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ABSTRACT

A finite element procedure is described for calculating the loss factors for
elastic structures to which frequency-dependent viscoelastic damping treatments
have been applied. The frequency dependence of the viscoelastic damping material
is treated by approximating its shear modulus with a second-order polynomial so
that the stiffnesses associated with the constant, linear, and quadratic terms
can be combined, respectively, with the stiffness, damping, and mass matrices
assembled for the rest of the structure. A single complex eigenvalue analysis is
then performed in which the eigenvalues are purely imaginary. The loss factor is
computed by the modal strain energy (MSE) approach first formulated in 1962 by
Ungar and Kerwin and recently recast in the finite element context by Johnson,
Kienholz, and Rogers. In the MSE approach, the loss factor of a composite
structure vibrating in one of its natural modes may be visialized as a weighted
average of the loss factors of the component parts, with the relative stored
energies as weighting constants. The finite element procedure, which can treat
very general geometries, is illustrated for the case of a vibrating constrained-
layer damped plate.

INTRODUCTION

Damping treatments are frequently applied to engineering structures to
reduce both vibration and noise. For example, laminated plates composed of
alternate layers of elastic and viscoelactic materials have been used as
structural membars which can dissipate vibratory energy as well as maintain the
required structural integrity.

tae finite element prediction of the dynamic response of such structures is
couplicated considerably by the frequency-dependence of the viscoelastic material
properties. Because the structure's stiffness matrix is frequency-dependent, the
finite element equations are nonlinear rather than linear, and conventional
analiysis cannot be used. For example, the calculation of time-harmonic forced
response by a direct approacn ‘in the physical, rather than modal, coordinates of
the structure) would reqrire the complete re-assembly and solution of the system
equations for each drive frequency. Also, with most finite element codes, the
overall damping ch-racteristics of the structure cannot be determined by solving
the complex eigenvalue problem since the frequency-dependence of the coefficient
matrices results in a nonlinear eigenvalue problem.

This paper describes how constant coefficient matrices in finite element
analysis can be restored so that the difficulties associated with frequency-
dependent matcrial properties can be reduced. In essence, a frequency-dependent
material property is approximated by a polynomial quadratic in the circular
frequency w, and the coefficients of the first and second order terms of the
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relynomial are combined with the system damping and mass matrices, respectively.
The main requirements for this approach are (1) that the frequency-dependence can
be adequately represented by a quadratic, and (2) that the finite element code
can handle complex stiffness, damping, and mass matrices. NASTRAN, for example,
allows these matrices to be complex.

This paper discusses two problems for structures to which frequency-
dependent viscoelastic damping treatments have been applied:

1. forced time~harmonic response analysis using physical, rather than
modal, coordinates (called "direct frequency response" in NASTRAN), and

2. prediction of the overall system loss factor (structura. damping
coefficient).

Convenient solution of the first problem requires only the quadratic
polynomial approximation to the frequency dependence of the viscoelastic material
properties. For the second problem, the approach taken here is to use the
quadratic fit only for the real part of the viscoelastic modulus, and then to
solve an undamped (but mathematically complex) eigenvalue problem and apply the
modal strain energy (MSE) approach to extract the system loss factor.

APPROXIMATION FOR FREQUENCY-DEPENDENT MATERIALS

The formulation of a structural dynamics problem for finite element solution
results, in the time domain, in the matrix equation

Mu + Bt + Ku = F(t) ¢))

where M, B, and K are the mass, viscous damping, and stiffness matrices,
respectively, u is the vector of unknown displacement components at the grid
points, and F is the vector of applied forces at the grid points.

