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Abstract

This report provides a detailed description of the erythropoiesis
modeling performed in support of the Body Fluid and Blood Volume
Regulation Tasks under contract NAS9-17151. This report includes
a description of the mathematical formulation of the species
independent model, the solutions to the steady-state and dynamic
versions of the model, as well as the indivicual species-specific
models for the human, squirrel monkey, rat, and mouse. The
aralysis portion of this report is composed of two parts. The
first part is a detailed sensitivity analysis of the species-
independent model response to parameter changes and how those
responses change from species-to-species. The second part of the
study is an analysis of the species-to-species response to a
series of simulated stresses directly related to blood volume
regulation during space flight.
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1.0 INTRODUCTION

New experimental studies of body fluid and blood volume regulation (including
studies of erythropoiesis regulation) during space flight and in terrestrial
surroundings are being considered which utilize, not only human subjects, but
animals such as the laboratory mouse, rat, and monkey. Mathematical models
representing the human and murine erythropoietic systems have been previously
developed (1,2), and have been useful in elucidating the mechanisms involved
in the control of erythropoiesis and, therefore, blood volume regulation,
under a variety of stress situations, including space flight. In order to
better understand previous space-flight results, and to help analyze the data
from these new multi-species experiments, and to help relate experimental
results among species, a Jniform, species-independent, modeling approach to
the erythropoiesis system has been developed. This approach allows the
problem of species variation to be addressed by design. This report is a
summary of the results from a series of simulation studies using the species
independent model to compare the erythropoietic control systems in the human,
squirrel monkey, rat, and mouse. The report includes a description of the
mathematical formulation of the species-independent model, the steady-state
and dynamic solutions of the model, and the validation simulations for all
four species models. The report also includes a detailed analysis of
erythropoiesis control and its relation to blood volume regulation. The first
part of the analysis consists of a discussion of the steady-state and dynamic
sensitivity analysis which was performed to study how the basic model of
erythropoiesis responds to changes in parameters and how these responses
differ between the four species. The second part of the analysis is a
discussion of the species-to-species response to a series of simulated
stresses that are directly related to blood volume regulation during

space flight.



2.0 SPECIES-INDEPENDENT MODEL OF ERYTHROPOIESIS

This section of the report is a summary of the physiological concepts used in
the development of the original model of erythropoiesis, the development of
the species-independent model of erythropoiesis model, the steady-state model
solution, the dynamic model solution, and the validations of the
species~-specific model.

The problem of developing species specific models was approached in the
following manner. The equations from the original model of erythropoiesis (1)
were rederived to produce a minimal set of equation and parameters (3,4). In
its mathematically reduced form, the model consists of three non-linear
differential equations and contains twelve parameters. The differential
equations have been scaled using the normal values of the three dependent
variables (red cell mass, plasma concentration of erythropoietin, and red
blood cell production rate). The twelve independent parameters are determined
from the original model and are each a composite of several physiological
parameters. The physiological parameter values themselves are dependent upon
the species of interest. Reducing the number of parameters and equations in
this manner simplifies the analysis of the functioning of the model, since the
model can be studied in this more generalized form. This new formulation of
the model is ideal for studying interspecies variations, for once it is
understood how the model functions in general, the aspect of species variation
can be studied simply by changing the physiological parameter values, while
the overall model structure remains the same.

2.1 PHYSIOLOGICAL BASIS OF THE GENERAL MODEL OF ERYTHROPOIESIS

The original erythropoiesis model (1) was developed to study the relative
influence of the controlling factors of erythropoiesis on total red cell mass.
Those elements of importance to the feedback regulation of erythropoiesis that
have been incorporated into the model are shown in Figure 1. This formulation
was based on the concept that the overall balance between oxygen supply and
demand regulates the release of the hormone erythropoietin from renal tissues
sensitive to oxygen tension levels and which, in turn, controls bone marrow
red cell production.
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Renal oxygen tissue tension is influenced by several factors: hemoglobin
concentration, lung oxygenation of hemoglobin, renal bloos flow, and
oxygen-hemoglobin affinity. A fraction of the oxygen reaching the kidney is
extracted by tho tissues depending on the oxygen demand parameter. Oxygen
enters the renal tissue by diffusion along an oxygen gradient between the
venous capillaries and the tissue cells. A decrease in the oxygen supply in
relation to the oxygen demand will reduce the tissue oxygen tension and result
in an increased rate of erythropoietin release. Erythropoietin is released
into general circulation with the plasma concentration being determined by the
rate of release, volume of distribution, and the rate at which it is
metabolized. The target of erythropoietin is the hemopoietic tissue. The
production rate and release of red cells are determined by the plasma
concentration of erythropoietin. There is a time delay between marrow
stimulation and red cell release. The rate of red blood cell destruction is
based on the life span of the cell and is assumed to be a fixed percentage of
the red cell mass.

The physiological derivations of the original model equations, upon which the
following work is based, can be found in reference (1).

2.1.1 Description of Species-Independent Model

The structure of the model is relatively simple, but non-linear. The original
model can be reduced to the following three non-linear differential equations
containing twelve "mathematical" parameters (that is, parameters which have no
direct physiological meaning, but are composed of several physiological
parameters).

"
—

x =K (2 - x) , x(o0) (1)

n
—

=Ky (Folx) = y) » y(o) (2)

<e
i



and

2= Ky (Faly) -2) . ylo) =1 (3)

In these equations, the x represents the time derivative dx/dt. The
non-linear fun:tions Fz(x) and F3(y) are defined as follows:

Fp(x) = Aexp)-a[—g-)’:;—} ! (4)
and
f
and Gz
F3(y) =1y )y<1 (-)
4/G2
J1*621ogy y1Sy<ge

-4/G 4/G
2y e %< y

6 - exp sz(l-y e
-

Variables and parameters for this model are defined below and in Table 1. The
dependent variables x, y, and z represent normalized values of red cell
mass, erythropoietin level in the blood, and red cell production rate. The
mathematical parameters utilized in equations 1-5 are defined as follows in

terms of the physiological parameters.

