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PREFACE

This is the final report on research carried out under the two

year (Jan. 1983 to Dec. 1984) cooperative agreement NCCl-76 "Application

of Satellite Radiation Budget Measurements to Study Climate Processes

of the Earth". Under this cooperative agreement Mr. Shi-Keng Yang, a

graduate student in Atmospheric Science of the University of Michigan,

worked with Dr. G. Louis Smith of the Atmospheric Sciences Division

at NASA Langley Research Center.

The research accomplished consists of two parts:

(a) The development of a model which used climatological data

for the Earth-Atmosphere system for the calculation of earth

emitted radiation. This was the Ph.D. dissertation of Mr.

Shi-Keng Yang, "An Earth Outgoing Longwave Radiation Climate

Model", which constitutes the main part of this report.

(b) A study of atmospheric temperature lapse rate. The result

of this study are summarized in a paper "Further Study on

Atmospheric Lapse Rate Regimes", which has been submitted

to the Journal of Atmospheric Sciences. An initial version

of this paper appears in the semi-annual report on this

project which was submitted in August, 1984.

Fred L. Bartman
Project Director
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ABSTRACT

AN EARTH OUTGOING LONGWAVE RADIATION CLIMATE MODEL

by
Shi-Keng Yang

Chairmen: Fred L. Bartman, G. Louis Smitn

An Earth outgoing longwave radiation (OLWR) climate model has been

constructed for radiation budget study. The model consists of the

upward radiative transfer parameterization of Thompson and Warren

(1982), the cloud cover model of Sherr et al. (1968) and a monthly

average climatology defined by the data from Crutcher and Meserve

(1971) and Taljaard et al. (1969). Additional required information

is provided by the empirical 100mb water vapor mixing ratio equation

of Harries 11976), and the mixing ratio interpolation scheme of Brieg-

leb and Ramanathan ( 1982).	 Cloud top temperature is adjusted so that

the the calculation would agree with NOAA scanning radiometer measure-

ments. Both clear sky and cloudy sky cases are calculated and dis-

cussed for global average, zonal average and world-wide distributed

cases. The rasults agree well with the satellite observations.

The clear sky case shows that the OLWR field is highly modulated

by water vapor, especially in the tropics. The strongest longitudi-

nal variation occurs in the tropics. This variation can be mostly

explained by the strong water vapor gradient. Although in the zonal

average case the tropics have a minimum in OLWR, the minimum is essen-

tially contributed by a few very low flux regions, such as the Amazon,
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Indonesia and the Congo. There are regions in the tropics such that

their OUR is as large as that of the subtropics. In the high la-

titudes, where cold air contains less water vapor, OUR is basically

modulated by the surface temperature. Thus, the topographical heat

capacity becomes a dominant factor in determining the distribution.

Clouds enhance water vapor modulation of OLWR. Tropical clouds

have the coldest cloud top temperatures. This again increases the

longitudinal variation in the region. However, in the polar region,

where temperature inversion is prominent, cloud top temperature is

warmer than the surface. Hence, cloud has the effect of increasing

OLWR. The implication of this cloud mechanism is that the latitudinal

gradient of net radiation is thus further increased, and the forcing

of the general atmospheric circulation is substantially different due

to the increased additional available energy.

f

The analysis of the results also suggests that to improve the

performance of the Budyko-Sellers type energy balance climate model

in the tropical region, the parameterization of the longwave cooling

should include a water vapor absorbing term.
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CHAPTER 1

INTRODUCTION

1.1 Background

The Earth radiation budget characterizes climate. Net  radiation,

the difference between the absorbed solar radiation and earth emitted

outgoing longwave (LW) radiation, defines the regions of energy

sources and energy sinks. These are the dynamic force driving the

atmosphere-ocean system. An understanding of the radiative processes

and distribution of the radiation energy is important to gaining

insight into weather and climate processes, and hence is important

to improving our prognostic ability, which is one of the most funda-

mental problems in atmospheric science.

Earth outgoing LW radiation is an indication of Earth-atmosphere

conditions. Its temporal and spatial variations result from changes

in the Earth-atmosphere properties. For example, Lau and Chan (1983)

used LW as an indicator for studying teleconnections; Gill and Ras-

musson (1983) and Quiroz (1983) used the LW anomaly to analyze the

latest " El Nino" event.

The introduction of the time-space dependent radiation field into

numerical prediction schemes will hopefully increase predictability in

1
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extended weather f orecasts (Wang et al., 1983). The study by Belov

et al.	 (1971) incorporating radiative heat influx in numerical

forecasting is another example. In the case of short-term climate

prediction, radiation maps provide one more set of sample data of

present day statistics for anomaly analysis, which appears to be

the only method used in current operational climate forecasts. Many

theoretical energy balance climate models are simplified to zonally-

averaged 1-D models for economy of computation.	 Although this

energy balance concept has been widely used in theoretical climate

models, e.g.	 Budyko (1969) and Sellers (1973), it has not been

applied to real time forecasts except for the work of Adem (1969 and

1981), who used an energy balance model to forecast sea temperature

anomalies and drought with limited successes. This simplification

filters out longitudinal variations, including the so called monsoonal

circulation, hence some interesting pheonomena of the outgoing LW

radiation features vanish. On the other hand, the top of the hierarchy

of climate models, GCMs, are more dynamically oriented, but the

radiation budget has not been well simulated yet (Herman, 1981).

Radiation budget measurements have long been performed at ground

bases. London (1957) summarized zonally averaged radiation components

in this manner. It was not until the Explorer 7 satellite (Suomi, et

al., 1960) that it was possible to directly measure the earth-space

radiation exchange, regardless of its crude instrument resolution.

The Nimbus 6 Earth Radiation budget (ERB) Experiment started a con-

tinuous time series of measurements in July 1975, which were later

t
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j ^	 succeeded by Nimbus 7 ERB. Bess, et al. (1981), using the method

developed by Smith and Green (1981), analyzed the LW from the first

year of Nimbus 6 ERB data thereby revealing some interesting intra-

annual variations. This method enhances the instrument resolution

of the wide-field-of-view radiometer. Campbell and Vonder Haar (1980)

averaged data from some satellite observations and formed a climato-

logy of radiation budget measurements, which provides very broad in-

formation on all the earth radiation components. Some of the radia-

tion features described by these authors have been qualitatively

explained. The questions on how the radiation field affects weather

and climate still need to be explored. Beginning in October 1984,

the Earth radiation budget experiment (ERBE) onboard the ERBE satel-

lite and NOAA-F satellite will continue to update the measurements

V	
with more advanced instruments and data analysis procedures.

Bartman (1980 and 1981) first built a radiation budget oriented
r--

global albedo climate model. This 2-0 model empirically describes

T-	 the solar radiation transfer process on the earth surface and in the
t .	

atmosphere and calculates planetary albedo at the top of the atmo-

sphere for each lo o x 10 1' grid interval.	 This model can	 also

serve as a reference for the climate model in specifying the absorbed

solar radiation of each region, the radiative heating. No similar

work, however, has been done on earth emitting LW radiation, the

-	 radiative cooling.	 An Earth outgoing longwave radiation climate

model of this kind will be important to the understanding of our

Earth-atmosphere climate.

- -	 - -- -- -- --



1.2 Current Work

To simulate the earth's outgoing LW radiation field, a 2-D longi-

tude-latitude varying outgoing LW radiation climate model is constru-

cted. The seasonal variation of LW radiation due to variation in

surface temperature, cloud cover, cloud top temperature and moisture,

the most influential elements, will be studied. The model also

provides a tool to study some interesting features of the LW field,

such as the LW maximum in the subtropics and drastic longitudinal

variationz along the tropics.

The model consists of a radiation calculation and a data base of

climatologies of the input parameters, i.e. the monthly average fields

of surface temperature, cloud cover, cloud top temperature and mois-

ture over the globe. For efficiency, a parameterization by Thompson

and Warren (1982), which is derived from Wiscombe's radiative transfer

model (1976), is used for the radiation calculation. This will be

discussed in Chapter 2.

For describing climatologies of input parameters, a lo o x loo grid

system is selected. A climatological data set from Crutcher and

Meserve (1970) and Taljaard et al. (1971) is used to provide temper-

atures, dew point and geopotential height for various altitudes.

This will be discussed in Chapter 3.

In Chapter 4, because of the lack of data at 300mb and 200mb,

the interpolation method used by Briegleb and Ramanathan (1982) is

incorporated to get 300mb and 200mb specific humidities with the

formula derived by Harries (1976) for 100mb. Also a theoretical

Jimatology of clear sky outgoing LW radiation is presented.

I I
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In Chapter 5, Sherr et al. (1968) cloud type classification and

cloud cover data are incorporated with satellite observations to

derive a scheme for determining cloud top temperature. In Chapter

6, the calculated cloudy sky outgoing longwave radiation is discussed

in detail. Finally, the conclusions and recommendations are stated

in Chapter 7. In most cases, only the results of the extreme seasons,

January and July, are discussed. The cases of the transient seasons,

April and Qctcber, are generally more moderate for all the features.

These results are organized in the Appendices for comparison.

Fig.1 summarizes the methodology of this outgoing LW radiation

climate model. This model explains quantitatively each parameter's

contribution to the LW field, and thus gives a better understanding

of the physics of longwave radiation in the earth climate.

t
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PARAMETERIZATION OF EARTH OUTGOING LONGWAVE RADIATION

2.1 Introduction

As briefly mentioned in the previous chapter, an Earth outgoing

longwave radiation (OLWR) parameterization by Thompson and Warren

c
(1982, hereafter denoted as TW) is used for this study. In section

2.1, the reason for choosing this parameterization is discussed.

In section 2.2, the different parameterizations of OLWR are reviewed,

and in section 2.3, the TW parameterization is outlined and discussed.

2.1.1 Longwave Parameterization and Climate Model

In spite of the fact that the basic radiative transfer equation

t
°	 is simple for the plane-parallel atmosphere, the solutions are not

straightforward for the reasons that (1) the atmosphere is inhomoge-

neous and (2) the molecular absorption spectra are extremely compli-

cated. Often a band model is used to alleviate the cumbersome line-

by-line integration of absorption for transmission functions. Also

the Curtis-Godson approximation is widely used to replace an inho-

mogeneous optical depth with an equivalent homogeneous one. Never-

theless the selection of bandwidth and the treatment of the distri-

bution of line strengths are somewhat arbitrary, e.g. band width
l' 	 Y

V

A	 7
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could be as narrow as 10cm- 1 for a narrow band model to more than

100cm-1 for a wide band model. The classic Elsasser regular band

model and Goody random model are the backbone of most derivations.

To verify band models, a detailed line-by-line calculation is

indispensable. Drayson (1967) first performed the calculation with

very fine line width of 0.001 cm- 1 over line center and 0.1 cm-1

over line wings and integrated over very thin layers so that the

inhomogeneous path could be accounted for.

McClatchey et al. (1972) compiled absorption line dat?, from

microwave to the visible, riot only for CO2, 03 and H2O bands but

as well for the other trace gases which are radiatively active in

the earth atmosphere. This set of absorption line data is being

updated constantly and currently contains 159,000 lines. It is the

most complete data tape available. McClatchey et al. also developed

a line-by-line calculation program for transmisson and radiation,

FASCODE. The main problem in intercomparing detailed line-by-line

models with band models using published results is that different

models have different input conditions and different resolutions

(Luther, 1983), which makes direct comparison with output results

meaningless. Luther has conducted a workshop in 1984 to compare

the results from different models. Some of the preliminary results

have shown that great uncertainty on the water vapor continuum absorp-

tion could cause significant error. This work will substantially

improve our understanding of the performance of radiation models.

A detailed radiative transfer model is expensive to use. Even a

one-dimension Quasi-Random model takes a few seconds computation

7+1
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time. To calculate a 10 G x 10 C grid global distribution 648 grid

points is very costly. A well parameterized radiative scheme can

give results as good as the radiative transfer model. Also, para-

meterization creates an indispensable interface with available input

data.

Based one these arguments, a parameterization is selected for this

study to calculate outgoing LW radiation directly.

2.2 A Review of Earth Outgoing Longwave Radiation Parameterization

Budyko (1969) empirically parameterized the Earth's outgoing LW

radiation using monthly data of 260 stations as

F= a+bT-(al+blT)C	 2.1

Where F is outgoing LW radiation at the top of atmosphere in w/m2

T is the surface temperature.

C is cloud cover.

a,b,al and bl are constants.

This formulation was compared with the result of the theoretical

radiative transfer model of Manabe and Wetherald (1967) and claimed to

be in good agreement for the clear sky case but with some differences

for the cloudy sky case (Rudyko, 1969).

Subsequently, a series of experiments was performed on the

derivation of coefficients using either an empirical approach or a

theoretical model calculations, such as Schneider (1972), Cess (1974)

and Gupta et al. (1978). A summary of these coefficients are tabulated

in Table A.18. It is clear that they are in good agreement for the

r.
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global average case.

As pointed out by Thompson and Warren (1982), the disadvantages

of empirically derived parameterzations are:

(1) the coefficients vary from data set to data set. Currently

there is no generally recognized best value of b for equ.2.1.

Recently Short et al. (1984) have shown that b is temporally and

spacially dependent in the tropics.

(2) When two physically distinguishable but highly correlated

factors, such as cloud and humidity, both influence F, it is very

difficult to separate them and establish their relative magnitude

by regression analysis.

The advantage of the empirical approach 4s that the parameterization

might implicitly account for some unsuspected feedback effect in the

climate system that might otherwise be neglected in a climate model.

On the other hand, the advantage of the parameterization derived

from the transfer model is that the relation between input atmos-

pheric condition and the corresponding output F are perfectly known.

The disadvantage is that the result would possess 'he defects of

the model. For example, the concentration of stratospheric water

vapor is not well known yet (see Chapter 4). 	 In most radiative

transfer models it is assumed to be about 3ppm. Altering strato-

spheric water vapor concentration would change the longwave opacity

and thus the outgoing LW flux. Wang et al. (1976) estimated that

doubling water vapor concentration would decrease LW flux by about

2W/m- 2 . Therefore, a model could have a potential error due tc

the difference between the assumption and the true value. A parame-

+7
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terization derived from such a model would thus inherit this error

as well.

Different formulations of the outgoing LW radiation have been

tried by other investigators, especially to avoid the uncertainty of

cloud amount. Sellers (1969) used an atmospheric attenuation coeffi-

cient to replace cloudiness in a simple zonally averaged climate

model. Fromm (1982) and Jensenius et al. (1918) derived a parame-

terization using other meteorological parameters, such as pressure

tendency, wind magnitude, vorticity, etc., which cloudiness is impli-

citly related to. This approach is relevent for short term numerical

model applications.

Since the intriguing question of how the temporal and spacial

variation of water vapor impact on the outgoing LW radiation is the

focus of this study, the Thompson and Warren (1982) parameterization

is chosen for its special feature of water vapor as an input predictor.

