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Abstract

This paper is a numerical study of the concept of active control of

growing disturbances in an unstable compressible flow by using time periodic,

localized surface heating. The simulations are calculated by a fourth-order

accurate solution of the compressible, laminar Navier-Stokes equations.

Fourth-order accuracy is particularly important for this problem because the

solution must be computed over many wavelengths. The numerical results

demonstrate the growth of an initially small fluctuation into the nonlinear

regime where a local breakdown into smaller scale disturbances can be

observed. It is shown that periodic surface heating over a small strip can

reduce the level of the fluctuation provided that the phase of the heating

current is properly chosen.
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Introduction

Transition in a boundary layer arises from the spatial growth and

nonlinear saturation of instability waves. A method of controlling or

delaying transition is to introduce localized surface disturbances which can

interfere with and reduce the level of the propagating disturbances. This

concept was introduced by Liepmann, et al. [I], [2]. They demonstrated that

the introduction, in water, of localized, periodic temperature disturbances of

appropriate phase could either enhance or reduce, depending on the phase, the

overall level of fluctuations for a significant distance downstream. In

addition, by measuring the fluctuating disturbance in the boundary layer

upstream of the controlling surface, they were able to synthesize a signal to

drive the cancellation disturbance at the controlling surface. This provided

for active feedback control. An analysis by Maestrello and Ting [3] provided

a theoretical justification for this method. The use of localized heating

strips provides a control mechanism with a significantly lower expenditure of

energy than that for passive control; for example, a steady heating of the

entire surface.

Nosenchuk, et al. have demonstrated that localized surface heating can

be used to trip the boundary layer and accelerate transition in air.

Maestrello [4] has shown that localized surface heating in air can be used to

trigger instantaneous transition. In addition, he showed that by using

feedback control to drive an acoustic disturbance, a significant reduction in

the level of the disturbances could be obtained. Thomas [5] demonstrated that

*Nosenchuck, D. M., Bettes, W. H., and Liepmann, H. W., "Active Transition
Fixing," private communication, 1983.
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a vibrating ribbon could be used to generate an unstable wave. In addition,

he showed that by using a second ribbon downstream to generate an out of phase

disturbance, the level of the disturbance could be reduced.

At the present time, we are not aware of any experiments that have shown

reduction in the level of a growing disturbance, in air, by using only

localized surface heating. The use of localized heating to introduce an out

of phase disturbance is considerably more delicate in air than in water.

There are several reasons for this. First, much larger temperature

disturbances are required to change the viscosity by an equivalent amount in

air than in water [4]. In addition, in air d_/dT > 0 which is destabilizing

while in water d_/dT < 0. Finally, in a compressible flow a temperature

disturbance affects the pressure gradients via the equation of state in a

manner that is difficult to analyze.

Localized surface heating has obvious attractions as a mechanism for

active flow control for reasons of simplicity and efficiency. The primary

objective of this paper is to demonstrate by numerical solutions of the

compressible Navier-Stokes equations that time periodic localized surface

heating can be an effective technique to reduce the level of growing

disturbances in air at flow velocities for which compressibility effects can

be expected to be noticeable.

The simulations are based on solving the two-dimensional, compressible,

Navier-Stokes equations using a fourth-order accurate finite difference

scheme. It is our experience that a higher-order accurate scheme is necessary

in order to compute the solutions appropriate to this problem. In Section 2

we describe the model. In Section 3 we discuss numerical results and in

Section 4 we present conclusions.
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In summary, our results demonstrate that localized temperature

disturbances can be an effective technique to reduce the level of growing

disturbances in the boundary layer. A localized disturbance over a strip a

quarter of a wavelength in width can reduce the level of the fluctuations.

Other techniques such as localized vibration, e.g., a vibrating ribbon, also

offer potential. The greatest deficiency in the present program is the

restriction to two-dimensional disturbances. In two dimensions the

development of instabilities and the transition to nonlinear behavior is very

different than in three dimensions. We are currently developing a three-

dimensional version of the code and will report results from that study at a

later time.

Computational Model

We consider the full Navier-Stokes equations written in conservation form

W + F + G = 0. (2.1)
t x y

Here W is the vector (0, pU, pV, E), p is the density, U and V are

the x and y components of velocity and E is total internal energy. The

forms of the flux functions F and G are standard and will not be

reproduced here for brevity. All viscous terms are retained.

