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1. INTRODUCTION

This report describes technical findings of work supported

by contract no. 956S2S for the period, July 1 7 1904 to Sept. 31,

1904. Details of the findings appear in the Appendix. In this

section, we briefly summarize these findings and indicate their

practical implications for solar-cell design.

A controversy exists about several of the key parameters

describing the heavily doped regions of Si solar cells. This

controversy relates particularly to experimentally determined

energy-gap narrowing and to the minority-carrier diffusivity and

mobility. To explain the origin of this discrepancy, let us

denote the energy-gap (or bandgap) narrowing by DE and the

minority-carrier diffusivity and diffusivity by D and A. We omit

subscripts for brevity.

1.1 Some Equations for Heavily Doped Silicon

All experimental determinations of oE, except those

employing photoluminesence or optical absorption, depend an

measurement of minority-carrier current J in the heavily doped

region. If we assume n-type heavily doped Si for illustration,

this current is given by

J	 pPvEv - eDvF	 ( 1 )	 i

where
vEv = vEc - vEg	(2)
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is the quasi-field acting on the minority holes. Note that the

field acting on the holes differs from that acting on the

electrons and differs also from the electric field (the gradient

of the electrostatic potential). Eq. (2) follows from the

definition of the energy gap and from the condition, from the

quantum theory of solids, that a particle at a band edge has only

potential energy (no kinetic energy).

For low-injection conditions, which hold always in a heavily

doped region of a Si solar cell,

P(r) =Cn 2
e
/N(r)7 expCFn - Fp 3	 (3)

where the argument of the exponential in Eq. (3) is the

difference between the electron and hole electrochemical

potentials (or quasi-Fermi levels) normalized by We (or W).

The effective intrinsic density is given by

n1e a NoP =n	 expCOE'7 F 1/2 C(El - Ej)]	 expC4E']	 (4)

where the primes mean normalization by kT and where F 1/2 denotes

the Fermi-Dirac integral of order 1/2.

A simple, nearly tutorial, development of the facts stated

above appears in fief. 1 for this Section.

1.2 Measured Recombination Current

Now we are in a position to examine the measured

2
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recombination current J of a heavily doped region; we continue 	 +

assuming n—type Si for illustration. By integrating the hole

continuity equation across the quasineutral portion of the
r.

heavily doped region, we obtain

J/e = f(AP/T)dx + J(surface)
	

(5)

in which OF is the hole density in excess of the equilibrium

density, T is the position—dependent hole lifetime, and

J(surfaco) is the hole recombination current at the surface. Eq.

(5) displays the hole recombination current of the n+ region as a

sum of volume and surface recombination.

One An measure J by ERIC, by dark current in presence of

applied forward voltage, or by selectively illuminating the

quasineutral n+ region and measuring the short —circuit current.

However the measurement is made, the problem in using J to

determine AE lies in separating the volume and surface

recombination components of (5) and connecting then to &E via

Eqs. (1) to (5).

1.3 A Key Assumption and a Questionable Tradition

From Eqs. (1), (a'') and (4), we see that D, }+, and 6E

interplay to determine J. Thus, in principle, one must determine

D and p (linked by D/p _ kT/e) separately from oE.

It has been the tradition in all but recent work by Arnost

Nuegroschel and me on heavily doped Si to avoid determination of
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D and N. Rather, it has been assumed that the majority carrier

and minority carrier D and u are equal. This assumption

underlies all models for AE that are widely used, beginning with

the first experimental determination by Slotboom and de0raaf. In

particular, this includes the models now in computer programs at

OPL.