K, = log 2/ TRC, i (6) |
i |
kg = lmedih - (7) :
‘1i
) 3
K, = 1/ TeN ’ - |
-
!
'n ) (9)
A = ex G (1 + o ’
P g 1 Ky * PO, } :
%




Symbol
CHbU

MCHC
50
P.O
PO

to
PV

RCM
RCM
0
RCP
RCP
0
S 0
a
TBM

Table 1. Definition of Primary Model Parameters

Definition

Carrying capacity of hemoglobin

Erythropoietin plasma concentration

Normal Erythropoietin plasma concentration

Gain of renal erythropoietin production control function
Gain of marrow RCP control function

Exponent in the Hill equation describing oxygen-hemoglobin
equilibrium

Capillary diffusivity

Mean corpuscular hemoglobin concentration

Oxygen tension of blood at 50 percent hemoglobin saturation
Oxygen tension in arterial blood

Normal value of oxygen tension in renal tissue fluid
Plasma volume

Renal blood flow

Red Cell Mass

Normal value of Red Cell Mass

Production rate of new red blood cells

Normal value of RCP

Saturation of arterial hemoglobin with oxygen

Bone marrow transit time

Plasma half-life of erythropoietin

Red cell half-life

Oxygen uptake of kidneys

Normalized red cell mass

Normalized erythropoietin concentration

Normalized red cell production

6




1
B = ’ (10)
Ptoo
Q «MCHC « CHDO - S O - V
t = —a T , (11)
V. v
m’ RCMo
«MCHC « CHBO « (1 - S.0) + V
. Q - MCHC + C ( gl (12)
PV
V_ o —gmr—
m RCMo
1
SO0= (13)
a p K
50
1 + TO0 ’
and ( a )
n=1/k (14)

Note that the red cell mass (RCM), erythropoietin level (E), and red cell
production rate (RCP) are related to x, y, and z as follows:

RCM = RCM_« x (15)

E =E ¢ (16)
and

RCP = RCP e z = K, RCM o 2 (17)

The values of the physiological parameters can be found in Table 2. The
values of the mathematical parameters, as calculated using the physiological
parameter values from Table are presented in Table 3. The rationale used for
selecting these values, as well as the source of the values has been
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documented and can be found in TIR 2114-MED-2010 "System Parameters For the
Species-Independent Model of Erythropoiesis Control: A Species Comparison of
Normal Values in the Human, Squirrel Monkey, Rat, and Mouse Models."

Equations (1-3) can be solved numerically to generate either dynamic
(time-dependent) solutions or steady-state (time-independent) solutions.

2.1.2 Steady-State Solution

The usual steady-state condition (x = § =7 = 0) leads to the non-liner
equations

X =z ’ (18)

y = Fy(x) , (19)
and

z = Fi(y) (20)

where Fz(x) and F3(y) are defined by equations (4) and (5). Thus, at the
steady-state

x = Fy(F(x) (21)

y = Fplx) : (22)
and

z = X (23)

10



Equation (21) can be solved by searching for the roots of the function

f(x) = x - F3(F2(x)). (24)

Then, the desired value of x is the value for which f(x) = 0. This
equation was solved numerically using a Newton-Raphson method. Once
x 1s known, the steady-state values of y and z are obtained from
equations (22) and (23).

2.1.3 Dynamic Solution

While the steady-state solution is easy to determine and is of interest to
certain stress applications, often one wants or needs to know how the solution
to these model equations change as a function of time. Equations (1-3) can be
solved numerically to yield dynamic (i.e., time-dependent) solutions. The use
of ordinary numerical integration techniques to solve these equations requires
that a very small integration time step be used (less than one minute) in
order to obtain accurate solutions. This is due to the fact that these
equations represent a system of “stiff" differential equations. That is, the
time constants associated with each equation (Kl’ K2, and K3) differ from each
other by orders of magnitude (see Table 3), a common occurrence in the
modeling of many biological systems. Therefore, the hybrid Euler integration
technique, which was developed for use in the original model of erythropoiesis
(6,7), was used to solve for the time-dependent solution of the reformulated
version of the erythropoiesis model. The hybrid Euler technique allows the
integration step size to be increased from less than one minute to over 60
minutes without forfeiting solution accuracy. This increase in step size
allows for the rapid numerical solution of the time-dependent equations for

X, Y, and Z. The solutions to these equations can be converted to absolute
values or used to calculate other hemopoietic indices and values that are
based on these three variables (see references 1 and 4).

11
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2.2 SPECIES-SPECIFIC MODELS

The formulation of the model, as described above, is not dependent on any
species. The species influence only enters into the model through the
mathematical parameters, which, in turn, are a function of certain
physiological parameters. It is through these physiological parameters that
species-specific aspects enter into the model. Therefore, to develop a
species-specific model of erythropoiesis from the species independent model,
the only step necessary is to collect the species specific parameter values
that are necessary to calculate the mathematical parameters. Therefore, each
species uses the same model formulation, but has a separate set of
species-specific parameter values. The parameter values necessary for the
human and mouse model were available from the two original models (1,2).
However, in order to implement the rat and monkey models of erythropoiesis, an
extensive literature search was performed to collect the necessary
physiological data. Data were collected for the Sprague-Dawley rat and the
squirrel monkey (Macaca Samiri) since these are the two species that are

scheduled to be used as specimens onboard the Spacelab-4 dedicated Life
Sciences Shuttle mission (including two hematology experiments). A
description of the model reformulation, as well as the equations and
parameters used in the model can be found in the TIR entitled “Analysis of a
Twelve Parameter Nonlinear Model of Erythropoiesis" (3). The actual parameter
values used for each model, along with the rationale for the selection of
those values, has been documented and can be found in the TIR "System
Parameters for the Species-Independent Model of Erythropoiesis Control: A
Species Comparison of Normal Values in the Human, Squirrel Monkey, Rat, and
Mouse Models" (4).

2.2.1 Validation Simulations

In order to verify that the reformulation of the human and mouse models
produced results identical to the original models and to validate the squirrel
monkey and rat models of erythropoiesis, all four models were
validated/revalidated against experimental data that were not us=d to develop
the models (i.e., not used to establish the species-specific data sets for
each animal). Simulations of hypoxia, based upon actual experiments, were

12




performed using each of the four species models of erythropoiesis. The
results of the simulations were compared with the experimental findings in
order to verify the fact that the models compare both quantitatively, with
respect to red cell mass, and qualitatively, with respect to red cell
production and erythropoietin concentrations, associated with other typical
hypoxia experiments. This combination of quantitative vs. qualitative
comparison of results was necessary since there are few, if any, experiments
which have studied all three of the model variables over periods of both
hypoxic stress and recovery from hypoxic stress.

2.2.1.1 Human Model Revalidation. The human model was revalidated using the
experimental data set used to validate the original eryti ropoiesis model (1).
Buderer and Pace (8) studied the dynamic changes in red cell mass, hematocrit,
and plasma volume in sea-level pig-tailed monkeys during and after a 6-month
exposure to 3800 m altitude. Since comparable data for humans were not
available, the experimental data were scaled to represent changes from normal.
The original human model of erythropoiesis was validated using the same set of
experimental data (3); therefore, a simulation of this experiment was
performed in order to provide a verification of the model reformulation (see
figure 2). This simulation was performed by changing arterial oxygen tension
(PaO) in a step fashion from 95 (normal PaO at sea level) to 50 mmHg (PaO at
an altitude of 3800 m). This value of PaO was selected from human altitude
experimentation (9,10,11). The normalized red cell mass response of the model
was adjusted by changing the bone marrow controller gain until agreement the
simulation response was in agreement with the experimental red cell mass data.
The model is also capable of predicting other variables that were not measured
such as normalized plasma erythropoietin concentration and normalized red cell
destruction rate as well as other hematological parameters that can be derived
from these three variables.