The computational domain is the rectangle shown in Figure I. A steady

solution is computed given an inflow boundary layer profile [6]. Unsteady

solutions are generated by modifying the inflow data by adding to the mean, a

perturbation of the form
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g Re{F(y)eimt}. (2.2)

Here € is the amplitude of the disturbance, and m is a frequency for which

there is a spatially unstable eigenfunction F(y) for the inflow profile.

The elgenfunction is obtained from the corresponding Orr-Sommerfeld equation

for the inflow profile (assuming for simplicity incompressible flow). For an

inflow Mach number of 0.4, which we use in all of our calculations, we have

found that during the initial stage of growth the behavior of the solution is

well predicted by neglecting compressibility. Compressibility becomes more

important as the disturbance grows and temperature and density fluctuations

become large. The code is written in conservation form and so can handle any

Mach number including transonic problems with shock development.

Y

T
Inflow I II I Outflow

iComputatlonal domainl

I i
__///_//%,,//_.._'_._--_X

Figure I. Schematic of computational domain.

The resolution requirements for this problem are severe. The disturbance

must be followed over a relatively large number of wavelengths and it is
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necessary to prevent an accumulation of phase errors. Thus, the problem

shares the difficulties of both fluid dynamics and wave propagation. In

addition, smaller scale structures, requiring still more resolution, will be

generated by nonlinear interactions. It is our experience that approximately

ten points per wavelength (in the x direction) are necessary to glve

acceptable results. In addition, more resolution in the boundary layer (e.g.,

50 points or more) is required than for steady flows. This density of grid

points is necessary to resolve the wave propagation and the Orr-Sommerfeld

eigenfunctlon normal to the plate. These requirements are greatly reduced by

using the fourth-order scheme. The advantages of higher-order methods for the

numerical computation of waves have been well documented [7], [8] and it is

well known that numerical errors in approximating the convective terms of

(2.1) can cause a numerical dissipation which reduces the effective Reynolds

number in viscous regions• For this reason, we use a scheme which is a simple

modification of the second-order MacCormack scheme that is fourth-order

accurate on both the invlscid terms and on the viscous terms [9].

For the one-dlmensional equation

Wt + Fx = 0

we have

_+I n At [ n Fn J
= WI A_x 71FI+I - F_) - n _- (FI+2 i+i )

wn+l 1 [_+I n Ati +wi- -ff

I-._---n+l_--n+l. ._--n+l_ vn+l_]

• _l(Fi - Fi-lJ [Fi-I _i-2JI] • (2.3)
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The scheme (2.3) becomes fourth-order when it is alternated with a symmetric

variant. It has a greatly reduced truncation error compared with the second-

order MacCormack scheme. Our experience has been that fourth-order accuracy

is necessary to efficiently compute the class of problems considered here.

Operator splitting is used so that the two-dimensional system (2.1) is solved

by successive applications of one-dimensional solution operators of the form

(2.3). The computer program has been fully vectorized on the CDC VPS32 at

NASA Langley Research Center and has been validated by comparing with known

steady state solutions and by comparing, in the linear regime, the growth

rates obtained from imposing unstable disturbances on a mean flow with those

obtained from linear theory.

We now describe the boundary conditions. At the inflow we impose an

unsteady disturbance on the three incoming characteristic variables based on

linearizing and neglecting the y derivatives and viscous terms. The

outgoing characteristic is extrapolated from the interior. At the plate, we

assume a no-slip condition and specify the temperature. Active control is

simulated by locally modifying the temperature boundary condition. Pressure

is obtained from the normal momentum equation.

Both the outflow and upper boundaries are subsonic boundaries and one

boundary condition must be imposed. We impose the incoming characteristic

variable (based on the one-dimensional theory) as having zero fluctuation and

extrapolate the outgoing characteristics from the interior. The

characteristic condition is not exact for this problem but we have not

observed any reflections provided the observation points are taken

sufficiently far from the boundaries.
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Results

In this section we describe numerical results obtained from the code.

This section will be divided into two parts. In the first part we present

results for uncontrolled spatial disturbances evolving into a nonlinearly

distorted fluctuation. In the second part the effect of active control

procedures will be demonstrated.

The basic model is described in Figure i. The mean flow is a boundary

layer. The free stream Mach number is 0.4 and the unit Reynolds number is

3.0 x 105. The computational domain is chosen so that at inflow Re6,

(Reynolds number based on displacement thickness) is 998 and at outflow Re6,

is 1730. This distance corresponds to approximately 20061 where 61 is

the boundary layer thickness at the inflow. A fluctuating disturbance is

introduced at inflow with non-dimensional frequency F = I7)2_fu of .8 × 10 4.