To my knowledge, there is no reason, experimental or

theoretical, for making this assumption. It is a convenient

assumption because the majority carrier mobility is easily

determined experimentally. Minority—carrier mobility, prior to

our recent work, was only measured for dopant concentrations up

to 1011/cm3 . From a theoretical viewpoint, Bennett (1953) of the

National Bureau of SU ndards has proposed that the majority

carrier mobility is less than the minority carrier mobility by

reason of the sum rule of quantum theory. Kane (1954)of Bell

Laooratories, in a preprint sent to Prof. Neugroschel, has

indicated his belief that the majority carrier mobility exceeds

the minority carrier mobility. His reasoning relies on the simple

observation that the kinetic energy of the majority carriers able

to conduct greatly exceeds the kinetic energy of the minority

carriers. Hence, in a quasi —classical picture, the majority

carriers spend less time in the vicinity of the force field of a

scattering center such as an impurity ion. Consequently they are

scattered less than are minority carriers and their mobility (u



s
K'
t

eTscattering/mU may be expected to be larger.

1.4 Suggestions from our Recent Experiments

In our work on the experimental determination of 6E and u

and D (of tMe minority carriers), we avoided the assumption of

equal majority and minority carriers by exploring the temperature

dependence of J in a small range of temperature. This led to Ref.

2 (below) on DE and to Ref. 3 (below) on P and D. In these

methods dClog M /Vis explored. The activation energy thus
revealed yields AE (1982); use of this &E together with the value

of J then yields the minority-carrier D and N (1983). This work

in 1983 suggested evidence for minority-carrier mobility that was

about one order of magnitude below the majority carrier mobility.

We suggested a model consistent with this evidence, in which

minority carriers made transitions to trap levels energetically

near the edge of the minority carrier band edge (mobility edge)

and subsequently were released. This removal from the conducting

state, for a time characterized in the Appendix by Ttrapping'

decreases the minority carrier mobility. The model of Kane also

leads to this same result
	

Either model may explain the

experimental evidence.

._

I

1.; Contents of the Appendix

This model is explored further in the Appendix. There we

excite by short wavelength illumination and demonstrate

activation behavior of the minority-carrier mobility and

J
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diffusivity.	 Short-circuit current is the measured variable. In

our interpretation, the activation energy is determined from the

measurementsto be of the order of K, which is expected for

bandtail states uut does not rule out an acceptor level as the

dominant trap.

We argue further that the short circuit current times

temperature to the mth power, that is

ISOTm vs 1/T,

shows activation behavior. Thus, based on our experiments, the

assumtion that p(majority) = p(minority) is always wrong. This

is implied in Eq. (B) of the Appendix.

1.6 Conclusion

From a technical standpoint, there is no conclusion or

anything approaching a conclusion at present. We have suggested
	

{
,

evidence for our findings for nE which are inextricably linked to 	
t

our findings for the minority-carrier mobility and diffusivity.

The Appendix of this report extends that evidence. But we

recognize that concentration on activation energies, for the

problem under study, relies on values of slopes deriving from

current measured as a funcLion of 1/T. A small error in the

slope can produce a large error in the measured 6E and D and A.

We continue work toward decreasing this error.

Other workers have dogmatically insisted that values of 6E



jof 5lotboom and deGraaf and subsequent workers, which are

markedly louder that our suggested values, are in fact correct.

I !	 This is done even though there is no reason to believe the
R-

g'	 equality of maJority and minority-carrier mobilities for
,

'	 concentrations well above 10 11/cm". This equality is equivalent

g1 4 	to believing in the lower values of energy-gap narrowing.

1.7 Practical Consequences

The performance parameter of silicon solar cells that

probably links most closely with W is the open-circuit voltage.

1	

For existing solar cells, use of our values of nE (vs impurity

concentration) in any of the common computer codes will probably

t.^ yield the measured open-circuit voltage, to a good approximation,

provided one uses our values of }r and D. On the other hand, use

of the more widely accepted values of A together with the
i

assumption that Majority) = µ(minority) will probably also

yield the measured open-circuit voltage. The reason for this one
^.I

can see by inspection of the equations given above. Open-circuit

voltage is determined by J, primarily; and J derives from P,

which is determined by oE, and from D and P, together with the

quasi-field of Eq. (1) which depends an GE (Eq. 2).

Thus this simple test will not discriminate between the

adequacy of the models. Better tests may include:

(a) sensitivity of the open-circuit voltage to the surface

recombination velocity S.

7	 1^



(b) temperature dependence of the open-circuit voltage.

