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ABSTRACT

This report is a supplement to the Cubic Interim Report TR/209-1

entitled "Trade-off Between Land Vehicle Antenna Cost and Gain for

Satellite Mobile Communications." This report contains further studies

for design and cost reduction of the 1x4 array and the conformal array.

Costs and designs of several antenna pointing techniques are reported.
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1.0
	

SUMMARY

The cost and performance for the mechanically scanned 1x4 planar array and

mechanically scanned conformal array were developed further. 	 Several methods

for accomplishing the antenna pointing were investigated in depth. 	 The per-

formance and costs are summarized in Tables 1.0-1 and 1.0-2.
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TABLE 1.0-2

c

POINTING SYSTEM

GYRO AIDED
MONOPULSE COMPASS AGC AGC COMPASS

Acquisition Time
Typical 15.1	 s-c 5.1	 sec 16.4 sec 6.3 sec

Minimum 0 0 16.4 1.3 sec

Reacquisition Time
Typical 5 sec 0 sec 5 sec 1.3 sec

Minimum 0 0 0 0

Tracking
Rate 360/sec 36°11sec 36°/sec 36°/sec

Acceleration 24°/sec 240/sec 24°/sec 24°/sec

Accuracy - Peak 20 450 100 100

Accuracy - Typ. o.50 7.50 60 60

Robustness in Fading Excellent Excellent Poor Fair

and Shadowing

Other Factors Limit- Magnetic

ing Performance Declination

Antenna Type
Applicability All All All All

(mechanical	 scan only)

Half--Duplex Yes Yes With pilot Yes
channel

Kulti-Satellite Yes No Yes	 (#1) Yes	 (#1)

Complexity of Hard-
ware and Interfaces 7 5 6 7

(1-10)

Unit Cost -	 10,000's 499. 454. 454. 464.

100,000's 436. 391. 391. 401.

Installation 6 8 5 8

(1-10)

User Interfaces No Yes No No

(Note #1:	 Possible isolation problems due to accuracy limits)
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2.0	 STUDY OBJECTIVE

The objective of this study is to perform detail design studies, cost analysis

and laboratory tests on selected antenna and antenna pointing concepts. 	 The

antenna gain requirement is 10 dBic minimum. 	 The required antenna isolation

for two satellite located at 105 0 W and 135 0W is 25 dB minimum.	 The studies

are to include the following.

2.1	 2X5 Mechanically Steered Array.	 The linear array is to bz studied

for this application.	 A partial or complete array is to be constructed to

determine antenna performance. 	 Several techniques for reducing radiation °t

the horizon and below are to be studied including surface corregation, impea

ance surfaces and edge modifications.	 Provide updated isolation data for the
{

multisatellite systems. 	 Identify major cost drivers and total cost in fabri-

cating this antenna in quantities of 10,000 and 100,000 units.

2.2	 1X16 Rinc Array.	 Construct a partial ring array/ and determine the

operating characteristics of the full ring array. 	 Study phase shifting

techniques, determine antenna performance, and provide updated isolation for

the multiple satellite case.	 Identify cost drivers and determine the unit

cost for 10,000 and 100,000 units.	 This portion of the study was cancelled

under JPL's instruction..,.

2.3	 Mechanicallyy teered Low Profile Conformal Array. 	 Investigate the

performance characteristics of the low profile conformal array.	 Determine

major cost drivers and total cost in fabricating this antenna in quantities of

10,000 and 100,000. Provide multiple satellite isolation data.

-4-
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2.4	 Pointing Systems. 	 Identify various low cost and accurate pointing

concepts and techniques for pointing the antenna main beam for the following

satellite scenarios:

• Single geostationary satellite at -105 0W

• Two geostationary satellites at -135 and -105°W with both satel-

lites in a common frequency band but opposite polarization sense.

Each vehicle is to communicate with one satellite while discrimina-

ting against the other.