The simulation shown in Figure 2 shows the squence of events that are assumed
to generally characterize the hematological response to hypoxic stress,
including reduced tissue oxygen tension (not shown), elevated erythropoietin
concentration, and increased red cell production levels, all of which promote

13
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an increase in the circulating red blood cell mass (1). The opposite response
for the descent phase is also shown. The difference between production and
destruction rates in the simulation provide a visual indication of the
magnitude of the stress that drives the system from the normal steady-state.
The slow approach to equilibrium at altitude that is seen experimentally is
evident in the simulation from the asymptotic nature of the model response to
the hypoxic stress. Upon return to sea level, the increased hematocrit serves
as a prolonged stimulus for tissue hyperoxia to the extent that red cell
production is predicted to be totally inhibited for several weeks.

In order to obtain the agreement between normalized red cell mass and the
normalized experimental red cell mass shown in Figure 2, two different values
for the overall controller gain, G, (i.e., the product of Gl’ gain, renal
erythropoietin production and 62, gain of marrow RCP) were required. A value
of 2.2 was used during the altitude phase, while a value of 12.0 was required
during the descent phase of the simulation. These values for G concur with
the results obtained by Leonard et al. (1) for the validation of the original
model of erythropoiesis. This difference in effective gains may reflect other
circulatory ventilatory and biochemical adjustments that are known to occur in
response to disturbances in oxygen transport. While some of these other
factors could be simulated using this model, for the purposes of these
simulations only the overall gain, G, was changed. The qualitative and
quantitative response of the reformulated model to the identified hypoxic
stress, along with the use of identical controller values, verifies and
revalidates the model.

2.2.1.2 Squirrel Monkey Model Validation. The squirrel monkey version of the
model was validated in the same fashion as the human model and against the
same data (8). The results of this validation simulation is shown in Figure
3. In the squirrel monkey simulation, PaO was reduced from the normal value
of 85.2 mmHg at sea level to 44.8 mmHg, in order to simulate exposure to an
altitude of 3800 m. Since Pa0 was not measured experimentally in the
pig-tailed monkey, the P.o value of 44.8 mmHg was determined by scaling the
normal squirre! monkey PdO value (5) by the equivalent percent decrease that
is observed to occur in humans for the same altitude. While this is only an
approximation of the true squirrel monkey P,0 at this altitude, it is the most
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reasonable estimate available without direct Pao measurements. As in the
human model validation, the overall controller gain, G, was adjusted until the
simulation response was in agreement with the experimental red cell mass data.
However, unlike the human model, only a single value of G, 2.0, was required
to model both the altitude and recovery phases of the simulation. This value
of G is in agreement with the G value used during the altitude portion of the

human simulation.

2.2.1.3 Rat Model Validation. The rat version of the species-independent
model of erythropoiesis was validated against experimental data from Pepelko
(12). In this experiment, male Charles River strain rats were exposed to a
total barometric pressure of 380 torr (equivalent to an altitude of 5600 m).
Rats were sacrificed after 1, 3, 8, 16, and 24 days of exposure to hypoxia and
the following hematological measurements taken: red cell mass, hematocrit,
and plasma volume. Figure 4 compares the results of the experiment and the
model simulation. This simulation was performed by reducing PaO stepwise from
80.2 to 34 mmHg and by reducing plasma volume from .0056 to .0046 1. Since
PaO was not experimentally determined for these rats, the PaO of 34 mmHg used
in the simulation was obtained by scaling the normal sea-level PaO value of
80.2 mmHg (5) down by the same percentage change that occurs in a human at the
same altitude. Plasma volume was reduced by the same amount observed in the
experimental rats during exposure to hypoxia (12). The normalized red cell
mass response of the model was adjusted by changing the overall control gain,
G, until the simulation results were in agreement with the experimental data.
Even though the rat strain used in the simulation model was different from
that used in the experimental study, good simulation results were obtained.
This could be due to the fact that there is very little hemopoietic difference
between the two rat species, and rats used in the simulation and experiment
were of approximately the same body weight. For this simulation, a value of
2.0 for the overall controller gain, G, was found to yield the best fit to the
experimental red cell mass data.

2.2.1.4 Mouse Model Validation. The mouse version of the species-independent
model was validated against experimental data from Mylrea (13). In this
experiment, female ICR Swiss Webster strain mice were placed in hypoxic
chambers in which they were exposed to an atmosphere of 360 torr to simulate
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an altitude of 6000 m. Mice were sacrificed at periodic inte 1s to show the
time course of change in hematocrit, reticulocytes, hemoglobin concentration,
blood volume, red cell mass, and plasma volume. The simulation of this
experiment was performed by decreasing PaO from 78 to 29 mmHg and by
decreasing plasma volume from .00077 to .00064 1. Since PaO was not
experimentally determined in the mice, the PaO of 29 mmHg which was used in
the simulation, was based on the percent change in human PaO that is known to
occur at the same altitude. The plasma volume decrease was based on the
percent decrease that occurred in the experiment (13). The results of this
simulation are shown in Figure 5, along with the experimental red cell mass
data. The overall controller gain, G, was adjusted until the simulated
normalized red cell mass agreed with the experimental data. The best fit
occurred at a G level of 1.0.

2.2.2 Discussion on Model Validations

A1l four validation studies required overall controller gain factors between
1.0 and 2.2 for the hypoxia portion of the simulations. This indicates that
the species-independent model of erythropoiesis provides a good overall
representation of the physiology for these species. The fact that the human
model required a significantly different value of G, overall controller gain,
for the recovery phase of the simulation may be due to the fact that the
simulation was being compared with primate data. This difference in G values
may have to do with the differences in the location of the normal operating
point on the oxyhemoglobin dissociation curve between man and the squirrel
monkey (see the discussion on steady-state sensitivities, Figure 22). With
the normal operating point for the two species falling in different areas of
the oxyhemoglobin Equilibrium curve, it is expected that the two species would
respond somewhat differently to an hypoxic stress, with the human response
less dramatic than the squirrel monkey. If human data were available to
compare with the simulation results, a different value for G during the
recovery phase may not be necessary. Further experimental work and
corresponding validation studies are required in order to clarify the need for
different G values or additional modeling work.
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As discussed previously, other circulatory, ventilatory, and biochemical
adjustments are known to occur in response to disturbances in oxygen transport
such as exposure to hypoxia, and were not included in these simulations.