It is not clear whether the spectral response will provide an

adequate test for the models because of the connections among W,

p and D that underlie the spectra] -ooponse. The temperature

dependence of the spectral response may be more revealing.

Indeed, the Appendix explores the temperature dependence of tho

short—wavelength current; the tentative result there favors the

data of Ref. 3 rather than the assumption of the equality of the

majority— and minority—carrier mobilities.

Because many solar cell designs of the present depend for

their quality on the surface recombination velocity, much more

work is needed aiming to answer the questions about oE, N and D

raised here. It is probable that the values for DE, p and D

determined in fiefs. 2 and 3 are inaccurate, for reasons

discussed. So also are the values of these parameters widely in

use (including in JPL computer codes). Until more accurate

values become available, computer—assisted evaluation of new

designs will be misleading, as will the determination of values

of other parameters such as the surface recombination velocity

bordering a highly doped emitter region.
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APPENDIX

TRAP CONTROLLED MINORITY-CARRIER MOBILITY IN HEAVILY DOPED SILICON

A. Neugroschel, F.A. Lindholm

Department of Electrical Engineering,

University of Florida, Gainesville, FL 	 32611

and C.T. Sah

Department of Electrical Engineering,

University of Illinois, Urbana, IL 	 61808

Recently [1], we presented experimental evidence for low diffusivity and

mobility of minority holes in highly arsenic doped (concentrations

1020 cm-3 ) n-type Si.	 This evidence suggests that the minority-carrier

	

diffusivity (and mobility) may be about an order of magnitude smaller than the 	 1

majority-carrier hole diffusivity in eomparably doped p-type Si. 	 As an

	

explanation, we suggested a simple transport model that emphasized trapping by 	 j

	

localized tail states in the minority band. The commonly used assumption of 	 €f

equal minority and majority-carrier, mobilities and the neglect of the tail-

states effects on the minority-carrier mobility was also questioned in a

	

review article by Abrams et al. [2]. Here we report qualitative evidence that 	 s
i

minority-carrier diffusion in n+ Si may be trap limited.

Figure 1 illustrates the band structure, including the tail states, for

n+ Si. As was already discussed in [1], for low-level injection, the minority

holes occupy energy levels near the mobility edge EV . In the model proposed,

the holes from the extended states in the valence band can be captured by the

	

localized tail-states for some mean time 
ttrapping, and then released back	 j

into the valence band.	 This process, shown by arrows in the Fig. 1, will 	 f`

-1-
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decrease the hole mobility. If the scattering rate of holes inside the band is

comparable with the hole trapping rate, it is useful to generalize the

Boltzmann equation to include band-bound transitions.	 This generalization,

discussed, for example, by Smith, Janak, and Adler [a], and worked out in

detail by Sah and Lindholm [4], involves approximating the collision integral,

for small departures from equilibrium, by the sum of two terms of the form,

(f - fo )/T.	 Here the first term is the customary relaxation time

approximation for the nonequilibrium distribution function in which Tscatt is

the scattering time that characterizes intraband transitions. In the second

term, Ttrapping is mean trapping time for localized states near the valence-

band edge. Thus

up ° eTColl /Mp	 I/TColl a I/TSCatt	 I/Ttrapping
	

(1)

We inae^tlle.ie the temperature dependence of up by estimating Ttrapping [4]:

1/ttrapping m 
ep c ATM exp [-(ET - E V )/kT]
	

(2)

where A is a temperature independent constant. In (2) we have assumed, for

simplicity, trapping at one shallow level (close to E V ) in the tail band or at

an acceptor level in the n+ region. Such an acceptor level can come from the

dopant acceptor (boron in our case) in the p-type substrate of a diffused or

ion implanted n+ /p diode.	 For a parabolic valence band and no degeneracy,

a
m = 2 [4]. However, for^band-tail distorted band, the value of m is not known

and must be determined experimentally, as is attempted below. At low and high

temperatures, respectively, (1) reduces to

-2- r



1/Tcol dl ow T = I/Tscatt ' I/TC011lhigh 7
-- 
I/Ttrapping'	 (3)

If 1/T trapping 
is dominant, (1)-(3) suggest

pp(trapping) C E(e
/m*p )/(ATm)7 exp(EA/k I)	 (4)

where EA = ET - Ey > 0 is the activation energy of the bound-state level ET.