This allows one to study the relative impacts on the outgoing LW

radiation of both cloud and water vapor. For example, in the zonally

averaged case, the outgoing LW radiation exhibits a minimum near the

equator 20 to 40 W/m2 smaller than the peaks at the subtropics. In

a calculation by Warren and Thompson (1983), they found that one

third of the dip can be explained by the variation of atmospheric

water vapor. Only a small fraction is attributed to cloudiness, if

the published cloud climatology is used. The rest remains unexplain-

ed. They thus suspect that the cirrus and cumulonimbus amounts near

equator are much higher than the published cloud climatology.	 In

chapter 4, we will further discuss how the atmospheric water vapor

E
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modulates outgoing LW radiation.

A brief discription of the important features of this paramete-

rization follows, as well as some crucial information not mentioned

t.	 in the original work.

2.3 Thompson and Warren Parameterization

2.3.1 Wiscombe Model

In Thompson and Warren (1982), outgoing LW parameterization is

3-
derived from a radiative-transfer model. The model used is Wiscombe

(1975) ATRAD, which employs the exponential -sum-fitting of transmi-

sion function method.	 Essentially the transmission functions are

those of LOWTRAN 5 (Kneizys et al., 1980). The LW spectrum is covered

from 3 to 500 u m, but differs from LOWTRAN 5 in that water vapor

continuum is included. This is important in the tropics with its

high water vapor content; omission of the continuum absorption in

the radiative tra y,-'er calculation in early GCMs led to the calcula-

tion of very low atmospheric temperatures.

2.3.2 Assumptions

1) Major Gases:

Mixing ratios of the gases, CO2, N20, CHq, CO, N2 and 02 remain

constant at al', altitudes at the following values: 320, 0.28, 1.6,

0.075, 7.965x10 5 and 2.095x10 5 ppm respectively. Current prominent

attention on the climatic impact of anthropogenic CO2 increase

leads to the question of how outgoing LW radiation responds. Increa-

ing the concentration of CO2 in the atmosphere will result in:
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(1) an increase of tropospheric-surface temperature because of the

^i
greenhouse effect. This can be measured from the net change in LW

flux at the tropopause (Ramanathan et al., 1979).

(2) Cool stratospheric temperature resulting from increasing strato-

spheric opacity, i.e. more effective emission.

However, the influence on the outgoing LW at the top of the atmo-

sphere is roughly a factor of 2 smaller than the net change of LW at

the tropopause. Doubling the CO2 concentration will only change

outgoing LW radiation at the T.O.A. about 2 w/m2 .	 Error from

neglecting the variation of CO2 is smaller than the errors from

i	 other sources, such as data error and cloud fraction. A broad band

	

F	 channel which measures the total outgoing LW is not sensitive enough

to detect such a small fractional variation. However an instrument

c
on a satellite using a narrow channel centered at the CO2 absorption

	

I	 band can detect more significant change in that spectral range due

to atmospheric CO2 change (Kiehl, 1983 and Charlock, 1984b).

2) Ozone:

Ozone 03 profiles are interpolated from the McClatchey (1972)

model atmosphere. In the LW spectrum, 03 is only significant at the

9.6 Aim band.	 Changing the 03 concentration causes significant

change in the outgoing flux of this band only; for broad band the

total change is very small. For example, a change of 03 concentra-

tion from the tropical atmospheric value (.246 atm cm) to its mid

^•	 latitude atmospheric value (.345 atm cm), changes the outgoing flux

	

:f	
for the 9.6um band (1000 to 1120cm- 1 ) about 3.7w/m 2 , but the

F
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whole LW spectrum (400 to 1400cm- 1 ) only changes about 4.3 w/m2

(Charlock, 1984a). In the cloudy sky case, fixing the 03 distribu-

tion should have less error.

3.) Aerosols:

The question of the possible impact of increasing aerosols on

climate is gaining as much attention as the CO2 greenhouse effect

these days. Some inconclusive conjectures predict that anthropogenic

aerosols' impact will be of the same order as that of CO2 in the

future. Nevertheless, modeling aerosols is far more complicated

than CO2 (Ramanathan and Coakley, 1978). Unlike CO2, aerosols are

a more localized problem, which do not diffuse homogeneously to

the whole atmosphere. In the United States, current aerosol concen-

tration in urban areas can be three times greater than those over

rural areas. Fallout time of normal tropospheric aerosols is 1 to 2

weeks, while that of stratospheric aerosols can be as long as years.

Thus the concentrations, size distributions (.01 to 20 )im) and opti-

cal properties have high dependence on both time and space.

Aerosols not only reduce outgoing longwave radiation as :toes CO2

or any other atmospheric constituents, but also scatter and absorb

incoming solar radiation covering the entire spectrum. The scatter-

ing-absorption processes can result in either increase or decrease

of planetary albedo depending on the nature of a particular type of

aerosol. Some absorb (scatter) more solar energy than they scatter

(absorb), which will decrease (increase) planetary albedo when the

concentration increases. Hence, the sign of heating on the earth

l^
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surface temperature from increasing aerosol would be from the diff-

erence of the two processes: the net planetary albedo change and

the decrease of outgoing longwave radiation. Coakley and Grams

(1976) found that both small particles (radii smaller than 0.05 Jim)

and large particles (radii larger than 1.0 .um) generally have a

greater influence on longwave radiation than on incoming solar radi-

ation, therefore these particles contribute to warming the surface

temperature. Particles of the intermediate size affect the incoming

solar radiation more strongly than they affect the longwave radiation

and thus contribute to cooling the surface temperature. Reck (1974)

and Wang and Domoto (1974) also found that the surface albedo has a

crucial role in determining the sign of heating. When the surface

albedo is higher than a critical value, increasing aerosols will
i

cause surface temperature warming. However, not all of the study

results agree. Most of these experiments were carried out with the

one dimensional radiative convective models or energy balance models

with the size distribution of spherical particle between 0 . 1 Um and

l um, which is not representative in simulating a localized problem.

One can thus only expect to gain the qualitative understanding of

aerosol physics.

In conclusion, these studies showed that the aerosol self compe-

ting effects might have important climatic influence on the surface

temperature. For the purpose of the present investigation on outgoing
1
i	

LW radiation, the effect of aerosols will be neglected.

^l

rzl
t^
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4) Surface emissivity:

Surface emissivity is assumed fixed at .95 by the TW parameteri-

zation. Data of global distribution of surface emissivity are not

available yet. In the 8 to 14 Lm region, which accounts for most of

the surface radiation contributi oar to outgoing LW radiation, this is

the intermediate between extremes of .90 for sand desert and .99

for snow. Ocean is about .98. Outside this window band the varia-

tion of surface emissivity has little effect on the outgoing LW

radiation from the surface. TW showed that a change of .05 in

surface emissivity will vary clear sky outgoing LW radiation by

only 1 to 3 W/m 2 depending on atmospheric opacity.

5) Discontinuity of temperature at the surface:

Surface and surface-air temperatures are assumed equal. In fact

there is usually a few degrees Kelvin difference of diurnal mean

temperatures between surface air and ground temperature. Tests show

that a one degree temperature difference between surface-air and

ground would contribute a .7 to 1.5 W/m 2 change in clear sky out-

going LW (Thompson and Warren, 1982), which means that with this

assumption the model can not simulate well the LW diurnal variation.

For monthly averaged cases, this assumption has little effect on

monthly mean outgoing LW.

6) Surface Elevation.

Surface elevation is not included as a predictor of F. In the

case of low temperature, such as in the Antarctic, this assumption

r•
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contributes little error because there is less water in the air

column. However, if the surface temperature is higher, such as in

Tibet, the error can be higher. TW tested this by chan,ing surface

pressure from 1013mb to 700 mb, which can increase outgoing LW by

8w/m2 if the 40 ON zonal average temperature is used. However, if

the local temperature, which is lower than zonal average temperature,

is used, the difference will substantially decrease. For very high

elevation, the surface temperature is generally lower, which will

reduce water vapor content, and thus produce less error.

2.3.3 Predictors and Characteristics of Parameterization

The parameterization now has the form:

F=C1-C2Ac
	

2.2

where C1 and C2 are coefficients, and are now functions of surface

temperature, cloud top temperature and height weighted mean relative

humidity which will be further discussed later. 	 Ac is effective

cloud fraction, C1 accounts for the clear sky ougoing LW, and C2Ac

is the modification term which accounts for the effect of cloudiness

on the outgoing LW.

A more physically straightforward form of equ 2.2 is

F=C1(1-Ac)+C2Ac
	

2.3

where C'2=C1-C2. This equation simply separates the clear sky part

from the overcast part. However, equation 2.2 is more often used

because C2= dF/dAc measures the cloud LW feedback (Cess and Ramana-

^W.



18

than, 1978).

	

IL	
For outgoing LW budget on a global scale, the surface radiation

contributes about 10 to 15%, the atmosphere about 24% to 54% and
^r

the remaining is cloud radiation (Wallace and Hobbs, 1977). The

infrared cooling of the troposphere is highly dependent on the temper-

ature at different levels of the atmosphere. Since the temperature

sounding profiles at most latitudes have similar characteristics

(Liou, 1980), using surface temperature to represent both surface

and 	 relevant  and convenient simand atmospheric LW emission is a veryli-p

	

j	 fication. As altitude increases, the absorbent contents decrease,
{

and the atmosphere above becomes more transparent. Above the cloud

top, generally it is clear enough for cloud radiatior to escape to

	

rr	 outer space very efficiently. Thus, using cloud top temperature as
t

another predictor is well justified.

	

(	 Another predictor, effective cloudiness, is a simplification of

compressing multilayer clouds into one simple black cloud layer. In

	

j	 reality, this assumption may be valid for single layer low thick

clouds. The high thin cirrus type clouds generally exhibit spectral

emissivities smaller than .5.	 In those cases without overlapping,

	

(	 the effective cloudiness would be emissivity times cloud fraction

Ac, such that a grid area is divided into a simple clear part and
1

an overcast part.	 This is a very idealistic assumption. However,

until one knows more about complex cloud behavior, this is a feasible

I

	

^-	 approach in terms of modeling. Clouds will be further discussed in

Chapter 5.

Atmospheric water vapor is the most efficient LW absorber. As

r.0
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observed from the space, one would find that atmospheric water vapor
3T

is the only LW sink compared to the other three predictors, Ts, Tc

^-	 and Ac, just discussed above. In the earlier empirical LW parame-

terization, this term is often omitted probably due to lack of simul-

taneous observation. As will be discussed in Chapter 4, even in

this modern age there are still some substantial problems in the

 measurement of atmospheric water vapor. Yet there are many ways to

	describe atmospheric water vapor, namely relative humidity, dew 	 i

point, mixing ratio, specific humidity or precipitable water. For

the TW parameterization, relative humidity is chosen from a pertur-

bation test on the McClatchey atmospheres (McClatchey et al, 1972).

They changed the tropospheric temperature lapse rate, which is not

f -	 included as a predictor, in	 Wiscombe ' s radative transfer model,	 i

and used different water vapor parameters to calculate outgoing LW

flux. They found that the results are not sensitive to lapse rate

change if relative humidity is used. Therefore they defined a height

weighted mean relative humidity as:

2km
RH = Tr —kM
	

RH(z) dz	 2.4
0

This predictor gives greater weight to relative humidity at high

i
altitudes, because high altitudes are more transparent to space than

the lower levels and therefore contribute more to F. Using 12km as

the upper limit for integration is mainly due to the convE..;ence of

parameterzation. The altitude of 12km is approximately the average

height of the tropopause. This simplification eliminates the latitu-
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dinal and seasonal variation of the tropopause height, which is

above 12km at the tropics and below 12km at higher latitudes. The

;. error of underestimating tropopause height at the tropics and over-

estimating in the higher latitude is difficult to measure due to lack

of observation in this region. This will be further discussed in

Chapter 4.

i
Tables 2.1 and 2.2 from TW show the parameterization of Cl and

C2 respectively. Corresponding figures 2.1 and 2.2 illustrate Cl

+	 as a function of surface temperature and height weighted mean relative

humidity RH, and C2 as a function of RH and the temperature difference

between the surface and cloud top.

1.

r^
t



r

21

Table 2.1	 Parameterization for clear-sky outgoing IR irradiance
at the top of the atmosphere (z - 50 km) after TW.

c l - outgoing clear sky IR (W m -2).

Ts - surface air temperature (°C) (-118°C <T S 457°C).

RH - height-mean relative humidity from 0 to 12 km (Eq. 2.4)
(0.2 cRH d .0).

PARAMETERIZATION:

c1 - ao + a 1TS + a 2TS2 + a 3TS3 , where

an = bOn + b 1nRH + b 2 H , n = 0, 1, 2, 3.

n=0

b00 - 2.43414 x 102
b 10 = -3.47968 x 101
b20 = 1.02790 x 101

n-2

b02	 4.40272 x 10 -3
b12 = -2.26092 x 10-2
b22	 1.12265 x 10-2

n-1

b01 = 2.60065 x 100
b ll - -1.62064 x 100
b21 - 6.34856 x 10-1

n - 3

b03 - -2.05237 x 10-5
b13 - -9.67000 x 10-5
b23 = 5.62925 x 10-5
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Table 2.2 Parameterization of cloud modification term for out-
oinq IR irradiance at the top of the atmos phere (z - 50 km) after TW

c2Ac - cloud modification term (W m- 2 ) [see Eq. (2.2)].

Ac - fractional total cloud amount.

Tsc - Ts - Tc (0 < Tsc , 60K).

Ts - surface air temperature (-118°C c Tc < 57°C).

Tc - cloud top temperature (-118°C < Tc c 57 0C).

RH - height-mean relative humidity [Eq. (2.4)]
(0.2 c RH c 1.0).

PARAMETERIZATION:

C2 - cl (Ts, RH) - ci(T , RH) + f ( Tsc• RH)
(for cl see Tabfe 771)

f(Tsc, RH) - fl(Tsc) + f2(Tsc• RH)

fl - d0 + d1Tsc + d2T2sc

f2 - d3Tsc(Tsc + d4) RH + d5)

d0 - -3.1

dl - -0.4146

d2 - 4.084 x 10-3

d3 - -4.44 x 10-3

d4 - 80.0

d5 - -0.40

C
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Figure 2.1 Family of curves depicting the parameterization of clear
sky outgoing longwave irradiance las a function of Ts and

RH.
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Figure 2.2 The cloud modification parameter C2 as a function of

TS-Tc and RH for McClatchey It al. (1972) tropical
temperature profile.
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CHAPTER 3

DATA AND DATA MANAGEMENT

A climatological monthly mean data tape supplied by NCAR provides

a great portion of the input data base for this study. In sec.3.1,

we briefly discuss the content of the tape. In sec.3.2, the data

averaging is mentioned.

3.1 Data

The data tape consists of two data files, one for each hemisphere.

Both files have data on a 5 ox5 o horizontal grid system. Meteorological

variables on the tape are: temperature, dew point, geopotential

r
height, standard deviation of these parameters and geostrophic wind.

