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SUMMARY

Three major categories of testing are identified that are recessary to
provide support for the development of constitutive equations for high-
temperature alloys. These are exploratory, characterization and verification
tests. Each category 15 addressed and specific examples of each are given.
Coverage ranges from some general thoughts on testing relative to constitutive
equation development to detaltled descriptions of specific tests and their
interpretation. An extensive, but not exhaustive, set of references is
provided concerning pertinent experimental results and their relationship to
theoretical development.

The primary objective of this report is twofold: tc serve as a guide in
formulating a meaningful testing effort in support of constituttve equation
development, and to aid in defining the necessary testing equipment and
instrumentation for the establishment of a deformation and structures testing
laboratory.

INTRODUCTION

Thermomechanical service condttions for aircrc?t engine hot section com-
ponents involve temperature levels, therma’ transients and mechanical loads
severe enough to result in significant inelastic deformation. Structural
analysis in support of the design of hot section compenents - leading to the
stress, strain and temperature fields upon which 1ife predictions are ulti-
mately based - therefore depends strongly on accurate mathematical representa-
tions (constitutive equations)@ of the nonlinear creep/plasticity behavior
of structural alloys at high temperature. To be generally applicable, consti-
tutive equations must be expressed in muliiaxiat form and be appropriate for
all modes of mechanical and thermal) loading expected to be experienced by the
hot sectton components (e.g., cyclic, nonisothermal, nonradial, etc.).

dHere, the meaning of constitutive equations 1s taken as mathematical
descriptions of deformation behavior, 1.e., phenomenological relationships
between stress, strain, strain-rate, time, temperature, etc. A broader defint-
tion, not intended here, could include descriptions of internal damage accumu-
lation as well., Combined deformation/damage modeling 1s left as a subject of
future research.



In recognization of the need to better understand the detalled nature of
high-temperature inelastic behavio~ of structural alloys and to develop accu-
rate constitutive relationships for these alloys, an expansion of the in-house
effort ¥n constitutive equation development and the experimental factilittes
supporting thts effort is underway in the Structura) Mechanics Branch of the
Structures Division at NASA Lewis. Here, some general thoughts on material
testing are discussed along with a description of several tests (multiaxial
and uniaxtal) thought to be critical in the formulation of rationally based
constitutive equations. The present report is intended to serve the dual
purpose of helping tc define the necessary equipment and instrumentation for a
deformation laboratory and of acting as a guide in the formulation of a
meaningful testing program in support of constitutive equation development.

There are three basic types of experimentation necessary to support the
formulation of constitutive equations for high-temperature structural alloys.
These are (1) Exploratory tests that gquide the development of theory and test
the fundamental concepts embedded in the framework of the theory, (2) Charac-
terization tests that f{11-in the theoretical framework by providing a data
base for determining the specific functional forms and material parameters tu
represent a particular alloy over a given range of conditions, and (3) Verifi-
cation tests, often structural in nature, that provide the ultimate test of a
constitutive model through comparison of prototypical response data with pre-
dictions based on the model. Results from verification tests tdeally provide
feed back for subsequent developmental efforts. Each type of testing will be
separately addressed and specific examples of each givan in the following
sections,

The experimentation discussed 1s aimed particularly at high-temperature,
high-strength nickel base alloys (e.g., Hastelloy-X, Inconel 718, etc.) and
the ranges of temperature, stress, strain-rate, etc. important 4n aircraft
engine design. The ranges of interest are roughly up to 1000° C 1n tempera-
ture, from +1000 MPa in strecs, 10-6 to -10-2/min. in strain-rate and less than
about 1 or 2 percent total strain.

EXPLORATORY TESTING

Unfortunately, exploratory tests in the above sense are nonexistent in
many so-called constitutive equation development programs. In such programs
the formuiation of constitutive equations reduces to 1ittle more than empirical
curve fitting. Without the close developmental interaction between expert-
mentalist and theoretician, their eyes trained on both the physical aspects of
material behavior and the general class of structural problems ultimately to
pe dealt with, there results ad hoc constitutive models that cannot be used
with confidence, sometimes even Just slightly outside the spectfic conditions
addressed by their supporting data base.

Exploratory testing 1s often largely qualitative. Although a few care-
fully chosen experiments aimed at verifying key concepts embedded in a theo-
retical framework are generally sufficient, such experiments are often not
easy to define nor are they always easy to conduct.



Test specimens used in exploratory (and characterization) testing must
provide a suitable region of homogeneous stress and temperature and be stati-
cal:) determinate sc that the stress state is known directly from the measured
external loads applied to the spacimen. The strain (or strain-rate) state
must be independently measurable in the homogeneously stressed region using
appropriate extensometry. Only in this way can the causal relationships
(constitutive relationships) between force-1tke variables (e.g., stress) and
kinematic variables (e.g., strain) be deduced. In principle, no analysis
using (assumed) constitutive equations can be used to analyze test results
almed at establishing constitutive equations.

A particularly glaring deficiency in terms of conceptual or exploratory
testing 4s that regarding muitiaxial behavior. The major reason for this has
been the lack of extensometry for accurately measuring multiaxial strain at
high-temperature. Only through very recent developments in extensometry
gref. 1) has it become possible to do meaningful high-temperature biaxial

esting.