(Here f is the frequency, _ the kinematic viscosity a_nd U the free

stream velocity.) It is known that this frequency is linearly unstable for

the Red, used at the inflow. A typical grid size for the calculations is

251 x 66 parallel and normal to the plate respectively. We have used an

exponential stretching in the normal direction. To obtain a more accurate

solution for regions where nonlinear distortion is evident, a larger grid of

313 x 80 has also been used. The computational domain in the vertical

direction extended over three boundary layer thicknesses. In practice, the

mean profile was computed with a considerably coarser grid and interpolated to

the fine grid. The program was then run for a short time with the fine grid

in order to smooth out any interpolation errors.
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Uncontrolled Results

In Figure 2 spatial growth rates are shown for two different amplitudes

of the inflow disturbance and compared with those obtained from linear

incompressible theory . The growth rates are obtained from computing the
/r \

RMS I_ (pu - (pu) ) at different y locations and integrating the
/

results with respect to y.

X=O
8-

7

6

5-

4

3

_._-/ .--o-- Computed,t:= O.02
2 - _ --a--Computed,F.= O.002

--o--Lineartheory1 p,,.-

I I I I I I

1.0 1.1 1.2 1.3 1.4 1..5 1.6
R x I0-3
e8

Figure 2. Comparison of amplitude growth wlth linear theory.

*Dagenhart, R., private communication, 1983.
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The results in Figure 2 indicate good agreement with linear theory for

small initial disturbance (i.e., peak disturbance of 0.2% of freestream). In

particular, the regions of growth and decay follow the linear theory

predictions. For larger disturbances (i.e., 2% of freestream), nonlinear

effects become important and the solution shows a definite departure from the

linear theory.

Based on the wavelength of the disturbance at the inflow, the

computational domain extended over approximately 20 wavelengths during which

the disturbance grew by a factor of approximately i0. The results of Figure 2

were also validated by mesh refinement. A resolution of approximately I0

points per wavelength (at inflow; the wavelength gets smaller downstream) was

required to give acceptable results. This is due to the fourth-order accuracy

of the algorithm. In regions where nonlinear distortion was evident, more

resolution was required to simulate the smaller scales. Approximately 30

points in the boundary layer (based on 61) were required to resolve the

fluctuating disturbance. The second-order scheme with comparable grids

consistently predicted either decay or greatly reduced growth rates.

In Figure 3 we plot (_ ((pu) - (PU)m _ )as a function of

n = (y/x) JR--_- for several different downstream locations. These profiles
x

are similar to those obtained by Murdock for incompressible flows [10]. It is

apparent that the basic shape of the inflow profile (i.e., the 0rr-Sommerfeld

solution) is maintained as the disturbance grows. Most of the nonlinear

distortion was observed near the wall and near the point where the disturbance

changed sign. We believe that this is because the derivatives of disturbances

(in y) are changing most rapidly at these locations.
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Figure 3. Growth of RI_ amplitude VS. rl(= _ R_x ).

To examine the evolution of the disturbance we plot in Figure 4 pu(t)

as a function of (non-dimensional) time for a fixed y location

(y = 0.0115 dl). In Figures 5a and 5b we plot pu(t) against t for several

different y locations for Red, = 1412 and Red, = 1579. It is apparent

from these figures that a significant laminar growth has occurred between

Re_, of 1412 and Red, of 1579. In addition at the second station, pu(t)

at y/_ = 0.066 becomes negative for part of the cycle indicating a cylical

separation and reattachment of flow on the plate. This phenomenon is further
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clarified in Figure 6 where the instantaneous velocity profile is plotted at

the two extrema of a time cycle close to the wall.

Figure 4. Growth of pu(t) vs. time for y = 0.0115 6I.
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Figure 5. Instantaneous pu(t) across the boundary layer

at (a) Re_, = 1412, (b) Re_, = 1579, L = I.
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•4 _ Velocityvariationoveracycle
7

.3

.2

0 .I .2 .3 .4 .5

u/Uoo

Fig. 6. Velocity profile at the extreme of a time cycle at Re6, = 1547.