On the surface, sea surface pressure replaces geopotential height.

i Dew points are only recorded from the surface through 500mb. Two
f

€	 different forms of data are provided, one is hand analyzed, and

the other is smoothed data. The smoothed temperature, dew point and

geopotential height are selected for this study for the reason that

the climatic fields are smooth after long term averaging.

Crutcher and Meserve1970 used the data(	 )	 gathered by the World

i
Meteorological Organization (WMO) climate data program for the North-

ern Hemisphere. The period of surface data is from 1931 through 1960,

25
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and the period of upper air data covers the years from 1950 through

1964. However, many stations have much less data; some only have

data 2 to 3 years. The data for the Southern Hemisphere were compiled

by Taljaard, et al. (1969). Data sources are mostly from the WMO

International Geophysical Year, Air Force Air Weather Service and

historical data from various sources. Station density is less in

the Southern Hemisphere due to more ocean coverage. Isopleths were

subjectively drawn across void grid points, and therefore the relia-

bility of each grid varies depending on the availability of data.

Data are also subject to instrumentation errors, which include

bad calibration and different performance from different instrument

manufacturers. In the troposphere, the standard deviation of tempera-

ture measurement from using different instruments is about .5 0C, and

in the stratosphere is about 2 0C. Errors are also introduced in

communication processes, such as radio noise, teletype errors and

human error.

Computer routines were designed by Crutcher and Meserve (1970)

and Jenne, et al. (1974) to eliminate the unreasonable data. All of

the errors mentioned above are summarized in the variance analysis

and tabulated ^s standard deviations for each parameter except geos-

trophic wind, which we did not use.

3 2 Data Averaging

A simple scheme is defined to merge the two files of the Northern

Hemisphere and the Southern Hemisphere together, and to average the

orginal 50x5 0 grid system to 10 0x100 . The reasons for using 100400
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K+1

K

K-1

K

E

K-1

'	 grid system is that the cloud data are not available in more detail.

Also, the Thompson and Warren (1982) parameterization is limited to

coarse resolution application.

The new grid points are selected at latitude 85 0N, 750N,..., 750S,

850S on longitude 5 0W, 150W, 	3550W. Data from all nine grid

points around each new grid point (see Fig 3.1) are included in the

averaging process.	 However, near the poles, i.e. 85 0N and 850S,

the original data at 90 0 are only counted once to avoid overweighting

the repetition of same data at every longitude. This procedure

also smooths the data slightly.

J-1 J J+1	 J-1	 J J+1

(a)	 (b)

Figure 3.1	 Grid points for the new 10 0x100 system relative to the
NCAR 50x50 system; (a) for ordinary latitude, (b) at
the poles.
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CHAPTER 4

WATER VAPOR AND CLEAR SKY OUTGOING LONGWAVE RADIATION

4.1 Introduction

As mentioned in Chapter 2, one of the parameters used in the

longwave outgoing flux calculation is the average relative humidity,

defined as:

2km
RH	

Tkm	
RH(z) dz	 4.1

0

where the pressure at 12km height is about 190mb (U.S. Standard

Atmosphere, 1976). To implement equation 4.1, one needs (1) suffi-

cient water vapor data from the surface to 12km, (2) an algorithm

to convert dew point or mixing ratio to relative humidity, and (3)

an integration scheme. However, the observational data set described

in Chapter 3 only provides dew point information from the surface to

500mb. This data between 500mb and 12km must be furnished through

another source. To fulfill this, we adapt an empirical formula by

Harries (1976), which describes the water vapor distribution at 100mb,

and an interpolating scheme which incorporates the Harries empirical

formula and the observational data to generate water vapor data at

200mb and 300mb.

28
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In section 4.2, we will dir:.us:; the atmospheric water vapor. In

i

section 4.3, the interpolatic-;1 scheme will be discussed. In section

4.4, the method of converting dew point temperature and mixing ratio

to relative humidity is discussed. Section 4.5 describes the Integra-

tion of equation 4.1. In section 4.6, the world wide RH and clear

sky outgoing longwave radi-.tion are presented.	 In section 4.7,

the sensitivities of th^ interpolation scheme and averaging scheme

are discussed.

4.2 Atmospheric Wat er Vzper

Although it 4 s it neces^.irily true that atmospheric water vapor,

when expressed as relative humidity, decreases with altitude, it is

well recognized that mixing ratio decreases rapidly with altitude

(Smith, 1966) as it is an exponential function of temperature. Unable

to cope with such a drastic change, the hygrometers used in conven-

tional radiosondes generally lose their sensitivities as temperature

goes below -400C. Even under the warmest atmospheric conditions,

radiosonde humidity observations seldom exceed an altitude of 10 km

(U.S. Standard Atmosphere, 1976). London (1957) urged water vapor

measurement in the upper troposphere for its importance to the rildi-

ation budget.	 Yet, Routhier and Davis (1980) analyzed the data

collected from the Global Atmospheric Measurements Experiment of

Tropospheric Aerosols and Gases, and suggested that some of the

-	 global climatological dew point data in the middle troposphere

measured from the conventional method was too high due to such an

instrumental limitation.
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Meanwhile, several in situ stratospheric water vapor experiments

with special instruments, which included part of the higher tropo-

sphere had been performed. The most well known are the long term

series of the measurements conducted by Mastenbrook (1968). These

► 	 measurements used balloon soundings with a frost -point hygrometer.

The results showed that there is a seasonal variation in mixing

ratio with the lowest mixing ratio in late winter and early spring

and the highest in late summer and early fall. Also, the magnitude

of the seasonal change decreases wit. height. He thus suggested

that the temperature of the tropopause regulates the level of strato-

spheric moisture.

However, not all of the experiments agree well with each other.

Figure 4.1, from a review of Harries (1976), shows results from the

major measurements performed at different times, seasons, latitudes

and with different instruments. By rejecting some of the conflicting

data, he managed to formulate an equation governing the latitudinal

variation at 100mb, but without the time variation:

Ql00mb (J) - 3 x 10-6/(1 + J-20 2 ) 	 4.2

R

	

	
where J is the index for latitude; 1, 2, 3, ..., 35 correspoing to

r_
-850 , -800 9 ..., 850 .	 This equation was later implemented by

Briegleb and Ramanathan (1982) for their clear sky albedo calculation.

A more recent review on stratospheric water vapor was done by
^t

Ellsasser (1983). 	 He tried to interpret the tropospheric-strato-

spheric water vapor transfer mechanism with minimum rejection of

^^ L
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conflicting observational data. Basically, the stratospheric water

.	 vapor is flushed by air entering only through the tropical tropopause
k

and leaving only through the polar tropopauses or tropopause gaps.

There is also a possible chemical source, methane oxidation, which

however, does not have significant effect.

In contrast to the in situ measurements, the recent LIMS Experi-

ment on the Nimbus 7 satellite measured the water vapor distribution

higher than 100mb. This experiment revealed very remarkable strato-

spheric water vapor information ( Russell et al., 1984): there is a

broad tropical minimum in mixing ratio, extending from 100mb to

about 30mb as shown in Figure 4.2, which coincides with the "cold

trap", the coldest temperature region in the stratosphere. The data

also showed a poleward gradient at all levels up to 4mb. These

results are very	 ifferent from they	 perceptions of the previous

investigations and might have very substantial implications for

water vapor budget and stratospheric general circulation studies.

In the process of the present study, this result was not available.

More than 25 years after London (1957), the climatological water

vapor distribution between 500mb and 100mb over the globe is still

}}^	 unavailable except for some zonally averaged data for the Northern
t.

Hemisphere from London (1957) and from Oort and Rasmusson (1971).

The latter raises some problem in converting mixing ratio to relative

i
.. humidity, which will be discussed in section 4.4. Some data for the

tropics from Newell, et al. (1972) are also available.	 Clearly,

j"	 there is a demand for refining current sounding instruments in order

j;	 that the measurement be operable under low water vapor pressure, low
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pressure conditions, so that compiled climatologies such as Thompson

and Warren's (1982) zonally averaged relative humidity or the results

from complicated general circulation models, such as Sirutis, et al.

(1980) can be verified.

4.3 Vertical Interpolation for 300mb and 200mb Specific Humidity

from 500mb and 100mb

As mentioned in the section 4.1, we need to fill in water vapor

+	 data higher than 500mb in order to perform the vertical integration.

An interpolation method similar to that used by Briegleb and

Ramanathan (1982) is adapted for this purpose. This method incorpo-

rates Harries (1976) empirical formula for 100mb water vapor, equation

(	 4.2, and the NCAR data base described in Chapter 3 as boundary condi-

tions. It will be shown in section 4.7 that the error of the final

longwave flux calculation due to this interpolation is minimal.

Briegleb and Ramanathan studied the radiosonde measurements from

Rogers and Walshaw (1966) and found that the variation of the logarithm

specific humidity ln(Q) with pressure P from 500mb to 100mb has a

quadratic relationship as ln(Q) N p2 . Thus, if the data of these

two layers are available, the data of intermediate layers can be
i

obtained through interpolation. 	 A special interpolation function
i

_	 with a single parameter is selected such that only upper and lower

boundary conditions are needed, compared to polynomial interpolation

which generally needs more than three data points specified. The

interpolation formula is



f:
	

35

In Q(P) _ n (In Q100mb + In Q500mb ) +

(In Q500mb - In Q100mb )(P 001 +	 4.3

4(1-n)(In Q
100mb + In Q500mb^(	

^
P-300)2
- 

where subscripts indicate pressure levels and n is an interpolation

factor. When n=1, this is a linear interpolation and when n is adjus-

ted to be less than 1, Q can be fitted to the quadratic curves re-

quired for climatological specific humidity, see Figure 4.3.

In order that the zonal average Q's of 300mb vary the same way as

the observations of Oort and Rasmusson (1971), and for the reason that

Q varies from the tropics to the poles only by a factor of 3 at the

1.00mb pressure level, while at the 500mb pressure level it varies by

a factor of 10 (Briegleb and Ramanathan 1982), n must be latitu-

dinally dependent so that there is more linear interpolation in the

poles and more quadratic interpolation in the tropics. Both can be

accomplished by letting n, in equation 4.3, vary as a function of

latitude as:

2
n(j) - 0.86 [1 +J-19

 1500	
4.4

where j is the index of latitude, 1,2,3,.., referring to latitudes

-87.50 , -82.5 0 , ..., 87.5 0 , respectively.

To restrict overestimation when compared to the climatology of

Rogers and Walshaw (1966) another constr4 ,int needs to be applied: when

equation 4.4 gives n(j) > .92, it is set to .92.

Using this method to calculate relative humidity will result in
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a few points with a value higher than 100% at 300mb and 200mb. For

^•	 those cases, the value is set equal to 100%. This is not unexpected

for coupling two different data sets together. Even using matched

zonal average specific humidity and temperature, such as Oort and

Rasmusson (1971), will yield RH higher than 100%. The reason for

this will be discussed in the latter part of the next section.

4.4 Relative Humidity Calculations from Dew Point Temperature and

Mixing Ratio

I P	 When dew point temperature (Td) or mixing ratio (W) are available

either from measurements or from interpolation as generated from the

method described in the previous section, one must convert them to

relative humidity (RH). The definition of RH according to List (1959)

is

RH=W/Ws	 4.5

where the subscript s denotes saturation and W is defined as

W=.622 a/(p-e)	 4.6

where a is water vapor pressure. 	 Equation 4.6 can be written

as

RH = (e/es)( p-es/p-e)	 4.7

The second parentheses on the right hand side approximates to unity,

so that Thompson and Warren (1982) simplified the definition to

e/esw	t > 00C
RH=	 4.8

e/e si	t < 00C

where esw is the saturation water vapor pressure over water, and esi

is the saturation water vapor pressure over ice. There are many

I I

1 .4
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methods available for calculation of esw and esi. One can use the

integrated form of the Clausius-Clapeyron equation, the equations by

List (1959), Richard (1971) or Parish and Putnum (1974). The latter

three are empirical equations which fit the observed water vapor

pressure; any one of them can give slightly better results than the

standard Clausius-Clapeyron equation in some narrower specific tem-

perature range.	 In this study, we follow Thompson and Warren

(1982) using Richards (1971) for esw:

e sw= 1013.25 EXP(13.3185t-1.976Ot2-0.6445t3-0.1299t4 )	 4.9

where t=1-373.15 T- 1 and T is the temperature in Kelvin.

Using List (1959) for esi:

F

Log10 esi
°-9.09718(x-1)-3.56654 Loglox+0.876793(1-x-1)

4.10

i +Log106.1071
a

where x=273.16 T-1.

By definition W=e/(p-e), and Q=e/p. Because a is much smaller

than P, W approximates Q through the meteorological range. In calcu-

lating relative humidity at the 300mb to 100mb levels, W is considered

to be equal to Q, which is calculated by the interpolation scheme of

the section 4.3. Also the corresponding Ws must be calculated and

transformed to es. From the surface to the 500mb level, a and es

t' are calculated from dew point and temperature.

.;
±-	 One caution should be taken in selecting the phase change temper-

ature. Thompson and Warren arbitrarily selected OoC in their study.

In the atmosphere, it is very common that water vapor exists in

;i
t
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supercooled form. As pointed out by List (1959), water vapor can

exist in the air temperature below OoC as supercooled; however,

hygrometers which essentially only respond to water vapor indicate

i	 relative humidity with respect to water vapor only, regardless of

t	 the temperaturA. Thus, -in relative humidity calculations, improper

selection of the phase change temperature would significantly intro-

duce error when comparing water vapor pressure to saturation vapor

pressure of the wrong water phase. To alleviate this error, one

should select a phase change temperature below O oC, such as London

(1957) did.

Another significant problem in converting climatological specific

humidity or mixing ratio to relative humidity is that relative humi-

dity is often overestimated. T) a error is not directly from the

i
I	 converting scheme, but from the time or space averaging scheme for
t

the climatology. This can be clearly illustrated by the following

example in averaging two cases.
i
a

Case I.	 temperature 2730 K, relative humidity 90%, e=5.50mb.

Case II. temperature 279 0K, relative humidity 84%, e=7.85mb.

!	 So the averaged temperature is 2760K and the averaged e=6.67mb. The

es of the averaged temperature 276 0K is 7.56mb. If one uses averaged

a and the es based ors averaged temperature to calculate relative

i

	
humidity, the result would be 88.2%. However, if one just averages

the relative humidities, the result would be 87%. A 1.2% difference

is created. As the sample's deviation increases, the result would

get worse. This is simply caused by the fact that es is an exponen-

tial function of temperature which is concave upward, as shown in
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Figure 4.4 Temperature and vapor pressure phase diagram for water

substance. The dash-dot line illustrates the example in

section 4.4.
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Figure 4.4. The water vapor pressure is not supposed to be linearly

faveraged as temperature.	 Thus when one uses specific humidity 	 and

temperature for temporal	 and	 space averaged climatological	 data	 as

Oort and	 Rasmusson	 (1971)	 and	 converts them to	 relative	 humidity,

f; the result is	 overestimated.	 In many	 cases of	 this	 data	 set,	 the

results are higher than 100%, (see Table 4 . 1). On the other hand, if

one uses averaged dew point temperature to	 calculate	 relative humi-

dity, then it would be underestimated.

