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Abstract

This report provides a detailed description of the erythropoiesis
modeling performed in support of the Body Fluid and Blood Volume
Regulation Tasks under contract NAS9-17151. This report includes
a description of the mathematical formulation of the species
independent model, the solutions to the steady-state and dynamic
versions of the model, as well as the indiviuual species-specific
models for the human, squirrel monkey, rat, and mouse. The
analysis portion of this report is composed of two parts. The
first part is a detailed sensitivity analysis of the species-
independent model response to parameter changes and how those
responses change from species-to-species. The second part of the
study is an analysis of the species-to-species response to a
series of simulated stresses directly related to blood volume
regulation during space flight.
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1.0	 INTRODUCTION

New experimental studies of body fluid and blood volume regulation (including

studies of erythropoiesis regulation) during space flight and in terrestrial

surroundings are being considered which utilize, not only human subjects, but

animals such as the laboratory mouse, rat, and monkey. Mathematical models

representing the human and murine erythropoietic systems have been previously

developed (1,2), and have been useful in elucidating the mechanisms involved

in the control of erythropoiesis and, therefore, blood volume regulation,

under a variety of stress situations, including space flight. 	 In order to

better understand previous space-flight results, and to help analyze the data

from these new multi-species experiments, and to help relate experimental

results among species, a uniform, species-independent, modeling approach to

the erythropoiesis system has been developed. This approach allows the

problem of species variation to be addressed by design. This report is a

summary of the results from a series of simulation studies using the species

independent model to compare the erythropoietic control systems in the human,

squirrel monkey, rat, and mouse. The report includes a description of the

mathematical formulation of the species-independent model, the steady-state

and dynamic solutions of the model, and the validation simulations for all

four species models. The report also includes a detailed analysis of

erythropoiesis control and its relation to blood volume regulation. The first

part of the analysis consists of a discussion of the steady-state and dynamic

sensitivity analysis which was performed to study how the basic model of

erythropoiesis responds to changes in parameters and how these responses

differ between the four species. The second part of the analysis is a

discussion of the species-to-species response to 3 series of simulated

stresses that are directly related to blood volume regulation during

space flight.

1
	 1



	

2.0	 SPECIES-INDEPENDENT MODEL OF ERYTHROPOIESIS

This section of the report is a summary of the physiological concepts used in

the development of the original model of erythropoiesis, the development of

the species-independent model of erythropoiesis model, the steady-state model

solution, the dynamic model solution, and the validations of the

species-specific model.

The problem of developing species specific models was approached in the

following manner. The equations from the original model of erythropoiesis (1)

were rederived to produce a minimal set of equation and parameters (3,4). In

its mathematically reduced form, the model consists of three non-linear

differential equations and contains twelve parameters. The differential

equations have been scaled using the normal values of the three dependent

variables (red cell mass, plasma concentration of erythropoietin, and red

blood cell production rate). The twelve independent parameters are determined

from the original model and are each a composite of several physiological

parameters. The physiological parameter values themselves are dependent upon

the species of interest. Reducing the number of parameters and equations in

this manner simplifies the analysis of the functioning of the model, since the

model can be studied in this more generalized form. This new formulation of

the model is ideal for studying interspecies variations, for once it is

understood how the model functions in general, the aspect of species variation

can be studied simply by changing the physiological parameter values, while

the overall model structure remains the same.

	

2.1	 PHYSIOLOGICAL BASIS OF THE GENERAL MODEL OF ERYTHROPOIESIS

The original erythropoiesis model (1) was developed to study the relative

influence of the controlling factors of erythropoiesis on total red cell mass.

Those elements of importance to the feedback regulation of erythropoiesis that

have been incorporated into the model are shown in Figure 1. This formulation

was based on the concept that the overall balance between oxygen supply and

demand regulates the release of the hormone erythropoietin from renal tissues

sensitive to oxygen tension levels and which, in turn, controls bone marrow

red cell production.

