Substrate Cathode

RC-55 was initially flush filled with electrolyte, it is more than likely that elec-

trolyte was stored not only in the porous nickel electrolyte reservoir plate against

the anode but also in the porous ribbed nickel felt substrate cathode. This cell

configuration should be very tolerant to reactant pressure imbalances which can

occur during the operation of the fuel cell. However, no specific tests were con-

ducted to verify this capability.	 In addition, the increased volume of stored
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electrolyte will help to extend cell life by reducing the impact of electrolyte

carbonation and the associated impact upon cell performance.

RC-56 (Ribbed Nickel Substrate Cathode)

In a brief exploratory test, RC-56 was built to determine if there was sufficient

gold on the golf-plated, ribbed, nickel felt substrate to support the cathode re-

action in the absence of a separate catalyst layer.

Unfortunately an acceptable performance level could not be established and the test

was stopped after 2-load hours.
c

RC-57 (Carbon Ribbed Substrate Anode)

RC-57 was a composite cell incorporating a platinum-palladium anode catalyst layer

-	 on a nickel treated ribbed carbon substrate and a gold-platinum cathode catalyst

layer on a ribbed gold-plated nickel felt substrate.
i

The performance history of RC-57 is presented on Figure 43. The initial cell

performance was very good, 0.907 volts at 200 ASF (215.3 mA/cm') and upon com-

pletion of the test at 500-load hours, cell voltage was 0.889 volts. The voltage

fall-off with time was similar to that experienced on RC-50 which had an identical

anode, but a gold-platinum screen substrate cathode.

The performance levels of RC-50 and RC-57 were identical at 500-hours when RC-57

was shutdown. RC-57 was shutdown to make hardware available for other planned

research cell tests under the program.

Test results indicate that the ribbed nickel felt substrate cathode is stable at

cathode ootentials, even with stored electrolyte, and does not contribute any addi-

tional diffusional loss when compared to the standard nickel screen substrate.
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Figure 43. Research Cell RC-57, Endurance Test - Carbon

Ribbed Substrate Anode

RC-58 (Gold Plated Photo-Fabricated Nickel Foil Substrate Cathote)

RC-58 was constructed with a standard production platinum-palladium catalyst anode

and a gold-platinum cathode catalyst layer on a gold-plated nickel photo-fabricated

foil. Other details of cell construction is shown in Table XIII, Section V.

The initial cell performance was very good, 0.902 volts at 200 ASF (215.3 mA/cm=).

in 938 hours of testing RC-58 had no reduction in cell voltage. The final cell

performance was 0.903 volts. The test was stopped in order to relocate the labo-

ratory test facility.
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Half-cell performance tests have revealed that the long-term performance stability of

RC-58 can be attributed to the gold-platinum catalyst employed in fabricating the

cathode. Half-cell and laboratory research cell tests have shown that 24 mil

(.61mm) diameter hole nickel foil configuration is a suitable substitute for the

100-mesh screen currently employed in making cathodes.

RC-59 (Photo-Fabricated Nickel Foil Substrate Anode)

This cell was constructed with a cathode similar to research cell RC-58 and a
i	 platinum-on-carbon anode catalyst layer on a photo-fabricated nickel foil

	

r '	 configuration substrate.

^^clI The test was stopped after 160-hours of testing because of the inability to achieve

	

;.f	 an acceptable performance level. The inadequate performance level was attributed

	

II
	 to the anode because of the very good performance stability experienced with an

identical cathode in RC-58.
F'

i
RC-60 (Bonded Potassium Titanate Matrix)

The construction of RC-60 was similar to research cell RC-54, that is, RC-60 con-

tains a standard production anode and cathode, a 51-mil (1.3mm) thick electrolyte

reservoir plate and a 20-mil (.5mm) 4o wgt butyl rubber bonded 96% wgt potassium

titanate matrix.

The purpose of the test was to evaluate the performance characteristics of the

matrix in a fuel cell operating at 250°F (121.1°C).

Research cell RC-60 was operated for the first 114-hours of testing at a cell tem-

perature of 200°F (93.3°C). The cell performance during this period was 0.905

volts at 200 ASF (215 mA/cm').
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Prior to commencing the planned 250°F (121.1°C) endurance test, performance data

was obtained at cell temperatures of 200°F (93.30C), 226°F (107.8°C) and 250°F

(121.1°C). Figure 44 shows the effect of cell temperature on RC-60 cell perfor-

mance. Increasing the cell operating temperature from 200°F (93.3°C) to 250°F

(121.1°C) resulted in a 33 mV at 200 ASF (215.3 mA/cm') increase in cell perfor-

mance which is consistent with past test experience.

0	 100	 200	 360	 400
CURRENT DENSITY — ASF	 105-1 22

Rssovo4

Figure 44. Research Cell RC-60 Performance Calibration

(96% Potassium Titanate/4$ Butyl Rubber)
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Upon completion of the performance calibration the endurance test of RC-60 at a cell

c	 temperature of 250°F (111.1°C) was begun. The performance history of RC-60 is

presented on Figure 45. The initial performance at 250°F (121.1°C) was 0.949 volts

at 200 ASF (215.3 mA/cm'). Research cell RC-60 was shutdown after completing

the program test goal of 1000-hours of operation. RC-60 completed a total of 1125

hours of testing including 1015 hours of testing at 250°F (121.1°C), 200 ASF (215.3

mA/cm') and one atmosphere.

4141	 10t	 -	 1200	 logo	 2000

LOAD TIME — HOURS	 105 -104

Figure 45. Research Cell RC-60 Endurance Test - 96% P,Itassium

Titanate/4% Butyl Rubber
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Dilute oxygen diagnostic test data indicated that the 45mV at 200 ASF (215.3

mA/cm') reduction in performance during 250°F (121.1°C) operation was made up of

the following individual losses:

•	 Decrease in cathode activity	 11 mV

•	 Increase in anode polarization 	 28 mV

•	 Increase in cell iR	 6 mV

The 11 mV decrease in cathode activity is consistent with past research cell test

experience on gold-platinum catalyst cathodes. The increase in internal resistance

(M) and a portion of the anode polarization occurred following a lengthy shutdown

when the test stand was relocated.

RC-61 (Bonded Potassium Titanate Matrix)

Research Cell RC-61 was constructed with a 95% wgt potassium titanate/So wgt

Teflons bonded matrix.

The performance history of RC-61 is shown on Figure 46. The cell successfully

completed 1135-hours of testing, exceeding the 1000-hour test goal at 250°F

(121.1 0C), 200 ASF (215.3mA/cm') and one atmosphere.

The cell performance of RC-60 and RC-61 after 1000-hours of testing at 250°F

(121.1°C) was very similar. The reduction in cathode activity was consistent with

previous test experience on gold-platinum cathodes operating at 250°F (121.1°C).

The performance characteristics of RC-61 and RC-60 are summarized in Table XVI.

The anode in RC-60 (butyl rubber bonded matrix) exhibited the greater change in

polarization compared to the anode in RC-61 (Teflon a-bonded matrix). These test

results along with weight-loss data measured in laboratory corrosion tests confirm,

as suspected, that the butyl rubber binder is less stable than the Teflon  in

aqueous potassium hydroxide at 250°F (121.1°C).

122-
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Figure 46. Research Cell RC-61 Endurance Test,
95% Potassium Titanate/5% Teflon®

Table XVI. Performance Characteristics of RC-60 and RC-61
Bonded Potassium Titanata Matrices at 250°F (121.1°C)

Performance Change(1000-Hrs)
Anode

Cell	 Cathode	 Polari-
Cell Performance	 Voltage	 Activity	 zation	 iR
(Volts of 200 ASF)	 (mV at	 (mV at	 (mV at	 (mV at

(215.3 mA/cm')	 200 ASF) 10 ASF) 200 ASF) 200 ASF)
Research
Cell

Matrix
Binder	 Initial

(215.3
1000 Hours mA/cm')

(10.7
mA/cm')

(215.3
mA/cm')

(215.3
mA/cm')

i
y RC-60 4% Butyl	 0.949 0.904	 45 10 27 5

Rubber

RC-61 5% Teflon	 0.945 0.907	 38 15 17 2

r^

r
-123-
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RC-62 (Bonded Potassium Titanate Matrix)

This research cell was constructed with a 95% wgt potassium titanate bonded 5% wgt
Tef Ion a matrix. The matrix thickness was 20 mils (0.5mm), 10 mils (0.25mm)

filtered onto each electrode.