There is no straightforward remedy for this problem unless one

has sample relative humidity data to start with and directly averages

over relative humidity.

_	 4.5 Vertical in tegration of relative humidity

To perform the vertical integration, equation 4.1 is changed to

'	 numerical form as
t

RH= 1/12km I (RHi+RHi+l)(gphi+l-gphi)/2 	 4.11

where gph is geopotential height, subscript i is the index of 9'ach

pressure level from 1 to 6 as surface, 850mb, 700mb, ..., 200mb.

As mentioned earlier, pressure level 200mb is located around

12km geopotential height, depending on the location. Since equation

4.1 is an integration function with upper bound at 12km, we rep*ace

the relative humidity at 200mb by relative humidity at 12km. These

values are obtained by linear interpolation alor,l the geopotential

height between 300mb and 200mb or 200mb and 100mb, depending on

where the geopotential height of 200mb is located.C
i	 t'

t

i^
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4.6	 and Clear Sky Outgoing Longwave Radiation Fields
s

-F
xf T

i .

4.6.1 Zonally Averaged & field

First, the	 zonally	 averaged	 RH of January	 and July	 calculated

from this scheme are compared with the climatology compiled by Thomp-

son and	 Warren	 (1982),	 whose	 data are	 from	 London	 (1957)	 for	 7^

22km, 0 — 750N;	 Oort	 and	 Rasmussen (1971,	 hereafter denoted 	 as	 OR)

for 0 M 7km,	 10 0S	 75 0N	 and	 from Sasamori,	 et	 al.	 (1972)	 for

{ 0 — 22km, 10 — 900S.

Figures 4.5 and 4.6 show the comparison of the averaged RH of

January and July respectively. It is clear that both cases have good

agreement in low and mid-latitudes with a maximum at the tropics

which coincides with the ITCZ, and minima at the subtropics which

coincides with the descending arm of the Hadley cell. The seasonal

variations of the pattern are also in phase with the position of the

sun. Significant differences occur at the high latitudes, where

the polar descending flow would result in lower RH; the winter polar

region is overestimated while the summer polar region is underesti-

mated. A possible explanation of this difference for the Northern

Hemisphere is that London (1957) only provided RH data up to the

tropopause, so that the upper level data are unavailable in these

regions and in the high latitude the tropopause is lower than 12km.

Therefore in January, Thompson and Warren's (TW) calculation does

not have relative humidity input between the tropopause and 12km in

the high latitude region. As the result, their RH values at these

regions are lower. However, in the July case the mixing ratio of the

'	 lower atmosphere in the Northern Hemisphere is much higher than that

L
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Figure 4.5	 Zonally averaged RH for January.
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l^

r

of OR. Generally speaking the OR mixing ratio is higher than the

the mixing ratio derived from the data used in this study for both

months (see Tables 4.2 b 4.3). This contributes to higher relative

humidity, especially when compared with dew point derived relative

humidity as this study has done. Another source of error is that

Harries equa ,,. m 4.2 does not account for seasonal variations.

Fortunately, outgoing longwave radiation is less sensitive to

averaged relative humidity when the surface temperature is lower,

see Figure 2.1.	 In other words, the polar regions can tolerate

more averaged RH error than the tropics. Take the worst case, in

July at 65 0N, where the surface temperature is 120C. If one varies

relative humidity from 45% to 55%, clear sky outgoing longwave radi-

ation only changes by about 5 W/m 2 . Under cloudy sky conditions

the error would be smaller.

4.6.2 Zonally Averaged Clear Sky Outgoing Longwave Radiation

In figures 4.7 and 4.8, the zonally averaged clear sky outgoing

longwave (LW) radiation is compared with the calculation by Warren

and Thompson (1983) for January and July. The excellent agreement

between these calculations is obvious. The differences for most

latitudes are smaller than 3W/m 2 . The zonally averaged surface tem-

perature is also plotted on the same figures so that the relation

between surface temperature and outgoing LW can be easily seen.

V	 Outgoing LW radiation versus RH is plotted in Figures 4.19 through

4.21 for the July case. In mid and low latitudes where the surface

temperature is high, it is very evident that the outgoing LW is

C
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anticorrelated with RH. At high latitude, where the surface tem-

perature is low, outgoing LW is insensitive to averaged RH but is

nearly linear with the surface temperature as discussed in the pre-

vious section.

4.6.3 Global Rii. Distribution

The world wide RH distributions are plotted in Figures 4.9 and 4.10

for January and July respectively. Compared with temperature contours

I^	 in Figures 4.11 and 4.12, the RH contours have much higher longitu-

dinal variations. Still, for both months the subtropical subsidences,

the so called dry tongue of the Hadley cell, can be easily identified

with low RH centers, as well as the high RH centers along the tropics

with the Congo, Indonesia and the Amazon being the most prominent

three regions. In January over the ocean, there are high RH centers

T	 on the east sides of the Pacific and the Atlantic which result from

the cold temperature of the California and Canaries currents. The

low RH center at the northeastern Pacific is possibly due to the

warm surface temperature brought by the northern bound Kuroshio cur-
T-

rent. Over the continents, the cold temperatures at Siberia and

Greenland also contribute to high RH as the water vapor in the air

is conserved.

In July, the averaged R.H center along the subtropic subsidence

}	 belt of the Southern Hemisphere remains fairly well defined as in
F	 ,•

the January case. However, the low average, kH center in Australia

is more clear for the reason that in the Southern Hemisphere winter

land-ocean temperature differences are more pronounced. The high

4
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averaged RH	 centers along the intertropical 	 convergence	 zone (ITCZ)

all move	 northward.	 The	 region	 over the	 Amazon	 extends	 over the

^a

Caribbean sea.	 The low RH over the Sahara desert intensifies to cover

the Middle	 East.	 The high	 RH	 center	 over	 Tibet	 and	 Central	 Asia

weakens from a winter	  !lu,^	 of about	 60% to 48% due to increasing

air temperature and lack of influx of water vapor.	 The same applies

i to Siberia.

4.6.4 Global Clear Sky Outgoing Long waveoin	 Lon wave Radiation Distribution

Figures 4.13 and 4.14 show the January and July clear sky outgoing

longwave radiation 	 field.	 It	 is	 easily	 seen that	 the	 winter hemi-

has	 latitudinalsphere	 a higher	 LW radiation gradient than the summer

hemisphere.	 The influence of the continents and of the ocean currents

1.
along the	 coasts	 can be easily	 identified.	 The highly longitudinal

variations in	 the	 subtropics	 and	 tropics	 are	 remarkable.	 In	 this

region, high LW centers are located in the central Pacific, Australia,

and the southern	 Indian Ocean;	 and the low LW centers are located in

3

Indonesia, the	 Congo and the	 Amazon,	 which	 coincides	 with the high

averaged RH centers at those regions.	 These three centers move north-

south according to the sun's position as well 	 as	 change their inten-

sity.	 Generally	 speaking,	 the	 high	 LW	 centers	 are	 located	 in	 the

t

subtropics and low LW centers are located in the tropics. 	 This agrees

i

with the	 zonally	 averaged	 results	 discussed	 by	 Warren	 and Thompson

(1983).

An important feature of Figures 4.13 and 4.14, which cannot be

seen in the zonally averaged plots is that along the tropics the

r^
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longitudinal variations are the strongest of the entire globe. Also,

the high LW radiation at the central Pacific near the date line is

as strong in the tropics as in the subtropics for both January and
1

► 	 July and the intensity over thn tropical Atlantic is at the same
k

magnitude as in the subtropics as well. It is the three huge low LW

centers of the Congo, the Amazon and Indonesia that contribute to

the low zonal average outgoing LW at the tropics. It is somewhat
t

misleading to say that the outgoing LW at the tropics is relatively

low compared to that of the subtropics.

Over the continents, reducing the air temperature will increase
i_

RH, so that low temperature with high relative humidity will further

reduce low outgoing LW radiation. This phenomenon occurs in winter
S

_i

;
Siberia, Greenland and summer Central Asia, where the surface temper-

ature of the high plateau is relatively low crmpared to adjacent

regions, therefore a deep trough of LW contours occurs here.

Minnis and Harrison (1984, hereafter denoted as MH) have studied

a regional clear sky outgoing longwave radiation (OLWR) of November

i -	 1978 using GOES data. The monthly mean of this region, from longitude

30 OW to 125 0W, latitude 45 0N to 45 0S with 2.5 ox2.5 0 resolution is

shown in Figure 4.15. For comparison, our calculation of climatolo-

gical November clear sky outgoing LW flux is shown in Figure 4.16.

i
REgardless of the coarser resolution of our coordinates and the dif-

ferent averaging time, there is good agreement between the two results.

The locations of the low OLWR flux center at northwest South America,

the high OLWR flux centers off-shore of Brazil, the southeast Pacific

and Caribbean sea, and a shallow trough over continental United States

,N
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Figure 4.15 GOES regional clear sky OLWR observation for November,
1978 after Minnis and Harrison (1984), in W/m2.
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are all	 well	 simulated.	 Also	 the	 intensity	 of	 OLWR	 flux	 over	 the

'- oceans are in	 good agreement.	 However,	 over Brazil our calculation

is about 10W/m2	overestimated.	 This might	 suggest that averaged RH

is underestimated	 at	 this	 region,	 or	 the	 surface	 temperature	 of

F

s

November 1978 is below normal at this region.

As one compares the OLWR field, Figure 4.16, with temperature and

averaged RH fields, 	 Figures 4.17	 and 4.18,	 it is	 clear that averaged

RH highly changes the OLWR flux pattern. 	 This result indicates that

water vapor	 is	 one	 of	 the	 dominant	 factors	 of	 outgoing	 LW	 flux.

# Even without	 the	 presence	 of	 cloud,	 OLWR	 field	 is	 modulated	 by

i-
water vapor distributions.

The simple Budykc-Sellers type parameterization of OLWR calcula-

tion is often used:

F= A+BT	 4.12

where F	 is	 OLWR	 flux,	 T	 is	 surface temperature,	 and	 A	 and	 B	 are

constants.	 The above result implies that this equation significantly

biases the radiation field by omitting water vapor.

4.7 Sensitivities of the Interaolation Coefficients

As pointed out in section 4.3, some coefficients in equation 4.2

and 4'.4	 are	 rather arbitrarily	 chos:-in. These mi ght have substantial
r=

;. impact on the outgoing LW 	 radiation. In	 this	 section, we present a

- sensitivity analysis 	 of	 coefficients to	 show	 how	 the outgoing	 LW

responds and verify that the 	 outgoing LW	 radiation has minimal	 sen-

sitivities to	 the	 changes	 of	 these	 coefficients.	 For convenience,

these two	 equations are	 repeated here, and	 only the	 results	 of the

I

M
s
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July cases are plotted.	 The January cases have similar results.

i
4100mb(J)=3x10-6/(1+(J-20)2/128)	 4.2

n(J)=0.86x(1+(J-19) 2/1500)	 4.4

Case A

The coefficient	 0.8E	 in	 equation	 4.5	 is	 perturbed	 to	 0.80	 and

t 0.90.	 The results of the July case are plotted	 in	 Figure 4.19.	 As

the figure	 shows,	 changing	 the	 coefficient	 0.86 has	 more	 influence
t

on the tropics	 and	 less toward the poles.	 Changing the coefficient

^r

from 0.86 to 0.80 increases the RH at the equator by 9% and reduces

the clear sky outgoing LW by 6 W/m2 .	 Changing it from 0.86 to 0.90

reduces the	 RH	 at	 the	 tropics	 by	 5%	 and	 increases	 the	 clear	 sky

outgoing LW	 by	 2. 5W/n2 .	 These	 differences	 are	 smaller than	 those
r

(. from different	 radiative	 transfer	 models,	 where	 8W/m2	variation

( on OLWR	 are	 not	 uncommon	 (Luther,	 1983).	 The	 original	 number used

..
by Briegleb	 and	 Ramanathar,	 ( 1982)	 is 0.85.	 The differences	 between

their work and this study are negligible.

€.	 Case B

Perturbing the coefficient 1500 in equation 4.5 from 1000 to

f:
2000 only slightly influences the RH and outgoing LW at mid latitudes,

as shown in Figure 4.20. This is the least influential coefficient.

Case C

In Harries' water vapor mixing ratio formula, equation 4.2, the

coefficient 3x10- 6 stands for the average mixing ratio measured by
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Figure 4.19 Sensitivity of RH and clear sk y OLWR to the interpolation
parameter, Case A. XIV is the undisturbed case; II changes
0.86 in equ. 4,5 to 0.80 and III changes 0.86 to 0.90.
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Figure 4.20 SAme as figure 4.19, but for case B. XIV is the undisturbed
case; VI changes 1500 in equ. 4.15 to 2100 and VII rl^anges

1500 to 1000.
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various experiments at 100mb, see Figure 4.1. This coefficient has

a linear response or tiie averaged RH for all the latitudes. 	 For

example, at the tropics, changing the coefficient 3x10-6 to 6x10-6,

see Figure 4.21, would increase the averaged RH from 54% to 60% and

reduce clear sky outgoing longwave radiation by approximate 4W/m2.

Changi ng the coefficient 3x1C-6 to 1x10-6 would reduce the averaged

RH from 54% to 47% and increases clear sky outgoing longwave radi-

ation by about 5W/m2 .	 Therefore, a six-fold change of mixing

ratio, from 1x10- 6 to 6x10-6 , would only change clear sky outgoing

longwave flux by 9 W/m2 , only about a 4% variation. 	 Thus the

longwave flux calculation is insensitive to this perturbation.

In conclusion, we adapted all the coefficients chosen by other

investigators except to slightly tune the coefficient C.85 in equation

4.5 to 0.86. We found that the averaged RH profile is in good agree-

ment with Thompson and Warren's in the low and mid latitudes, and

also found very good agreement in zonal averaged clear sky OLWR

profile for all latitudes. The changes in these coefficients has

little effect on clear sky OLWR which world imply even less error

for cloudy sky OLWR. "'oudy sky OLWR will be discussed in Chapter 6.
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CHAPTER 5

CLOUD AND CLOUD TOP TEMPERATURE

This Chapter is devoted to two subjects: cloud cover znd cloud

top temperature Tc. For the cloud cover, from section 5.1 through

5.4, the impact of cloud on climate and cloud observation is first

reviewed. Then, the Sherr et al. (1968) cloud cover model, which is

incorporated into the outgoing longwave radiation (OLWR) calcula-

lion, is discussed. The distribution of cloud cover follows. For the

cloud top temperature Tc, in section 5.5 the techniques of the mea-

surement are first reviewed, then a set of Tc data is compiled and

compared with a region with satellite observation. A brief summary

follows in section 5.6.