The physical interpretation of (1) - (4) is as follows. In heavily doped

n-type Si, holes reside mainly in the delocalized states of the valence

band. Only a small fraction of the holes is trapped in the localized states

of the narrow band tail. At low temperatures, -the holes in the tail states

are frozen there.	 Thus pp is determined entirely by the intraband

scattering:	 1/Tcoll - 1JTscatt.	
As temperature increases, trapping

transitions become important (see Eq. 2) and up decreases (see Eq. 1), which

allows EA to be determined using (4).

Experiments were done to provide qualitative support for the hole-

trapping model.	 The experiments involved a measurement of the temperature

dependence of the photocurrent response of both n+ /p and p+/n photodiodes.

The .wavelengths of the incident light used create electron-hole pairs almost

entirely in the heavily doped n+ or p+ region. Transport of photogenerated

minority carriers to the collecting p/n junction and the consequent ^hort-

circuit current I SC depends on the minority-carrier mobility p and diffusivity

.O E51.	 Hence I SC and its temperature dependence supplied a vehicle for

studying p and D.

The devices for which we report findings here were fabricated by arsenic

implantation into 5 n-cm p-type Si substrates followed by 1200°C anneal for

30 minutes. The resulting a layer was 1.2 tim deep and the sheet resistance

-3-
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was 10 n/square. The As concentration was — 1020cm-3 and nearly independent

of position x over about 0.6 Pm below the surface (x = 0); for x > 0.6 wn it

slowly decreases becoming about 3 x 1018cm-3 at 1 pm.	 The surface was

unpassivated, covered only by a thin (- 10 A) native oxide layer. 	 Other

devices with both unpassivated and S10 2 passivated surfaces sere also

studied. The results are similar to those to be presented here. The metal

contacts covered less than 10% of the area of the front surface.

The I SC (T) dependence was measured in the wavelength range a = 0.38 in to

0.4 um for which the electron-hole generation rate follows G(x) = G(0)exp(-ax)

[5], where a > 10 5 cm-1 [6]. Hence contributions of G(x) to I SC originating

in the p/n junction space-charge region and in the p-type substrate are

negligible. Thus [5] for (a L p ) 2 >> 1

AgF(1 - R)	 aDp + Sp

I SC	 aDp	
^P-P 

sinh (^ ) + cosh (W )	 (5)

P	 P	 P

Here A is the device area, F is the illumination flux density, R is the

reflection coefficient, Sp is the effective hole surface recombination

velocity, W = 1.3 vm is the thickness of the quasineutral n+ layer,

Lp = (D PTp ) 1/2 is the hole diffusion length, Tp is the hole lifetime, and Dp

is the hole diffusivity.

The analysis of (5) is complicated if one wishes to obtain the magnitude

of the diffusivity O p or mobility p  = D p (kT/q) from the measured I SC . In

this note we are interested, however, only in 	 qualitative trends and try to

present a simple picture consistent with the data.	 For this purpose we

consider now the temperature dependence of I SC . The temperature dependences

-4-
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of a nd R [7] and T  = TA (Auger lifetime) [8] aee very small. This leaves

Sp and 
0  

as the only temperature dependent parameters in (5). We neglect the

temperature dependence of S p , for a moment, later justifying this assumption

based on experimental results and on theoretical predictions.

Recent measurements indicate that L  < 1 pm in the n+ silicon doped at

about 1020 cm-3 [9]. Since W/Lp a 1 (where W K 0.5 pm is the width of the

highly doped portion of the emitter at the surface) we can approximate (5) as:

aD + S

ScI 	- B a Sp+ Dp/Lp
	 (6)

where B = AgF(1-R)/L psinh(W/Lp) is almost temperature independent. Consider

(6) for three special cases. First, if Sp >> aD p and Sp >> Dp/L p , ISC = B/a.