For time~harmonic loading,

F=F_ el®t (2)
u=u elWt (3)

where w and F, are, respectively, the circular frequency and complex amplitude of
the applied force, and u, is the complex amplitude of the displacement response.
In that case, the time~harmonic form of Equation (1) is

(~w?M + iwB + K) u_ = F, (4)
Consider a structure made of one or more materials, only one of which is
damped. Assume that the damped material (which may be anisotropic) is modeled
mathematically by the complex modulus approach, in which the modulus of
elasticity is the complex number E(l+in§, where n is the loss factor for the
material. Assume also that all moduli for that material have the same loss
factor n and, hence, that the Poisson's ratios are real and frequency-
independent. Since every term of the finite element material matrix D (which
converts the strain vector to the stress vector for an element) is proportional
to one of the elastic monduli, the frequency dependence can be factored out as
a common dimensionless scalar factor:

D(w) = a{w) Dy (1 + in(w)) (5)
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where L, is a real, frequency-independent reference material matrix, a(w) is

a dimensionless factor which expresses the frequency dependence of the real

part of the elastic moduli, and n(w) is the frequency-dependent loss factor for
the material. In effect, D, is the material matrix for some arbitrary frequency
Wgy and cD, is the real part of the material matrix for some other frequency u;
thus, a(w,) = 1. 1t therefore follows that the stiffness matrix Kq for the
portion of the structure made of the damped material is ¢f the form

Kq = aKy(l + in) (6)

where K, is the real part of Kg at the reference frequency w.. The stiffness
matrix for the remaiander »f the structure (the undamped portion) will be denoted
Koo

€ With damping modeled using the complex modulus approach, M in Equation (4)
is real, B = ¢ (unless viscous damping is also present), and K is complex. The
real part of K includes the contributions from all components and materials in
the structure. However, if only one material has complex moduli, the imaginary
part of the system stiffness matrix K arises only from the damped material, thus
allowing the stiffness matrix for the damping material to be extracted from the
overall system stiffness matrix. If the loss factor (strictural damping
coefficient) n for the damping material is specified as unity on the finite
element material properties data cerd,

QKO = Im(Kd)ln=l = Im(K)|n=l (7)

The stiffness matrix K, for the remainder of the structure (the undamped
portion) is then obtained by subtracting from the system matrix K the
contribution from the damping material:

Ke = Re(K) ~ In(K)|p=y (8)

where K is the (complex) stiffness matrix for the entire structure assuming that
n =1 is specified for the damped portion.
It will be convenient to write Equation (6) in the form

Kq = Kola + iB) 9)
where
B(w) = alw)n(w) (10)

I1f the dependence of a and B on w were quadratic, it is clear from Equation (4)
that the frequency-dependent terms could be absorbed into the system's mass and
viscous damping matrices, thereby transforming the problem into standard form
(although with complex coefficient matrices).

Therefore, we attempt to approximate a(w) and B(w) with the quadratic
polynomials

alw) 2 a_ + aw + uzwz (1D

0
B(w) = By * Blw + 82m2 (12)

The six unknown coefficiants in Equatious (11) and (12) can be determined by
standard least-squares procedures (which are summarized in the next section).

421



With quadratic frequency-dependence of the damping material, the
coefficient matrices M, B, and K in Equation (4) can lLe replaced by new complex
matrices M¥, B¥*, and K* defined by the equality

2 . . 2
WM + iwB + K, + K o, + a0 + oW
+ i(8, + Bjo + Bywh)] = —wlMr + iuB* + kx (13)
where Ko is the system stiffness matrix for the undamped part of the structure,
B is the damping matrix for che viscous dampers, if any, and M is the original

mass matrix for the entire structure. Thus, by equating coefficients of like
powers of w in Equation (13), we obtain

K* = Ko + (0, + iBy)K, (14)
B* = B + (8] - iaj)K, (15)
M:* =M+ (-ap - iB2)K, (16)

where Ko is determined from Equation (8). In this form, the new coefficient
matrices M*, B*, and K* are complex and independent of frequency.

Tc summarize, the frequency dependence of the real and imaginary parts of
the moduli of the viscoelastic material is replaced by a quadratic so that such
dependence can be absorbed into the system mass and damping matrices. The
principal assumptions made are (1) that the frequency dependence of the material
can be described by a single scalar function, (2) that this function can be
adequately represented by a quadratic polynomial, and (3) that the finite element
code is general enough to allow complex coefficient matrices.