The performance history of RC-62 is presented on Figure 47. The initial perfor-

mance of the cell was 0.912V at 200 ASF (215.3 mA/cm') and following 5110 hours

of testing, cell voltage was 0,858V. A reduction in cell voltage at low loads had

been observed in the dilute oxygen test data beginning at approximately 4000 hours

of testing. This performance response was due to a slight internal electrical short

or reactant cross-leakage, however, it did not preclude the successful completion of

the planned 5000-hour test.

A comparison of the performance characteristics of the two long-term endurance

bonded potassium titanate matrix cells is presented in Table XVII.

Table XVII. Bonded Potassium Titanate Matrix Cell Results

Cell Voltage-V @ 200 ASF
(215.3 mA/cm' )

Cell No.	 Matrix	 Initial	 Final

RC-54	 Potassium Titanate/Butyl Rubber	 0.913	 0.889

RC-62	 Potassium Titanate/Teflon 9	0.912	 0.858

RC-63 (Perforated Nickel Foil Substrate)

Research Cell RC-63 incorporated a gold-platinum catalyst layer deposited onto a

gold-plated perforated nickel foil substrate. The gold-plated perforated nickel foil

was evaluated under the program as a candidate lightweight, low-cost substitute for

the standard 100-mesh screen. The foil being employed for this evaluation, has a
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Figure 47. Research Cell RC-62 Endurance Test, Bonded Potassium
Titanate Matrix

close-packed array of 25-mil diameter holes. Other details of cell construction are

presented in Table XIII, Section V.
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The catalyst on fine-wire mesh substrate electrodes is primarily contained in the

holes between the wires, whereas, with the nickel foil, some catalyst does not

penetrate the holes, but the bulk remains as a layer on the surface. As a result

of this difference and the fact that the fine wire screens are wetted by electrolyte,

a catalyst layer on a foil substrate may show optimum performance and endurance

capability with a lower Teflon content in the catalyst layer. Therefore RC-63 was

constructed with a cathode which the catalyst Teflon content was reduced.

RC-63 successfully completed the planned 1000-hour endurance test. A total of

1171-hours of testing at 200°F (93.3"C), 200 ASF (215.3 mA/cm') and atmospheric

pressure was completed. The performance history of RC-63 is presented on Figure

48.
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Figure 48. Research Cell RC-63 Endurance Test
(Gold-Plated Nickel Foil Substrate)
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The initial performance was 0.889V @ 200 ASF (215.3 mA/cm') and at the completion

of the test, cell voltage was 0.875V. The cell voltage fall-off with time was only

slightly greater than that experienced with research cells containing standard

gold-platinum cathodes with fine wire mesh substrates.

RC-64 (Nafion(t-Based Matrix)

Microporous Nafions was evaluated as a candidate matrix material in a laboratory

research cell. The material was in the form of a translucent sheet, 50-mils (1.3mm)

thick composed of Nafion® reinforced with a Teflon fabric. The porosity of the

material was approximately 50 percent with the electrical conductivity derived pri-

marily from the electrolyte stored within the pores.

The Nafions matrix was filled with electrolyte by boiling the Nafions in water for

four hours and then exchanging the water with 23% wgt. KOH for 48 hours. This

procedure was followed because Nafions is very hydrophobic in the K * ion form.

Following this electrolyte fill procedure the sheet became clear indicating that it was

filled.

A 2 inch x 2 inch (5.1 cm x 5.1 cm) portion of the filled membrane was built into a

subscale research cell with standard production electrodes. Other details of cell

construction are presented in Table XIII, Section V.

The initial performance of the cell was very low, approximately 0.6V at 30 ASF

(32.3 mA/cm') with an iR of 180 mV at 30 ASF (32.3 mA/cm'). Varying the cell

operating temperature from 170°F (76.7°C) to 180°F (82.2°C) and the oxygen inlet

dewpoint temperature from 150°F (65.6°C) to 160°F (71.1°C) resulted in no signifi-

cant performance improvement.

At this point in the evaluation test, RC-64 was shutdown and flush refilled with

electrolyte. Following restart and upon achieving stable conditions, the maximum

performance of 0.825V @ 50 ASF (53.8 mA/cm') at a 180°F (82.2°C) cell temperature

attained. Unfortunately, this performance level was unstable and there was a

asponding increase in cell iR.
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The evaluation test was interrupted for a second time. The cell was shutdown and

a few gaskets were removed to increase pinch, and provide closer contact between

the membrane and electrodes. The cell voltage following restart was very low. At

this point the evaluation test was stopped.

A tearclown inspection of RC-64 was conducted to assist in identifying the cause of

the low performance. The electrodes showed some evidence of tenting which would

contribute to increased call iR. The membrane apparently lacks the resilience

needed to conform to the electrodes.

RC-65 (Perforated Nickel Foil Substrate)

Research Call RC-65 was constructed with a gold-platInum cathode catalyst layer

bonded with Teflon 
a 

on a photofabricated perforated gold-plated nickel foil. The

foil substrate was identical to that employed in research cell RC-633.

The performance history of RC-65 is presented on Figure 49. RC-65 successfully

completed a planned 1000-hour endurance test completing 1020-hours of operation at

200O F (93.30 C), 200 ASF (215.3 mA/cm') and one atmosphere.

In reviewing the test data, the 1000-load hour performance of RC-65 and RC-63

were identical at 0.882Y at 200 ASF (215.3 mA/cm'). Test results have shown that

the perforated nickel foil is a viable substitute for the standard fine wire screen

substrate. In addition, there was no significant difference in performance with

catalyst layer content with the nickel foil substrates.

RC-66 (Carbon Ribbed Substrate Anode)

The carbon ribbed substrate anode is a lightweight, low-cost substitute for the fine

wire electrode and nickel electrolyte reservoir plate of the alkaline fuel cell. The

primary advantage however, of the configuration is the potential weight savings.

Incorporating the carbon ribbed substrate into a standard production cell would

result in nearly a 50 percent weight savings.
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Figure 49. Research Cell RC -65 Endurance Test
Gold-Plated Nickel Foil Substrate

Research Cell	 RC -66 was	 constructed with	 a "dual-porosity"	 ribbed carbon anode

substrate without hydrogen access holes. 	 The catalyst layer consisted of	 platinum-

palladium. Other details of cell construction is presented in Table XIII, Section V.

The performance history of RC -66 is presented on Figure 50. Over the course of

the endurance test, there was l i ttle voltage fall-off. The initial cell performance

was 0.899V at 200 ASF (215.3 mA/cm') and at completion of the test at 1010 hours

the cell voltage was 0.891V at 200 ASF (215.3 mA/cm'). The performance of RC -66

at 1010 hours when ad;usted for the difference in cell iR approximately 8 MV at

200 ASF (215.3 mA/cm') was identical to the performance of RC -62, which contained

a nickel electrolyte reservoir plate and standard fine wire screen substrate, The

lower electrical conductivity of the carbon substrate results in higher cell iR.
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Figure 50. Research Cell RC-66 Endurance Test
(Carbon Ribbed Substrate Anode)

Research Cell RC-66 test results demonstrate the suitability of the graphite ribbed

substrate configuration for use in the alkaline fuel cell.

RC-67 (Carbon Ribbed Substrate Anode)

This laboratory cell was fabricated with a "dual-porosity" carbon ribbed substrate

anode and an advanced platinum-on-carbon catalyst. Details of cell construction are

presented in Table X111, Section V.
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In	 laboratw-y half-cell	 tests,	 the advanced catalyst	 appeared	 easier to wet with

electrolyte and does not require a hydra 6ne diluted	 electrolyte flush or any other

special	 technique	 to	 wet	 the	 catalyst	 layer. Research	 Cell	 RC-67 was filled	 with

electrolyte by the standard vacuum flush	 fill employed on all non-carbon substrate

anode research cells.