• Three satellites located at -75 0 , -105 0 , and -135 0W with the center

satellite operating with opposite polarization sense to the other

satellites.

f
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3.0	 2X5 MECHANICALLY STEERED LINEAR ARRAY

3.1	 Array Construction and Test. The array elements studied for potential

use in the 2x5 array were a modified cavity backed crossed slot and the square

microstrip patch as shown in Figure 3.1-1 and 3.1-2.	 The first element to be

evaluated was a heavily dielectrically loaded 4-inch square crossed slot. 	 The

element patterns shown in Figure 3.1-3 are broad, having approximately 120 de-

grees - 3dB beamwidth and have good circularity.	 The first attempt to array

these crossed slots showed the elements broad beamwidti, to be an undesirable

trait.	 The low gain achieved with such a broad beam indicated a need for at

least eight elements. Two methods for arraying the eight elements were investi-

gated - staggering one antenna behind the other and stacking one above the

other.	 Staggering has the advantage of being low profile while stacking the

elements is desirable because there is no blockage problem.	 The attempts made

at staggering the elements were not successful due to blockage problems.

Stacking these broad beam elements was fairly successful and elevation patterns

were recorded in Figure 3.1-4 indicating that eight elements arrayed in this

manner could supply the required gain (10 dBic). 	 The use of a patch antenna

was investigated with the intent of decreasing the cost of the antenna by having

fewer more-directive elements. 	 Figure 3.1-5 shows the patch's half power beam-

width is approximately 60 degrees. The first results indicated, that due to its

increased directivity, one patch had nearly the same pattern characteristics as

a pair of stacked four crossed slots.	 A 1x4 element array of patch antennas

spaced eight inches apart was constructed as shown in Figure 3.1-6. 	 The array

had sufficient gain and a broad enough elevation plane beamwidth to supply the

required elevation coverage from 20 to 60 degrees without elevation steering.

The cost advantages of this type array over the eight element cross slot a:-ray

led to focusing all further study objectives on this four element array.

l

r)
s
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3.2	 Surface Corrugation Stuff.	 The surface corrugation study initially

l
focused on construction of a corr4nated ground plane that would cause a reduc-

tion in the vertically polarized component of the antenna's circularly

polarized field.	 The corrugation caused a decrease in the "on the horizon"

pattern coverage but did so with too great a reduction in the coverage at 20

degrees. The lack of a sufficiently steep slope to the fall off caused by the

corrugation raised doubts about its potential use for this application. 	 The

antenna (1x4 array) has an axial ratio of approximately 3dB "on the horizon"

which indicates that a successful technique for achieving the fall off would

need to cancel both the vertically and horizontally polarized fields. 	 A

technique for achieving this fall off was developed. 	 This technique takes a

portion of the radiation from the antenna and passes it through a dual

polarized phase shifter to cancel some of the radiation on the horizon. 	 The

dual polarized	 phase shifter is a ridge-loaded waveguide whose shape and

length is tailored to provide the desired cancellation. 	 This technique was

successfully tested using the 10 element array shown in Figure 3.1-5. 	 The

radiation pattern in Figure 3.2-1 shows that the drop off can be improved by

up to 10 dB using this technique. 	 Figure 3.2-2 shows the effect of the wave-

guide with respect to axial ratio.

3.3	 Satellite Isolation. Contour plots were made of the 1x4 array radia-

tion patterns using co- and crossed polarization.	 Satellite pointing angles

for various geographic extremities of CONUS were computed in Table 3.3-1 and

included on the contour plots to illustrate the range of isolation between

satellites which is achievable.	 The three satellite case presents potential

isolation problems with both co-polarized and cross-polarized interference

signals.	 Therefore, an accurate assessment of the isolation situation

IC`	 requires analysis of both co- and cross-polarized contour plots. Figure 3.3-1

- 13 -
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'