In this case I SC ^ f(T). This contradicts our experimental result that ISC

increases with T (Fig. 2). Second, ii Sp << Dp /Lp and Sp << aDp , I SC = BL  =

B ( TpDp) 1/2 . i.e. I SC ' D p
1/2	 Th •d, if (D p /Lp ) < Sp < aDp (for our device

2x103 cm/sec s Sp t 10 5 cm/sec, w- h D  — 0.2 cm 2/sec [1], a > 10 5 cm-1,

Lp = 10-4 cm), then I SC = B(Dp/Sp ).	 We assume now that the third case

prevails in our devices, although the analysis below will also accomodate the

second case and thus the range 0 t S p t 10 5 cm/s.	 Lastly, the assumption

(aLp)2 >> 1 used to derive (5) is also valid, since (aQ — 10. Hence, the

analysis is self-consistent.

To obtain	 simple picture, we try the assumption, m=0, and find from

(4) and (6) that

I SC/T = C exp(E A/k T)
	

(7)

. 
Qk.
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moves EFP closer to E V (Fig. 1) which increas::s the occupation of the tail

states closer to EV and EA= (ET - EV )/kT is expected to decrease, as

observed. In the temperature range from about 70 K to about 160 K, where the

mobility activation behavior is observed, the variation of the energy gap with

T is very small [11], which justifies our assumption of nearly temperature

independent a and R [7].

The effect of the temperature variation of the effective surface

recombination velocity Sp (T) on I SO (T), which was neglected, is now made

credible by the following considerations. First, if S p (T) is important, EA is

expected to be about E G/2 = 0.55 eV in a Shock ley-Read-Ha11 model even though

the surface has distributed states in the energy gap [12]. Second, S p at the

heavily-doped n+ surface is likely dominated by temperature insensitive Auger

effects [12].	 Third, results similar to those shown in Fig. 2 were also

obtained from the devices for which passivation by Si0 2 sharply decreased Sp.

The fact that I SO is not negligible below — 100 K indicates that most of

the minority holes are in the extended band states at T < 100 K with only a

small fraction trapped at the tail states and immobilized. 	 For the

excitations used to measure I SO (T) and also for low-level hole injection in

the dark a°ed in [1], the hole concentration in the n+ region is very small.

We can then conjecture that the penetration of the localized tail states into

the energy gap is only a very small fraction of the energy gap. 	 This

supposition, based on our data, agrees with recent theoretical calculations of

the band structure of heavily doped Si [131.

	

It follows directly from our trapping model that N(minority) < 	 j

u(majority) could apply also in the absence of the tail states because shallow

impurity levels can act as traps near the minority-band edge (Fig. 1). This

suggests that u(minority) may strongly depend on compensation. 	 A lack of

-7-



compensation in their epitaxial p/n diodes may be responsible for the

experimental observation by Oziewior and Silber C14] that u(minority) =

u(majority) for concentration in Si < 10 19 cm-3.

Although the assumptions needed to derive (7) from (5) introduce some

inaccuracy in the model for the activation energy of minority-carrier mobility

(diffusivity), the general conclusions derived by comparing (7) with the.,

experimental trends exhibited in Fig. 2 are anticipated to remain valid. The

	

exact value of the activation energy in a single-trap model remains in 	 '?

question.	 When more detailed knowledge concerning the values and the

temperature dependencies of parameters in (5) become available, one can then'
i

	

use data presented here to explore aspects of the minority-carrier band tail. 	
lif

The purpose here is less ambitious.	 We have demonstrated activation

behavior of the minority-carrier mobility and diffusivity, exhibiting thereby

an activation energy of the order of kT (for 300 K) as one expects for the

prominently active tail states. Moreover, our data in Fig. 2, as interpreted

here, supports the inadequacy of the commonly used assumption of equal

majority- and	 minority-carrier	 mobilities;	 in	 turn,	 this	 supports

interpretations, such as that in C1], of larger values of energy-gap narrowing

than is common in the literature.