Thin-walled tubes under axial force, twist and internal and/or external
pressure reflect the current state-of-the-art in specimens for blaxial testing.
They are used not because the tube is a prototypical component of alrcraft
engines or breeder reactors but because they allow known hiaxial stress states
to be generated that (closely) satisfy the required testing conditions stated
apove,

The necessity of conducting fundamental multiaxial tests can be best
understood in the context of classical plasticity. In that constitutive
theory, the concept of a yield surface plays a central role. The existence
and description of the yield surface is precisely that which allows a
consistent multiaxial statement of plastic flow (flow law) to be written.
This is done by making use of the fundamental assumption that the yleld
surface has the properties of a potential (normality) t.e.,

flogg,a13,T) = K (yleld surface) (1)
p af

deys = A T {flow law-expressing normality) (2)
13 301,

Here, u}J is the applied stress, a4y and K are tensorial and scalar
state variables, respectively, T 1s the temperature and c?j is the plastic
strain.

An interesting classical (isothermal) example 1s provided when f 1in
equation (1) 1s taken as a particular function of the deviatoric stress
543 = 044 - 1/3 okkéyy alone, 1.e.,

1
f = 3 511531 = K (3)

Then equation (2) takes the form

dc1PJ - 3y, (4)



which indicates that each component of the inelastic strain increment is pro-
portional to the corresponding component of the applied deviatoric stress.
This remains true regardless of the history of deformation.

Another classical example arises when f s taken as

fay (Syy - ayy)(Syq = ayq) = K (5)

The form of f 4s just the same as in equation (3) except that the stress
dependence is taken in terms of the difference of the applied deviatoric stress
and a tensorial (deviatoric) inelastic state variable a44. In metallurgical
terms, a44 s called the interpa) or back stress. In this case, equation (2)
takes the form

P
dc‘J w K(S1J - 0.13) (6)

indicating that the components of the current plastic strain increment are pro-
portional to the components of (543 - ayj), and thus depend not on the applied
stress Syj3 alone but also on the inelastic state as reflected through ayy.
In other words, here, the direction of the plastic strain response depends on
the history of deformation.

In any case, specification of the yleld surface equation (1) leads to an
associated form of the flow law through equation (2). Multiaxial testing
alone provides a quantitative description of f, thus permitting the correct
form of the flow law to be deduced.

A wealth of exploratory testing has been done at relatively low tempera-
tures (refs. 2 to 10) 1in support of the concepts of a yield surface and the
normality condition. MHuch of this work has at least indirectly addressed the
distinction between equations (3) and (4) and equations {5) and (6).

At high temperatures, alloys of interest are strongly time-dependent and
the coencept of a yleld surface, in the classical sense, generally breaks down.
However, analogous geometrically based concepts can, and have been, postulated
for high-temperature time-dependent behavior. One such concept concerns sur-
faces of constant itnelastic strain-rate (SCISR's); they analogously play the
same central role in viscoplastic constitutive theories as yield surfaces do
in classical plasticity. Using thermodynamic arguments SCISR's can also be
shown to have a potenttal nature and thus, as yleld surfaces, constitute the
basis of a rational multiaxial theory. Thelr description In stress space, at
a fixed inelastic state, provides guidance for correctly reprasenting multi-
axial behavior, both isotropic and anisotropic (ref. 11). This rather funda-
mental approach to the formulatioen of a consiystent multtaxial theory contrasts
with the ad hoc and generally inadequate approach of extending uniaxial con-
stitutive theories for multiaxial conditions by s‘mply placiszqg bars over the
pertinent variables and terming them "effective" values.

Tests for the definition and description of SCISR's will now be outlined.
Thin-walled tubes of the alloy of interest are subjected to combined isothermal
tension-torsiond under stress-rate control, 1.e., a radial path is traversed
in the stress space (o,t) at a constant rate {fig. 1). Over zach suitabie
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time increment &t the total strain increments (&c,8y) are measured using
appropriate extensometry, thereby establishing the components of total strain-
rate. With knowledge of the elastic modull this aliows computation (through
an associated digital computer) of the inelastic strain increments (8.p, dyp)

over 4t or, equivalently, the inelastic strain-rates (Ep. ;D). The magni-
tude I of the inelastic strain-rate corresponding to each time increment can
be thus computed according to

‘/1_ PP e2  +2
[ » 2 c”:“ -5 3cp * Yp (1)

When I reaches a preestablished value, say Iy, aleng the stress path, the
specimen 1s unloaded. A sequence of such probes a‘ong various radial stress
paths establishes the locus in stress space of points of constant inelastic
strain-rate magnitude 1y, (%.e., a SCISR). Similar tests corresponding to
other inelastic strain-rate magnitudes define a famtly of SCISR's. Knowledge
of the Yndividual 1nelastic strain-rate components along each SCISR also

allows the applicability of the important normality condition to be assessed.
Extensions of these exploratory tests invelving measurement of SCISR's follow-
ing &nown deformation histories, e.g., periods of prior creep, furnish guidance
for modeling hardening and recovery behavior.

Specia) equipment requirements in SCISR tests include the capability of

high-resolution, stable extensometry to supply accurate, low-noise strain

1 signals and an associated digital computer for control, computation and data
acquisition. Note that the high-resolution requirement of the extensometry is
imposed pot because strain levels 4in the order of, say, tens of microstrain
are of particular importance in structural design but because tests as those
discussed here are to be conducted at a fixed inelastic state of the material.
This can be approximated only by 1imiting the strains incurred during the test
to smal1) values, thus minimizing the disturbance of the current state.