5.1 Cloud and Climate

Earth OLWR, unlike idealistic clear sky OLWR as discussed in the

previous chapter, is highly modulated by the dynamicE 	 nd thermo-

dynamic processes of clouds. The presence of most clouds traps the

higher longwave (.LW) radiation from the surface and emits its own

lower LW radiation to space. This process conserves earth OL'JR, and

is often referred to as the cloud greenhouse effect. Witli a theore-

tical model, Kuhn (1978) showed that outgoing longwave flux (OLWF)

•tir	 {
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depends on cloud height, e.g. the greenhouse effect intensifies as

the elevation of the cloud deck increase. However, in polar regions

where the temperature inversion is strong and water vapor density is

T_

1.	 low, inserting a cloud deck would increase OLWF substantially.

i	 More recent observations by Minnis and Harrison (1983) also showed

high anti-correlation between diurnal cloud cover and OLWF for a

i - 	few locations in the mid latitude of the Southern Hemisphere. The
r

multilayered clouds complicate this problem, especially high thin

i
cirrus type clouds with less opacity. For example, it was pointed

out by Hle,inan (1981) thAt sophisticated GCM's underestimated OLWR

i	 ber-i^ast `nigher LW radiation from lower warmer cloud can penetrate

througn overlying cirrus.

In addition to its effect on the LW radiation, cloud also has

i	
very strong influence on solar short wave (SW) radiation. Its pre-

i

	 sencE reduces insolation on the surface and its albedo, which is

i
	

higher than the surface, increases the reflectirn of SW to space,

which is often referred to as cloud albedo effect.
r

Global surface albedo is only about 13%, while cloud albedo can

7

range from 20% to as high as 90%. This effect competes with the

greenhouse effect, so that the degree of the cloud's net 4 mpact on

the climate, cloud feedback effect, is still controversial. Schneider

(1972) first used an atmospheric model to analyze the relative mag-

nitude of each compo , .ent. He defir.ad a parameter

a F 	 as
6 =	 - 	5.1

aC	 ac

t
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where A is absorbed solar flux, F is OLWF, and C is cloud cover.

When d is negative, the albedo effect dominates, and when d is

positive, the greenhouse effect dominates. He found that, with the

constraints of fixing other atmospheric factors, the effect of in-

creasing global average cloud cover is to decrease the global average

surface temperature due to higher albedo effect. However, Cess and

Ramanathan (1978) stressed that any discussion of the radiative

effect of changing global cloud amount or atmospheric transparency

must consider the possibility of change in the distribution, and the

type of cloud as well, which is not well understood yet. One of the

most difficult problems involved is the the lack of an unique defi-

nition of cloud cover. Because cl°•ud has different characteristics

for different wavelengths, effective cloud cover for incoming solar

radiation might differ significantly from that of outgoing LW radia-

tion. Ohring and Clapp (1980) and Hartman and Short (1980) used

OLWF versus albedo instead of using cloud cover directly to determine

the net energy budget.

aF	 aA	 as	 aF
6 = -	 a -Q a T -

aC	 aC	 aC	 ac

aF	 5.2
( - 

o 

r ) x ( Q (--- ) - 1 + 1)
aC	 as

1, Greenhouse effect only.

aF	
0, Greenhouse effect balancecloud factor = ( Q (

	

	 )-1 +1 )	 albedo effect exactly.
a^

-N, albedo effect is N+1 times

as large as greenhouse
effect.

^'t

f f.

r•

i
r_
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where a is albedo, Q is one fourth of the solar constant. This

method, however,	 did not eliminate other atmospheric variations,

such as water vapor content, lapse rate, etc.. Cess, et al. (1982)

also d'cussed that using different satellite data would change the

results substantially due to different data sampling technique.

Although the effect of the cloud feedback on net radiation balance

is still uncertain (Hartman, 1983), there seems to be a good agreement

with the result of Schneider (1972) that clo y ., albedo effect domi-

nates the greenhouse effect except for very high cirrus type cloud.

Warren, et al. (1983) used 35 years of ship observations to

study cloud cover over ocean area, and found that there are statis-

ticallj significant trends for different types of cloud over different

areas, e.g. 1% per 10 year decrease in cumulus over most ocean

areas of both hemispheres and a similar increase in stratus and

stratocumulus over all ocean areas except the northwest Atlantic

during all seasons and the eastern South Tropical Atlantic during

Southern Hemispheric summer.	 It is intriguing to ask how this

trend changes the climate or why this cloudiness trend appears in

the data. But, the first important problem involved  here is cloud

observation.

5.2 Cloudiness Observation

Tt is redundunt to stress how subjective cloud observations, both

cloud classification and cloud cover, are. A simple example is that

cloud cover reported in early morning and late afternoon tend to he

overestimated because high solar zenith angle will enhance the perce-

ption of the lateral area of cloud.	 Another problem on surface

. I
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chservation is the lack of stations over many remote regions, although

ship observations	 help to fill	 in	 very sparse data over	 ocean.	 To

have a global	 surface cloud observation network is very impractical.

Despite such	 difficulties, London	 (1957) compiled a seasonal	 clima-

tology of total cloud cover distribution for the Northern Hemisphere.

It is still one of the most referred works, regardless of their

accuracy. Later a similar work for the Southern Hemisphere was done

by van Loon (1972).

Satellites provide an easier way for sampling data. Early polar

orbiting TIROS satellites had limited ground coverage and limited

sampling times.	 Clapp (1964) utilized this satellite photography

s	 and performed some nephanalyses of seasonal global cloud cover from

March 1962 to February 1963. This study showed that global cloud

has some characteristic patterns over seasons and concluded that

the cloud distribution on large-scale must posses a certain stability

or repetitivEness over the entire seasons, even in the regions of

migratory cyclones and anticyclones. 	 Clapp did not quantitize the

result, such that it can not be used to verify London's (1957)

previous work; nevertheless it did verify the feasibility of classi-

fication of cloud cover from space and its agreement with surface

observation for zonally averaged results. Another work by Kornfield

and Hasler (1969) used a multiple exposure technique for developing

monthly averaged cloud cover pictures and then performing nephanaly-

ses. Ths study clearly identified the ITCZ and some quasi-stationary

a	
waves. Still both	 Clapp's and Korrifield and Hasler's work were

(

very dependent on subjective judgement of an experienced analyst.

r''
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A number of more objective methods have been proposed. Instead of

using photography, different channels of radiation band are used tc

reconstruct cloud pictures, such as was done by Shenk and Solomonsor

(1972). Their threshold method for using visible channel brightness

from a high resolution scanning radiometer can produce good results,

if the field of view is completely filled with cloud or completely

cloud free. However, if the assumed condition does not prevail, the

potential error could be as high as 75%. Another method, the spatial

coherence method (Coakley and Bretherton, 1982) using advanced very

high resolution radiometer (AVHRR) information, can determine single-

layered cloud cover or multilayered cloud cover extended over moderate

layer regions. Chahine et al. (1983) used multichannel high resolu-

tion infrared scanner (HIRS) and microwave sounding unit (MSU). This

method can determine the effective cloud cover under the assumption

that the cloud is single-layered and non-reflective.

An effort, the International Satellite Cloud Climatology Project

(ISCCP, Schiffer and Rossow, 1983) ;)as been initiated for organizing

the data collection and processing to determine temporal and spatial

variability of the amount, type and radiative properites of clouds.

This study will not only provide a global data set for clouds, but

also lead toward a better understanding and enhar,,., the ability of

climate modeling.

5.3 Sherr et al. Cloud Model
i

5.3.1 The Model

Sherr et al. (1968) compiled an empirical global cloud cover mo- 	 ;)

VWJA
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del, originally intended for simulatior of the effects of cloud

cover on proposed earth-viewing space missions. 	 The surface of

earth is divided into 29 cloud climatological regions as shown ;.

Fig. 5.1. Within each region, cloud is assumed homogeneous. This

feature provides the interface with the outgoing LW parameterization

of Thompson and Warren (1982) used in this investigation, which

requires a single deck effective cloud cover as a predictor (see

Chapter 2).	 We adapted the model with modifications suitable for

this study. A general description of the nature of the cloud in

each cloud climatic region is given in Table 5.1.

In constructing the model, Sherr et al. (1968), the data from

satellites were used to identify the regions where the cloudiness

is homogeneous.	 Ground-based observations were used to construct

cloud cover frequencies. Data from as mane areas as possible were

assembled and from these a representative station was identified.

Data from this statior were usually based on at least 10 years of

observations.

5.3.2 Other Studies with Sherr et al. Model

Based on the results of Sherr et al., Falls (1974) statistically

analyzed the cloud cover frequency and concluded that world cloud

cover behaves as a Beta probability distribution, which can describe

the aloud cover field well with relevent values of two parameters.

Based on the surface classification of Sherr et al. model,

Henderson-Sellers (1978) studied the surface type and its effect on

iG

j
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cloud cover. She has also found the Beta distribution useful as a

model for the cloud cover frequency. Her results also imply that

cloud frequency curves over land -in high latitudes, :,iid-latitudes

and subtropical latitudes are similar, while the frequency distribu-

tions of cloud cover differ (1) over land and ocean at the same lati-

tude and (2) over ocean areas in different latitude zones.

Combining with 45 months of satellite radiation measurements, Bean

and Somerville (1981) derived a Beta distribution world-wide cloud

cover model. This model can describe cloud fields very concisely.

However, the parameters were derived from fairly small size sample,

such that statistical confidence is not achieved.	 Also, utilizing

the model to other time period other than that the parameters were

derived might cause significant error.

5.3.3 Modification of Sherr et al. Mode'

A version of the Sherr et al. cloud model used by Bartman (1980)

in his albedo model is incorporated into this study. Since the cloud

climatic region areas of Sherr et al. did not begin and end on the

10 0x10 0 latitude-longitude lines of our models, Bartman stretched cr

contracted slightly the map areas in order to fit the model grid

system. Table 5.2 shows the cloud climate regions used for each

10 0x10 0 area in Bartman's model and this study.

As the result of this process, one would notice that along the

latitude 65 0S on table 5.2, the cloud ty;. is alternating between

type 23 and type 24. On a contour plot of cloudiness, this would

produce unrealistic wavy curves along latitudes 55 0 to 750 . Thus,

i
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instead of directly using the cloud cover at this region generated

by the classification, we used equations 5.3 and 5.4 to smoothe the

distribution portrayed in fig. 5.1.

f(j,16)=f(j,17)*2/3+f(j,15) 1/3 	 1 < j < 7 or 19 < j < 36 5.3

f(j,16)=f(j,17)*1/3+f(j,15)*2/3	 8 < j c 18	 5.4

f

where j is a longitude index such that longitude is J* 10 0-50 , and K

is a latitude index such that latitude is 850-K*100.

j	

Monthly cloud cover used in th i s study is calculated as follows.

!	 Sherr et al. world-wide cloud cover distributions are given in five

cloud cover categories, listed in table 5.3, for each of the 29 cloud
s

L	 climatological regions. Frequency distribution of the five possible

cloud amount categories are given for eight local times at 0100,

0400, 0700,..., 2200. 	 From the frequency distribution data and

cloud cover categories, the percent cloud cover was calculated for

each cloud climate region as a function of the eight different local

times of the typical day for each month of the year. The monthly

cloud cover is obtained by averaging the cloud covers of the eight

local times.

A calculation of the global annual percent cloud cover from the

above data gave a value of .60, which is much larger than the values

.50 to .55 normally used, e.g. the global cloud cover of Hoyt (1976)

was .532; C r is and Ramanathan (1978) suggested annual global cloud

cover is between .45 to .55. Ramanathan (1976) used .45 as the effec-
t^

tive total cloudiness for his radiative convective model.
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Category 	 Cloud Cover in Tenths

1	 0
2	 112+3
3	 4,5
4	 6, 7, 8, 9
5	 !0

+	 Table 5.3	 Cloud Cover Category,
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A multiplying factor GLCLC/60 has thus been incorporated into
t

the cloud cover calculation. This factor is not only used to adjust

l'	 the difference between the Sherr et al. model and the nominal value,
f
i•

but also accounts for the emissivity of the cloud, such that GLCLC/60x

Ac equals effective cloudiness, where Ac is cloud cover from the

Sherr et al. model. In the current study, GLCLC is set to 45 as by

Bartman (1980, 1981).

5.4 Cloud Cover Distribution

i
5.4.1 Zonally Averaged Cloud Cover Distribution

_	 Figures 5.2 and 5.3 show the zonally averaged cloud cover from

I
!.	 (1) the modified Sherr's cloud model without the factor GLCLC and

from (2) London and van Loon for January and July respectively.
f

Both months have general agreement between (1) and (2), i.e. maxi-

mum cloud cover in the tropics and middle latitudes and minimum

cloud cover in the subtropics and polar regions. The high correlation

between cloud cover and uppper air relative humidity can also be

well identified (see Figures 5.4 and 5.5, taken from Telegadas and

London, 1954).

However, the differences of the magnitudes between (1) and (2)

are also very significant.	 Poleward greater difference could be

possibly due to less observation frequency or higher human perception

bias from larger zenith angle, or both.	 The verdict of better

cloud cover climatology will not be issued until either Warrer et al.

or ISCCP results are revealed.

is

t

NW
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Figure 5.3	 Same as figure 5.2, but for July.
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5.4.2 Global Distribution of Cloud Cover

Figure 5.6 and 5.7 are cloud cover contours from the data of Sherr

et al. (1968) for January and July respectively.

In the Gl.,d,1 ;loud distribution, maximum cloud cover often

occurs at the 'TCZ, and the mid-latitude westerly zones where there

is a warm moist surface region or large baroclinicity, etc., while

minimum cloud cover occurs at the subtropical subsidence, high pre-

ssure centers, and polar subsidence regions. Other mechanisms, such

as monsoonal circulation, also generate extreme cloud cover.

Tables 5.4 and 5.5 summarize the causes and the regions of extreme

cloud cove( for January and July respectively. Although for some re-

gion there might be more than one reason for the causes of extreme

cloud cover, e.g. ITCZ coincides with moist surface, only the dominant

reason is mentioned.

5.5 Cloud Top Temperature

5.5.1 Definition and Measurement

As pointed out both in Chapter 2 and in the previous section, the

aloud cover used in this study is defined as the effective cloud cover,

with emissivity equal to one.	 Thus, the definition of cloud top

temperature refers to the temperature at the top of the effective

cloud. Since not all of the cloud is black, the virtual cloud top

might be lower than its physical location in order that emission at

warmer level would compensate the smaller emissivity. However, in

practice the exact location of the effective cloud top can not be

defined using conventional radiosonde, neither can the cloud top

91
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January Causes Locations

ITC1
equatorial	 low 1.	 Maximum cloudiness along 5 1 S in the

Indian Ocean continues into Western
maximum Pacific.
cloudiness

2.	 Eastern Pacific 6 Atlantic in the tropics
which coincide with the strongest trade
winds and cold sea surface temperature
except Indian Ocean.