RC-67 completed 1300-hours of testing at 200°F (93.3°C), 200 ASF (215.3 mA/cm')

and atmospheric pressure. Test results were very encouraging as this was the

first successful test of a carbon substrate structure which did not employ any

special electrolyte fill technique.

The performance history of RC-67 is shown on Figure 51. The initial performance

was 0.892V at 200 ASF (215.3 mA/cm') and after 1300-hours of testing the cell

voltage was 0.855V at 200 ASF (215.3 mA/cm'). There was only one performance

anomaly during the test. Between 500 and 820 load hours cell voltage fell-off to

0.784V at 200 ASF (215.3 mA/cm'). At 820 load hours the cell voltage was restored

to 0.858V at 200 ASF (215.3 mA/cm') following an induced low cell potential, that

is, nitrogen was introduced onto the cathode while at low load. This procedure

may have promoted the electrolyte wetting of the anode catalyst layer.

Endurance testing of RC-67 was stopped at 1300 hours following completion of the

planned 1000-hour test.

RC-68 (Carbon Ribbed Substrate)

As an approach to reducing cell iR of carbon ribbed substrate cells, Research Cell

RC-68 was constructed with a thinner "web" cross-section substrate.

Initial cell M was identical to that of RC-66, unfortunately in the subsequent 806

hours of testing cell iR gradually increased. The endurance test was stopped at

806 hours due to increasing cell iR.

Apparently the thinner web did not provide adequate structural support in the cell

pacKage.
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Figure 51. Research Cell RC-67 Endurance Test
(Carbon Ribbed Substrate Anode)

RC-69 (Composite Matrix)

The composite matrix consists of a potassium titanate layer deposited onto an ad-

vanced asbestos layer. The asbestos layer provides structural integrity and the
high bubble pressure.

The composite matrix consists of 10-mils (0.25mm) of 95u wgt. potassium titanate 5o

wgt. Teflon  deposited onto 10-mils (0.25mm) of advanced asbestos for a total

matrix thickness of 20-mils (0.5mm). In RC-69 the potassium titanate layer is in

contact with the anode.
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RC-69 was fabricated with standard gold-platinum cathodes, platinum-palladium

anodes and a 51-mil (1.3mm) thick nickel electrolyte reservoir plate.

The performance history of RC-69 is presented on Figure 52. The cell completed a

I total of 500-hours of testing at 200°F (93.3 1 C), 200 ASF (215.3 mA/cm') and one

atmosphere. The cell exhibited a lower than expected initial cell performance of

0.894V at 200 ASF (215.3 mA/cm') compared to 0.912V at 200 ASF (215.3 mA/cm')

for Research Cell RC-62. In addition RC-69 exhibited a greater than expected

performance and subsequent voltage fall-off led to stopping the test at 500 hours.

o	 401	 Soo	 1200	 1000	 2000

LOAD TIME — HOURS	 105-111

Figure 52. Research Cell (RC-69) Endurance Test Composite Matrix
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RC-70 (Carbon Ribbed Substrate Anode)

Research Cell RC-70 was constructed with a "dual-porosity" nickel treated carbon

ribbed substrate anode with a platinum-on-carbon catalyst layer.

Initial cell performance was lower than expected at 0.862V at 200 ASF (215.3

mA/cm 2 ). For comparison the initial performance of RC-67 which incorporated the

same advanced platinum-on-carbon catalyst anode was 0.892V at 200 ASF (215.3

mA/cm2).

The endurance test was continued out to 665 hour at which time the test was

stopped because cell voltage was less than 0.800V at 200 ASF (215.3 mA/cm2).

RC-71 (Composite Matrix)

RC-71 incorporated a composite matrix consisting of 10-mils (0.25mm) of 95% wgt.

potassium titanate and 5% wgt. Teflon  deposited onto 10-mils (0.25mm) of

advanced asbestos for a 'total matrix thickness of 20-mil (0.5mm). The potassium

titanate layer was in contact with the anode.

The performance history of RC-71 is presented on Figure 53. The initial cell

performance of 0.896V at 200 ASF (215.3 mA/cm 2 ) was comparable to that experi-

enced on RC-69. The cell iR on RC-71 and RC-69 at 10 mV at 100 ASF (107.6

mA/cm 2 ) is consistent with past laboratory cell test experience.

RC-71 completed a planned 5000-hour test completing 5110 hours of operation at

200°F (93.3 0 C), 200 ASF (215.3 mA/cm 2 ) and atmospheric pressure. At the com-

pletion of the test cell voltage was 0.782V at 200 ASF (215.3 mA/cm2).

134-

3 V



C^7'I

.980

.900

.880

.800

760
4000

^t

4400	 4800	 6200	 6600	 6000

Power Systems Division
	 FCR-6853

c`
	 .900

e"

0 0.860 I 0 0 0 p O 0 O O mp 0
o	

Ir
	

O	 OJ

800 r

Ww
0.760'

	

2000	 2400	 2800	 3200	 3800	 4000

.960 r

.900 '?	
O01^.o	 Op  ^

o 0'0 cc) O O Op 0 0 0 p 0
.860

.800

760

.0	 400	 800	 1200	 1600	 2000

LOAD TIME — HOURS
10s•u2

Figure 53. Research Cell (RC-71) Endurance Test Composite Matrix
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A comparison of test results from Dilute Oxygen Diagnostic Tests conducted during

the endurance test are summarized in Table XVII1.

Table XVIII. RC-71 Dilute Oxygen Test Results

RC-71	 RC-62*

• Cathode Activity - Volts at 10 ASF (10.8 mA/cm')

Initial	 0.992	 1.000
Final (5,000-Hours)	 0.979	 0.992
Change mV	 13	 8

• Cathode Polarization mV at 200 ASF (215.3 mA/cm')

Initial	 5	 3
Final	 7	 7
Change	 2	 4

• Anode Polarization mV at 200 ASF (215.3 mA/cm')

Initial	 20	 15
Final	 100	 40
Change	 80	 25

• Cell iR - mV at 200 ASF (215.3 mA/cm')

Initial	 20	 16
Final	 32	 22
Change	 12	 6

*Baseline Potassium Titanate Matrix Cell

The results presented in Table XVI11 reveal that the majority of the nerformance

loss experienced during the endurance test was due to an increase in anode

polarization. Cathode performance was consistent with past test experience that is,

there was no significant variation in activity or polarization. Cell iR increase on

RC-71 was higher than normal, however, it was not a significant factor in overall

cell voltage loss.

The diagnostic tests do not provide any clue to the cause of the higher than anti-

cipated anode polarization. Two possible explanations for the increased polarization
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are (1) electrolyte flooding of the electrode structure with time and (2) unidentified

contamination of the electrode during the test.

Upon completion of the 5,000-hour test, the cell was disassembled and visually

inspected. There were no abnormalities observed in either the anode or cathode.

The cathode side of the matrix appeared to have a small pit which extended about

halfway through the matrix. This pit could have originated from a contaminant

which dissolved over the course of the test and shifted into the anode catalyst

layer and promoted increased electrode flooding with time.

RC-72 (Carbon Ribbed Substrate Anode)

RC-72 incorporated	 a	 nickel-treated carbon ribbed	 substrate with	 a	 platinum-on-

carbon	 catalyst anode	 layer.	 Other details of call	 construction	 are	 presented	 in

Table X111, Section V.

The initial cell performance of 0.831V at 200 ASF (215.3 mA/cm') was a disappoint-

ment.	 Cell iR at 13 mV at 100 ASF (107.6 mA/cm') although somewhat higher than

expected was not a significant contributor to lower performance. Dilute oxygen
I
Z	 diagnostic test data indicated that the majority of the lower than expected perfor-

mance to be due to increased anode polarization.