Freliminary SCISR testing was initlated by J. R. E114s on type 316 stain-
less stezl at approximately 600° C (fig. 2}. In that case an MTS tension-
torsion test system in conjunction with a PDPBe digital ~omputer were employed.

The same fundamental questions concerning the correctness of multiaxial
formulations exist in viscoplastic modelling as 1n classical plasticity.
Forms of viscoplastic flow laws analogous to equations (4) and (6) have been
proposed; 1.e.,

&y = sy, (8)

dHere, the tests are discussed only for tension-torston loading of a tube.
It 15 intended that such tests be conducted ultimately under more general biaxial
stress states, as might be generated with the inclusion of internal pressure.



and

Equation (8) ¥s a form employed by Bodner and Partom (ref. 12) and
Stouffer and Bodner (ref. 13) and states that the inelastic strain-rate compo-
nents are always proportional to corresponding components of applied deviatoric
stress or, in other words, the 1nelastic strain-rate (vector) has the same
direction as the deviatoric stress (vector), independently of deformation his-
tary. Equation (9), analogous to equation (6), allows the direction of the
fnelastic strain-rate to depend on prior history through ajj, Implying that
the material has a memory in this sense. This multiaxial form is the one
adopted in most of the unified theories employing the concept of an internal
stress (refs. 14 to 19).

In the case of viscoplastic theories based on the well-known Batley-Orowan
concept and thus employing an evolutionary law of the type

. P

qu s hc” - ra” (1)

it 1s seen that under steady-state conditions, (1.e., when ;13 = () the in-
elastic strain-rate is given by

.P L
€4y =(h)“1j (1)
Solving equation (11) for 94} and substituting into equation (9) gives:
DP l . 1
43 "[1 : x(h/r)] Syg = M Sy (12)

which is of the same form as equation (8). Thus, for a Batley-Orowan material
under steady-state conditions, elther flow law (eqs. (B) or (9)) 1s appropriate
and leads to the same result. Of course, this is because Syy and o4y are
colinear under these conditions. There 1s also no distinction between equa-
ttons (8) and (9) 1f the stress path remains strictly radial, 1.e., the stress
components are in constant proportion; again this follows from the colinearity
of S44 and a44. However, under conditions other than steady-state or
strictly proportional stressing, the flow laws equation (8) and equation (9)
are distinct and can lead to very different predictions of response. Equation
(9) s the more general form allowing the direction of the inelastic strain-
rate to depend on the history of deformation. Experiments related to SCISR
tests and bearing on the distinction between the flow laws expressed in equa-
tions (8) and {9) were conducted earlier by Blass and Findley (ref. 20) on an
aluminum alloy at 250° C. Thelr results suggest that the flow law defined by
equation {8) may be too restrictive to correctly predict the salient features
of transient creep response under multiaxial conditions. The Blass-Findley
(tension-torsion) experiments show that the components of inelastic strain-
rate are not generally proportional to the deviatoric stress during transient
creep (except under proporttonal stress conditions),



The experimental results of Blass and findley are qualitatively predict-
able using the model of Robinson (refs. 14 and 19) which incorporates a flow
law in the form of equation (9). The restriction to a qualitative comparison
s necessary as the model parameters have not been determined for the aluminum
alloy used in the experiments. As a first ster toward representing the
Blass-Findley results in terms of the Robinson model, we consider a pictorial
representation of a simple combined tension-torsion creep test (fig. 3) based
on that model. The constant tension.shear stress point under which creep
occurs is labelled P 4in the figure. Curves of constant inelastic strain
rate (SCISR's) appear as c¢irzles in the V3r vs. o space of figure 3
(cf. fig. 2 for supporting experimental evidence). There 1s an infinite
family of circles for any given inelastic state, the state being characterized
by the location of the center of the circles. Here, only one circle 1s drawn
corresponding to each inelastic state, that is, only the one that passes
through the load point P.

Let us now follow through a simple tension-torsion creep test in which
a virgin spectmen is abruptly loaded to and held at the stress point P.
Initially, the family of circles {(SCISR's} 1s centered at (or near) the
origin 0. The circle labeled 1 {5 the one of the family which passes
through P. Circle 1 corresponds to a particular magnitude of inelastic
strain rate, in this case represented by the longest vector emanating from
pa_ Note that the strain-rate vector is normal to the circle 1 at point P.
As the stress 1s held constant, the material creeps both in a tensile and
shear sense, and the inelastic state changes. This 1s represented by the
translation of the center of the family of circles toward the load point P
(much like the translation of a yleld surface in classical kinematic hardening
plasticity). At some later time the circle passing through P 1s that
labeled 2, with 1ts center shifted as shown. This circle corresponds to a
lesser strain rate magnitude than the inittal value and the current strain-
rate vector (normal to the circle 2 at P) 1s shown as the next shorter
vector. The material 1s hardening, that is, undergoing transient creep.