Lastly, we point out that the assumed value, m = 0, and values m < 0 in

	

(4) are self-consistent with the experimental results of Fig. 2, but values 	 I

m > 0 are not. However, regardless of the value of m, the ISCTm vs. 1/T plot

shows an activation behavior, thus the assumption of u(majority) = u(minority)

is always wrong (see Eq. 8).

This work was supported in part by National Science Foundation Grant

ECS-8203091 (A.N.) and the Jet Propulsion Laboratory under Contract

No. 956525. We acknowledge useful discussions with Peter T. Landsberg.
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FIGURE CAPTIONS

Fig. 1.	 Qualitative illustration of the band edges of heavily doped

n+ -silicon.	 The broken lines show the unperturbed parabolic bands. 	 The

positions of both the electron and hole quasi-Fermi levels is also

indicated. The arrows near EV 
indicate hole capture and emission by the tail

states and by the acceptor level from the p-type substrate. The penetration

of the tail states into the forbidden gap is assumed to be very small in

comparison with the bandgap E G = EC - EV.

Fig. 2. Normalized short-circuit photocurrent versus 1/T for X = 0.4 um. The

illumination density for curve 1 is five times larger compared to that of

curve 2.
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Enclosed for your system input and for listing in STAR are two copies of the
following subcontractor reports:

Contract No.	 Corporate Source	 Report No.	 File No.

956786-1
956615-4
957031-1
956766-02
955190
955591-11
956525-5
956349-01
956335-1
955782
956614

W08746-83-1

956797/02
956477
956786
956841
956541

956797
956042
956384
955637

Westinghouse R&D Center
Westinghouse R&D Center
Purdue Research Fdtn.
Wilkes College
General Electric
University of Toronto
University of Florida
Solavolt Intecnrltiobal
Mobil Solar Energy Corp
Gould, Inc.
Univ. of Washington

Solar Energy Res. Inst.

SPIRE
Univ. of Wisc. - Madison
Westinghouse R&D Center
MIT
HR Textron, Inc., Systems
Eng. Div.
SPIRE
TRW
Dynamics Research Corp.
Dynamics Research Corp.

1st Qtr. 9950-951

Qtrly. 9950-986
Qtrly. 9950-1002
2nd Qtr. 9950-971
Final 9950-912
Annual 1983 9950-985
Qtrly. 9950-989
Final Design 9950-968
Final 9950-977
Mod. #5 9950-970
Annual 9-1-83 9950-1001
to 8-31-84
Qtrly. 7/15/83 9950-909
-10/15/83
Qtrly. No. 2 9950-969
Final 9950-1011
3rd Qtrly. 9950-1010
3-21 to 5/20/84 9950-1021
Extension Final 9950-1023

Qtrly. No. 3 9950-1025

Final Test 9950-1027
Technical 9950-1030
Final 9950-1029
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Corporate Source Report No. File No.

Ford Aerospace 6 Comm. Corp Test 9950-995
Ford Corp. FR 9950-1048
RDA Logicon FR 9950-1047
System Planning Corp. FR 9950-1051
University of Arizona FR 9950-1052
Aerojet Tech Systems Co. Final 9950-974
Arizona State University FR 9950-1026
Univ. of Florida Qtuly. 9950-1033
Arco Solar, Inc. O,trly. 9950-1035
SRI International Final 9950-1062
TRW Final 9950-1070
Hughes Aircraft Co. Final 9950-1069
Earth Satellite Corp. Final 9950-1078
Thermo-Electron Corp. Final Technical 9950-1080
Mobil Solar Energy Corp. Qtuly.	 10/1 - 9950-1036

12/ 31/84
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Contract No.

*955637
956722
956885
956503
955678

*956457
956428
956525
956831-3
956064
956042
956038
956909
954349
956312
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Very truly yours,

at& _̂
Arlene Ann Rush
Document Review Group
Documentation Section

AAR:dk

Enclosures
cc: P. French

Acquisitions Branch

*One copy only being sent.	 6 1
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