CURVE-FITTING

Let y(x) represent one of the two frequency-dependent material property
functions a(w) and R(w) defined in Equation (9). Assume that y(x) is known at
n points (xj,yij), i=1,2, «.. yn. We wish to approximate y(x) by the quadratic
polynomial

p(x) = a, + a;x + azx2 (17)
in such a way that the residual
3 2,2
R =.E1"i[yi - {3y +agx; v apx; 9] (18)
1=

is minimized, where w; is the weighting factor for point i. This is the
classical least squares problem. To minimize the squares of the absolute errors,
wi = 1. To wminimize the squares of the relative errors, w: = l/y.“,

The polynomial coefficients which minimize the residual R are the solwitions
of the symmetric system [1]
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2 3 =
Ewixi Xwixi Xw-x- a = Ewixiyi (19)
3

-
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o
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Twix; Twix; X"ixi4 ) X“ixizyi)

where all summations are from i=] to n.

MODAL STRAIN ENERGY APPROACH TO DAMPING

The relationship between damping and energy concepts for nonhomogeneous
structures was apparently f'rst formulated by Ungar and Kerwin in 1962 [2]. 1In
general terms, they showed that the loss factor of a composite structure may be
computed as a weighted average of the loss factors of the component parts, with
the relative stored energies as weighting factors. The Ungar-Kerwin ideas were
recently recast in the finite element context by Johnson, Kienholz, and Rogers
[3-5]. For completeness, we surmarize (in a slightly different form) the aspects
of this work needed here.

The complex Rayleigh quotient for a damped structure may be written in the
form

2
W (1 + in) = #,T(Rp + ingk)oy/ (83 THby) (20)

where Ky = stiffness matrix (real) for the entire s’ ructure
Kq = stiffness matrix (real) for the part of the structure which is
damped (i.e., the viscoelastic material)
ng = loss factor (real) for the viscoelastic material
M = mass matrix (real) for the entire structure
¢4 = complex eigenvector (mode shape) for a damped mode of the stracture
w = circular natural frequency (real) for the mode
n = composite loss factor (real) for the entire structure

For lightly damped structures, the damped mode shape ¢4 may be approximated by
the real eigenvector ¢ obtained by solving the real, undamped ~igenvalue problem.

Using this approximation (¢4 = ¢) and equating the imagina- parts of
Equation (20) to each other yields

n = ng(8TR6) /(w29 THg) (21)

Since the real eigeuvector ¢ satisfies

w2eTve = Tk e (22)
we obtain
n = n (TR $)/ (6T (23)
ot
n = nglkg/kp) (24)

where kr is the generalized stiffness of the mode. and k4 is the contribution of
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the viscoelastic material to the generalized stiffness. Since the generalized
stiffness for a mode is equal to twice the elastic strain energy in the mode,
Equation (24) may be incerpreted as stating that the ratio of the composite loss
factor n to the loss factor of the viscoelastic material is equal to the fraction
of the total strain energy contained in the damping material.

More generally, for structures containing several damping materials with
individual loss factors nj, np, nj, «e., the composite loss factor for the
structure is

n =njlk)/ky) + nalky/kp) + «ue (25)

where k; is the contribution of the ith damping material tc the total generalized
stiffness k.

Equation (24) is implemented within the finite element procedure by
performing an undamped eigenvalue analysis and extracting for each mode the total
strain energy 2ky and the strain energy 2kyq contained in the viscoelastic
material. In the undamped analysis, the damping material is modeled and assigned
a zero loss factor.

NASTRAN IMPLEMENTATION

With NASTRAN analysis, the specification of quadratic frequency dependence
for part of a structure requires that the stiffness matrix for that part be
available and that various scalar multiples of that matrix be combir- 1 with the
original stiffness, mass, and damping matrices for the entire syster.