These regulatory elements can provide partial compensation of tissue hypoxia
an¢ may contribute to the finding that in humans erythropoietin returns toward
control levels more rapidly than predicted in the simulations shown in Figures
2-5. The erythropoietin response can be more realistically simulated by
assuming that changes occur in PSO’ capillary diffusivity, arterial oxygen
tension due to ventilatory compensation, sensitivity of erythropoietin
secretion to tissue oxygenation, and sensitivity of erythropoietin responsive
cells.
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3.0 SPECIES COMPARISON

The primary objective of this study was to compare the erythropoiesis control
systems of the human, squirrel monkey, rat, and mouse using the
species-specific versions of the erythropoiesis model. This objective was
carried out in two parts: first, a detailed sensitivity analysis of how the
model functions for each of the four species was performed, and second, the
response of the model to a variety of impulse and step stresses relevant to
the space-flight program were studied for each species. The following
discussion presents of the results of the species comparison study.

3.1 SENSITIVITY ANALYSIS

Using the model formulation discussed earlier, a comparative sensitivity
analysis was performed using the species-specific models for the human, mouse,
rat, and monkey. Since, in this formulation, species-specific physiology only
enters the model through the independent parameters, and since cne of the
primary issues related to model operation is the effect of parameter changes
on the dependent variables, a detailed sensitivity analysis was the logical
form for performing both a qualitative and quantitative comparison of the four
species models. This analysis was performed on the steady-state and dynamic
versions of the model for each of the four species.

3.1.1 Steady-State Sensitivity Analysis

The steady-state sensitivity analysis consisted of parameter-variation studies
and the direct analytical determination of steady-state parameter sensivities.

3.1.1.1 Parameter Variation. A parameter-variation study was performed for
each species by plotting the new steady-state solutions of the model equations
obtained when each of the mathematical and physiological parameters were
varied from 50 to 150 percent of their normal values. Figures 6 through 9
present the results obtained for variable X (red cell mass) for each of the
major mathematical parameters (A,B,C, and D) with each figure representing
results for the human, squirrel monkey, rat, and mouse, respectively. Figures
10 through 13 present similar results, but for variable Y (erythropoietin

22
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concentration). Since Z = X in the steady state, the effect of parameter

variation on Z would be the same as shown in Figures 6-9. In each figure, the
curves shown were determined by the actual solution of the model equations.

Figures 14 through 17 and 18 through 21 present the results of the parameter |

variation study, for the physiological parameters, on the model variables X
and Y, respectively. In these cases, the variation of one physiological ;
parameter can affect several of the mathematical parameters, but the numerical

approach is no different regardless of the parameters involved. The

convergence of the iterative method of solution of the steady-state model

equations was always rapid (see section 2.3).

3.1.1.2 Parameter Sensivities. Parameter sensitivities were also calculated
for each of the mathematical and physiological parameters. These
sensitivities are defined generally as

&y . to [av (25)
p Vo 3 PJo

where V is any dependent variable, p is any parameter, and the subscript o
denotes that the right side of equation (25) 1is evaluated at a normal or
reference state. The utility of the above definition arises from the fact
that (under suitable mathematical restrictions), for small parameter changes,
the parameter sensitivities are the constants of proportionality that directly
relate changes in parameter p to changes in Variable V, and that multiple
parameter changes are additive, to a first approximation. In other words,

v

where AV represents the fractional change in V and Api represents the

fractional change in parameter pL .

For the multi-species model in the steady state, it is possible to determine
the sensitivites analytically. The details of this analytical determination
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for both the mathematical and the physiological parameters can be found in
Appendix A. The sensitivities for each species with respect to mathematical
and physiological parameters are given in Tables 4 and 5, respectively. Note
that these sensitivities are (essentially) the slopes of the parameter
variation curves (Figures 6 through 21) about the normal operating point
(Reference State), a fact utilized in less tractable situations to estimate
the sensitivities. The values of the slopes were used to verify thz values of
the sensitivity coefficients determined analytically. The sensitivity
coefficients can be used to rank model parameters, both mathematically and
physiologicaily, according to the relative influence that changes in each
parameter have in determining the new steady-state solutions. Tables 6 and 7
show the relative ranking of the mathematical and physiological parameters
according to how sensitive the model solutions are to changes in parameter
values (a ranking of one indicates the parameter to which the model is most

sensitive).

3.1.1.3 Discussion on Steady-State Sensitivities. The results from
steady-state analysis showed that the model exhibits non-linear parameter
dependence for all four species. However, it also showed that over the range
of red cell mass that contains physiologically meaningful information (that
is, +50 percent of normalized red cell mass), the model responds in an
approximately linear fashion. This is important because the parameter
sensitivities can be used to estimate new values of red cell mass and
erythropoietin concentration, not only for small changes in a single or
combirnations of parameters (that is, changes of less than 5%), but also to
accurately estimate steady-state solutions for moderate changes (5 to 10%) in
the parameter values without the need of an iterative solution scheme as shown
in Equation 26.

The steady-state sensitivity analysis allows the model parameters to he ranked
according to the impact that changes in parameter value have on the
steady-state solutions, and to identify how those solutions vary between
species. If the erythropoietic systems show identical responses to parameter
changes (that is, if the mouse, rat, and squirrel monkey are perfect models of
human erythropoiesis), the mathematical parameters should be identical, even
though the specific physiological parameters would be expected to be

40



SYMBOL
(P)

P ————

Table 4.

HUMAN
SPX SPY
0.5779 .1445
-4,795 -1,1989
-1.736 -0.4340
0.8805 0.2201

> Tt AT ey

Steady-State Sensitivity Coefficients

Mathematical Parameters

SQUIRREL MONKEY

SPX SPY
0.4877 0.2439
-3.524 -1.762
-1.430 -0.7149
0.6737 0.3369

41

RAT
SPX SPY
0.6997  0.3498
-6.843  -3.421
-2.455  -1,227
1.605  0.9023

for Major

MOUSE
SPX SPY

0.6357  0.3179
-5.609  -2.804
2,082 -1.041

1.399  0.6997



Table 5. Steady-State Sensitivity Coefficients For Some
Physiological Parameters

SYMBOL HUMAN MONKE Y RAT MOUSE

(P) SPX SPY SPX  SPY SPX  SPY SPX SPY

KD -3.061  -0.7654 -2.060 -1,030 -4,744  -2,372 -3.701  -1.851

P50 -3.612  -0.9030 -2.375  -1.187 -2.492  -1.246 -2.355  -1.178

PAO -1.183  -0.2958 -1.148  -0.5741 -4.350  -2.175 -3.254  -1.627

PV 0.8555  0.2139 0.7561  0.3781 0.6502  0.3251 0.6821  0.3411
Q -1.426  -0.3565 -1.284  -0.6421 -1.161  -0.5805 -1.2403  -0.6201
WM 4.487  1.128 4,942  2.471 5.905 2.952 4,942 2.471
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SYMBOL