--------------------
BarocliP:icity

------------------------------------------------
1.	 In the Northern Hemisphere, the prevailing

westerlies and their cyclonic storms are
located at North America, Nortwest Europe.
Northwest coast of North America, Alaska
and Far East.

2.	 In the Southern Hemisphere are at
circumpolar zone at subpolar latitudes.

--------------------
warm moist

------------------------------------------------
1.	 The amazon and	 on 	 Basin where tropical

surface forest located.

2.	 Indonesia b tropical coast of Australia
where warm sea surface temperatures
located.	 This is also the region where
the ascending arm of Walker circulation
is located.

subtropical Eastern and southwestern section of
high pressure subtropical high pressure in the Northern

Hemisphere, eastern and northeastern
section in the Southern Hemispheric high,

minimum Sahara, West Africa desert Southwest
cloudiness United States and Southwest South America.

In the Southern Hemisphere the high
pressure spread over almost all longitudes
except those of the Andes mountains.

--------------------
monsoonal

------------------------------------------------
India under northeasterly winds.

circulation

Polar region - North and South poles.	 However, it is
difficult to confirm the observation
during polar night.	 In the Northeast
Siberia, Arctic and northern America, the
cloudiness is highly dependent on the
amount of open water.

E
I
f

f

Table 5.4 Summary of extreme cloud for January.

#1
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Siberia high	 Manchuria, although located in the
pressure	 westerly belt, cold high pressure

cover this region.
----------------------------------------------------------------------
Descending	 West Coast of Peru
aria of
Walker
circulation

Table 5.4 Continued.
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uJuly Causes Locations

1ITC2 1. Near equator in the Indian Ocean and an
equator ial	 low extention of cloudy band southeastward

from New Guinea.

2.	 Northern and Central 'outh America.

1 Central Africa and equatorial 	 Pacific.
maximum ------•------------ ------------------ -• ----------------------- ---------
cloudiness Baroclinicity North displacement of Bermuda and Pacific	

^

high pressure centers:	 Principal	 cyclonic	 {
activities over Europe and North America
is confined to the northern regions off
Alaska.	 northern Europe, central and
northern United States.

•----- ----•------
monsoonal

1-circulation

•---•------•--.-...----------------------------•---
India

isubtropical 1.	 Northern Africa, Southwest Asia, central
high pressure Pacific and scuthwest United States where

minimum are on the eastern slopes of the high
cloudiness pressure waters.

2.	 South Pacific and West shore of South
America. Desert Australia.

- ------------------------•-----•--------- 11 ---------
Subpolar circumcircle over the Southern
Hemisphere has less cloudiness than
Januar .

Table 5.5 Summary of extreme cloud cover for July.

a-
t
1
^ a



95

1

i

temperature be directly measured.

Cloud top temperature can be indirectly measured from satellite.

As in the common single channel threshold method, cloud top temper-

ature is the infrared equivalent blackbody temperature of cloud,

-	 in:hich is measured by using a window band radiometer. Minnis and

Harrison (1984) have analyzed a set of GOES data using this techinque.

A recent proposal by Chahine et al. (1983) presented a method

using multichannel HIRS to retrieve both effective cloud cover and

clout!. top temperature independently. Under the assumption that the

;.	 reflectivity of cloud in the iR region is zero and that the emissivity

of the cloud at different infrared wavelengths are the same, the

pressure level for the black cloud top location can be retrieved.

The cloud top temperature is then assumed equal to its ambient tem-

perature. The corresponding temperature sounding is retrieved using

other channels. Although this method has been tested on NOAA weather

satellite data, a global mop^thly average climatology is not yet

available.

Since cloud top temperature is the most indefinite parameter in

calculating outgoing LW radiation, it is taken as an adjusting factor,

as suggested by Thompson and Warren (1982), to match the current

climate.

5.5.2 Compilation of Cloud Top Height and Cloud Top Temperature

According to the cloud region classification, of Sherr et al.

(1968), section 5.3, the cloud cover of each of the 29 cloud climato-

logical regions is homogeneous. Table 5.1 also gives the general

t
b )^>i
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description of the cloud type for each region. Since each cloud

type has its prevailing cloud top height, one can assume that in

each region all the cloud top is at the same altitude, and then take

the cloud top ambient temperature as the cloud top temperature Tc

as was done by Hummel and Kuhn (1983) and Chahine et al. (1983).

To avoid generating more uncertainty, cloud top height is only

assigned to the mandatory pressure levels, where the temperature

field is written on the NCAR tape (see Chapter 3). Since there is

scarcely any cloud sustained at 100mb, no cloud is assigned to this

level. Also, very low level clouds are assigned to the midpoint

between the surface and 850mb. Thus each clvu d top is at one of the

i
following levels: near surface, 850, 700, 5GC, 300 and 200mb. Sea-

sonal variation of cloud top height is cc , ;idered as well. Table

5.7 shows the cloud top level of each cluui type for each month.

Determination of the cloud top level for ea(-i cloud region will be

discussed in the following paragraphs. 	 The temperature at this

pressure level is taken as Tc, except for the near surface cloud

where the mean tempe rature between the surface and 850mb is used.

An atlas of monthly OLWR is compiled as the reference for determ-

ining the proper cloud top height for each cloud type given in Table

5.1. Data used are from the scanning radiometer (SR) on board of

NOAA satellites measured from June 1974 to February 1978 (Abel and

0 0Gruber, 1979). These data were further processed into 10 x10 regions

by Vonder Haar et al. (1982). 	 This is the longest time series

of satellite measurement from one single instrument. Data of the

same month from different years are averaged to generate the 'monthly

'e",
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average`.

To determine the cloud top level, a rough guess was first made

by using the description of Sherr et al. (1968) for each cloud type,

Table 5.1, and choosing the possible corresponding cloud height level

from Table 5.6 from the Interaational Cloud Atlas (1975). Thus,

f.
Tc can be found, then the cloudy sky OLWF is calculated. This

result is compared with the reference atlas, cloud region by cloud

region, and the cloud top level can be adjusted to the upper level

or the lower level in order to minimize the difference between the

reference atlas and calculated OLWF. This procedure is iterated

until the difference is minimal for each cloud region, and the best

Icloud top height is thus defined. Table 5.7 tabulates the pressure

level where the cloud top is located, and is the result of this

procedure.

Examining Table 5.7, one finds that cloud climatological regions

have seasonal variation of cloud top height. The most drastic one is

Region 25, located at the southern tropics over South America, Africa

F_
and Indian Ocean, where the cloud top level changes from 200mb in

January to 850mb in July. The range of the seasonal variation of

cloud top height is about 200mb to 300mb for most other cloud regions.

There are as well many regions where their cloud top height

-	 stays fairly constant throughout the year, such as region 3 at the

t- tropical Pacific and the northern part of the South America; Regions 19

and 29, where subtropical oceans are located; Regions 14 and 23 of

the high latitude ocean; Region 11, mid-latitude land in the Northern

Hemisphere; Region 23, mid-latitude ocean in the Southern Hemisphere
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and Region 28, the subtropical land at the southeast parts of both Aus-

tralia and South America.

Figures 5.8 and 5.9 show the contour of cloud top temperature for

January and July respectively. It is clear that the cloud region

classification of Sherr et al. (1968) highly modulates this result.

In January, the main low cloud top temperature regions are located

at the west coast of the United States, Siberia, equatorial Pacific

F

and Atlantic, northern South America and African Congo. High cloud
i

top temperature regions are Australia, west coast of Central America,

west coast of South Africa, monsoonal India and West Europe. In

July the main low cloud top temperature regions are located at the

eastern United States, Caribbean Sea, southeast Pacific, East China,

and monsoonal India. High cloud temperature regions are located at

North and South Africa, southern Indian Ocean, west coast of the

United States and eastern South America.

As mentioned in the previous section on cloud top level, the

regions with strong seasonal variation are South America south of the

equator, monsoonal India, and South Africa. Other regions also have

seasonal variation, but nevertheless, are more moderate.

5.5.3 Comparison with Satellite Observation

As was done for the clear sky OLWR case in section 4.6, the com-

piled Tc is compared with satellite data analyzed by Minnis and

Harrison (1984, hereafter denoted as MH) for the region from Longi-

tude, 30 OW to 125 0W, latitude 45 0N to 45 0S for November. These results

are shown in F;gure 5.10 and 5.11.

i'
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The locations of the region of the low Tc center at central South

America and the adjacent high Tc regions both to the east over Atlan-

tic and to the west over Pacific are well simulated. However, the

magnitudes differ. In our compilation the maximum temperature is

2940K over the Atlantic versus 270 0K of MH; the minimum is 2400K

for the Central South America, while MH has 260 0K. At the Atlantic

coast of South America, where the compiled data are higher, the

reason for the difference might be that the NOAA data has higher

OLWR at this region, 282 W/m 2 vs. 270W/m2 for MH. Tne other possibi-

lity is that MH measured Tc using a window channel which could be

contaminated by the tropical water vapor absorption, thus underesti-

mated. Over Central America, the compilation data is lower. This

could possibly be explained as follows: our clear sky OLWR case in

this region is about 1OW/m 2 higher than that of MH, which means

the height weighted mean relative humidity RH could have been under-

estimated at this region. Therefore, to fit the normal cloudy sky

OLWR from NOAA data, cloud must be adjusted to higher level in order

to offset the low RH, thus resulting in lower Tc. 	 Still, this

magnitude is in the reasonable range. Comparing with other observa-

tions, Curran and Wu (1982) used Skylab-observed data and found Tc

can be as low as 226 0K in New Mexico area. This somewhat justifies

our Tc compilation.

5.6 Summary

Clouds have two compet = ng effects on climate: cloud albedo effect

and greenhouse effect. Most observation shows that cloud albedo

r=te- ^,. ^ n
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effect dominates. However, the result is sensitive to the analysis

techniques and the data used. Since these cloud effects are highly

dependent on the cloud type and cloud height, this problem can be

very localized. Apparently, further study on this subject is needed

for its great importance on the earth radiation budget. On the

large scale, satellite observations show that clouds possess certain

stability or repetitiveness over an entire season, which render the

feasibility of constructing cloud models, such as Sherr et al.

(1968) incorporated in this study. Some techniques of cloud obser-

vations are reviewed.

The Sherr et al. (1968) cloud model classifies the globe into 29

homogeneous cloud cover regions. A set of monthly cloud cover maps is

derived from this model with an adjusting parameter GLCLC introduced

by Bartman (1980) for fitting the nominal global annual averaged

cloud cover. A value of 45 is selected for current study. The zonal

averaged results are compared with London (1957) and van Loon (1972)

with fair agreement. It is expected that the future result of ISCCP

and Warren et al. would greatly improve our unders-candin g of cloudi-

ness.

A set of cloud top temperature maps are compiled using the cloud

region classification of Sherr et al. (1968) and with the aid of the

LW radiation measurement by NOAA scanning radiometer. A November

regional result is compared with Minnis and Harrison (1984) with good

agreement.

r1

r
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CHAPTER 6

CLOUDY SKY OUTGOING LONGWAVE RADIATION

This Chapter presents the results of the cloudy sky outgoing

longwave radiation (OLWR) calculated from the scheme developed in this

study as described in the previous chapters. In section 6.1, the glo-

bal averaged OLWR variation with season is discussed. In section

1	 6.2, the zonally averaged OLWR for January and July, as well as the

temporal zonal variation are discussed. In section 6.3, the global

distribution of OLWR for January and July are discussed in detail

r-
	 from region to region.

6.1 Global Average OLWR

Global monthly average cloudy sky OLWR calculated from the model

(CD), clear sky OLWR (CR) and reference OLWR compiled from NOAA

scanner radiometer (NOA, see section 5.5.2), are tabulated in Table

•	 6.1. A summary of other parameters are also included.

The global average manifests the general performance of the model

..	
and also shows the mean state of the earth climate. There is good

agreement between CD and NOA, with CD very slightly overestimated

with an annual average of 245.6 and 244.7 W/m 2 for CD and NOA respec-

tively. The differences are smaller than 1.5 W/m 2 , about 0.6%,

107
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except for November, which differs by about 1%. The difference of

the annual averages is about 0.9w/m 2 . As both cloudiness and mean

relative humidity hold very steady throughout the year, at about 45%

(after multiplied by GLCLC/60) for CD and and 47% for RH, the major

parameters contributing to the seasonal variation are the change of

surface temperature (Ts) and the temperature difference between

the cloud top and the surface (Ts-Tc).	 From Table 6.1 it is clear

that both of these factors contribute to the maximum OLWR at the

northern hemispheric summer, June through August. However, these

two parameters are also slightly out of phase; Ts has a maximum at

July, while Ts-Tc has a minimum in May, with the result that June

(	 has the highest OLWR. Comparing CR with CD, on the average, clouds
f_

contribute about low/m2 , or 4%, in reducing OLWR.

To illustrate the seasonal variation, CC and NOA are plotted on

the climatology by Campbell and Vonder Haar (1980, denoted as CV)

i	 on Figure 6.1. The difference between CV and NOA will be discussed

later. The seasonal cycle of OLWR is in phase with the season of the

Northern Hemisphere with an amplitude of about 5 W/m2 . The two prime

factors affecting this seasonal variation are (1) Earth-Sun distance

and (2) different amounts of land-sea distribution in the Morthern
i
1

Hemisphere and the Southern Hemisphere. Since the Earth-Sun distance

is shortest in December, in the northern hemispheric winter, the

factor of the land-sea distribution must dominate in order for the

OLWR variation seasonal to be in phase with the northern hemispheric.

seasons.
i,
I	 Although seasonal OLWR has a maximum in the Northern Hemisphere

t
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summer and minimum in the Northern Hemispheric winter, the exact

timing of the occurence for these extremes varies very substantially

from year to year. A recent observation of Nimbus 6 and Nimbus 7

from July 1975 to October 1980 by Bess (1984, personal communication)

is shown on Figure 6.2. Disregarding an instrument calibration shift

and missing data, the minima can occur from November to February and

the maxima from July to August. NOA and CV, however, have maxima at

June. The significance of this minor variation of OLWR to the climate

can be interpreted in terms of net radiation, which is the difference

between the two large values of OLWR and the absorbed radiation. An

1 w/m2 net radiation flux would change the temperature of a 100m

deep ocean layer about 0.1 0K each year (Campbell and Vonder Haar,

1980). Diagnosing the timing of the hemispheric mean OLWR extremes

might thus provide significant clues in the long range weather fore-

cast.

NOA is estimated by using an empirical formula which relates the

observed radiance of the 10 u m window channel to the OLWF. A theore-

tical radiative transfer calculation, rather th,-jn observation, is

used to derive this empirical formula. A recent investigation by

Ellingson and Ferraro (1983) found that this operational technique

systematically overestimates OLWF when the technique is applied to

the radiance from areas with partial cover of high or middle spec-

trally black cloud. Thus global NOA is about 8 W/m2 higher than

that of CV. For our study, this systematic over-estimation can possi-

bly lead to an under estimation of the effect of cloud. A simple

method to alleviate the difference between CD and the nominal OLWF

ii '

:i

L	 41
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is by adjusting GLCLC. However, for the analysis, the temporal and

spacial variations, as well as CR are not influenced.