The c¢ircle 3 corresponds to the situation at sti11 a later time, with the
strain rate magnitude being smaller yet. This process continues as the stress
§s held constant unti) finally steady state is reached and the family of
circles no longer translates. Steady state is depicted in figure 3 as the
circle labeled 4 with its center at S. The strain rate vector associated
with this circle 1s the shortest one emanating from P representing a steady-
state creep rate which, according to this theory, remains constant as long as
the stress is not changed.

Thus, both the tensile and shear strain components behave much like the
extensional creep strain 1n a uniaxial test; they both go through a transient
creep stage during which the creep strain rate diminishes until finally a
steady state is reached. Here, the inelastic state remains constant (no shift
of thz circles) after steady state s achieved.

apresently we are not so much concerned with the precise magnitude of
the strain rate vector but rather with 1ts direction and size relative to sub-
sequent vectors as creep proceeds. The length of the vectors shown in figure 3
are actually proportional to the strain rate magnitude in a logarithmic sense.




An essential featuire of figure 3 s that the predicted direction of the
strain-rate vector remains radial throughout the creep test, 1.e., the strain-
rate components remain in constant ratio and, furthermore, proportional to the
components of the applied (deviatoric) stress. This hehavior is bourne out by
the Blass-Findley test results. However, as point.. .ut earlier, such behavior
can be predicted using a flow law either of the furm equation (8) or (9), thus
20 2ef}n\t1ve choice between the two forms can be made on the basis of this

est alone.

Now we “urn to figure 4. This represents the case of a thin-walled tube
that first undergoes a creep period in twist (shear) and then is subjected to
the same combined stress state P as was considered in figure 3. Thus, we are
conducting the same creep test but now on a material that has a previous load-
ing history.

We interpret the circles and vectors in figure 4 the same way as before.
The original (nonvirgin) state in this case s represented by the family of
circles centered at 0. That circle of the family passing through P 1%
labeled 1. The initial creep strain-rate vector (normal to circle 1 at P)
corresponds to the largest vector in figure 4; 1t differs both in magnitude
and direction from the initial strain rate vector of the creep test of fig-
ure 3. This initia’ strain-rate vector is not radial and thus %ts components
are not proportional to the corresponding components of ceviatoric stress.

As before, the center of the family of circles translates in time; at
some later time the circle passing through P As ‘abeled 2, ts center
shifted further toward P. The corresponding strain rate vector (nearly in
the same direction as before) is now shorter, indicating transient creep.

As time passes, the constant strain rate circles (SCISR's) translate to that
labeled 3, 4, and finally to that labeled 5, corresponding to steady state
conditions. The strain rate vectors corresponding to each of these states
sequentially shorten and rotate through the transtent creep period. The
steady-state condition depicted by circle 5 and centered at S 1s exactly
that of the first creep test (fig. 3) with the same strain rate vector - both
in magnitude and direction. Thus, as steady-state conditions are reached, the
strain-rate vector becomes radial and its components becorie proportional to
the components of the applied stress.

The material can be characterized as having a fading memory. It remembers
what has been done to 1t in the recent past; but, eventually, that memory fades
and the material responds only to the current loading conditions. During the
transient creep period, the matertal responded quite differently to the con-
stant stress when it had been subjected to prior creep in torsion. Once the
transient creep period had passed, however, and steady state was reached, both
the previously crept material (fig. 4) and the previously undeformed material
(fig. 3) responded in the same way to the same loading.

This 1s precisely the behavior indicated in the Blass-Findley experiments.
Under strictly proportional stress or steady state conditions (ayy = 0) the
inelastic strain rate components are proportional to the components of the
applied deviatoric stress S44 and the form of flow law expressed by
either equation (8) or equaticn (9) appears adequate. Under conditions any
less restrictive (9.e., transient or non-proportional) only equation (9)
appears adequate to represent multiaxtal creep response.

8



Figure 5 shows sti1) another case addressed by the Blass-Findley experi-
ments in which the thin-walled tube was first subjected to axial creep before
application of the combined stress P. The predicted results are analogous to

those of figure 4 and also show good qualitative agreement with the experi-
mental resulgs.

The SCISR experiments described ear’ier are capable of providing the
information obtatned in the Blass-Find14; experiments as weil as additional
information regarcing subsequent hardening and recovery. They constitute
important exploratory experiments for answering fundamental questions regard.-
ing multiaxial aspects of constitutive theories.

Other fundamental questions that arise and need to be answered through
experiments of the type described here concern stil11 other aspects of a proper
muitiaxial generalization of untaxial models employing the concept of a back

or internal stress. For example, consider a uniaxial constitutive model that
Ys expressable as

s f(o - a)

Ne

(13)
= g(dia)

[ 3

in which o represenis the applied stress and o the back stress. The
generalization of equation (13) to a multiaxial form is far from unique.
Quite apart from the tensorial properties of the flow law already discussed,
two possibilities that can give vastly different multiaxtal predictions in
structural problems are as follows:

€43 'fu(“u ‘“m)

(14)
%43 = 9 (°k1.°k1)
and
t1y = Fiy (°k1 - “kl)
(15)
%3 = 94y (’kl. “kl)
in which the bars dencte the following:
Nio =2 X X (16)
15 %2 Myt

1.e. the bar indicates the second principal invariant of the quantity. The
first form equation (14) 4s, in principle, that proposed by Larsson and
Storakers {(ref. 21) and involves Just a single scalar evoluttonary equation.
The stress dependence in the second form equation (15) 1s expressed in terms

of the difference of each tensorial component and thereby, in general, involves

9



six Independent evolutionary equattons. As to whether the enormous complexity
of the saecond form over the first must be or can be, tolerated depends on many
practica) and numerical constderations. Nevertheles:, the question as to which
form more closely represents real materia) behavior can only be answered by
multiaxial testing, as each form reduces to the same untaxtal model.