TABLE	 3.3-1 *CUBIC

0s = -75' 0s = -105° 0s = -135°
SATELLITE =1 SATELLITE #2 SATELLITE #3

LAT LONG 75° W Long_ 105° W Lon g 135 0 W Long

ee ge Go 00 go 0o go 0o

Key West 250 -82° 60° -163° 51° +135° 25° +108°
FL

East Port 45 • -67° 38° +169° 26° +132° 1° +106°
ME

Penasse 49.5° -95 0 300 -154° 32° +167 0 22 0 +132°
MN

Cape Flatters 49° -125 0 17° -122 0 31 0 -154 0 33° +167°
WA

Imperial
Beach	 CA

32.50-1170 31 0 -121° 500 --1580 47 0 +1490

Broxnsville 25.5° -97.51 51 0 -136° 59° +163 0 39° +119°
TX

z

- 16 -
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is a co-polarized countour plot; the trapazoidal regions shown represent rela-

tive pointing angles to the non-desirable co-polarized satellite. 	 The rela-

tive pointing angles were computed assuming the mobile antenna to be well

pointed in the direction of the primary satellite. The figure shows that when

the mobile antenna's main beam is pointed toward the 135° W. longitude satel-

lite the pointing angle to the 75° W. longitude satellite (represented by the

area marked -75) is such that the antenna's gain (with respect to peak) is

plot that

two areas

beam is

represent

he mobile

down by more than 18 dB.	 Figure 3.3-2 is a cross-polarized contour

shows isolation between satellites of different polarizations.	 The

marked -75 and -135 are applicable when the mobile antenna main

pointed at the 105 0W. longitude satellite, and the areas marked -105

relative pointing angles to the 105 0 W. longitude satellite when t

antenna is tracking the -75° or -135° satellite.

The data presented shows the percentage of CONUS that will experience a given

magnitude of Isolation.	 It was believed that amplitude tapering of the array

would generally improve the isolation by reducing sidelobes. However, because

of the small angular separation in the three satellite case isolation suffers

due to broadening of the main beam associated with tapering. 	 Figures 3.3-3

and 3.3-4 show the two satellite cases for -80°/-113° and -105°/-135° satel-

lite locations.	 In this case tapering the amplitude distribution will

increase isolation. 	 Again trapezoidal areas represent the look angle to the

secondary satellite when the main beam of the mobile antenna is pointed at the

primary satellite. These look angles were calculated for the CONUS Geographic

extremes and marked accordingly. 	 The lines on the plots represent gain with

respect to peak gain of the array, which occurs at approximately 45° in eleva-

tion.

- 18 -
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Differences in elevation look angle for different CONUS locations must be

t
adjusted for loss in gain due to elevation gain dropoff, because "gain with

respect to peak" isolation numbers assume all signals are received on the peak

of the main beam (at 45° elevation). The plots can be compensated for this

effect by subtracting the number listed with the CONUS location from the "with

respect to peak gain" number read from the plot. 	 For example, on Figure

3.3-3, when the main beam of the mobile antenna is pointed at the -1130

satellite the isolation in Maine from the -80 0 satellite is -18 — (-3) =

-15 dB.	 Because the elevation look angle to the 113 0 satellite in Main is

approximately 25° or 3 dB below the peak gain (45°). 	 The two satellite case

was studied for optimum satellite location. 	 This -85°/-110° satellite scena-

rio is shown in Figure 3.3-5. 	 It provides 18 dB isolation over the majority

of CONUS and may be improved with amplitude tapering to perhaps 20 dB.

- 22 -
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4.0	 MECHANICALLY STEERED CONFORMAL ARRAY

The earlier report described a fully electronic steerable conformal (0 inches

height) array.	 This array had phase shifters at each element and as a result

was very expensive.	 An alternative to that design is to make a conformal

array and mechanically steer the beam by rotating the antenna. 	 The elevation

pattern is shaped by the basic element pattern and fixed phase feeding of the

antenna through a stripline network to produce a beam maximum at about 40

degrees.	 The radiating structure is sketched in Figure 4.0-1. The peak gain

will be 13 dB, while the gain at 20 and 60 degrees elevation anqles will be

9 dB.	 Preliminary pattern work shows that by tilting the array elements an

axial ratio of 4 dB may be achievable at 20 degrees above the horizon. Figure

4.0-2 shows an elevation pattern for one element on a three-foot circular

ground plane.	 The circular aperture will result in lower sidelobe levels.