(P)
A

Table 6. Wumerical Ranking of the Steady-State
Sensitivity Coefficients For Some of the Major
Mathematical Parameters

HUMAN SQUIRREL MONKEY RAT
SPX SPY SPX SPY SPX SPY
4 4 4 4 4 4
1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 3 3 3
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MOUSE
SPX SPY
4 4
1 1
2 2
3 3




Table 7. Numerical Ranking of Steady-State Sensitivity Coefficients
For Some Physiological Parameters

SYMBOL HUMAN MONKE Y RAT
(P) SPX SPY SPX SPY SPX SPY
KD 3 3 3 3 2 2
P50 2 2 2 2 4 4
PAO d 5 5 5 3 3
PV 6 6 6 6 6 6
Q 4 4 4 4 5 5
VM 1 1 1 1 1 1

Ll
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"different. In fact, the mathematical parameters calculated for the four
models are different, but within the same order of magnitude (see Table 3).
The qualitative responses of the four models to independent variations in the
mathematical parameter, while slightly different at the extremes of the
parameter variation, are similar about the normal operating point (see Figures
6 through 21). The parameter sensitivities for the four models are slightly
different; the magnitude and overall ranking of the sensitivities of the
mathematical parameters remain the same between the species (see Table 4 and
6). The sensitivity coefficients for the physiological parameters can be
grouped into two groups of two species each, based on the magnitude and
numerical ranking of the sensitivities. The human and squirrel monkey belong
to one of the groups while the rat and mouse belong to the other (see Tables 5
and 7).

The interesting analysis from a physiological point of view is the species-to-
species model response to changes in the physiological parameters. Changes in
renal blood flow (Q), plasma volume (PV), and renal oxygen uptake (Vm) produce
qualitatively the same results in all species. This is confirmed by the
magnitude of the sensitivity coefficients for these parameters. However, the
model response to changes in arterial oxygen tension (PaO) and the partial
pressure at which hemoglobin is 50 percent saturated with oxygen (pSO) varies
significantly between species. In fact, the curves actually change positions
as body mass decreases (that is, from man down to the mouse, see Tables 5 and
7). This reverse in parameter sensitivities can be traced back to the species
difference in the ration of P50 to PaO. The ratio increases as body mass
decreases as can be seen in Table 8. This ratio determines the shape of the
oxygen-hemoglobin dissociation curve and the location of the operating point
on that curve. A change in P50 will change the curve shape, a change in PaO
will change the location of the operating point, and a change in either will
change the value of arterial oxygen saturation (SaO) which is used to
calculate several of the mathematical parameters. Figure 22 shows the
oxygen-hemoglobin equilibrium curve for all four species. Note that arterial
oxygen tension decreases and P50 increases as body mass decreases. Each of
these changes alone cause a small decrease in arterial oxygen saturation;
however, the combined changes result in a significant difference in saturation
between species with the trend being towards a decrease in saturation as body
mass decreases.
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Table 8. Ratio of P50 to Arterial Oxygen Tension (PAO)

For A1l Four Species

Species P50/PAOD
Human .28
Squirrel Monkey .41
Rat .47
Mouse .50
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The steady-state sensitivity analysis yielded the following two main results:
1) all four models qualitatively respond the same way to changes in the
mathematical parameters, and 2) the models respond qualitatively the same way
to changes in all of the major physiological parameters, except for PaO and
P50 due to a species difference associated with oxy-hemoglobin dissociation.

3.1.2 Dynamic Sensitivity Analysis

Dynamic sensitivities were calculated for all parameters, both "mathematical"
and physiological. Dynamic sensitivities describe how the independent
variable values change with respect to changes in parameter values as a
function of simulation time. Appendix B provides a brief description and
derivation of the equations used to calculate the dynamic sensitivities.
Figure 23 shows an example of how the sensitivities for red cell mass (x),
erythropoietin concentration (y), and red blood cell production (z), each with
respect to the mathematical parameter A, change as a function of simulation
time for the human, squirrel monkey, rat, and mouse. The sensitivity curves
for x and y show that the model is more sensitive to changes in parameter A
early in a simulation where the sensitivities peak in value (0 to 25 days),
than later in a simulation where the sensitivities slowly decrease until they
are equal to the steady-state sensitivity value. The sensitivity curves for y
with respect to A peak sooner than the curves for z. The curves for x,
however, show that the sensitivity increases slowly until it approaches the
steady-state sensitivity value. Similar results were found for all
parameters, both mathematical and physiological, for all four species (see
Figures 22 through 28). Figures 23 through 26 show the dynamic sensitivities
of x, y, and z for all four species with respect to the mathematical
parameters A, B, C, and D. Figures 27 through 29 show how the dynamic
sensitivities for variables x, y, and z with respect to the physiological
parameters p50’ Pao’ PV, Q, and Vm vary between each species. The only major
difference between the dynamic sensitivities is that some of the parameters
are associated with negative sensitivities. However, the trends for the
absolute values of the sensitivities remain the same for all parameters. That
is, y and z are more sensitive to parameter changes early in a simulation,
while x is more sensitive to parameter changes at the end of a simulation.
These trends are related to the time constants K1, K2, and K3 association with
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Figure 27.
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Figure 28, Dynamic Sensitivities of Y with respect to the Physiological
Parameters P50, PAO, PV, Q, and VM for the Human
Monkey (° ° °), Rat (- - ~), and Mouse (== ==).
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the equations for X, Y, and Z. For all species, the values of K1 are at least
an order of magnitude smaller than the values of K2 and K3 (see Table 3).
Values of the parameter K3 are within the same order of magnitude as K2
values, but are consistently smaller. The three constants correspond to the
time frames associated with the physiology of the three variables, X, Y, and
Z. Changes in variable Y, erythropoietin concentration, can take place within
a few hours (K2); changes in Z, red blood cell production, occur within a few
days (K3); while changes in X, red cell mass, only begin to take place after
many days (Kl).

No consistent patterns were discovered to link the dynamic sensitivities
between species except for the sequence in which the curves for a given
parameter would peak in value. These sequences always followed the ranking of
the individual time constants between species. For example, in Figure 23 the
third set of curves represent the dynamic sensitivities of Z with respect to
A. The sequence in which these four curves peak in value is directly related
to the species specific values of K3 (see Table 3). Table 9 presents a
ranking of the constants K1, K2, and K3 for all four species with a numerical
value of 1 being given to the shortest values and a 4 to the longest values.