A convenient way to obtain the stiffness matrix fcr a subset of elements
(the viscoelastic material) in a structure is to specify a unit material damping
constant (g = 1) on the material card for that substructure. In that case, the
reference elastic stiffness matrix K, for the damping material is merely the
NASTRAN data block K4GG. Thus, from Equation (8), the elastic stiffness matrix
Ke for the rest of the structure (all material except the damping material) is

Ke = KGGX - K4GG (26)
where KGGX is the NASTRAN data block containing the real part of the complete

system stiffness matrix. With the use of NASTRAN data block terminology,
Equations (14) - (16) then become

K* = KGGX + (ap - 1 + iB,) K4GG (27)
B* = BGG + (B) - ia;) K4GG (28)
M* = MGG + (-op - iBjy) K4GG (29)

where the new complex matrices K*, B*, and M* replace the original matrices KGGX,
BGG, and MGG, respectively. This replacement is effected with an ALTER to the
rigid format. The scalar multipliers in Equations (27) - (29) are defined in
NASTRAN using three complex parameters:

PARMK = (a, - 1, 8,)

PARMB = (Bj, -a}) (30)

PARMM = (-aj, -B9)
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where the a's and B's are the coefficients of the quadratic curve fits in
Equations (11) and (12).

Forced Response

For the calculation of forced time-harmonic response (NASTRAN's Rigid Format
8), an ALTER to effect Fquations (27) = (29) would be sufficient to enforce
quadratic frequency dependence of the properties of one material. The DMAP ALTER
which implements these changes is shown in Figure 1. The first section (ALTER
41) replaces the original coefficient matrices with the new matrices K¥*, M¥%, and
B* defined in Equations (27) - (29). The other three sections replace NASTRAN's
functional modules SMPl and SMP2, which perform the static condensation (Cuyan
reduction) on the stiffness, mass, and damping matrices. These replacements are
needed because SMPl and SMP2 do not allow ccmplex input,

ALTER 41 $ APR 84, R.F. 8, FREQ-DEP MATL
PARAM //*MPY*/NOBGG/1/1 $ YES BGG
PARAM //*MPY*/NOK4GG/1/-1 $ NO K4GG
ADD KGGX,K4GG/KBAR//C,Y,PARMK $§ NEW K
ADD MGG ,K4GG/MBAR//C,Y,PARMM § NEW M
ADD BGG ,K4GG/BBAR//C,Y,PARMB § NEW B
EQUIV KBAR,KGGX//MBAR,MGG//BBAR,BGG $ NEW K,B,M
PURGE K4GG $
ALTER 78,78 $ REPLACE SMP1 FOR COMPLEX K
UPARTN USET,KFF/KAAB,KOA,,KOQ/*F¥% /%A% [*x0k §
SOLVE KO00,KO0A/GO/1/-1 $
MPYAD KOA,GO,KAAB/KAA/1 $
DIAGONAL KAA/AVEC/*COLUMN*/0. $ VECTLR OF ONES
ADD AVEC,/PVEC/(0.0,0.0) § VECTOR OF ZEROS (P-VEC)
MERGE KAA,,,,PVEC,/KAASYM/-1//6 § DUMMY MERGE FOR K
EQUIV KAASYM,KAA $ KAA TRAILER NOW SYMMETRIC
ALTER 30,80 $ REPLACE SMP2 FOR COMPLEX M
UPARTN USET,MFF/MAAB,MOA, ,MOO/*F¥ /%A% [*(0* §
MPYAD MOO,GO,M A/TEMP1/1 §
MPYAD GO,TEMP],MAAB/TEMF2/1 $
MPYAD MOA,GO,TEMP2/MAA/] §
MERGE MAA,,,,PVEC,/MAASYM/-1//6 $ DUMMY MERGE FOR M
SQUIV MAASYM,MAA $ MAA TRAILER NOW SYMMETRIC
ALTER 83,83 $ REPLACE SMP2 FOR COMPLEX B
UPARTN USET,BFF/BAAB,BOA, ,BOO/*F*/=A*/*0* §
MPYAD B0O,GO,BOA/TEMP3/1 §
MPYAD GO,TEMP3,BAAB/TEMP4/1 $
MPYAD BOA,GO,TEMP4/BAA,1 $
MERGE BAA,,,,PVEC,/BAASYM/-1//6 $ DUMMY MERGE FOR B
EQUIV BAASYM,BAA § BAA TRAILER NOW SYMMETRIC
ENDALTER §