The result will be satellite isolations of 18 dB.

- 24 -
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5.0	 ANTENNA BEAM POINTING

Several methods of acquiring and tracking the satellite were studied. 	 Each

system is described in detail and the advantages and disadvantages of each

system outiined.	 Price models were made in cases where the system is practi-

cal. The antenna pointing techniques presented in the report are:

o	 The open loop magnetic compass

o	 The AGC method.

o	 The closed loop pseudo monopulse

o	 Unaided

o	 Compass aided

o	 Rate gyro aided

o	 Using a separate receiver.

5.1	 Open Loop Magnetic Compass. A block diagram of the open loop magne-

tic compass is shown in Figure 5.1-1.	 In the figure, the compass is mounted

on the car.	 Compass output is a voltage proportional to the angle of the

antenna car heading relative to indicated magnetic north.	 The desired satel-

lite position is chosen from a control indicator located on the front panel of

the transceiver. The difference between the output of compass voltage and the

satellite position potentiometer voltage is an error voltage which is ampli-

fied and used to turn the antenna to the desired position. 	 When the desired

position is reached, the error voltage goes to zero and the antenna stops.

The satellite position knob is then adjusted to peak the receiver's AGC

voltage by visually observing the AGC voltage read out on the front panel of

the transceiver.	 The advantages and disadvantages are summarized in the

following.

- 27 -
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5.1.1	 Advantages.

o Requires no signal acquisition or tracking

o Independent of fading

o Independent of signal level

o Adequate accuracy when compensated

o Rapid alignment after turn on.

o No problem with satellite selection

o Mature technology.

5.1.2 Disadvantages.

o Error can result from vehicle acceleration (starting, stopping,

turning, or due to rough roads).

o Requires compensation of declination (+ 20 degrees across CONUS).

Compensation is a function of longitude and latitude.

o Requires compensation for installation. Local magnetic fields

can introduce error. Installation may require "compass

turning" for each installation.

o Compass may require gimbal mounting to prevent error due to

tilt resulting from uphill/downhill travel.

o Compass and electronics may require shielding from transmitter

and/or power supply magnetic effects.

o A few locations have anomalies which produce large errors.

o May require compensation of northerly turning error due to

vertical component of earth's magnetic field (Compensation a

function of latitude).

o lack of pointing accuracy will reduce isolation.

- 29 -
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5.1.3	 Compass Accuracy.	 The concern over the compass accuracy led to a

detailed study. The areas that 	 -e investigated were as follows:

1. Transient Road Errors:	 Road testing at various speeds and direc-

tions:	 noting the errors induced when passing under an overpass or bridge;

noting the errors when passing close by large trucks, railroad trains and

heavy traffic;	 and noting the effects when transversing long steel bridges

and passing directly over railroad tracks.

2. Dynamic Errors: Errors created in stopping, starting and accelera-

tion, response around curves and rough roads.

3. Vehicular Induced errors: Required compensation due to vehicular

induced errors, differences with various vehicles, and placement of the com-

pass unit on the vehicles.

A compass used to control the position of a shaft was used for this investiga-

tion. The compass is contained in the course setter.

The Test Equipment used is outlined in the Figure 5.1.3-1.	 A photograph of

the equipment installed in a car is shown in Figure 5.1.'-2.

5.1.3.1	 Transient Road Errors. 	 Dynamic transient road errors were recorded

at various highway speeds, conditions and directions. Errors observed as the

result of heavy traffic were concluded to be nill. Errors observed passing in

the close proximity of large trucks were concluded to be nill.	 A loaded

passing railroad train in close proximity to the test vehicle had little or no

effect on the compass sensor. 	 An exception occurred by a large trailer con-

taining a large piece of earth moving equipment causing an offset of the com-

pass by approximately 10 degrees.	 Little or no deviations were observed when
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passing under a bridge or overpass at normal highway speeds.	 A 5-8 degree

deviation was observed when passing over a bridge or overpass.	 An exception

occurred on a long steel bridge, such as the San Diego Coronado Bay Bridge,

which caused the compass to wander 20-30 degrees while transversing the

bridge. When crossing over a railroad overpass, the compass would momentarily

deviate 30-40 degrees.