3.2 SIMULLATED STRESSES

The second half of the species comparison study of the erythropoiesis control
system involved a series of comparative simulations performed using the four
species specific models. These simulations were performed in order to study
the species-to-species (between species) response to the following stresses:
Long-term hypoxic exposure and recovery, red cell infusion, loss of red cell
mass, and plasma volume depletion. For each of these simulations, the two
gain factors in the model, Gl (the gain of the erythropoietin control
function) and G2 (the gain of the marrow red biood cell production-control
function), were held constant in order to examine how the known differences in
physiological parameters values between species affect model operation.
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Table 9. Numerical Ranking of the Time Constants K1, K2, and K3

Species K1 K2 K3
Man 1 1 1
Squirrel Monkey 2 3 4
Rat 3 4 2
Mouse 4 2 2
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3.2.1 Long-Term Hypoxic Exposure and Recovery

One environmental stress that is typically used to study the erythropoietic
system is altitude hypoxia and descent from altitude (recovery). In order to
determine how the four species models respond to these two stresses, the
following simulation was performed using each of the models. First, the model
was run for 10 days to provide baseline control data, the arterial oxygen
tension level (PaO) was then decreased by 10 percent and the model run for 100
days to simulate long-term exposure to altitude hypoxia. PaO was then
returned to its normal (sea level) value and the model run for an additional
100 days to simulate descent from altitude (recovery). Even though this may
be a simplistic way of simulating the effects of hypoxia on the erythropoietic
system, the comparison between models should still be valid {(unless there is a
species difference in the process of altitude adaptation), since all four
models were exposed to the same relative stresses. Altitude adaptation
involves more than a simple change in red cell mass in response to the
decrease in PaO. The adaptation process typically includes an increase in
pulmonary ventilation, a change in PSO’ a change in oxygen diffusing capacity,
and an increase in whole-body vascularity.

Figure 30 shows the results of this simulation on a selected subset of model
variables for all four species. The values for the variables have been scaled
to represent changes from normal (that is, pre-stressed levels are equal to
1.0}

A1l four species models show a qualitatively similar response tc the step
decrease 1in PaO (altitude hypoxia) and the ster increase in PaO back to the
original value (recovery from altitude). In the model, the decrease in
arterial oxygen tension causes the oxygen balance at the kidney to be changed,
this change is sensed by renal tissues sensitive to oxygen tension levels, and
results in an increase in erythropoietin release which in turn increases red
cell production (RCP). With this increase in RCP, red cell mass (RCM) and
hematocrit (HCT) increase slowly over time until a new balance between RCP and
red cell destruction (RCD) is reached and all of the variables reach a new
"adapted" steady-state. During descent from altitude (recovery), essentially
the reverse procedure as described above takes place. At the end of 100 days
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the model has "adapted" to the hypoxic state, returning the PaO to normal is
equivalent to increasing Pao in a sea level adapted model. This relative
increase in PaO I is interpreted by the renal oxygen tension sensor in the
model as a positive oxygen balance and decreases erythropoietin production and
concentration. The decrease in erythropoietin concentration brings about a
corresponding decrease in RCP., Over time, the decreased RCP causes the Red
Cell Mass (RCM) and hematocrit to slowly return to the normal sea level values.

While the species response to these two stresses are qualitatively the same,
the responses (model) differ in two fundamentally different ways. First, there
are species differences in the amplitudes of the response to the stress. The
rat and mouse models show a much more marked response to changes in PaO than
do the human and squirrel monkey models. For example, in response to a 10
percent decrease in PaO, RCM is predicted by the rat and mouse models to
increase by 50 to 70 percent, while in the human and squirrel monkey models
RCM increases only 14 to 15 percent for the same percent reduction (this
agrees with the steady state sensitivities and ranking of steady state
sensitivities shown in Tables 4 and 7). The second difference involves how
quickly each model responds to the stresses. For example, RCM reaches the new
steady-state value (adapted value) in the mouse and squirrel monkey
approximately 50 days following exposure to hypoxia while the rat and human
models are just reaching steady-state after 100 days. These differences are
associated with the inter-species differences in the time constants (see
Tables 3 and 9).

3.2.2 Red Cell Infusion/Red Cell Loss

Two additional and closely related stresses that were studied with respect to
interspecies differences were an acute increase in red cell mass (red cell
infusion) and an acute decrease in red cell mass (blood loss). The response
of the models to a simulated 10 percent increase in red cell mass is shown in
Figure 31, while the model response to a sudden 10 percent decrease in red
cell mass 1is shown in Figure 32. In these simulations, the response of the
mode to the two stresses are identical if the direction of change about the
normal operating point is ignored (that is, the absolute value of the of the
percent change from normal is identical for the two stresses for any given
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Figure 31. Simulation of a 10 percent RCM Infusion in Man (
Monkey (° © °), Rat (- - -), and Mouse (= =).
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Fiqure 32, Simulation of a 10 percent RCM Loss in Man (), Squirrel
Monkey (° ° °), Rat (- - -), and Mouse (= =),
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species). A comparison of Figures 31 and 32 show that an infusion of red
blood cells causes the model to respond in a nearly opposite fashion to a red
cell loss for all species. For this reason, this discussion has been limited
to only one of the stresses, red cell loss (the other stress causes the
opposite senario to take place). The decrease in red cell mass caused by the
loss causes a decrease in the oxygen supplied to the kidney (renal tissues
sensitive to oxygen balance). This decrease causes an in balance of oxygen at
the renal oxygen sensor and renal oxygen tissue tension decreases. This
decrease results in the increased production of erythropoietin and the
corresponding increase in red cell production. As red celi mass increases
back towards normal, the oxygen balance at the renal oxygen sensor returns
towards normal and erythropoietin production drops accordingly until the
system returns to normal (that is until the red cell mass returns to it normal

value).

By examining the species results for red cell production following a 10
percent artificial decrease in red cell mass, two types of interspecies
differences exist. First, there is the magnitude of the responses, and second
there is how quickly the model responds to the stress and consequently, how
quickly the model reaches a new steady-state. The magnitude of the response
is related to the steady-state sensitivity of the model to changes in the
normal value of red cell mass, RCMO, with man and squirrel monkey being more
sensitive to the blood loss than the rat and mouse. The frequency (or
"quickness") with wiiich the model reacts to the blood loss is related to the
three time constants K1, K2, K3. For red cell production, the time constant
of interest is K3. Based on the senstivity values in Table 2, it would be
predicted that the mouse model would respond most quickly to a blood loss
followed by the rat, squirrel monkey, and human. This predicted result was
shown to be true in Figure 31.