One last example of mulitiaxial exploratory testing will be discussed
because of its hybrid nature, Once again, this is an i1sothermal tension-
torston experiment but now involves stress control in tenston with simultaneous
strain-control in torsion (or vice versa). In the simplest case the axial
stress is held constant while the shear strain is cycled over a fixed range at
constant strain-rate. Axial ratcheting results with eventual shakedown depend-
ing on the blaxtal hardening characteristics of the material. Tests of this
type were conducted by Roche et al (ref, 22) on type 316 stainless steel at
600° C for the purpose of investigating the detajled interaction of independent
stress components under cyclic ratcheting conditions. Roche's tests also pro-
vide information for di.tinguishing between multiaxial forms such as given in
equattons (8) or (9).

Apart from the multiaxial aspects of behavior, other important behavioral
features can be assessed using far simpler uniaxia) exploratory testing. An
important example concerns an assessment of the impartance of thermal recovery
effects. The extent to which recovery plays a role in the temperature range
of interest has a direct bearing on the theoretical structure of the constitu-
tive model, particularly the for-in of the evolutionary law or laws. For exam-
ple, a Balley-Orowan form is appropriate only when thermal recovery effects
are significant.

Creep tests in which a constant uniaxial stress 1s interrupted by inter-
mittent periods of unloading (near zero stress) are useful for assessing
recovery effects. Varying the duration of the pericds of unloading supplies
information on the rate of recovery. Figure & shows the result of an inter-
rupted creep test on 2-1/4 Cr - 1 Mo steel at 538° C. This alloy exhibits
virtually no creep strain recovery in this test but experiences considerable
state recovery. It is important that qualitative features such as these be
recognized through exploratory testing and reflected in the mathematical
framework of the constitutive model. The responte indicated in figure 6, for
exampte, can be modeled only through the inclusion of a term in the evolution-
ary law representing a thermal recovery mechanism.

Another important exploratory testing area that bears directly on the
question of separability of time-independent (plasticity) and time-dependent
(creep) strains 1s that concerning the significance of creep/plasticity
interaction. This 1s equivalent to asking whether constitutive models in the
unified ¢lass need to be adopted 1n preference to more classical models.

A c¢lass of creep/plasticity interaction tests of particular interest are
those 1n which a uniaxial) (or pure shear) specimen is first cycled at constant
strain rate over a given strain range. Once a reasonably stable hysteretic
Jcop 1s established, creep or stress relaxation tests are performed from vari-
ous starting points around the loop. The different starting points, even for
those at the same stress (and temperature), correspond tv quite different
inelastic states and consequently exhibit quite different creep or relaxation
behavior. (Classical models in which creep and plasticity are treated independ-
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ently cannot predict such hehavior. An example of observed response under
these conditions is shown in figure 7,

CHARACTERIZATION TESTING

Characterization tests fi11-1n the already established constitutive equa-
tion framework by supplying the appropriate material constants and parameters
for representing the behavior of a specific alloy. Ideally, these tests should
be simple to conduct and lend themselves to a routine process for determining
the required functional forms and matertal parameters.

Several relatively standard characterization tests will first be 1isted
after which some less well-known testing in support of unified constitutive
models will be discussed. Finally, nonisothermal testing will be briefly
described.

There are several conventional tests that are needed to establish a data
base and quantify the inelastic behavior of high temperature alloys, these
include:

(a) Monotonic tensile tests conducted at various temperatures and con-
stant strain-rates in the range of interest.

(b) Cyclic tests conducted over fixed strain ranges at a variety of
straln-rates and temperatures to establish cyclic hardening (or softening)
characteristics.

{¢) Constant stress (load) creep tests at various stress levels and
temperatures to characterize primary and secondary creep behavior.

(d) Stress relaxation tests from several tnitia) stress levels and
temperaturcs.

(e) Variable (multistep) stress and temperature creer tests for quan-
titative assessments of creep hardening (or softening) characteristics.

Characterization testing in support of unified constitutive models 1is,
of necessity, more comprehensive and demanding than that supporting classical
models because, of course, the unified models themselves are more comprehen-
sive. The special testing next described 1s representative of the general
type of testing regquired for unified representations, however, it 1s focused
mainly on the requirements of the Balley-Orowan class of equations of which
the writers' unified theory (refs. 14 and 19) 1s a member. For the purpose of
discussion, the simplified uniaxial form of the constitutive model will be
taken as:

¢ = flo - a) an

a = h(a) ¢ - r{a) (18)
in which the hardening (h) and recovery (r) functions are:

ha) = o5 (19)

o

and

1
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Now consider a uniaxial variable strain-rate test in which the specimen
Is first extended at the constant (total) strain-rate ey (fig. 8). Now
suppose that at an instant when the stress and inelastic strain-rate are o
and ¢y, respectively, the total strain-rate is abruptly changed to the rela-
tively high value eg. Subsequently, at values op and ¢ of stress and
inalastic stra1n-rate..the total §tra1n:rate 1§ again abrup%ly.changed go
st111 a third value ep. Here, ey >> ey and ez. The rates ey and e;
are generally not equal but each s u\th‘n the range of strain-rates of

interest (Y.e., approximately 10-6 to 10-2/min.). The rate e, 1s taken
to be at least one, or perhaps two, orders of magnitude above the range of

interest (4.e., approx. 10-1/min.), high enough so that the behavior under e,
is essentially elastic. If this is the case, the state variable o {internal
stress) has the samg value, say a*, corresponding to the two measured sets
of conditions (o7, ¢y) and (o2, c2), and from equation (17) we can write:

(<)) (21)

Equation (21) provides an expression, involving the function f, that re-
lates the two sets of stress and inelastic strain-rate conditions. Using data
in equation (21) from several such tests that span the desired range of stress
and strain-rate conditions allows an optimal choice of the function f to he
made. Tryz. in the context of the model expressed in equations (17) to (20},
the str.4r-dte dependence is completely characterized by variable strain-rate
tests, and the flow law, equation (317), 1s Tully specified.

Toward further specification of the model, we next turn to the results of
creep tests, in particular, 1sotherma) steady-state creep data in the form
cy Vs o, Now, under conditions of steady state creep, we have a = 0 1in
equation (18) and we write:

M .r(ﬁ?. (22)
€ ™ h(us)

in which ag denotes the steady state value of the state variable correspond-
ing to a given stress. Making use of equations (19) and (20) we can write:

Cs'

a': (23)

x|

As the flow law, equation (17) 1s known, we can calculate &5 correspond-
ing to a given ¢ and o, thus

ag = o - f(E) (

(393

4)

12



il LAY S Tt Pl e ol o Akl g e r PR - R e de s

Combining equations (23) and (24) provides an expression relating Es
and o and involving the pair of unknown constants R/H and m. This
espression and the steady-state creep data (c¢g vs. o) can thus be used to
ubtain optimal values (e.g., In at least squares sense) of R/H and m. This
procedure 31lustrates an interactive process whereby data is first used in
determining certain of the unknown functions or parameters; tnese are then
used in a subsequent calculation that, in turn, 1s employed together with
additicnal experimental data for establishing other parameters, etc.

With f, m and the ratio R/H specified In equations {17) to (20), it
remains to determine B and efther R or M. One approach is to focus on
the recovery characteristics of the material and determine B and R by
using results from a series of strain-transient-dip (STD) tests. In these
tests a untaxial specimen is first subjected to constant stress creep at, say
dg. The stress 1s then reduced by a specified decrement Ac and again held
constant. Typica) responses to three stress decrements of varying magnitude
are shown schematically in figure 9. The immediate response to the abrupt
stress reduction ¥s elastic, followed by a relatively small amount of 1in-
elastic strain recovery. An apparent hesitation period (longer far larger
stress reductions) ensues after which the strain-rate qradually increases,
approaching the steady-state value corresponding to the reduced stress., As
discussed in reference 14, a reasonable idealization for many metais 1s to
considerr f in equation (17) as being zero for negative values of its argu-
ment, Y.e.. for o - a < 0. Then, the response following the abrupt stress
reduction to o5 - 8o in the STO tests s governed by

a s - Rum-B (25}

which can be integrated over a (measured) he§1tat1on pericd to give

a
o

(26)

o=
7
=

d

=1

ao-nd

As all quantities in equation (26) are known except the unknown parameters
R and B this expression can he used along with test data (ao,ar) from STD
tests to determine opt’ ra) values of R and B, which completes the specifi-
cation of the simple constitutive model expressed in equations (17) to (20).

Traditionally, nonisothermal constitutive theories have been hased en-
tirely on isothermal test data collected over a range of temperatures. The
inadequacy of this approach relative to classical (time-independent) plasticity
theory was recently discussed by Robinson and Swindeman (refs. 23 and 24).
Their findings substantiate the intuitively obvious conclusion that a non-
isothermal theory must be based on nonisothermal testing. Nonisothermal tests
to be used as a basis of thermoplasticity were proposed in reference 23 and
the results of some preliminary tests were reported. As tests of this general

typs may be appiicable to a wide class of constitutive models they will be
ocutlined here.
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The yleld surface in classical thermoplasticity is expressed as equa-
tion (1) with the scalar K interpreted geometrically as a measure of the
current size of the yleld surface. K thus measures 1sotropic hardeniny and
1s usually taken as a function of some measure of accumulated plastic strain
(or work) and temperature. That K can be taken as an explicit function of
these independent variakles impiies path independence in the variables and
furthermore that all the necessary information concerning K can be obtained
from 1sothermal tests alone. It is shown in reference 23 by the results of
simple expertments that K cannot be taken as an explicit function of these
variables and, instead, its evolution under an arbitrary deformation and tem-
perature history must be expressed in terms of a path dependent evolutionary
law such as:

dK &« F(P,T)dP + G(P,T)dT (21

P a ‘/‘Vdcsjdc;" (28}

is a measure of accumulated plastic stratn and T s the temperature.

in which

The current value of K (Y.e., the current size of the yleld surface) can
be generally determined from equation (27) only f the thermomechanical path
is known, 1.e., only if

P =g(T) (29)
s known.