5.1.3.2	 Dynamic Errors.	 Starting and stopping the vehicle engine created

problems when the sensor was in the close proximity to the engine. 	 After

starting the engine, and at engine idle, the compass would offset or deviate

approximately 10-20 degrees. Once the vehicle was traveling at normal highway

speeds, this error would disappear.

A compass unit was gimbled for a +15 degree inclination and operated satisfac-

torily under these conditions. 	 Compass sensor would follow slew rates up to

30 degrees per second per second.	 Normal stopping and starting had little or

no effect.

The final conclusion was that under normal highway conditions, the compass

tracked approximately 95 percent of the time.

5.1.3.3	 Vehicular Induced Errors.	 An aircraft compass rose, located at

Montgomery Field airport was used as a reference for determining vehicle

mounted compass alignment. Typical vehicle induced errors are shown in

Figure 5.1.3-1. Vehicular induced errors can be reduced by magnetic compensa-

tion. The compass sensor must be equipped with magnetic compensators; the set

of compensators is for the north/south alignment, the other set of compensa-

tors is for the east/west alignment.	 The vehicle would be required to head

north, adjusting the compensators and subsequently east, south, and west - and
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finally, points in between. 	 Testing indicated that different vehicle models

were not alike.

The cost and methods for alignment would reflect in the Customer's installa-

tion charges.	 The time required for this adjustment is approximately 15

minutes which would add approximately 10 dollars to the price of the

equipment.

5.1.4	 Conclusions. With accuracies of +7.5 degrees and peak accuracies of

+45 degrees, the open loop compass would have situations where communication

would be seriously impaired. Even though it might be brief, the user would be

disconcerted with these outages.	 In some cases, the pointing accuracy to the

satellite will require greater pointing accuracy than that obtained with the

compass to provide a high degree of isolation.

5.2	 Antenna Pointin g Tg hrouyh Use of AGC.	 The receiver AGC provides a

measure of signal strength at the receiver. 	 The receiver signal strength

varies as a function of multipath fading and antenna pointing error. 	 The

receiver AGC signal can be used as an indication of signal presence (see

Figure 5.2-1). The antenna azimuth 3dB beamwidth is 20 0 with a 1dB beamwidth

of approximately	 11.5°.	 To develop an antenna pointing signal, an error

signal for the antenna servo system must be developed. 	 The servo control

error signal ideally requires both magnitude and sign. 	 Magnitude is required

so the servo can drive rapidly for large errors or more slowly 	 for small

errors.	 Sign is required so the servo knows which way to drive. 	 The ACC

signal provides a low resolution magnitude signal without sign.
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Sign or direction sense can be obtained from the rate of change of AGC

voltage. This can be implemented in one of two ways: dither the antenna about

beam center or include a memory of last AGC voltage and antenna position.

Dithering or moving the antenna about the beam center is the standard conical

scan technique used in directional antennas.	 The need to move the antenna

over a large angle before a change of signal level can be detected (1dB BW of

11.5°) makes dithering the antenna unaesireable.

Use of memory is a method where signal level is sampled and stored along with

a reference antenna position. If the signal level drops the antenna drives in

the direction last remembered as a larger signal while taking new signal level

measurements. If the signal level increases then the antenna continues moving

in that direction.	 If the signal level decreases the antenna reverses direc-

tion and seeks out the point at which the largest stored value was obtained.

This procedure might be described as a low, digital dither.

The use of AGC as an antenna pointing signal results in some problems:

Signal strength is a function of multipath fading as well as antenna' pointing

accuracy.	 When using AGC alone for antenna control, the control loop cannot

separate signal fading from antenna pointing error. 	 This could confuse the

control signal sign, direction of error correction, and lead to loss of the

signal diring vehicle turns.