The developing flow, with an initial peak disturbance of 2% of the

freestream has grown so large that close to the wall the flow separates and

reattaches cyclically. By reducing the amplitude of inflow disturbances (but

large enough to exhibit nonlinear effects) the laminar separation occurs

further downstream. If three-dimensional effects are accounted for, the

lateral spreading will limit the maximum growth of the disturbance, thus

preventing the laminar separation.
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Control Results

The effect of the active control was investigated at two stations with

the control strip located at Re_, of 1263 and 1547. Surface heating and

cooling was accomplished by modifying the temperature boundary condition over

a small strip on the plate. The formula was

T _ Tw ± I= + B sin(_t + 4)) 2, (3.1)
Tre f Tref

with the plus sign for heating and the minus sign for cooling. In (3.1) Tw

is the temperature of the wall (520° R) and Tre f is the reference

temperature. The functional form of (3.1) models a D.C. current (=) and an

A.C. current (B) with phase 4-

In Figure 7 the growth rates are compared with the uncontrolled case for

a control strip located at Re_, = 1263. The width of the strip b is

b/6* = 3.98 where 6" is the local displacement thickness. This corresponds

to a width of approximately 20% of the wavelength of the disturbance at the

inflow.

In Figure 7 the parameters for the heated case were = = i, B = 4,

= 180 °, corresponding to a peak temperature of about 1650° R. For the

cooled case the parameters were _ = i, B = 1.7, _ = 0°, with a peak

temperature of about 190° R. In the heating case the temperature corresponds

to roughly three times the unheated wall temperature which is close to the

temperature obtained in reference 4 using a tungsten wire. In the cooled case

the parameters are chosen so that the temperature will stay in the range where

Sutherland's law is valid for the viscosity as a function of the temperature.

Such a periodic cooling is not attainable by experimental techniques available
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at the present time. There were no numerical instabilities due to the large

temperature perturbation but the heating forced a reduction in the allowed

time-step.

X=O

8-

m

0l]

6- 0
, Uncontrolled

0 Cooled 05- 0
0 Heated

0

n

f Locationofstrip
i I I I I I I

1.0 I.I 1.2 1.!) 1.4 1.5

R × 10-3
e6'

Figure 7. Effect of control on RMS amplitude growth with control

strip at Re6, = 1263, b/8* = 3.98.
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The results in Figure 7 demonstrate that by an appropriate choice of

phase, a reduction in the level of the fluctuating disturbance can be obtained

just by surface heating. The maximum reduction in the growth rate is

approximately 6% for heating and 12% for cooling. The phase depends on the

position of the control strip.

In Figures 8a and 8b we plot pu(t) as a function of non-dimensional

time tU /L comparing heated and uncontrolled fluctuations (Figure 8a) and

the cooled and uncontrolled fluctuations (Figure 8b). The graphs are shown at

an x location slightly downstream of the heating strip where maximum reduction

occurs and the RMS values of the fluctuations are shown in each case. The

figures show a reduction in amplitude in both cases with a slight phase change

introduced by the heating. In both cases the control appears to have only a

slight effect on the structure of the waveform. The numerical simulation

establishes the feasibility of reducing the amplitude of the fluctuations by

heating and cooling. This is not the best control that can be achieved. The

amount of control that is possible depends on the parameters used for the

control and on the number and location of the strips. We have not

systemically tried the possibilities.

The effect of control at the second station (Re6, = 1547) is expected

to be different from that of the first station because of the cyclical

separation and reattachment of the flow (Figure 6). This flow reversal causes

the temperature to be partly convected upstream and so effective phase control

is lost. In the downstream direction, although control is achieved for both

heating and cooling, it is significantly reduced. This occurs because

effective phase control is lost for a portion of the time cycle in the layers

close to the wall (Figure 9).
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_- Uncontrolled
..... Cooled _ Uncontrolled

pu(t) Heated

V pu(t)
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Figure 8. Comparison of pu(t) between controlled and uncontrolled

cases, (a) cooled with Re6, = 1320, (b) heated with

Re6, = 1340.
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Figure 9. Effect of control on RMS amplitude growth, with

control strip at Re_. = 1547, b/6* = 1.6.
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Conclusion

The concept of localized, periodic, surface heating to control growing

disturbances in a subsonic flow has been simulated numerically. It was found

that by appropriate adjustment of the phase of the controlling disturbances,

the level of the fluctuation can be reduced provided that the disturbances are

quasi-periodic and not too large. A more pronounced effect can be obtained by

cooling although this technique is practical at the present time for steady

state and very low frequency only.

This work shows the mechanism of the active control. Larger reductions

in amplitude can be obtained by using multiple control strips with proper

phase relationships. The results show that the increased growth causes

separation with distance. This is due to the large inflow disturbance

level. The control in this region is much less effective because of the loss

of phase control near the wall.

The limitation in this model is the restriction to two-dimensional flow,

since three-dimensional effects become important further downstream. This may

prevent the kind of separation and reattachment experienced at the second

station which we observed.
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