Information for characterizing the function F 1in equation (27) can be
obtdined from ordinary isothermal testing, however, nonisothermal tests must
be conducted to supply infermation about 6. Such tests are the subject of
reference 23 and will be described below.

The function G appears directly in the flow law in classtcal thermo-
plasticity, (through imposition of the conditions of normality and consist-
ency), and thus directly governs the predicted plastic strain increment in
response to a temperature change. As pointed out in references 23 and 24
considering K as an explicit function of P and T and, consequently,
characterizing the hardening behavior solely on the basis of isothermal tests,
can lead to large errors in the predicted stress and strain fields in many
important nonisothermal structural problems.

The nonisothermal tests in reference 23 are aimed at providing informa-
tion ahout the function G(P,T) 1n equation {27) under conditions of cyclic
straining. In these tests a uniaxial specimen ¥s first cyclically stratned at
constant temperature T, over a fixed strain-range and strain-raic, incurring
a given ameunt of accumulated plastic strain Py (1.e., as defined 1n eq. (28)).
Cycling 15 stopped at the tensile peak of the hysteretic loop and the strain
held constant while a small, rapid temperature cycle is executed. If the
closed temperature cycle involves first a reduction in temperature AT followed
by an increase, a typical response 1s shown 1n figure 10, As the temperature
decreases, ylelding occurs and the stress increases from point 0 to 1 (Aopy).

14



Completing the cyc'e with a temperature increase to the original temperature

To produces an elastic response with an accompanying stress change A4oy3.

With Aaog) 4nd A8oy2 measurable directly from the stress response to the
thermal cycle E (Young's modulus) and Et (the tangent modulus) measurable
from the current hysteretic loop, and with the coefficient of thermal expansion
ay known, G(Py, Ty) can be calculated, V.e., the value of G can be obtained
at the current accumulated (cyclic) plastic strain Py and the temperature

To. Conducting tests of this kind over the desired ranges of P and T allows
the function G(P,T) to be mapped out in the region of interest. An important
assumption here s that the contribution of the first term in equation (27) is
negligibly small over the small temperature excursion. Intuitively, this seems
to be a reasonable assumption as the hardening (change 1n K) that occurs in
most alloys with accumulated plastic strain is quite gradual. Although sig-
nificant 1sotropic hardening may occur over several cycles of mechanical
straining, hardening 1s not pronounced from cycle-to-cycle., Thus, the contri-
bution resulting from the small Ynelastic strain incurred during the small
thermal cycle would be expectea to be negligible. This is borne out experi-
mentally for the stainless steels tested in references 23 and 24.

Although the temperature dependence in unified viscoplastic theories is
generally formulated quite differently than in classical {time-independent)
plasticity, the nonisothermal experiments considered here are nevertheless
applicable in characterizing cyclic hardening and thermoplasticity in thase
models as well. For theories that have a phys*cal basis and the individual
terms in the equations have some identification with physical processes
{refs. 14 and 19), the complete specification of the temperature dependence
can be made with some added confidence.

VERIFICATION TESTING

Verification tests provide an assessment of established constitutive
models under conditions that are, 1deally, close to prototypical. These tests
are necessarily structural in nature, involving inhomogeneous fields of stress,
strain and temperature. The stringent restrictions demanded in exploratory
and characterization testing regarding homogeneity of stress and temperature
and statical determinacy do not carry over to verification testing.

The ultimate assessment of a structural analysis capability, inciuding
constitutive relationships, involves a direct comparison of the predicted re-
sponse of an actual component with experiment. Ideally, from the standpoint
of assessing constitutive equations, a detatled comparison of the actual and
predicted stress and strain history at critical points in the structure needs
to be made. Unfortunately, the actual stress field is never directly measur-
able for comparison and only very limited information regarding the actual
strain field 1s available, e.g., some strain components at some points on the
surface of the structure can be measured. Most often, the only reliable mech-
anical data obtainable on complex structural components at high temperature
are displacements or deflections at some convenient locattons. Verification
of constitutive theories and structural analysis methods thus often reduces to
the comparison of just a few numbers, 1.e., measured and predicted deflections
at a few points on the structure. This furnishes very 11ttle information on
which to assess a detailed structural analysis and virtually no information
that 1s useful as feedback for further refinement of a constitutive model.

15



An aiternative approach in verification testing is to test structures
such as beams, plates, and simple shells under prototypical conditions of
temperature, stress, strain rate, etc. These tests represent the next step
up in complexity from the rreviously described experiments involving homoge-
nous stress and strain fi¢ids but, at the sam¢ time, are simple enough so that
some information concerning the actual stress and strain history can be deduced
and compared with predictions of analysis. A wealth of structural testing of
this kind has been conducted at O0ak Ridge National Laboratory (ORNL) (refs. 25
tod27) and used for assessing structural analysis methods and constitutive
models.

Tests on st111 simpier structures such as frames or trusses retain the
essence of structural behavior (e.g., redistribution of stress and strain,
shakedown, etc.) while allowing the actual stress and strain fields to be
measured and thus compared with those calculated., Experiments on two or three
bar structures have been used extensively to approximate the thermomechanical
behavior of more realistic structures under complex nonisothermal conditions.
The measurement of the detailed stress-strain-temperature history in these
tests provides useful information for assessing those aspects of constitutive
models that influence critical features of structural response e.g., ratch-
etting, shakedown, etc.