The wide beamwidth and low sensitivity of the antenna control loop could

result in low pointing accuracy. 	 While a 6 0 pointing error results in only a

-1dB (20 percent) reduction in receive signal power, the pointing error sig-

nificantly reduces the antenna isolation between adjacent satellites. 	 Table

5.2-1 and 5.2-2 summarizes the advantages and disadvantages for both AGC and

compass aided AGC tracking.
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5.3	 Pseudomonopulse Tracking. 	 Figure 5.3-1 shows a block diagram of the

pseudomonopulse system. 	 A 180-degree hybrid is used to produce a sum and dif-

ference radiation pattern as shown in Patterns 5.3-1 and 5.3-2.	 The difference

signal is attenuated by means of a coupler and added and subtracted to the sum

channel.	 (The result is shown in Figure 5.3-1.) This signal results in a

slight amplitude modulation to incoming RF signal. 	 The RF signal is down con-

verted and amplified at intermediate frequency.	 A simple diode detector used

for AGC detects the modulation and the reference modulator is phased detailed

with the modulation resulting in a typical error "S" curve, the error voltage

being proportional to angle from th a main beam. Features of this system are:

o	 No AM is present when the antenna is boresighted on target.

o	 The AM modulation can be at any frequency within channel bandwidth
as long as there is no interference with the FM data channel.

o	 The antenna is pointed accurately to the satellite.

o	 This system is simple and requires little interface to the receiver.

The tracking accuracy of this type system is typically 0.5 degrees based on the

error slope and noise in the tracking bandwidth. 	 An important feature of this

system is its ability to track substantially below the noise floor of the data

channel.	 This occurs because the information bandwidths are different. 	 Table

5.3-1 and 5.3-2 show the tradeoffs.	 Figure 5.3-2 is a block diagram of a pseu-

domonopulse receiver.	 Figure 5.3-3 shows the acquisition, reacquisition, and

tracking logic.

5.3.1	 Monopulse Switching Frequency Considerations.	 There has been concern

that the monopulse AM could interfere with the data signal in one of the fol-

lowing ways:

1. Interfere with the data channel demodulation.

2. Interfere with the adjacent channel.

3. Cause PLC false lock.
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5.3.1.1	 Data Channel Demodulation.	 If the data channel is an FM/PM modu-

lated signal then the demodulator should not see the small AM modulation

resulting from the aiitenna tracking signal. 	 The AM would be abservable only

during an,.enna acquisition when data transmission is unlikely. The AM modula-

tion would be negligible in comparison to the AM modulation resulting from

signal fading received at a moving vehicle.

Any tracking signal aM at the input of an FM/PM demodulator can be eliminated

by using a limiter ahead of the demodulator and thus have no effect on the

demodulator.	 If the data modulation includes AM then amplitude monopulse can

still be used using one of two techniques:

(1) Frequency division multiplexing - the monopulse signal is a narrow

band fixed frequency signal. 	 It can be placed at the data band edge of the

data AM modulation.

(2) Separate difference channel receiver - if the full da+a channel is

used for AM modulation then a separate difference channel receiver can be

used. (See block diagram)

5.3.1.2	 Adjacent Channel Interference. 	 It has been commented that the AM

modulation might cause adjacent channel interference. 	 This can be prevented

by the following design considerations:

(1) A mixer with an input frequency f l and LO frequency f2 can have out-

puts of + Mf 1 + Nf2.	 By proper choice of LO frequency f 2 and a bandpass

filter at (f I -
 
f
2
) all products of M and N greater than 1 of significant

magnitude will be rejected.	 This would include the AM modulation frequencies

(f l ± f m )•

- 47 -
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(2) A mixer with multiple frequency signal inputs can have third order,

two tone products. 	 An AM spectrum actually has three tones f l , f l + fm , and

f l - fm . Use of a class III mixer minimizes two tone products. The Watkins-

Johnson catalog gives relative two tone - third order IMD outputs of -106 dBm

down for two input signals at -18 dBm using an M9D mixer, thus IMD can be

minimized by choice of mixer.