6.2 Zonally Averaged OLWR

Figures 6.3 and 6.4 show the calculated zonally averaged CD for

January and July respectively. CR and NOA are also plotted on the

figures for comparison.

The typical zonally averaged OLWR pattern, a minimum at the

tropics and two maxima at the subtropics with negative gradient from

the maximums toward the poles, are well reproduced. The general

difference between NOA and CD are within 3.5% depending on the lati-

tude, except at the antarctic and the minimum at the equator. The

higher differences in these regions will be futher discussed later.

The magnitude of the maximum at the subtropics is about 265 to 275

W/m2 , which is about 25W/m 2 higher than that of the minirr-im at

the tropics. As discussed in Chapter 4 higher water vapor concen-

tration at the tropics is one of the major contributor to this mini-

mum. As well, in the window region, the a-type continuum absorp-

tion is significant (Warren and Thompson, 1983). From the difference

between CD and CR, it shows that cloud and RH make equiva _-- contri-

butions to this minimurr, which accounts for more than 2UW/m 2 reduc-

tion from CR. One of the major cloud regions in this latitude accord-

ing to She; • r et al. (1968) is cloud region 3, which includes  19 out

of the 36 grids at this latitudinal belt. Table 5.1 reveals that the

cloud top temperature at this region is much lower than that of the

adjacent subtropics. The clouds are at higher altitude, 500mb level,

c
r.
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compared to 700mb or lower in the neighborhood, while the cloud cover

changes of the adjacent latitudes are only less than 10%, thus the

dominant effect in reducing OLWR is the colder cloud top temperature

and high water vapor concentration.

At the subtropical maxima, the magnitudes of OLWF are about

270 W/m2 with the winter hemisphere slightly higher than that of

the summer hemisphere, by less than 5 W/m 2 . This is due to stronger

convection in the summer hemisphere. The difference between NOA and

CO is smaller than 2.5%, about 5 W/m2 . Both the OLWR maxima and

the minima have significant seasonal variations. The locations of

the maxima, which are associated with the subtropical high pressure

systems oscillate about 10 to 15 degrees north-south following the

;-	 sun's position. The maximum in the Southern Hemisphere has smaller

1
displacement than that of the Northern Hemisphere. The larger ocean

7

heat capacity in the Southern Hemisphere stablizes this variation

(see Figure 6.3). The minimum, which is associated with the ITCZ,

has less seasonal variation than the maximum, From the observation,

the ITCZ is essentially located to the north of the equator except
t
i

in January and July.	 Still, in the CD case, the displacement of

this minimum is less than that of NOA. This discrepency is mainly

due to the fixed cloud region classification of Sherr et al. (1968)

(see Figure 5.1), which is not seasonal dependent.

There are larger differences between CD and NOA in the polar

1.	
regions, about 6%, or 6 to 10 W/m2 depending on the latitude,

which is much higher than that of mid-low latitudes. Recall from the

^-	 clear sky OLWR discussion in Chapter 4 that in the polar regions the
'I

't
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temperature is much lower and the OLWR is much less sensitive to

the relative humidity. From Figures 4.7 and 4.8 we show that CR com-

pared best with the other experiments at the polar region, thus the

difference in the cloudy sky case between CD and NOA is predominantly

from the effect of cloudiness and cloud top temperature. Since these
i

are the places where there are strong surface temperature inversions,

extending up to higher than 700mb, the effect of inserting a cloud

i

	 deck in the inversion is to increase OLWR. As shown in Figures 6.1

and 6.2, the difference between CD and NOA increases with latitude,

which is opposite to the clear sky case. The reason for this feature

is that to minimize the error in compiling cloud top temperature

(see section 5.5), each grid value has been weighted with area, such

that the globally averaged OLWR can be more accurate.	 In cloud

Region 24, as well as region 15 at the north pole which extend from

i
	 650S to 850S, the weighting of 650S is cos(650 ), about .42, which

is higher than the sum of the weighting of 75 0 and 85 0 , .25 and

.09 respectively. Thus the cloud top temperature is predominantly

determined at the latitude of 650S, so that we have very small

i

difference at 65 0S between CD and NOA and the difference increases

toward the poles where there is less weighting.

Zonal Temporal Variation

To illustrate time-space variation, a series of time-latitude con-

tours of Ts, RH, CR, cloud cover, CD and NOA are plotted.

Figure 6.5 shows the time history of zonally averaged climatolo-

gical Ts. The most significant feature is the asymmetrical seasonal
As	 .
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variation between the two hemispheres. The strong annual cycle at the

Northern Hemisphere is due to the large continent distribution which

contributes rapid heating and cooling, while in the Southern hemi-

sphere large ocean heat capacity evens out most of the annual cycle.

In the tropics, the temperature variation is basically non existent

due to constant solar duration.

Figure 6.6 shows the time history of zonally averaged RH. Essen-

tially RH varies in a very small range, from 0.4 to 0.6 for most of

the time and space. Higher values in the tropics and lower values

in the subtropics are well defined; it is evident that the contours

follow the sun's position.

Figure 6.7 shows the time history of zonally averaged CR. 	 It is

clear that CR has a pattern pretty similar to that of the Ts except

in the tropics and subtropics, where the surface temperature is

sufficiently high. Thus the variation of RH modulates CR in the low

latitudes. The difference between the maximum in the tropics and

the minimum in the subtropics is about 10 W/m2.

Figure 6.8 shows the time history of zonally averaged cloud cover.

Although there is similarity between the cloud cover and RH, especi-

ally in the southern hemisphere, the cloud cover pattern is less

smooth and spreads over a larger range, 0.4 to 0.8, over the globe.

The very low value of 0.4 in the Antarctic winter is quite questiona-

ble.

Tab'ie 6.2 tabulates the time history of zonally averaged Ts-Tc.

The corresponding figure is on Appendix A.17.	 The tropical regions

have the highest Ts-Tc difference, due to strong convective activity.

y i
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It is also clear that the convective activity follows the position of

the sun. Although the rate of change of Ts-Tc is small in the mid

latitudes, where most areas are between 10 and 20 OK, the annual

variation is strong in the Northern Hemisphere and practically non-

existant in the Southern Hemisphere. Surface temperature inversions

are constant in Antarctic and polar night time.

Figure 6.9 shows the time history of zonally averaged CD, and NOA

i
is plotted on Figure 6.10 for comparison. The model results CD

1
agree well with satellite observation NOA, both in magnitudes and

the contour pattern. Again, basically the feature of CD can be

decomposed inj two parts: in the high latitudes it is the same as

E	 that of Ts and CR, and in the low latitudes it is mc-lulated by RH

and cloud cover. Comparing CO and CR reveals one interesting feature

_..	
that cloud reduces OLWR very homogeneously, about 10 W/m 2 , for all

the latitudes but the tropics, where the influence of cloud is much

stronger, up to 25 W/m 2 . The asymmetric seasonal variation of the

two hemisphere is not influenced by introducing cloud. Table 6.4

R	 shows the global averaged OLWR reduced by increasing GLCLC from .45

to .60 for July case. As for water vapor, cloud has strongest redu-

cing affect of OLWR in the tropics. Still only the magnitude of

OLWR is reduced, the pattern of the contour from CR to CD is not

significantly changed.

-	 This feature again stress the importance of the water vapor in

i	 modulating OLWR, especially in the tropics. Also this suggests

a new LW parameterization of the type F= a + bTs + c RH as relative

humidity is highly correlated with cloudiness. A parameterization of
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CD w/M2 Percentage
GLCLC Difference Difference

Latitude 0.45 0.60 w1m2 %

85 225.53 223.26 -2.2 -1.0
75 229.94 227.59 -2.4 -1.0
65 238.56 234.46 -4.1 -1.7
55 246.27 242.44 -3 -1.2
45 260.03 256.92 -2.5 -1.0
35 272.32 267.15 -2.7 -1.0
25 273.43 269.73 -3 -1.1
15 263.27 259.91 -4.3 -1.6

5 251.96 245.08 -7.1 -2.8
- 5 268.06 264.93 -2.8 -1.0
-15 270.09 •267.75 -2.6 -1.0
-25 259.37 256.14 -3.0 -1.2
-35 245.12 240.95 -4 -1.6
-45 228.95 224.25 -4.2 -1.8
-55 214.18 209.93 -4 -1.9
-65 193.72 192.20 -1.7 -0.9
-75 153.14 154.63 +1.5 +1.0
-85 131.54 133.49 +2.1 +1.6

Table 6.3	 Zonally averaged July CD with GLCLC equal .45 and .60.
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this type may improve the performance of a North-type climate model

in the tropical region.

6.3 Global Distribution of OLWR

CD for January and July are shown in Figures 6.11 and 6.12.

Also, for comparison NOA results for January and July are shown in

Figures 6,13 and 6.14 respectively. The direction of the discussion

on the OLWR features will start from the north polar region at the

zero degree longitude and going west for each latitudinal zone.

There is good agreement between CD and NOA. The major synoptic

scale OLWR are well simulated except for a few features, namely in

January the low OLWR center located off the western shore of Mexico

is located too far north. The main reason for this error is from the

Sherr et al. cloud classification. The cloudiness given by Sherr et

al. for this region is .28, which is substantially lower than expec-

ted. In general, this region has stratus cloud resulting from the

cold north Pacific current. T s -T c ranges from 44 0K to 690K. These

values are larger than in adjacent areas, which are around 15 0K. A

similar problem occurs at the west coast of South America, where the

off shore low OLWR center belongs to cloud region 3, see Figure 5.1.

The cloud cover of this region is .80 which is much higher than

others in its neighborhood of .45 to .60. Examining the RH field,
4

Y`	 figure 4.9, one would find that it is a low RH region, which is not

in phase with the cloud cover. Apparently, there is an error due

to cloudiness. One possibility is that the diurnal cycle of cloud

cover in this region with maximum stratus in the morning is not well
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simulated in the Sherr et al. model. 	 We will have some words on the

diurnal	 cycle at the end of this Chapter.	 Another problem occurs at

the central	 Pacific	 low OLWR center, which extends too far east 	 for

both months. Other than these regions, most of the features are well

t
simulated both in magnitude and in location. Since it 	 is beyond the

scope of	 this	 study	 to	 rework	 the	 cloud	 region	 classification,	 we

will	 keep	 it	 as	 is,	 and discuss	 the the	 radiative transfer process

of the majority of the region,; which are well	 simulated.

Mid and High Latitude of the Northern Hemisphere

In January the major low OLWF	 centers	 at the high latitudes 	 of

1 the Northern Hemisphere are at 	 Greenland and Siberia, with	 low OLWR

at about	 150 W/m2 , which are due to large surface snow-ice cover at

this season.	 With these centers a wave pattern is formed along these

latitudes.	 A strong	 ridge is located at Davis 	 Strait and	 Baffin	 Bay

region east	 of	 northern	 Canada.	 This is from the effect	 of warmer

sea surface	 temperature	 relative	 to	 the	 adjacent	 continent,	 see

Figure 4.12.	 The temperature diffference between the 	 ocean and the

continent is	 about	 10 0K.	 The	 similar	 feature	 with	 much	 larger

{
scale occurs along the coast of both North America and Eurasia con-

tinents.	 Europe	 has	 a	 very	 mild	 meridional	 gradient	 due	 to	 the

North Atlantic	 current	 extending beyond	 Scandinavia	 to	 the	 Barents

Sea.	 Although	 located	 at	 750N,	 OLWR	 at	 this	 region	 is	 as	 strong

as that	 of	 55 0N	 part	 of	 Siberia.	 In	 the	 Northern	 Pacific,	 the

i

Kuroshio current	 also	 enhances	 the	 ridge	 at	 Alaska	 and	 Eastern

Siberia.	 Comparison	 of CD with CR,	 Figure 4.13,	 shows	 that	 cloud's



' 134

influence on	 these	 high	 latitudes	 is	 less	 than	 10	 W/m2	and	 very

homogeneous.	 Essentially, the	 contour pattern does not	 change when

clouds are introduced; they 	 only	 reduce the magnitude by approxima -

tely 10	 W/m2 .	 Since	 the temperature	 is	 fairly	 low at	 this	 region,

OLWR is	 insensitive	 to	 the	 moisture.	 Also,	 Ts-Tc	 is	 not	 large,

being less	 than	 5 0K	 in	 most	 regions,	 and	 the	 OLWR	 i	 mainly	 from

the surface.	 In	 July,	 this	 wave pattern due to	 continentality	 and

ocean current	 is	 completely	 reversed	 except	 for	 the	 small	 section

from Greenland	 to	 Scandinavia.	 Greenland	 is	 still	 a trough due to

- its icy surface and the Scandinavia area is very zonal	 and the inten-

sity is	 increased	 to	 about	 230	 W/m2 .	 Again,	 in	 July,	 higher	 than

40ON the	 influence	 of	 cloud	 is	 fairly	 homogeneous	 and	 is	 about

' 10 W/m2 ,	 except at eastern Siberia and Manchuria regions where Ts-Tc

is about	 30 0 K,	 much	 larger than	 in adjacent	 areas	 where	 it	 is	 less

T than 100 K.	 This	 area	 belongs	 to	 cloud	 region	 10	 which	 has	 very

high seasonal	 cloud	 amount	 change.	 Figure 4.14	 shows	 in	 July,	 the

cloud cover is about .70, while at January is about 	 .30.

Subtropics	 the Both Hemispheresof

In January, the strong OLWR 	 ;i, the subtropical	 high pressure	 re-

gions, which	 coincide the descendin g	leg of the Hadley Cell, 	 can be

found along the	 latitude	 circle	 of	 15 0N.	 The	 strength	 of this	 high

is more than 270 W/m2 .	 This feature is interrupted in the Phillipines

region, by the tropical	 ITCZ	 in	 the central	 Pacific.	 The	 OLWR	 here

is less than 240 W/m 2 .	 In the Southern Hemisphere, there is a counter-

part of this high located along 30 0S, with fairly equivalent strength.
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This feacure is highly modified by the ocean current and topography.

On the coasts of South America, the stratus is formed by the cold

ocean current at both sides of South Africa. This contributes to

the low OLWR. The high at the west side of South Africa is due to

the Kalahari Desert. This high can not be seen in CR, but in CD, it

merely decreases by 5 W/m 2 from CR, much smaller than the decreases

from CR to CD in the adjoining areas, where there is more than 30 W/m2

decrease from cold cloud top temperature and higher cloudiness. Over

the desert, Ts -Tc is about 10 0K and Ac is about .47, while in

the southern part of the Congo Basin, Ts -Tc and A c are more than 300K

and .60 respectively. As the months change to July, these two sub-

tropical high belts move northward with the sun. The northern compo-

nent now covers a much larger area from 20 0 to about 40 0N, depending

on the longitude. Over the oceans, it is located about 10 0 further

south than over the continent. At North Africa, the Sahara Desert

at low latitudes also enhance its strength to 310 W/m2 , which is the

highest of the world. The southern component is located about 150S.