3.2.3 Erythropoietin Infusion

An interesting experiment to perform (if it were possible) would be to study
the effect that injections of erythropoietin would have on the control of
erythopoiesis and how the effect varies between species. In order to study
how the four species models respond to step increases in erythropoietin
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concentration, the following simulation was performed using each of the
models. The model was run for 10 days to generate simulated control data. A
stress equivalent to a 10 times normal injection of erythropoietin was then
applied to the model. The model was run for 100 days in order to show the
species response to the stress. The results of this simulation for all four
species is shown in Figure 33. All four species showed the same qualitative
response to the erythropoietin injection. In the model the increased
erythropoietin caused a corresponding increase in red cell production which
causes an increase in red cell mass. As the injected erythropoietin is
metabolized (see erythropoietin half life, TEI/Z’ in Table 2), the
erythropoietin concentration and red cell production decreases to below normal
since red cell mass (the controlled variable) has increased to above normal
(due to the increased erythrpoietin concentration). Erythropoietin and red
cell production then gradually increase back towards normal as redcell mass
decreases down to normal. The species difference in the magnitude of the
model response to the erythropoietin injection is related to the species
differences in sensitivities to changes in Eo with the human being most
sensitive and the squirrel monkey, rat, and mouse producing approximately the
same magnitude of response. The rate of the model response to the stress is
related to the species difference for the time constants K1, K2, and K3
respectively (see Table J). In all cases, the human responded the slowest and
the general trend was for the response to decrease as the body mass of the
animal decreased (see Table 7).

3.2.4 Plasma Volume Depletion

Plasma volume depletion has been used previously with the human model to
simulate the effects of space flight on the erythropniesis system. In order
to study the species response and to compare the use of the squirrel monkey,
rat, and mouse as analogs of human erythropoiesis control during space flight,
plasma volume depletion simulations were performed for the human, squirrel
monkey, rat, and mouse. The simulations consistad of seven days of control,
followed by 7 days of plasma volume depletion, which in turn was followed by
14 days of recovery. These time periods were selected as being representative
of a one-week Spacelab mission. The plasma volume was decreased by 10 percent
for each species the first inflight day, held at this level for seven days,
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Figure 33. Simulation of a 10 X Normal Erythropoietin Infusion in Man :
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then returned to ncrmal at the end of the seventh day. Figure 34 shows the
results of this simulation for all four species. The data shown represent a
selected set of hematological variables for each species. The values for the
variables shown in Figure 34 have been scaled to represent changes from
normal.

The qualitative response of all four species to a 10 percent decrease in
plasma volume i< approximately the same. All four show gradual decreases in
red cell mass and red blood cell destruction, along with more dramatic
decreases in erythropoietin concentration and red blood cell production during
the treatment phase. These decreases are all caused by the increase in
hematocrit which in turn is due to the plasma volume depletion. The species
differences that are observed have to do with the magnitude and the rate at
which the changes take place. As can be seen, there is no uniform ranking
between the species as to how they respond to the stress for each of the
variables. This is due to the fact that for the selected combination of
parameters for each species there no consistent ranking between species for
the steady-state sensitivities (magnitude of response, see Tabie 5), or for
the time constants (rate of responses, see Table 3). However, the simulations
do show that the qualitative response to the stress is consistent between the
species; that is, the variable values respond in a similar fashion for all
four species.
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Figure 34, Simulation of a 7 day 10 percent Plasma VYolume Depletion in Man
( ) Squirrel Monkey (° ° ° ), Rat (- - -) and Mouse (== =).
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4.0 DISCUSSION

This appears to be the first time that a single model formulation has been
used to represent (model) the same physiological system for several different
species. In the past, parameter values and experimental erythropoietic data
from one animal species have been used to validate models and to estimate
model parameters for other species, but they have not previously been used to f
develop separate species specific models for the same physiological system.
The approach presented in this paper for creating species specific models is
based on the assumption that the basic concept of erythropoiesis control is

identical among the species of interest. The overall model formulation
described in the first part of the paper is general and it is assumed that the ‘
erythropoiesis control system for all four species is identical. This does

not necessarily imply that either the detailed physiology or the anatomical

correspondence between species is identical. For example, in the model, all

of the hemopoietic tissue is grouped into one compartment. This one

compartment, however, may be anatomically equivalent to several different

organs. In man, this compartment is equivalent tc active bone marrow, while

in the mouse this compartment may consist of two or more anatomical components

(bone marrow, spleen, etc.).

The significance of being able to simulate several different species using the
same general model description is that, while there may be anatomical
differences, the physiologies are governed by the same factors. This implies
that one species can be used to study the physiology of another species. The
differences between the response of two different species to erythropoietic
stresses may be due to differences in operating points rather rather than
differences in physiological control mechanisms. An example of this is shown
in Figure 22, where each species has significantly different arterial
oxy-hemoglobin saturations, due to inherent (species dependent) differences in
arterial oxygen tension and P50. The location of the normal operating point
for the model on the non-linear oxy-hemoglobin dissociation curve can cause
two species with the same control mechanisms to respond to stresses in
significantly different ways. For example, a small decrease in PaO in the
human will cause arterial saturation to decrease slighty and will have very
lTittle impact on model operation while the same percent decrease in arterial
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oxygen tension in the mouse will cause a more dramatic change in saturation
and a corresopndingly larger impact on model operation. This is due to the
fact that the normal operating point for the mouse is lTower on the
dissociation curve and a change in arterial oxygen tension will drop the new
operating point down into the nonlinear portion of the curve where saturation
values decrease rapidly as arterial oxygen tension decreases.

While there are differences in the simulation results between species, ail
four models rcspond qualitatively the same to the simulated stresses that have
been applied. Any differences were accounted for by either species
differences in operating points on the oxy-hemoglobin dissociation curve (see
Figure 22), or differences in the time constants.

The overall results of this study are encouraging, for they show that there is
promise in using the same model formulation, to study the response of several
different species to erthropoietic stresses. However, caution must be taken
at this point in time due to the lack of experimental data with which to
completely validate the squirrel monkey and rat version of the model. The
most ideal set of experimental data would be the collection of data from all
four species under identical experimental conditions, thus providing not only
validation data, but additional data as to the nature of the species
differences in erythrcpoietin regulation.

This computer simulaticn study demonstrates the utility of performing
sensitivity analyses in conjunction with model formulation. They clearly
demonstrate the role and importance of parameter values in interpreting and
understanding the functioning of the model and in helping to analyze the
physiology of a given system as is currently understood.
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APPENDIX A

ANALYTICAL DERIVATION OF STEADY-STATE SENSITIVITIES FOR ERYTHROPOIESIS MODEL
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I. The sensitivity coefficient of the dependent variable, V, with respect
to the independent variable, p is defined as

normalized version

ﬂ=&(i ﬂ)
Vo Po vo 3p

Let the sensitivity of V with respect to p , , be defined as
P Vo o 0.