The endurance test was stopped at 237 hours due to low cell performance. Cell

voltage at the completion of testing was 0.797V at 200 ASF (215.3 mA/CM2).

RC-73 (Composite Anode Structure)

The research cell was constructed with a composite anode structure comprised of a

single porosity flat carbon substrate without ribs and an advanced plati-

num-on-carbon catalyst layer along with a standard nickel electrolyte reservoir

plate.
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Research Cell RC-73 completed 1300 hours of testing at 200°F (93.3°C), 200 ASF

(215.3 mA/cm') and atmospheric pressure. The "best" cell performance was 0.842V

and after 1300 hours cell voltage was 0.730V at 200 ASF (215.3 mA/cm'). The test

was stopped because of the inability to achieve a satisfactory performance charac-

teristic.

RC-74 (Perforated Nickel Foil Substrate)

Research Cell RC-74 was constructed with a gold-platinum cathode catalyst layer

bonded with 20% Teflon on a photofabricated, gold plated nickel foil.

The cell successfully completed a planned 1000-hour test, accumulating 1055 hours

of testing at 200°F (93.3 0C), 200 ASF (215.3 mA/cm') and one atmosphere. The

performance history of RC-74 is presented on Figure 54.

Figure 54. Research Cell (RC-74) Endurance Test
(Perforated Nickel-Foil Substrate)
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Table XIX presents a performance comparison of the three photofabricated	 nickel
P;

foil substrate cathode research cells endurance tested.

'
i

Table XIX.	 Photofabricated Ni-Foil Substrate Cathodes

Catalyst Initial	 Final Total Voltage

Teflon  Performance	 Performance Time Change
t

E

Content - %	 V/C @ 200 ASF	 V/C @ 200 ASF Hours MV

11	 RC-63	 10	 0.901	 0.875	 1171	 26
RC-65	 15	 0.905	 0.882	 1020	 23
RC-74	 20	 0.900	 0.883	 1055	 17

The test data indicates that the initial performance of the three research cells was

very similar. The data shows that increasing catalyst. Teflon a content from 15% to

20% improves performance stability.

Based upon the laboratory research cell tests, the gold-plated, nickel photo-

fabricated foil appears to be viable replacement for the expensive gold-plated, fine

wire nickel screen.

RC-75 (Perforated Nickel Foil Substrate)

In an exploratory evaluation test, Research Cell RC-75 was constructed with a

platinum-on-carbon catalyst anode with a fine wire nickel substrate. A total of 345

hours of testing was completed on RC-75.

Initial cell voltage was 0.839 V/C at 200 ASF (215.3 mA/cm') and following 345

hours of testing, cell performance was 0.841 V/C. Test results v • rify the perfor-

mance stability of the platinum-on-carbon catalyst layer. The higher than expected

voltage loss with time experienced on RC-73 appears to be associated with the

electrode substrate.
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RC-76 (Bondod CeO 3 Matrix

The research cell was constructed with a 7-mil (0.18mm) thick butyl rubber bonded

Ceria (4o wgt. butyl rubber/96% wgt. CaO 3 ) matrix. In addition the cell incor-

porated a gold-platinum catalyst cathode, a platinum-palladium catalyst anode and a

51-mil (1.3mm) porous nickel electrolyte reservoir plate.

RC-76 completed a total of 496 hours of testing at 200°F (93.3°C), 200 ASF (215.3

mA/cm') and atmospheric pressure.

Initial cell voltage was 0.900V at 200 ASF (215.3 mA/cm'). Unfortunately a greater

than expected voltage loss with time led to the test being stopped after 496 hours.

Dilute oxygen diagnostic tests and a teardown inspection indicated that the cell had

an internal electrical short. Visual inspection of the matrix, prior to commencement

of the endurance test, identified a very dense, marginal (some cracks) matrix

structure. In addition the electrolyte take-up during cell fill was lower than ex-

'`	 pected. These matrix characteristics may have contributed to the cell short.

RC-77 (Bonded Strontium Titanate Matrix)

s
	 Research Cell RC-77 was fabricated with a 6-mil (O.15mm) thick butyl rubber

bonded strontium titanate (4$ wgt. butyl/96$ wgt. SrTiO 3 ). The cell also

incorporates a gold-platinum catalyst cathode, platinum-palladium catalyst and a

51-mil (1.3mm) thick nickel electrolyte reservoir plate.

RC-77 completed 5,200-hours of testing at 200 ASF (215.3 mA/cm') at 200°F

(93.3°C) and one atmosphere pressure.

The initial cell performance was 0.881V at 200 ASF (215.3 mA/cm') and after 5,200

hours of testing cell voltage was 0.825V. The performance history of RC-77 is

presented on Figure 55.
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Dilute oxygen test data which was collected periodically during the endurance test

is summarized in Table XX.

Table XX. RC-77 Dilute Oxygen Test Data Summary

501-Hours 5122-Hours	 Change

Cathode Activity - V @ 10 ASF 	 0.988	 0.986	 -2 mV
(10.7 mA/cm')

Cathode Polarization - mV @ 200 ASF	 4	 8	 -4 mV
(215.3 mA/cm' )

Anode Polarization - mV @ 200 ASF 	 39	 83	 -44 mV
(215.3 mA/cm')

Cell iR - mV @ 200 ASF 	 20	 16	 '4 mV

The	 test results	 presented	 in	 Table	 XX	 revealed	 that	 there was no	 significant

change in cathode performance or cell iR during the endurance test. The data in

Table XX indicates that the majority of the loss in	 cell	 voltage with time is due to

an	 increase in	 anode	 polarization.	 One	 possible cause	 of	 the loss is	 that	 some

unbound strontium powder may have penetrated the anode	 catalyst layer	 causing

partial flooding of the electrode.

Strontium titanate, because of its chemical similarity to potassium titanate and test

results from RC-77, has the potential to be an alternate matrix material. Additional

matrix fabrication will be required to improve the structure. Blending the

strontium titanate with potassium titanate may be an approach to improving matrix

structure acid bubble pressure.

RC-78 (Polybenzimidazole Matrix)

Celanese Fibers Company, Rocky Hill, SC., is producing commercial grade

polybenzimidazole (PBI) fibers. PBI has been identified as a candidate matrix

material on the basis of low weight loss from corrosion tests in aqueous potassium

hydroxide (NASA CR-134818).
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The primary advantages of PBI as a matrix material are that it contains no silicon,

has a high temperature (above 250°F (121.1°C)) material stability and is fibrous,

allowing fabrication of mat-type, free-standing matrices.

Evaluation of lab-made PBI samples under NASA Contract NAS3-21257 (NASA

CR-159807) showed considerable variation in corrosion test results and variation in

the physical makeup and color of the samples. In addition, endurance testing of

research cells containing PBI matrices showed rapid voltage fall-off with time.

An exploratory test of a research cell incorporating a matrix fabricated from com-

mercial grade PBI was initiated to re-evaluate the suitability of PBI for use in the

alkaline fuel cell.

The first sample of PBI provided by Celanese was very coarse and granular. This

material even when bonded with butyl rubber did not result in an acceptable

matrix.

A second sample was requested from Celanese. This sample consisted of uncrimped

fibers approximately 1/2 inch (1 .3 cm) in length.

A matrix was fabricated by filtering a slurry of hand-cut fibers and water-alcohol

mixture onto a piece of filter paper. The PBI filter cake was dried and subse-

quently removed from the paper forming a free standing matrix, The mat formed

was 12-mils (0.30mm) thick.

The matrix was incorporated into a laboratory research c'4II. The cell, RC-78 was

fabricated with a gold-platinum catalyst cathode, a platinum-palladium catalyst anode

and a porous nickel electrolyte reservoir plate.

The performance history of RC-78 is presented on Figure 56. This cell was the

first laboratory research cell with a PBI matrix to operate for 1000-hours. The

best performance attained was 0.896 volts at 100 ASF (107.6 mA/cm'). Due to

voltage loss, the cell was not capable of maintaining a 100 ASF (106.6 mA/cm')

current density and after 1205-hours of testing, cell voltage was 0.827V at 30 ASF

(31.8 mA/cm'). The inadequate performance characteristics which precluded the
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obtaining useful diagnostic test data was suspected to be caused by contamination of

the catalyst(s) by some decomposition product from the organic fiber.