Figure 1 - DMAP ALTER for Rigid Format 8 for Time-Harmonic
Response of Structures with Frequency-Dependent Material Properties
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To summarize, the NASTRAN procedure for calculating the time-harmonic
response of a structure with one frequency-dependent damping material is as
follows:

1. Perform a least squares quadratic fit to one of the elastic moduli to
determine the a's and R's in Equations (11) and (12). For viscoelastic
materials (e.g., rubber), the shear modulus G is usually used, in which case

G(w) = Gy alw) a1

and B(w) is defined in Equation (10). G, is the reference waterial property
and may be taken to be ] psi. In Equation (10), n(w) is the loss factor for
the viscoelastic material.

2. Specify the material damping constant g = 1 and reference elastic properties
(e.g., shear modulus G = G,) on the iaterial card for the viscoelastic
material; specify the mass density aad Poisson's ratios correctlv. Specify
g = 0 on the material card for the undamped material.

3. Perform frequency response analysis (Rigid Format ) with the DMA? ALTER of
Figure 1 and the parameters defined in Equation (30).

Loss Factors

Forced response predictions for structures with one damping raterial require
only the replacement of the original K, M, and B matrices with their complex
counterparts K¥, M*, and B* defined in Equations (27) - (29). However, the same
replacemert cannot be used to solve the complex eigenvalue problem (Rigid Format
7) to obtain damping, because the assumed time dependence is different between
Rigid Formats 7 and 8. Specifically, for forced response calculations, NASTRAN's
tire dependence is of the form e*¥t, whereas in the complex eigenvalue problem,
the ime dependence is of the form eP' for complex p. The modal strain energy
(MSF) approach is a means of avoiding this difficulty, since only undamped
natural frequencies are computed, in which case

Bo =By =8, =0 (32)

in Equations (27) - (30). A complex eigenvalue analysis is still required,
however, since the damping matrix B* is purzly imaginary; K* and M* are both
real.

To complete the calculation of the composite loss factor n in Equation (24),
we first note that Equation (24) is 2quivalent to

n = nglaky)/(ke + akgy) (33)

where k, is the generalized stiffness for the damping material with some
reference level of material propertiee chosen (e.g., shear modulus G = 1 psi),
and k, is the generalized stiffness for the remaining material. Since a is
irequency-dependent, it is convenient to let NASTRAN compute ko and k, for each
mode and to use a post ~scessor to compute 13 for each mode.

The DMAP ALTER whir% implements all these changes in NASTRAN's -~omplex
eigenvalue analysis (Rigid Format 7) is shown in Figure 2. The first section
(ALTER 41) replaces the original coefficient matrices with the new matrices K*,
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M*, and B* derined in Equations (27) - (29). The second section (ALTER 30,80) is
the replacement for NASTRAN's static condensation module SMP2. The third section
(ALTER 127) computes the generalized stiffnesses k, and k, for each mode. These
generalized stiffnesses as well as the list of eigenvalues (contained in data
block CLAMA) are written on an OUTPUT. file for postprocessing to evaluate n for
each mode according to Equation (33).

To summarize, the NASTRAN procedure for calculating loss factors of
structures with one frequency-dependent damping material is as follows:

1. Perform a least squares quadratic fit to one of the elastic moduli to
determine the a's in Equation (11). For damping materials (such as rubber),
the shear modulus G is usually used; see Equation (31).

2. Specify the material daamping constant g = 1 and reference elastic properties
(e.g., shear modulus G = G,) on the material card for the viscoelastic
material; specify the mass density and Poisson's ratios correctly. Specify
g = 0 on the material card for thke undamped material.

3. Perform complex eigenvalue analysis (Rigid Format 7) with the DMAP ALTER of
Figure 2. Use the parameters defined in Equation (30) with B8, = 8; = 87 = 0.
Retain the OUTPUT2 file (UT1).