However, its continuity is interrupted by some of the expansion of

the tropical low OLWR center, such as the Andes of South America,

eastern Indonesia and the southern part of the Congo. The strength

is about 270 W/m2 , comparable to its northerr. counterpart.

Tropics

At the tropics, the pattern is the least zonal. First, in January

there are three major low OLWR regions: the Amazon, Indonesia and the

Congo. Second, Madagascar is a weak low OLWR region. Westward from
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Central Africa the Amazon has very low OLWR, about ZO W/m 2 . At the

southeast Pacific Ocean, it increases to more than 270 W/m 2 then at

Indonesia, it decreases to about 240w/m 2 .	 Westward at the Indian

Ocean monsoonal circulation OLWR increases to more than 275 'W/m2 in

the clear season. At the African Congo, OLWR decreases to 240 W/m2,

and at the Southern Atlantic Ocean, it increases to more than 260 W/m2

again. Here, basically the strength is equivalent to the subtropical

high OLWR region, which is also true on the southeast Pacific. In

the Indian Ocean, south of the monsoonal circulation, the OLWR is

only up to 260 W/m 2 , slightly less than that of the other two large

oceans. As we have discussed in the sections on the humidity field

T	 and cloud cover field, the longitudinal variation is strongest in

i
the tropical zone. This argument can also be applied to the July

case, where this region is located north to that described above,

with some feature changes. It is very clear that in July this low

belt moves northward following the sun. The India monsoonal region

is relatively cloudless, and Madagascar becomes a high OLWR center.

The three lows -long the tropics move northward. It is not uncommon

that T s-T c is higher than 55 0K in the tropics. For cloud region 3,

the tropical convective cloud amount for both Jivary and July are

higher than 60% and has little seasonal variation. 	 The influence

of ocean current along the continent in the Southern Hemisphere is

still detectable.	 Southeast China is under southeast flow from the

Pacific high, which brings in oceen moisture.	 This moist air is

lifted by the low plateau to create the rain season, and thus a low

t
OLWR center. As in the zonally averaged case, the minimum of OLWR

I
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I
in ITCZ region stays north of the equator 	 .., vpt January and February

t
v	 .

when the cloudiness of the three major lu g -, !hilt to the South.	 Over

the open	 ocean	 the	 cloudiness	 associated	 with	 the	 1TCZ	 generally

remains north of the equator.

At the Amazon, OLWR decreases from about 267w/m 2 for CR to less

than 210 W/m2 for CO.	 At this	 region, there is very strong diurnal

I variation with	 extreme convectivity. 	 Ts-Tc at this region can reach

more than 750K, with T c less than -350C.	 At the peak of this diurnal

cycle, the Ts -T c can be even larger, T c colder and OLWR below 180 W/m2.

A similar argument 	 can be applied to the Congo, 	 although it is less

extreme, 265 W/m2 for CR to 231 W/m2 for CO.	 Also the case for Indo-

nesia is less extreme 273 W/m 2 for CR to 239 W/m2 .	 Another feature

is that the Amazon has more seasonal variation than the other two low

OLWR centers.	 It is believed that over Indonesia, the cloud formation

due to ITCZ has less diurnal cycles, which is not very clear in Sherr's

cloud model.	 The ascending	 leg	 of the east-west	 Walker circulation

coinciding with this	 convective	 region	 causes	 each cloud cluster to

last for a few days.	 This	 can explain the	 reason why there is less

j seasonal variation at this	 region.	 One very interesting feature is

that in July, the southern hemispheric winter, there is less 	 convec-

tivity over the Amazon and the Congo,	 thus OLWR	 is higher than that

I
of January	 by about	 10	 W/m2 ;	 over the	 Conga the difference is even

larger.	 Over the strong OLWR	 region at the tropics,	 seasonal	 varia-

tion is not as prominent as the low OLWR regions; both southeast

i
Pacific and central Pacific highs stay fairly constant.

f

16	 '1
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Mid and High Latitudes of the Southern Hemisphere

South of the southern component of subtropical high OLWR band,

from 40 0 to 700S, the feature is very zonal due the fact that only

ocean is present here. The average gradient of OLWR with the latitude

is about 1.5 and 1.7 W/m2 per degree latitude for January and July

respectively, which is more moderate than that of the Northern Hemis-

phere with 1.8 and 1.1 W/m2 per degree latitude for January and

July respectively. At Antarctic, the OLWR contour is deformed by

the orography.

Longitudinal Deviation

To demonstrate the longitudinal variability, we reconstruct an

annual longitudinal OLWR deviation contour by calculating:

fdv( j , k ) =_F an( j ,k)- Fdz( k )	 6.1

where F iv is the annual zonal OLWR deviation for the grid point of

latitude k, longitude j, '	 is the annual average OLWR, and _F a 

is the annual zonally averaged OLWR for the latitude k. This is

shown on Figure 6.15. 	 One would easily identify that the highest

deviation are between 5 0N and 2005, with three dipoles of about + 25

W/m2 . Other regions that have strong deviation are Tibet, Mideast,

and Greenland.

6.4 Error Statistics

The percentage difference between, NOA and CD is discretized by

rounding off to the nearest integer for every grid box. 	 Figures

i ^11
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6.16 and 6.17 are scatter plot histograms of the discretized percen-

tage difference versus numbers of grid boxes for January and July

respectively. For both cases, the distributions are quite normal

with standard deviations of 4.6 for January nd 4.1% for Ju ly. NoteY	 Y

that the total number of grid boxes is 648. These histograms mani-

fest the reasonably good performance of this model. Table 6.4

tabulates the global standard deviation for each cloud type region

for each month of the model year. Although there is some difference

between the highest standard deviation, i.e. 4.6% for January and

f.	 February, and the lowest, 3.4% for September, October and November,

there is no apparent seasonal dependence.

To study in detail how the difference is distributed in longitude

and 13titude, Tables 6.5 and 6.6 tabulate January and July percentage

difference on grid box coordinates accompanied by the Sherr et al.

(1968) cloud region classification for easy identification. One can

find with ease that for most cloud regions there are both positive

and negative differences in each cloud block. Although these differ-

ences can be from the deviation of any radiative parameter, the

larger. error is possibly from the variability of cloudiness. As

discussed in Chapter 2, our grid box has a size of 10ox10o . Prac-

tically, homogeneous cloud can not extend more than a few grid boxes

of such a size. With mixed clouds in a cloud block, using a single

cloud top level to specify cloud top temperature is bound to introduce

error. What is striking is that for most regions, the er ror is

within 5%. As one would guess, the highest error occurs at the

tropics with its strong convectivity, where the errors are higher
.

M

4
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than 10%. The strong convectivity in the region generally generates

non-stratus type cloud, which usually is less homogeneous.	 One

example is the cloud region 3 located in the central Pacific and the

northern part of South America. For the former region, the difference

ranges from +13% to -14%; for the latter region, the difference

ranges from +20% to -5%. No other regions have such a diverse dif-

ference within a cloud block. It is recommended that this region be

further studied and possibly subdivided and reclassified. One other

interesting feature is that at the polar regions, cloud region 15

for the northern one and 24 for the southern one, each one has

higher error at polar night. This coincides with the error of cloud

fraction shown in Figures 5.2 and 5.3. Obviously, the cloud observa-

tion in the polar night time needs to be improved.

To demonstrate the error according to each cloud type, monthly

latitudinal weighted RMS errors for each cloud region are calcu-

lated and tabulated on tab l e 6.4. This table 6.4 provides a good

source for tracing the model performance based on each cloud type,

and as well indicates the area for future improvement. It is intrigu-

ing to see that more than half of the cloud types have consistant

and small, below 5%, errors, while some do not, such as cloud regions

3, 12, 16, 17, 19 and 25. Except for two of the four grid boxs of

cloud type 19 that are located at 35 0N, all the rest are located in

the tropics and subtropics region between 25 ON and 250S.	 This

again stresses the difficulty of modeling the cloud in the tropics

region. Another note is that when compared table 6.4 with the cloud
w

top level, table 5.7, there exists no correlation. 	 It is recalled
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from Chapter 5 that cloud regions 3 and 12 have very steady cloud

top level throughout the year, while cloud regions 17, 19 and 25

have strong cloud top level variation.

Diurnal Cycle

Another area which should be discussed is the bias of satellite

measurement due to OLWR diurnal cycle. Polar orbiting satellites
i
r

are often used to measure the earth radiation budget. Since the

E satellite passing time is fixed at a certain local time, the diurnal

cycle must be understood in order to estimate the total budget.

Unfortunately, the OLWR diurnal cycle cha p ^s from region to region.y	 5	 9	 9

S	 Over deserts where there is little cloud, the OLWR essentially follows

l	 the surface temperature and peaks at mid-afternoon. Over rain forests

where strong convectivities occur in the afternoon, the cold cloud top

temperature of cumulus minimizes OLWR. Over the west coast of America,

i

where stratus cloud forms in the early morning and dissipates later,

OLWR has its minimum in the morning. Other types of topography have

different characteristics. Figure 6.18 from Saunders and Hunt (1980)

reveals some of the different types of OLWR diurnal cycles. Minnis

and Harrison (1984), Kandel (1983) and Brook and Minnis (1984) have

pioneered some of the work in this areas. Still many areas have not

been investigated. It is important to explore this phenomenon further

in order to justify the estimation of total radiation budget from polar

i
orbiting satellites.
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Figure 6.18 The diurfial variation of OLWR for different types of
surface after Saunder and Hunt (1980). x, over land;
•, over sea; +, over low Cu cloud; e, over high Cu-
Nb cloud.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

A simple and economical earth outgoing longwave radiation climate

model has been composed for radiation budget study. The model con-

sists of the the upward radiative transfer parameterization of Thomp-

son and Warren (1982), the cloud cover model of Sherr et al. (1968)

and a monthly average climatology defined by the data from Crutcher

and Meserve (1971) and Taljaard et al. (1969). Additional required

information is provided by the empirical 100mb water vapor mixing

ratio equation of Harries (1976) and mixing ratio interpolation scheme

of Briegleb and Ramanathan (1982). Reference data from the NOAA scan-

ning radiometer are used to compile a climatology for the cloud top

temperature. Both clear sky and cloudy sky cases are calculated

and discussed for global average, zonal average and global distributed

cases.

The clear sky case shows that the OLWR field is highly modulated

by water vapor, especially in the tropics. The strongest longitudinal

variation occurs in the tropics. This variation can be mostly ex-

plained by the strong water vapor gradient. Although in the zonal

average case the tropics has a minimum in OLWR, the minimum is essen-

tially contributed by a few very low flux regions, such as the Amazon,

149
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Indonesia and the Congo. There are regions in the tropics such that

j.	 their OLWR is as intense as that of the subtropics.	 In the high

latitudes, where cold air contains less water vapor, OLWR is basically

modulated by the surface temperature. Thus, the topographical heat

capacity becomes a dominant factor in determing the distribution.

Clouds enhance water vapor modulation o? OLWR. Tropical clouds

have the coldest cloud top temperature. This again increases the

longitudinal variation in the region. However, in the polar region,

where a temperature inversion is p rominent, the cloud top temperature

is warmer than the surface. Hence, cloud has the effect of increasing

OLWR. The implication of this cloud mechanism is that the latitudinal

gradient of net radiation is thus further increased, and the forcing

i
of the general atmospheric circulation is substantially different

due to the increased additional available energy.

In the clear sky case, regional results of North and South America

t
are compared with GOES data analyzed by Minnis and Harrison (1984)

with reasonable agreement. The cloudy sky cases also agree well with

the NOAA satellite observation. T^ese cases minutely overestimate the

global average and have less error in the mid-high latitudes, and

higher errors in the tropics and the winter polar region in both of

the zonally averaged and global distributed cases, with standarc

deviation equal to 4.6% and 4.1% for January and July respectively.

In simulating the case with clouds, the global cloud adjusting

factor GLCLC defined by Bartman (1980) can be used for minor tuning.

However, the OLWR fieid can be more effectively adjusted by changing

cloud top temperature. The current compiled cloud top temperature

't
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climatology is probably overestimated due to the inversion scheme
i

used for the NOAA scanning radiometer data. Using other satellite

data as the reference would change the result.

The climatological cloud region classification by Sherr et al.

t
(1968) is relevent for simulating the cloud distrbution in most areas

except the tropical regions where the cloud region classification

should be further investigated when new cloud data become available.

Since many semi-annual air mass systems not only change the intensity,

but also the area of coverage, seasonality of cloud region possibly

needs to be included. Why the cloud cover climatology of London

(1957) and von Loon (1972) significantly differ from that of the

Sherr et al. (1968) in the polar night region should be addressed

as well.

This study also presents a global RH climatology. Since the

cloud cover is highly corr3lated with the water vapor distribution,

and the water vapor can be more objectively measured, regardless of

the fact that there still lack good measurement between 400 and

100mb, some effort should be spent on establishing the empirical

relationship between the two. Thus, the more simple Budyko-Seller

type longwave parameterization can be upgraded to the form F=a+bT+cRH

so as to improve OLWR computation in the tropical region.

This model can be implemented to study the time-space variation of

the OLWR field, as well as the sensitivity of the OLWR field to the

different input parameters. One example of such a case is to overlay

the current data base with the statistics of the atmospheric variabi-

lity (Oort, 1983, the data tape would be available soon) as the input
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data. Variability of the OLWR can thus be analyzed.	 Another

application is to study the sensitivity of the earth net radiation

budget to cloudiness. Since both the Time-Variable Albedo Model of

Bartman (1980) and this longwave model use the cloud model of Sherr,

f	 et al. (1968), this can be achieved first by using the albedo

model to compute a solar absorbed radiation. The variation of the

i	 cloud cover to achieve global annual energy balance can then be
I

applied to the composite of the two models. Because the absorptivity

L.. of cloud decreases as the solar zenith angle increases, one would

again expect that the latitudinal net energy gradient increases due

to the effect of cloud.
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1

A.18 Comparison of the coefficent values from different
OLWR parameterizations after Gupta et al. (1978);

see Equation 2.2 for Cl and C2, Zc i's assumed
black cloud height.

r

	

, S	 Reference	 Cal cmCi min- 1	Cal cm' 2 min-1
G

	

	
Budyko (1969)	 0.367	 0.103
(empirical)

Cess (1974)	 0.368	 0.102

	

{	

(Zc= 6.8 km)

	

a,	 Schneider (1972)	 0.399	 0.107
(Zc= 5.5 km)

Gupta et al. (1978)	 0.367	 0.099
(Zc= 6 km)

* 100 W/m2 = 0.144 Cal cm- 2 min-1
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