Test results were consistent with previous research cell tests of PBI matrices and

the material is unsuitable for use as a matrix in the alkaline fuel cell.
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Figure 56. Research Cell (RC-78 Endurance Test
(Lab Fabricated PBI Matrix)
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RC-79 (Carbon Ribbed Substrate Anode)

Research Cell RC-79 was the first cell in a series of planned cell tests to provide

data to help identify a carbon substrate struct!re with the most desirable charac-

teristics.

RC-79 was constructed with a gold-platinum catalyst cathode, a 20-mil (0.5mm)

thick advanced asbestos matrix and a platinum-palladium anode catalyst layer depo-

sited onto a carbon ribbed substrate.

The performance history of the cell is presented on Figure 57.
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Figure 57. Research Cell (RC-79) Endurance Test
U^	 (Carbon Substrate Anode)
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Research Cell RC-79 was rebuilt at 620 hours with new electrodes because exami-

nation of the cell at 620 hours revealed that it was excessively dry and the cause

was traced to a faulty test stand fuel flow valve. Intermittent high gas flow rates

had caused the electrolyte to dry out. The valve was replaced and the cell was

rebuilt with new electrodes.

The initial cell performance after rebuild was 0.899V at 200°F (93.3°C) and 200 ASF

(215.3 mA/cm'). The 4inal performance after 1300-hours of testing was 0.846V at

200 ASF (215.3 mA/cm').

Table XXI summarizes test data from the dilute oxygen diagnostic conducted during

the endurance test.

FI

Table XXI. RC-79 Dilute Oxygen Test Data Summary

24 Hours 1176 Hours Change

Cathode Activity - V @ 10 ASF 1.009 0.992 -17
(10.7 mA/cm')

Cathode Polarization - mV @ 200 ASF 8 5 +3
(215.3 mA/cm')

Anode Polarization - mV @ 200 ASF 19 43 -24
(215.3 mA/cm')

Cell iR - mV @ 200 ASF 22 30 -8
(215.3 mA/cm')

The data presented in Table XXI reveals that the majority of the voltage loss

during the endurance test was due to a reduction in cathode activity and an in-

crease in anode polarization.
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RC-80 (Carbon Ribbed Substrate Anode)

RC-80 incorporated a carbon ribbed anode substrate with a catalyst layer of

platinum-palladium. The matrix was advanced asbestos and the cathode was a

standard production gold-platinum catalyst layer on a gold-plated, fine-wire nickel

screen.

The cell forms part of a series of tests to evaluate substrates having different

porosities and pore spectra to identify a carbon substrate which has the most

desirable characteristics in regard to conductivity, diffusivity and electrolyte

transfer capability. In RC-80 the rib and web densities are similar.

To improve substrate wettability, the substrates were given a nickel treatment

before applying the catalyst layer.

The performance history of RC-80 is presented in Figure 58. The initial cell pei -

formance was 0.906V at 200 ASF (215.3 mA/cm 2 ) and 200°F ("93.3°C). The cell

successfully completed a planned 1000-hour test accumulating 1200-hours of testing.

The cell voltage at shutdown was 0.885V at 200 ASF (215.3 mA/cm 2 ) and 200°F

(93.3°C).

Dilute oxygen test data collected periodically during the endurance test is sum-

marized in Table XXII.

The goal of the test series, based upon dilute oxygen test data and endurance test

results will be to identify an improved carbon substrate structure.
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Figure 58. Research Cell (RC-80) Endurance Test

Table XXII. RC-80 Dilute Oxygen Test Data Summary

377 Hours 1295 Hours Change

Cathode Activity - V @ 10 ASF 1.003 0.995 -8 mV
(10.7 mA/cm')

Cathode Polarization - mV @ 200 ASF 2 7 -5 mV
(215.3 mA/cm')

Anode Polarization - mV @ 200 ASF 24 43 -19 mV
(215.3 mA/cm')

Cell iR - mV @ 200 ASF 24 26 -2 mV
(215.3 mA/cm')

-148-



	

k'	 a

Power Systems Division 	 FCR -6853

RC-81 (Bonded Polyantimonic Acid Matrix)

Research Cell RC-81 was the first cell to incorporate a bonded polyantimonic acid

matrix. RC-83 was fabricated with a standard gold-platinum catalyst cathode, a

platinum-palladium catalyst anode and a nickel electrolyte reservoir plate.

A sample of polyantimonic acid (PAA) was prepared in the laboratory from a pro-

cedure outlined in the literature. The material produced was similar in appearance

to potassium titanate powder. NASA-Lewis had suggested that PAA might be a

candidate matrix material based upon its reported chemical stability in hot aqueous

potassium hydroxide.

In this exploratory test, the matrix was formed by depositing a layer of 950 PAA/50

Teflon® onto both electrodes. The electrodes with the still "wet" matrix were

assembled into a cell and flush filled with electrolyte.

The cell was mounted an the test bench for a short performance evaluation test.

The initial open circuit voltage was low and within an hour the test was stopped.

Reactant cross pressure tests indicated that the cell had developed internal reactant

cross leakage.

To improve the PAA matrix structure and help improve bubble pressure, the next

cell (RC -82) was constructed with a PAA matrix employing asbestos as a binder.

RC-82 (Bonded Polyantimonic Acid Matrix)

This cell incorporated a free-standing fiber reinforced polyantimonic acid (PAA)

matrix. The reinforcing fiber was asbestos. The cell incorporated a standard

gold-platinum catalyst cathode, a standard platinum-palladium catalyst anode and a

porous nickel electrolyte reservoir plate.

The initial cell performance was very low at 0.850V at 100 ASF (107.6 mA/cm'). In

the subsequent 6-hours of testing cell voltage had fallen to less than 0.5V. At this

	

t	 point the evaluation test was stopped. There was no evidence from the test that

the cell was experiencing react.int cross leakage or internal cell shorting.
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There are two possible explanations for the loss in cell voltage, (1) a loss of cell

structural integrity leading to an increase in cell iR and (2) the possible contamina-

tion of either or both electrodes by decomposition products of the polyantimonic

acid.

No further research cell tests of PAA matrices were conducted under the program.

An acceptable matrix structure with adequate bubble pressure and chemical stability

will have to be fabricated before the PAA matrix can be evaluated in laboratory

research cells.

RC-83 (Bonded Potassium Titanate Matr ix)

Research cell RC-83	 was	 constructed	 to	 assist in	 identifying	 an	 electrolyte	 fill

procedure on cells	 to be	 incorporated	 into the NASA-Lewis	 Four-Cell	 Stack	 5000

Hour Test

III.

Rig 39673-1. The test summary of the stack test is	 presented	 in	 Section

RC-83 was constructed with a platinum-on-carbon catalyst anode, a butyl-bonded,

potassium titanate matrix, a gold-platinum catalyst cathode and a 51-mil thick

porous nickel elect-olyte reservoir plate. The matrix in RC-83 was from the fab-

rication lot m:de for the four-cell stack.

A preliminary fill plan was defined based upon test results from half-cell perfor-

mance tests of 1 cm x 1 cm area cathode and anode samples. Electrode samples

were immersed in dilute solutions of isopropanol and water. Following this prewet-

tin.^, setup, the samples were filled with aqueous potassium hydroxide and half-cell

tested. Test results indicated that a prewet solution of 150 isopropanol wetted the

structure sufficiently without promoting electrolyte flooding of the electrode.

RC-83 was filled with a 150 isopropanol/water solution and allowed to soak for one

hour. Following this step, the cell was flush filled with 230 wgt. KOH. A bubble

pressure measurement of the cell, showed a limit of 13 psi (9.0 N/cm').

The initial performance of the cell was low at 0.799V at 200 ASF (215.3 mA/cm').