Note: for the normalized model, V0 =1,

S

V _ )
> L <%%>o. (1)

aV
II. To determine the steady-state sensitivities, (?é) must be calculated.
c

Recall from the main text of this paper that in the steady-state
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X = F3(y) and
y = Fz(x)
2 =X

- (;2
y s y<l1
4/G
2
where F3(~V) - ﬁ 1+ 62]09(}’) ’ l<y<e
G -4/G 4/G
Lb_e2exp(-62 y e 2), y>e °¢
_ CX-1
and Fz(x) = A exp [- B-Nn] s W = DX+1

~

It can be shown that (—‘Z%) for the dependent variable x and y

8F3 . a_F3. 8F2
op y op D ap X




(%) (2)

wWhere, about the normal operating point of ¥ =¥ ® 1

NN
Q| a
< il

¢

SN
o

i
‘<| (o)
~n
"
(]
~no

BF‘\ .
(T—J = log y = log(1) =0 , forp =G,
2p
Y
oF
—1 =0 , forpt# G2
pJYy
(:.F_.) = -n-B. j£+D) . wn'l F (x)
X o (px+1)? 2 (5)
3F,
— ] for the mathematical parameters A, B, C, D, and n are
ap
as follows:
8F _ Fa(X) (5)
oh A
oF
2 . _yn,
) L (7)
oF
2 _ =n*B:X | n-1
5 - (k) W Fa(X) (8)




2 _ neB-X . un X d (9)
» = en c W 0 RlX) e
F o 5" FL(X)Toa(l). (10)
on

About the normalized operating point, R mF, ", 1, the following
statements are true:

oF
( 2) = eBeleD) L™, W) = 3
(0+1)

Therefore, (;—;) for V=Xand Y, and p = A, B, C, D, or n (that is,

equations 2, 3, and 4) become

6 g )
0

(é.x\ . 1 (X , and

P/, G, %),

(). (5).
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3F, 3F .
when = and _,3 are defined in Equation 5 through 10 above.
o o

The sensitivities of the mathematical parameters about the operating
point Xo’ Yo, Zo then become

X aX
st = s[-2 -
() (x o1
0

&y = 3y

4o =
p 3/ (Y,=1)
SX

with P . G? for all p # Gz.

X 2

S
P

IIT. The steady-state sensitivities for any physiological parameter p can be
expressed in terms of the mathematical parameters as follows:

Sx = a_A. ax + ..8_5 a_x. + .a.£ il g
p p |ap \GA o ap \GB . op C

B_D(ﬂ)», an (_X>]
op \oD . op an "

e
>
S——"
o
+

SX

Y
and s' = EE_
2
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The components of these equations are defined as follows:

The partial

derivative of x with respect to A, B, C, D, and n are the same as shown
in equation 6 through 10. The partials of A, B, C, D, and n with respect
to the physiological parameters p = vm, Kd, P50' Pao, Q, PV, and k are

shown below

for p = Vm
L U
v Ky * PO,
s . " %%
aV T
m Vm
i M50
aV 2
m T V"I
P =Ky
aA - -Gl'Vm°A
9Ky KdZ+P,0
t'o
p = Psg
B . 4
P PO
50 t
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PaO

PV

1}

2 k
k.r‘ oSaO (:_s-g)
u -Vm- PaO

-9C
aP_0

r. SaO

Q ‘U .Vm

r - (l-SaO)
Q-u-V

|

ol
<|O
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.a-_c -r . Sao . (1"Sa0) . ]0 P50
3k 9I\F o0
ueV a
m
ok ok
a_n = -1
* T

The actual steady-state sensitivity values for each parameter, both

mathematical and physiologicai, for each of the four species are shown in
Tables 4 and 5 of the main text of this paper.
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APPENDIX B

DERIVATION OF THE EQUATIONS USED TO DETERMINE DYNAMIC SENSITIVITIES
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The model can be generally described by the three differential equations,

K = Hl(xsz)9 N X(o)=X°
and ; = HZ(X,Y), " Y(o)=Yo
7 - Hy(Y,2) . 2(0)=2,

Let p = any mathematical (independent ) parameter, the following relations
can be defined

= 9X = oY . oz
then it follows that
1 3p 1 ox 3 3z op e o (1)
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3H
.- 3
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The derivatives of Hl’ HZ’ and H3 can be derived and are shown below.

H, = K1 (z-x)

1

1
oX 1

oH

Y2, ()
5y \3% /4,y

where: sz(o)
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The

partial derivative required to evaluate the above equations are:

3F,(X) n B n-1
2~ = B lUD) ) T e Ry
(DX+1)
where: F,(X) = A-exp(-BW") and
. (cx-1)
. DX+1)
(6,-1)
] 2
°F3:sz.y s y<l1
oy
G,/
2y s, 1 <y< e4/G2
G

8F3
_35— = 0 when P f GZ
oF 3F 5
= K
3G, 3 5@;

= forp =A, B, C, D, n are defined by equations 6-10 in appendix A




8F3
where =0 is defined as follows:
82
im:
y 2 log (y) g y<1
4/G
3F3 lTog (y) sl yse 2
= -4/G 4/G G -4/G 4/G.
°GZ <|:1-e 2, y(l + 2)] e 2, exp (-G syece 2) y>e /
\

Substituting the above information into equations 1, 2, and 3 yields the
following results:

. 0, pPFK (4)
waleen) s o))




5F, Ry === , Pk
. 5P )
g = by (51 3x‘ - 5;)* (5)
FZ(X) =¥ P= |\2
G , p#ye
where: sz(o)=
1 , p=yo
" 0 s P 7Kg Gy
5., = " F -
53 ks (SL Y 53) + 3(_)’) - i p = K; (6)
aF 4 (y)
K 3 ’ p = C
362 s
C ’ p # LO
where: s3(o)=
l1 4 p=14
The dynamic sensitivity coefficients for the mathematical parameters
(p = A, B, C, D, n) are then defined as
f (7)
S = P
p X %




. D (9)
Z

The dynamic sensitivities in Figures 23-26 of the main text, were
obtained by solving Equations 4, 5, and 6 numerically for Sl’ 52, and S3,
then substituting the results into Equations 7, 8, and 9.

The dynamic sensitivities for the physiological parameter shown in
Figures 27-29 were obtained in the following manner

(10)

Q)'Q)
)
SN
Q lu
sl
SNS—"
+
QY
DS
QrlQo
i<
Nt
| S

where V = dependent variables x, y, or z,
- ) . 2
q = physiological parameters Kd, S PSO’ PaO.....
and p = mathematical parameter A, B, C, D, n
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Equation 10 can be rewritten as

n
sV=ﬂZ ). v
q v 2q op

where the (—E—); are defined in Appendix A.

and the (—J%); are defined in Appendix A, Equations 6-10.
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