(3) By keeping the pseudomonopulse modulation frequency low, any har-

monic product frequencies are low. 	 If the channel bandwidth is 5 kHz, the

monopulse modulation frequency is 833 Hz or less, then third order products

cannot reach the adjacent channel.

5.3.1.3	 PLL False Lock.	 If the antenna is on the peak difference lobe, the

PLL is in the acquisition mode, and the PLL has sufficient sensitivity then it

might be possible for the PLL to lock to the f l + fm	frequency term.	 The

input frequency uncertainty is expected to be approximately 200 Hz. 	 If the

PLL acquisiton frequency range is limited to +100 Hz and f m is greater than

100 Hz then PLL false lock cannot occur.

5.3.2	 SNR Versus Tracking Error. 	 RMS tracking error given by:

A
^t	 =

Kra ( N	
)

Q t	is RMS tracking error degrees.

8	 is beamwidth degrees

S	 is IF SNR
N

0	 is IF bandwidth

Rs	 is servo loop bandwidth

Km	 i s normal i zed error slope of 0 pattern 	 1.2
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Assume desired tracking error = 0.1 x beamwidth	 =	 20

( Ps )	 _ (	 Km 2)	 (-1.2	 =	 68.44

( N ) IFdB + ( P5 )dB	 = 18.4 dB

Given	 R = 5 kHz IF bandwidth

S:R at IF required to obtain v t /9	 = 0.1 is given for various values of

servo bandwidth B.

QS	(S/N) IF dB

1 Hz	 -18.6

2 Hz	 -15.6

4 Hz	 -12.6

5 Hz	 -11.6

This analysis assumes no loss in the AM detector.	 However at such low SNR, a

non-coherent AM detector will be below threshold showing a loss of about 5 dB.

Thus the system will track at -13.6 dB SNR with 1 Hz servo bandwidth. The SNR

required for data demodulation is +11 dB showing a differential of 24.6 dB.

The acquisition of the proper satellite with the monopulse system can be done

in several ways.	 Each is dependent on the design of the transceiver and

satellite transceiver.	 The easiest is having each satellite dedicate a

portion of one channel as an identification channel. The preferred satellite

is then selected from transceiver front panel. 	 It may be that each satellite

is implemented by different industrial organizations offering different

classes of service tailored to the protocals of its own gateway and telephone

system making the user prefer one satellite to another. 	 Also, different

classes of service may be offered because of regional marketing circumstances.

-49-
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The auto driver may elect which class of service he desires. 	 This would make

satellite identification very desirable. 	 It may be he has an optional one

polarization antenna so he has to choose the right satellite. 	 For these

systems the AGC would be suppressed so the antenna would slew to the correct

satellite.	 For a 6 rpm servo the antenna would acquire in 10 to 15 seconds.

Reacquisition (within one beamwidth) would require 1.3 seconds.

In the case where there is no satellite identification code, the antenna would

always slew clockwise.	 The scenario would be (1) loss of lock, (2) the

antenna slews greater than 40 degrees and then starts counting AGC pulses.

The most Easterly satellite would be the first pulse, mid-continent the

second, and most Westerly, the third. The antenna is programmed to stop near

the appropriate satellite and the tracking loop closed.	 If the antenna

stopped within seven degrees of the correct satellite, the loop i Ja .lose

and the antenna would track. 	 For a 6 rpm servo the antenna would acquire in

10-15 seconds and reacquire in a beamwidth representing 1.3 second. 	 If the

AGC drops below a given threshold the antenna re-acquires by rotating a full

turn and counting AGC levels again.