At open circuit, a slight consumption of oxygen was observed on the flowmeter,
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which is an indication of an electrical short. The test was stopped after 184-hours

because an acceptable performance level could not be attained. The final cell

voltage was 0.821V at 200 ASF (215.3 mA/cm').

t.

A bubble pressure measurement of the cell following completion of the test showed a

limit of 12 psi (8.3 N/cm').

The isopropanol pre-wetting approach to achieve an adequate fill appears to be

unsuitable. The next cell (RC-84) was filled with electrolyte utilizing the labora-

tory hydrazine procedure employed on cells containing platinum-on-carbon catalyst

anodes.

'	 RC-84 (Bonded Potassium Titanate Matrix)

RC-84 was the second laboratory cell employed to assist in defining an electrolyte

fill procedure for four-cell stacks. Cell construction was identical to RC-83.

The cell was filled with electrolyte by following the laboratory hydrazine diluted

electrolyte fill procedure. The first step in the fill procedure is to flush the cell

with hydrazine diluted electrolyte. Following completion of the electrolyte flush,

the unit is subjected to a thermal cycle to operating temperature. The last step in

the fill procedure is to replace the hydrazine diluted electrolyte with 23% wgt. KOH.

The bubble pressure of the filled cell exceeded 21 psi (14.5 N/cm').

The initial performance was good at 0.892V at 200 ASF (215.3 mA/cm'). Following

50-hours of testing, cell voltage had remained unchanged at 0.892V. Testing was

stopped because the laboratory fill procedure was suitable for use on the four-cell

stack.

The bubble pressure of the cell at the completion of the test was 38 psi (26,2

N/cm'). The high bubble pressure verifies that the electrolyte had thoroughly

wetted the matrix, thereby providing a very adequate barrier to prevent reactant

cross mixing.
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RC-85 (Carbon Ribbed Substrate Anode)

The cell was constructed with a standard gold-platinum catalyst cathode, a 20-mil
(.5mm) thick advanced asbestos matrix, a platinum-palladium catalyst anode deposi-
ted onto a dual porosity carbon ribbed substrate.

The initial cell performance was 0.882V at 200 ASF (215.3 mA/cm') and upon com-
pletion of the test cell voltage was 0.849V at 200 ASF (215.3 mm/cm'). The perfor-
mance history of RC-85 is presented on Figure 59.

Dilute oxygen test data is summarized in Table XXII1.

LOAD TIME - HOURS
	

105.90

i	 Figure 59. Research Cell (RC-85) Endurance Test
(Carbon Substrate Anode)
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I
Table XXIII
	

RC-85 Dilute Oxygen Test Data Summary

Cathode Activity - V @ 10 ASF (10.7 mA/cm')

Cathode Polarization - mV @ 200 ASF (215.3 mA/cm')

Anode Polarization - mV @ 200 ASF (215.3 mA/cm')

Cell iR - mV @ 200 ASF (215.3 mA/cm')

166-Hours 1035-Hours	 Change

1.003	 .947	 56

	2 	 5	 3

	

39	 48	 9

	

24	 26	 2

The reduction in cathode activity was responsible for the voltage loss during the

endurance test. Teardown inspection of the cell did not identify any cause for the

loss of activity.

RC-86 (Carbon Ribbed Substrate Anode)

Two varieties of dual porosity substrate, designated as 6W and 20W were evaluated

under this program. In the 6W material the ribs are about twice as dense as the

webs whereas in the 20W material the ribs a,.d webs have similar densities. Both

types of substrates were treated with nickel to render them wettable prior to apply-

ing the catalyst layers.

The anode catalyst is 10% Pt supported on carbon at a loading of 0.5 mg Pt/cm'

electrode. The percentage of Teflon  in the anode catalyst layers and also the

sintering conditions are being varied to determine what effect these have on perfor-

mance and voltage loss with time.

RC-86 was constructed with a 10% Pt supported on carbon catalyst anode layer on a

nickel treated dual porosity carbon-ribbed substrate (20W). The cathode was a

standard production gold-platinum catalyst electrode. The matrix was 20-mil (.5mm)

thick advanced asbestos.

The performance history of RC-86 is presented on Figure 60, The initial cell

performance was 0.878V at 200 ASF (215.3 mA/cm') and at the completion of the

endurance test at 1155-hours cell voltage was 0.861V.

-153.
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Figure 60. Research Cell (RC-86) Endurance Test

(Carbon-Ribbed Substrate Anode)

A summary of dilute oxygen test data obtained during the test is summarized in

Table XXIV.

Table XXIV. RC-86 Dilute Oxygen Test Data Summary

Cathode Activity - V @ 10 ASF (10.7 mA/cm')

Cathode Polarization - mV @ 200 ASF (215.3 mA/cm')

Anode Polarization - mV @ 200 ASF (215.3 mA/cm')

Cell iR - mV @ 200 ASF (215.3 mA/cm')

Initial	 Final

(29 Hours) (1030 Hours) Change

.996	 .994	 - 2mV

5	 2	 * 3mV

31	 44	 -13mV

26	 28	 - 2mV

F

Y
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Test results presented in Table XXIV indicate that the majority of the cell voltage

loss with time was due to anode polarization increase.

RC-87 (Carbon Ribbed Substrate Anode)

RC-87 was built as a replacement to RC-85. The cell incorporated a ribbed sub-

strate anode in which the web and rib had a wide difference in density.

The cell completed a planned 500-hour endurance test. The initial cell voltage was

0.872V at 200 ASF (215.3 mA/cm') and at the completion of the test (500-hours),

cell performance was 0.844V.

A summary of dilute oxygen test data obtained during the test is presented in

Table XXV.

Table XXV. RC-87 Dilute Oxygen Test Data Summary

44-Hours 483-Hours Change

Cathode Activity - V @ 10 ASF (10.7 mA/cm') 1.004 .997 -	 7
Cathode Polarization - mV @ 200 ASF (215.3 mA/cm') 3 3 0
Anode Polarization - mV @ 200 ASF (215.3 mA/cm') 43 69 - 26
Cell iR - mV @ 200 ASF (215.3 mA/cm') 28 28 0

As expected the majority of cell voltage loss was due to anode polarization increase.

RC-88 (Carbon Ribbed Substrate Anode)

The laboratory cell was constructed with a carbon ribbed anode substrate in which
the rib and web had similar densities. The cell incorporated a standard gold-
platinum catalyst cathode, a 20-mil (.5mm) thick advanced asbestos matrix and a
platinum-on-carbon catalyst anode.
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RC-88 completed a planned 500-hour test completing 505-hours of testing at 200°F

(93.3 0C), 200 ASF (215.3 mA/cm') and atmospheric pressure. Initial cell voltage

was 0.870V at 200 ASF (215.3 mA/cm') and at co ,I + etion of testing cell voltage was

0,853V.

Table XXVI presents a summary of dilute oxygen test data obtained during the

endurance test.

Table XXVI. RC-88 Dilute Oxygen Test Data Summary

192-Hours 390-Hours Change

Cathode Activity - V @ 10 ASF (10.7 mA/cm') .995 .997 • 2

Cathode Polarization - mV @ 200 ASF (215.3 mA/cm') 7 7 0

Anode Polarization - mV @ 200 ASF (215.3 mA/cm') 48 50 - 2

Cell iR - mV @ 200 ASF (215.3 mA/cm') 26 26 0

Of all the laboratory screening tests of carbon ribbed substrates, RC-88 has

demonstrated the smallest increase in anode polarization.

RC-89 (Compound Electrode Structure)

An ex ploratory test of a new compound catalyst anode structu,^ vas undertaken to

evaluate the potential of the structure to extend the operating life of the alkaline

fuel cell.

The structure shown in Figure 61, consists of a porous carbon layer deposited on

to the matrix side of the platinum catalyst anode.

The carbon layer of the compound electrode structure is intended to perform the

function of an electrolyte purifier. Contaminants in the electrolyte resulting from

the chemical and physical breakdown of the plastic cell edge frame and the elec-

trochemical decomposition of the matrix, are to be removed in the carbon layer as

the electrolyte transfers between the cell and the electrolyte reservoir plate. By

NOW
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Figure 61. Compound Electrode Structure

removing these contaminants, which are suspected of promoting increased anode

polarization losses, cell operating life would be extended.