ALTER 41 § APR 84, R.F. 7, FREQ-DEP MATL
PARAM //*MPY*/NOBGG/1/1 § YES BGG
PARAM //*MPY*/NOK4GG/jl/-1 $ NC K&4GG
DIAGONAL KGGX/IDENTG/*SQUARE*/(0. $ G SET IDENTITY MATRIX
MPYAD IDENTG,KGGX,K4GG/KMAT2/1/1/-1 §
ADD,KGGX,K4GG/KBAR//C,Y,PARMK $ NEW K
ADD MGG ,K4GG/MBAR//C,Y,PARMM $ NEW M
ADD BGG ,K4GG/BBAR//C,Y,PARMB $ NEW B
EQUIV KBAR,KGGX, /MBAR,MGG//BBAR,BGG $ NEW X, B,M
ALTER 80,80 $ REPLACE SMP2 FOR COMPLEX B
DIAGONAL KAA/AVEC/*CCLUMN*/0. $ VECTOR OF ONES
ADD AVEC, /PVEC/(0.0,0.0) $ VECTOR OF ZEROS (P-VEC)
UPARTN USET,BFF/BLAB,BOA, ,BOO/*F* /*xAk/%x0x §
MPYAD B0O,GO,BOA/TEMP3/1 §
MPYAD GO,TEMP3,BAAB/TEMP4/1 §
MPYAD BOA,GO,TEM]4/BAA/L §
MERGE BAA,,,,PVEC, /BAASYM/-1//6 $ DUMMY MERGE FOR B
EQUIV BAASYM,BAA $ BAA TRAILER NOW SYMMETRIC
ALTER 127 $ GENERALIZTD STIFFNESSES
SMPYAD CPHIP,K4GG ,CPHUIP.,,/GKMATI/3////1/1 §
SMPYAD CPHIP,KMAT2,CPHIP,,,/GKMAT2/3////1/1 §
DIAGONAL GKMATI/kl $
DIAGONAL GKMAT2/K2 §
MATFRN K1,K2,CLAMA,,// §
OUTPYT2 K1,K2,CLAMA,,// $
ENDALTER $

A it i B

Figure 2 - DMAP ALTER for Rigid Format 7 for Loss Factors of
Structures with Frequency-Dependent Material Properties
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DISCUSSION

A finite element procedure has been described for predicting the loss
factors of structures to which frequency-dependent viscoelastic damping
treatments have been applied. This procedure, used on the simple test problem of
a three-layer plate, yielded predictions similar to those of a generally-accepted
analytical procedure for infinite plates.

The power of the finite element procedure, however, is that it is not
restricted to such simple geometry but can readily handle such complicatiovas
as differeat boundary conditions, variable plate thickness, and localized
treatments. None of these effects can be treated by the infinite plate theory.
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4. With a postprocessor, read the UT]l file and compute for each mode the loss
faccor n according tc Eguation (33).

EXAMPLE

The procedure for calculating ccmposite loss factors will be illustrated for
the three-layer sandwich plate shown in Figure 3. We assume that the shear
modulus G and loss factor n for the middle layer are given by

#

G(f) = 104 + 9f  (psi) (34)

n(f) = 0.5 - (4x1073;f (35)
where f is frequency in he. These relations imply considerable frequency
dependence, since between zero and 10,000 Hz, G varies by a factor of ten, and

n varies by a factor of five. The top and bottom layers are made of steel.

The plate was modeled with three layers of 20G-node isoparametric ("brick")
finite elements. A 13x5x2 mesh of elements was used. These elements were used
rather than plate elements because of interest in fairly thick plates of variable
thickness, in which case the engineering plate theory no longer applies. Guyan
reduction was applied to this model in such a way that the only degrees of
freedom retained were the normal translations at the corner nodes of each
element on the top and bottom faces.

The composite loss factor computed using the finite element procedure
described in the preceding sections is compared in Figure 4 with a calculation
based on classical infinite plate theory presented by Ross, Ungar, and Kerwin
[6). That figure indicates a good agreement between the two predictions. The
infinite plate theory is generally thought to prcvide a reasonably accurate
prediction of the composite loss factor for plates with this simple geometry,
and heace serves as a good check on the finite element result.
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