5.4	 Pseudomonopulse - Compass Aided. 	 The block diagram of a compass

aided system is shown in Figure 5.4-1.	 Compass aided tracking provides con-

tinuous antenna pointing regardless of mulilr 'a th fading, gain, under under-

passes and blockage from foliage.	 Figure 5.4-2 shows the acquisition and

tracking logic.	 Table 5.4-1 summarizes the trade offs. 	 The pointing uncer-

tainty, however, led to ideas of accelerometers and eventually to rate gyro

aided pointing.
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MONOPULSE RECEIVER AIDED BY COMPASS ACQUISITION

AND TRACKING SEQUENCE

FLOW DIAGRAM
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5.5	 Pseudomonopulse - Rate Gyro Aided.	 A simple low cost rate gyro was

found.	 The rate gyro output is angular rate. 	 By integrating the rate, the

angular position is obtained.	 Feeding this angular position to the antenna

servo when loss of lock occurs the antenna will slew back to the position

prior to the loss of signal. 	 A block diagram of this system is shown in

Figure 5.5-1.	 Table 5.5-1 summarizes the tradeoffs. 	 A photo of the gyro is

in Figure 5.5-2. The gyro consists of a motor, two flywheels, a small magnet,

and a Hall effect diode.	 The output is bipolar with CW and CCW directions.

The gyro was placed on a turntable and the rate varied. 	 The output of the

gyro and amplifier is a DC level proportional to angular rate as shown in

Figure 5.5-2.

5.6	 Monopulse Separate Receiver.	 An alternate monopulse system using a

separate receiver is shown in the Block Diagram of Figure 5.6-1.	 The advan-

tage is that there is no data transfer from receiver to antenna integration or

connection but since a separate receiver is u_ed, the system becomes expen-

sive.	 Assuminv the transceiver cost $1500 and half the cost is in the

transmitter, the antenna cost will increase approximately $750.

5.7	 Servo Design.	 Since the size of the motor drive is a critical part

of the cost, the moment of inertia was calculated. A motor torque requirement

of 75 9z.in . was calculated for 25 0 /sec	 acceleration. A very small motor of

undetermined torque but of very low cost was used to edge drive the 26-inch

ground FIane of a dynamic antenna mockup.	 It was clear from this demonstra-

tion that small inexpensive motors may be used to steer the antenna.	 A motor

of the required torque can be purchased for $7.50 each in large quantitites.

A preliminary schematic diagram of the servo system was sketched for the

--	 pseudomonopulse system and is shown in Figure 5.7-1.
i
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6.0	 COSTING

The 1x4 mechanically steered array was priced for 10,000 and 100,000 units

using the gyro aided pseudomonopulse system. 	 The fabrication cost S ias quoted

by the Cubic production facility for the antenna. The electronics package was

priced using the RCA cost model computer program. All costs are based on 1983

dollars with a manufacturing period of 36 months and do not include p.-ofit.

The optimum production time frame for the electronics package is twelve

months.	 However, in a commercial environment, production rate will be con-

trolled by the market. The detail breakdown is in Figure 6.0-1. The fabrica-

tion techniques are highly productionized so that there is little intensive

labor involved.	 The use of a foreign manufacturer will reduce the price

approximately 100 dollars. 	 The percentage breakout is 50 percent antenna and

50 percent electronics.	 The antenna fabrication costs do not differ appre-

ciably from 10,000 to 100,000 units, however, the electronics package will

drop from $184 to $121 each. 	 The price reduction over previous quotes is

about 50 percent since the electronics package has been added to the antenna

cost in this effort.

The cost of the mechanically steered conformal antenna is shown in Figure

6.0-2.	 The reduction in cost from the previous data represents the elimina-

tion of expensive phase shifters. The electronics package for the pseudomono-

pulse and motor drive being added to the antenna costs in this phase raised

the cost slightly. Figure 5.7-1 is a preliminary schematic of the electronics

package priced as part of the antenna system. The motor included is a 12 V DC

permanent magnet type which at 3700 rpm with a 80 gcm torque draws .5 amps.

Breadboard and protot;-)^ costs are included in Table 1.0-1. These prices

in ,.!ude acceptance testing. 	 Antenna patterns, tracking verification in an

antenna range environment and testing under environmental conditions are
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included.	 However, more extensive testing procedures are being considered,

and any proposal effort would include more extensive discussions of the

testing requirements. Table 6.0-1 is a cost comparison summary of the various

pointing options presented in this report.

I c".
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