To evaluate this concept, RC-89 was constructed with a standard gold-platinum

catalyst anode, 20-mil (.5mm) thick advanced asbestos matrix, a standard plati-

num-palladium catalyst anode with L 3-mil (.08mm) thick carbon "getter" layer

adjacent to the matrix, and a 51-mil (1 3mm) thick nickel electrolyte reservoir

plate.

The performance history of RC-89 is presented on Figure 62. The initial cell

voltage was 0.889V at 200 ASF (215.3 mA/cm') and following 1159-hours of testing

the cell performance in 0.879V.

Cell performance was reasonably stable, however the performance level was lower

than expected. Anode polarization losses were approximately 7mV higher than

expected and are approximately 14mV higher than expected after 1159-hours of

testing. The test goal is to complete 2000-hours of operation.

A eummary of dilute oxygen test data collected during the test is presented in

Table XXVII.
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Figure 62. Research Cell (RC-89) Endurance Test

(Compound Platinum Catalyst Anode)

Table XXVII. RC-89 Dilute Oxygen Test Data Summary

Initial Present

(77-Hours) (1159-Hours) Cha nge

cathode Activity - V @ 10 ASF (10.7 mA/cm') 1.005 1.000 - 5mV

Cathode Polarization - mV @ 200 ASF (215.3 mA/cm') 7 4 + 3mV

Anode Polarization - mV @ 200 ASF (215.3 mA/cm') 23 37 -14mV
Cell iR - mV @ 200 ASF (215.3 mA/cm') 22 18 + 4mV

The endurance test continues.
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RC-90 (Carbon Ribbed Substrate Anoc'

This research cell was constructed with	 a	 loo Pt supported on carbon anode cata-

lyst	 layer on a	 nickel	 treated	 dual	 porosity	 carbon-ribbed	 substrate (20W). The

anode catalyst layer contained more Teflon 	 than the catalyst layer in RC-86. The

cell	 contained a	 standard	 gold-platinum	 catalyst cathode.	 The matrix was 20-mil

(.5mm) thick advanced asbestos.

The performance history of RC-90 is presented on Figure 63.	 The initial cell

voltage was 0.876V at 200 ASF (215.3 mA/cm') and after 982-hours of testing cell

performance was 0.865V at 200 ASF (215.3 mA/cm').

Initial dilute oxygen diagnostic tests indicated that the anode polarization for the

cell was higher than expected. However, this has improved with time and most of

the cell's voltage loss during this period is attributable to a reduction in cathode

activity. The cell will continue on endurance as long as it appears stable or until

2,000 hours is reached.

RC-91 (Carbon Ribbed Substrate Anode)

RC-91 was constructed with a 10% Pt/C anode catalyst layer deposited on a nickel

treated dual porosity carbon ribbed substrate (6W). The cell incorporates a stan-

dard gold-platinum catalyst cathode. The cell matrix is 20-mil (.5mm) thick ad-

vanced asbestos.

The initial performance was 0.846V at 200 ASF (215.3 mA/cm'). The irability to

achieve an acceptable performance level led to stopping the endurance test after

292-hours of operation.

Research cell RC-93 was fabricated as a replacement to this cell.

c
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Figure 63. Research Cell (RC-90) Endurance Test

(Carbon-Ribbed Substrate Anode)

RC-92 (Bonded LiCoO, Matrix)

A matrix comprised of 96% wgt. LiCoO, 49. w9t. butyl rubber was tested in RC-92

with standard platinum-palladium catalyst anode and gold-platinum catalyst cathode.

Initial performance of the cell was low due to a very high iR. After only a short

period of testing reactant cross leakage developed and the test was stopped. In

the forms supplied, neither LiCoO, nor SrZrO, are suitable matrix materials for use

in base cells.

-160-

O



^'	 I

Power Systems Division FCR-6853

F	 ^
F	 ^

W

G h

4

S-.

P r̂!
f

RC-93 (Carbon Ribbed Substrate Anode)

The cell incorporated a 10% Pt/C anode catalyst layer deposited on a nickel-treated

dual porosity carbon-ribbed substrate (20W) and a standard gold-platinum catalyst

cathode. The cell contains a 20-mil (.5mm) thick advanced asbestos matrix.

A total of 141-hours of testing has been completed. Cell voltage at 141-hours is

0.852V at 200 ASF (215.3 nrA/cm'). The endurance test continues.

CARBON-RIBBED SUBSTRATE PERFORMANCE SUMMARY

An appreciable data base has now been developed to allow the identification of some

general conclusions -egarding the suitability of carbon substrates as a substitute

for gold-plated screens at the anodes of hydrogen/oxygen fuel cells employing

potassium hydroxide electrolyte. Significant test results from the carbon substrate

evaluation are presented in Table XXVIII.

Table XXVIII. Carbon-Ribbed Substrate Performance Summary

_ Performance (@ 200 ASF)

Research Anode Initial 1000 Hr A

Cell	 No. Catalyst Substrate (mV) (mV) (mV)

(Typical) Pt/Pd Screen 906 892 14

50 Pt/Pd Single Porosity 896 882 14

79 Pt/Pd Dual Porosity C (6W) 899 846 53

80 Pt/Pd Dual Porosity C (20W) 906 885 21

(902)	 - Average

46 Pt/C Single Porosity C 875 818 57

85 Pt/C Dual Porosity C (6W) 882 849 33

86 Pt/C Dual Porosity C (20W) 878 863 15

90 Pt/C Dual Porosity C (20W) 878 866 12

(878) - Average
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All of the cells had standard gold-platinum screen cathodes, xnerefore the differ-

ences in performance and stability are due to differences between the anode

configurations.

Performance - Cells with Platinum-Palladium anode catalyst layers initially perform

better than the cells with Platinum-on-Carbon catalyst layers. However, endurance

testing of stacks incorporating 0.508-ft' (471.9 cm') active area Platinum-on-Carbon

catalyst anode cells have demonstrated long-term performance stability. The

difference in initial performance is about 24 mV at 200 ASF (215.3 mA/cm') and is

independent of the substrate. This simply reflects the higher area of platinum in

the Platinum-Palladium anodes relative to the Platinum-on-Carbon anodes, that is 10

mg Pt/cm' at 25 m'g 1 versus 0.5 mg Pt/cm' at 100 m19-1.

Stability - Approximately half of the cells lost about 14 mV during the first 1000

hours of operation. The main component of this voltage loss was an increase in

anode polarization. This loss occurred with both Platinum-Palladium 'and Plati-

num-on-Carbon catalyst layers on a variety of substrates.

Cells with the 6W anode substrate showed much higher voltage loss rates. This

dual porosity substrate, with dense ribs, appears to cause increasing diffusion

losses with time.

The single porosity and 20W dual porosity substrates are showing promise as poten-

tial low-cost substitutes for the gold-plated screens and porous nickel ERP's used

at the anode in present base cell powerplants. Additional work is needed to

develop a substrate with a smaller mean pore size which will resist electrolyte

expulsion during launch. Tolerance to electrolyte volume swings also needs to be

demonstrated.
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United Technologies has demonstrated reduction to practice for the alka l ine tech-

nology by the Apollo fuel cell oowerplant and the fuel cell powerplants for the

Space Shuttle Orbiter.

All of these delivery powerplants, Apollo, and Space Shuttle met firm specification
a .	 requirements and operated: successfully in spacecraft.

Apollo

In 1959 United Technologies ran a full-scale power section with Bacon-type cells.

The test installation is shown in Figure 64.

MI- 800 PSI (276E61 N/cm 2 )	 400.500°F (204.2600C)

(FC7086)

Figure 64. Bacon Fuel Cell Stack (1959)
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In 1962 the first PC-3A fuel cell powerplants in flight configuration were delivered

under the Apollo program. The Apollo fuel cell powerplant was qualified for man-

ned space flight in 1965 and 92 production powerplants were delivered by 1969.