A series of two-bar tests (ref., 28) conducted on 2-1/4 Cr-1 Mo Steel
under a variety of thermal shock conditions will now be described as being
representative of this kind of verification testing. In these tests, two
unfaxial specimens are tested simultaneously in two servocontrolled electro-
hydraulic machines which are Jinked together so that the sum of the loads in
both bars is held constant (maintaining equilibrium), while the extension of
the two bars 1s kept the same (maintaining compatibility). Initialily, an
equal axlal stress 15 applied to both bars. Then, the temperature in bar 1
Vs ramped downward from the maximum temperatire, Tmax, to a minimum, Tma,.
Subsequently, the temperature in bar 2 is ramped downward while the tempera-
ture in bar 1 1s kept at Tpy,. After bar 2 reaches the minimum temperature,
both bars are heated together to Tpzx. The temperature 1s then held constant
at Tpax for a prescribed time interval and the sequence 1s repeated. The
response of the two bars roughly simulates the behavior of material elements
at the inner and outer radii of a cylinder {pipe) under analogous conditions.

The use of two separate testing apparatus, one under load control - one
under strain control, simulates the nonisothermal behavior of a two {or three)
bar structure without the virtually impossible task of thermally 1solating the
two specimens, as would be the case if they were physically part of the same
structure., Each specimen has a load cell aliowing measurement of the stress
and an extensometer measuring strain. This gives a detailed thermomechanical
history of each specimen, as well as a record of the mutual interaction of the
two regarding time-dependent redistribution of stress and strain.

DISCUSSION AND CONCLUSIONS

Three major categories of testing are identified as being necessary to
support the development of constitutive equations for high-temperature alloys.
These are exploratory, characterization and verification testing.
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Exploratory testing, in the present context, goes hand-in-hand with the
formulation of theory and furnishes guidance for its development. In many
purported constitutive equation development programs exploratory testing is
virtually nonexistent and experimentation is 1imited to the latter two
categories. Without the close developmental interaction between experimen-
talist and theoretician, through exploratory testing, there results ad hoc
constituttve models that cannot be used with confidence outside the specific
conditions addressed in the charactertzation data base. Particularly lacking
is reliable exploratory testing under multiaxial and noniscthermal conditions
upon which constitutive models can be rationally based.

An important type of high-temperature multiaxial testing concerns the
definition of surfaces of constant inelastic strain-rate (SCISR) in stress
space. Such tests are the counterparts of tests at lower temperatures that
define yleld surfaces (surfaces of constant inelastic strain)., It s from
SCISR tests that the correct framework of a multiaxial viscoplastic theory can
be deduced, including the appropriate forms of the flow and evolutionary laws
and the subsequent hardening and recovery behavior.

Characterization tests f111-in the already estabiished constitutive equa-
tion framework by supplying the appropriate material constants and parameters
for representing the behavior of a specific alloy. Ideally, these tests
should be simple to conduct and lend themselves to a routine process for deter-
mining the required functional forms and material parameters. Several rela-
tively standard characterization tests are identified here as well as some less
well-known testing in support of unified constitutive models.

Traditionally, nonisotherma) constitutive theories are based entirely on
{sothermal test data collected over a range of temperatures. The inadequacy
of this approach relative to plasticity theory is now known and is discussed
here. This substantiates the intultively obvious conclusion that a non-
isothermal theory must be based on nonisothermal testing. Nonisothermal tests
to be used as a basis of thermoplasticity are identified and some preliminary
results of such tests are reported.

Verification tests provide an assessment of established constitutive
models under conditions that are, ideally, prototypical. These tests are
generally structural in nature, involving inhomogensous fields of stress,
struin and temperature. The ultimate evaluation of a structural analysis
capability, including constitutive relationships, involves a direct comparison
of the predicted response of an actual component with experiment. Ideally,
from the standpoint of assessing constitutive equations, a detalled comparison
of the actual and predicted stress and strain history in the structure is
required. Unfortunately, the actual stress fiald 1s never directly measuralle
for compartson and only very 1imited information regarding the actual strain
field 1s generally avatlable, e.g., some strain components at some points
on the surface of the structure. Often, the only reliable mechanical data
obtainable on complex structural components at high temperature are displace-
ments or deflections at some convenient locations. Verification of constitu-
tive theories and structural analysis methods thus often reduces to the
comparison of just a few numbers, 1.e., measured and predicted deflections
at a few points on the structure. This furnishes very iittle information on
which to assess a detadled structural analysis and virtually ne information
that is useful as feedback for further refinement of a constitutive model,
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An alternative approach in verification testing is to test simple struc-
tures such as beams, plates, shells and bar structures under prototypical
conditions of temperature, stress, strain-rate, etc. Tests on frames or
trusses retain the essence of structural behavior (e.g., redistribution of
stress and strain, shakedown, etc.) while allowing the actual stress and
strain fields to be measured and thus compared with those calculated.
Experimeats on two or three bar structures have been used extensively to
approximate the thermomechanical behavior of more realistic structures under
complex nonisotherma) conditions. The measurement of the detailed stress-
strain-temperature history in these tests provides useful information for
assessing those aspects of constitutive models that influence critical fea-
tures of structural response, e.g. ratchetting, shakedown, etc.
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