The Apollo fuel cell powerplant is shown in Figure 65. The nominal rating was 1.5

kW at 28 volts with an overload capability of 2.3 kW. The power plant weigh";d 241

Ibs (109 kg) and was furnished with shock mounts within the cylindrical support

skirt. Three PC-3A powerplants installed in the Command and Service Module

provided the primary source of electrical power , for the Apollo missions.

Figure 65. Apollo Fuel Cell Powerplant

The flight experience with the Apollc. powerplant is summarized in Figure 66. More

than 10,000 hrs of flight time were logged on 54 powerplants during 18 missions

during the Apollo, Apollo-Soyuz, and Spacelab programs.
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Figure 66. Apollo Fuel Cell Powerplant

Space Shuttle Orbiter Powerplan ts

The technology for the Space Shuttle fuel cell powerplants was established by the

DM-2 powerplant which was developed and demonstrated under a Technology Demon-

strator program conducted for the Johnson Space Center. Figure 67 summarizes the

rbsults of a 5,000 hr test of the DM-2 powerplant at Urited Technologies facility.

This test includes 31 simulated missions. The powerplant was shut down, cooled

down, and restarted for each mission and operated to a variable load profile. The

Demonstration started on August 8, 1972 and was completed in eight month; , on

March 10, 1973. No maintenance was conducted on the powerplant during this

demonstration. The powerplant was refurbished with a new power section and new

bearings in the hydrogen pump and delivered to Johnson Space Center where

another 5 1 000-hour test was completed without maintenance.
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• 5072 HOUR TEST TO ORBI1 ER
LOAD PROFILE

• NASA-REQUIRED WATER QUALITY
FOR ENTIRE TEST

• 21 SELF•ENERGiZED STARTS

Figure 67. Shuttle Prototype Powerplant Endurance Test

In addition during the DM-2 powerplant program two, six-cell power sections were

endurance tested, accumulating 10,000 and 10,500-hours of operation as shown on

Figure 68, and a hydrogen circulation pump was tested for 10,000-hours.
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Figure 68. 10,000 Hour Power Section Tests
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Three PC17 fuel cell powerplants provide the only source of electrical power on

board the Space Shuttle Orbiter.

Figure 69 shows the Orbiter powerplant. The Orbiter powerplant has a nominal

maximum power rating of 12 kW with an emergency overload rating of 16 kW. The

Orbiter powerplant is smaller than the Apollo powerplant and delivers eight times

the power. The Orbiter powerplant does not require shock or vibration isolation

and is hard mounted to the vehicle structure.

N N-10462)

Figure 69. Orbiter Fuel Cell Powerplant

The Orbiter fuel cell program started in January 1974. 	 The first development

powerplant test started in October 1975. Three development powerplants accu-

mulated 8770 hours of test including accelerated vibration and operation in a simu-

lated space vacuum.

The Orbiter fuel cell powerplant was qualified for manned space flight in June 1979.

A 2000 hour qualification test including ten mission cycles and 60 start/stop cycles

was completed in January 1980.
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Service experience with the Orbiter fuel cell powerplant is summarized in Figure 70.

A total of 6400 hours have been accumulated on fourteen powerplants installed in

the Orbiter Space Crafts "Enterprise" and "Columbia" and "Challenger". The

service experience includes eight flights during the Approach and landing Tests

fr,.m May to October 1977 and the first Orbital flight of STS-1 in April 1981. 

• 6400 HOURS ON 14 FUEL CELL
POWERPLANTS

• "ENTERPRISE"
• 8 APPROACH AND LANDING FLIGHTS

• 212 HOURS
• "COLUMBIA"

• 6 TEST ANU OPERATIONAL FLIGHTS
• 3473 HOURS

• "CHALLENGER"
• 6OPERATIONAL FLIGHTS

• 3355 HOURS
• "DISCOVERY"

• 2 OPERATIONAL FLIGHTS
• 1405 HOURS

(WC N-8986)

Figure 70. Service History

In-House Demonstrator Powerplants

The PC88 series of powerplants was developed under in-house sponsored programs

to improve upon the Apollo powerplant in the areas of performance, start-up

characteristics, operating characteristics, endurance and powerplant weight. The

PC88 powerplants are shown in Figure 71.
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Figure 71, PC8B Demonstrator Powerplants

The PCBB-1 was the first powerplant incorporating low-temperature, matrix-type
alkaline cells configured for a space application. Cell active area of 0.4 ft'
(371.6 cm') was the same as Apollo. The PC8B-1 retained the Apollo ancillaries
and mounting structure.	 The PC8B-2 was identical to the PC8B-1 except the
interface panel and mounting structure were modified for compatibility with the Air
Force Manned Orbiting Laboratory.

In 1969, the PCBB was repackaged with a stack of 0.508 ft' (471.9 cm') active area

cells. Designated the PCBB-3, this powerplant was operated as an in-house
demonstration unit for more than a year, accumulating 97 starts and more than 6000
hours on reactants. With an improved cooling system, its power rating was raised
from 2.5 kW to 5 kW and it was designated the PC8B-4.

The 5 kW PC8C was built in 1971 with a stack of 0.508 ft' (471.9 cm') active area
cells of the high power density type. This cell configuration was developed in the

P	 late 1960's in Air Force and interr,dl research and development programs. Originally
rl
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developed for operation at very high current den ities, typicolly 3000 ASF (3229

mA/cm'), the cell was found to have superior endurance as w,-M. Endurance test-

ing of this -,ell ,;onfiguration in a National Aeronautics and Space Administration

Lewis Research Center Program 6emonstrated over 11,000 hours Ot operation and a

s.r:a*tale laboratory cell in an internal research and develoFmPnt program exceeded

35,000 hours of testing.	 This cell configuration has been employed in all subse-

quent low-temperature alkaline fuel cell powerplants. The PC8C was used as an

in-house demonstrator powerplant for nearly two years. During this periud it accu-

Millated 100 self-energized starts.

The X712 in-house demonstrator powerplant, Figure 72, was similar to the DM-2

powerplant but incorporated a power section of 36, 0.508 ft' (471.9 cm' ) active

area cells with a higher performing gold-platinum cathod,: catalyst replacing the

platinum cathode catalyst employed on the DM-2 cell.

X712 has a greater capacity coolant system than the DM-2, giving it a continuous

output rating of 15 kW. X712 has been emploved as a demonstrator poi,,erplant for

four years accumulating 115 self-energized starts.

Figure 72. X712 Demonstrat-)r ?owerplarit
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Lightweight Fuel Cell Powerplant

A lightweight 3.5 kW fuel cell powerplant shown in Figure 73 was developed under a

program sponsored by NASA-George C. Marshall Space Flight Center. The design

is based upon the advanced technology lightweight fuel call which operates witn

passive water removal developed under the Lewis Research Center program.

Passive water removal operation eliminates the requirement for a dynamic hydrogen

pump water separator thereby allowing a powerplant design with reduced weight,

lower parasite power, and a potential for higher reliability and ex^.nded endurance.

The lightweight fuel cell powerplant design was based upon the requirements of

advanced space missions siich as Space Tug and Orbital Transfer Vehicle.

The Marshall program culminated in the fabrication of a 24-cell lightweight power

section, Figure 74, which has completed a 2000-hour performance demonstration test

under the Lewis Research Center Program.

('NC N-6336 )

Figure 73.	 Lightweight 3.5 kW Fuel Cell Powerplant
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Figure 74. Lightweight Fuel Cell Power Section

Under :he MSFC progra+n, o./e-" 8,800-hours of endurance testing of two-cell

modules, the basic repeating unit of the power section was completed. These tests

confirmed that the lightweight ce:l design will:

•	 Satisfy the 2,500-hour voltage requirement of the Lightweight Fuel Cell

rc,va!rplant Design.

•	 Operate with propeilent purity reactants with no significant impact upon

cell performance.

A complete summa ry of the work completed under the Marshal+ Space. Fli^_,ht Center

program is presentej in reference 7.
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