2
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Renal oxygen tissue tension is influenced by several factors: hemoglobin

concentration, lung oxygenation of hemoglobin, renal blooj flow, and

oxygen-hemoglobin affinity. A fraction of the oxygen reacning the kidney is

extracted by tho tissues depending on the oxygen demand parameter. Oxygen

enters the renal t i ssue by diffusion along an oxygen gradient between the

venous capillaries and the tissue cells. A decrease in the oxygen supply in

relation to the oxygen demand will reduce the tissue oxygen tension and result

in an increased rate of erythropoietin release. Erythropoietin is released

into general circulation with the plasma concentration being determined by the

rate of release, volume of distribution, and the rate at which it is

metabolized. The target of erythropoietin is the hemopoietic tissue. The

production rate and release of red cells are determined by the plasma

concentration of erythropoietin. There is a time delay between marrow

stimulation and red cell release. The rate of red blood cell destruction is

based on the life span of the cell and is assumed to be a fixed percentage of

the red cell mass.

The physiological derivations of the original model equations, upon which the

following work is based, can be found in reference (1).

2.1.1 Description of Species-Independe nt Model

The structure of the model is relatively simple, but non-linear. The original

model can be reduced to the following three non-linear differential equations

containing twelve "mathematical" para;-eters (that is, parameters which have no

direct physiological meaning, but are composed of several physiological

parameters).

x = K 1 (z - x)	 x(o) = 1
	

(1)

y = K 2 (F 2(x)- y ) , y ( o ) = 1
	

(2)

4



and

z = K 3 (F 3 (y) - z) , y (o) = 1	 (3)

In these equations, the x represents the time derivative dx/dt. The

non-linear fun:tions F 2 (x) and F 3 (y) are defined as follows:

n

F 2 (x) = A exp - B	
Ok^l	

(4)

and

and

F3(y) = y 2	 y <

4/G2

1+ G
2 

log y	 , l e y< e

	

(	 -4/G	 4/G

6- exp )G2 (1-y e	 2) , e	 2 < y

Variables and parameters for this model are defined below and in Table 1. The

dependent variables x, y, and z represent normalized values of red cell

mass, erythropoietin level in the blood, and red cell production rate. The

mathematical parameters utilized in equations 1-5 are defined as follows in

terms of the physiological parameters.

K1 = log 2 / 7RC 2̂ 	(6)

K2 = log 2 / 7E^2	
(7)

K3 =	 1 / TP 1.	 (g)

V

A	 = exp	 G 1 ( I + K •mF 0	 )	 (9)
d	 to

..^.^.....:	 a•...^.^.^ _W

V



Symbol

CHbU

E
0

G1

G2

k

Table 1. Definition of Primary Model Parameters

Definition

Carrying capacity of hemoglobin

Erythropoietin plasma concentration

Normal Erythropoietin plasma concentration

Gain of renal erythropoietin production control function

Gain of marrow RCP control function

Exponent in the Hill equation describing oxygen-hemoglobin
equilibrium

Capillary diffusivity

Mean corpuscular hemoglobin concentration

Oxygen tension of blood at 50 percent hemoglobin saturation

Oxygen tension in arterial blood

Normal value of oxygen tension in renal tissue fluid

Plasma volume

Renal blood flow

Red Cell Mass

Normal value of Red Cell Mass

Production rate of new red blood cells

Normal value of RCP

Saturation of arterial hemoglobin with oxygen

Bone marrow transit time

Plasma half-life of erythropoietin

Red cell half-life

Oxygen uptake of kidneys

Normalized red cell mass

Normalized erythropoietin concentration

Normalized red cell production

k 

MCHC

P50

Pa 0

Pt 00

PV

Q

RCM

RCM
0

RCP

RCP
0

Sao

TBM

TE1/2

TRC1/2

Vm

x

y

z

6

E
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s	 G1 • P50	 (10)

P 
t 
0 
0

Q . MCHC • CHbO • S a0 - V 
C	 =	 (11)

DV

Vm • RCM0

Q . MCHC • CHbO • (1 - S a 0 ) + Vm	(12 )

PV

Vm • RCI11 0

S 0 s	 1	 (13)
a

k

1 + _"I

and	
P^

n = 1/k	 (14)

Note that the red cell mass (RCM), erythropoietin level (E), and red cell

production rate (RCP) are related to x, y, and z as follows:

RCM = RCMO • x	 (15)

E	 = E 0	 y	 (16)

and

RCP = RCP 0 - z = K 1 RCM0 0 z	 (17)

The values of the physiological parameters can be found in Table 2. The

values of the mathematical parameters, as calculated using the physiological

parameter values from Table are presented in Table 3. The rationale used for

selecting these values, as well as the source of the values has been

7
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documented and can be found in TIR 2114-MED-2010 "System Parameters For the

Species-Independent Model of Erythropoiesis Control: A Species Comparison of

Normal Values in the Human, Squirrel Monkey, Rat, and Mouse Models."

Equations (1-3) can be solve.; numerically to generate either dynamic

(time-dependent) solutions or steady-state (time-independent) solutions.

2. 1.2 Steady-State Solution

The usual steady-state condition (z = y = z = 0) leads to the non-liner

equations

x	 = z	 (18)

y	 = F 2 (x)	 (19)

and

z	 = F 3 (y)	 (20)

where F 2 (x) and F 3 (y) are defined by equations (4) and (5). Thus, at the

steady-state

x	 = F 3 ( F 2 ( x ))	 (21)

y	 = F 2 ( x )	 .	 (22)

and

Z	 =	 x	 (23)

10



Equation (21) can be solved by searching for the roots of the function

f(x)	 = x - F 3 (F 2 (x)).	 (24)

Then, the desired value of x is the value for which f(x) = 0. This

equation was solved numerically using a Newton-Raphson method. Once

x is known, the steady-state values of y and z are obtained from

equations (22) and (23).

2.1.3 Dynamic Solution

While the steady-state solution is easy to determine and is of interest to

certain stress applications, often one wants or needs to know how the solution

to these model equations change as a function of time. Equations (1-3) can be

solved numerically to yield dynamic (i.e., time-dependent) solutions. The use

of ordinary numerical integration techniques to solve these equations requires

that a very small integration time step be used (less than one minute) in

order to obtain accurate solutions. This is due to the fact that these

equations represent a system of "stiff" differential equations. That is, the

time constants associated with each equation (K 1 , K 2 , and K 3 ) differ from each

other by orders of magnitude (see Table 3), a common occurrence in the

modeling of many biological systems. Therefore, the hybrid Euler integration

technique, which was developed for use in the original model of erythropoiesis

(6,7), was used to solve for the time-dependent solution of the reformulated

version of the erythropoiesis model. The hybrid Euler technique allows the

integration step size to be increased from less than one minute to over 60

minutes without forfeiting solution accuracy. This increase in step size

allows for the rapid numerical solution of the time-dependent equations for

X, Y, and Z. The solutions to these equations can be converted to absolute

values or used to calculate other hemopoietic indices and values that are

based on these three variables (see references 1 and 4).

11



2.2	 SPECIES-SPECIFIC MODELS

The formulation of the model, as described above, is not dependent on any

species. The species influence only enters into the model through the

mathematical parameters, which, in turn, are a function of certain

physiological parameters. It is through these physiological parameters that

species-specific aspects enter into the model. Therefore, to develop a

species-specific model of erythropoiesis from the species independent model,

the only step necessary is to collect the species specific parameter values

that are necessary to calculate the mathematical parameters. Therefore, each

species uses the same model formulation, but has a separate set of

species-specific parameter values. The parameter values necessary for the

human and mouse model were available from the two original models (1,2).

However, in order to implement the rat and monkey models of erythropoiesis, an

extensive literature search was performed to collect the necessary

physiological data. Data were collected for the Sprague-Dawley rat and the

squirrel monkey (Macaca Samiri) since these are the two species that are

scheduled to be used as specimens onboard the Spacelab-4 dedicated Life

Sciences Shuttle mission (including two hematology experiments). A

description of the model reformulation, as well as the equations and

parameters used in the model can be found in the TIR entitled "Analysis of a

Twelve Parameter Nonlinear Model of Erythropoiesis" (3). The actual parameter

values used for each model, along with the rationale for the selection of

these values, has been documented and can be found in the TIR "System

Parameters for the Species-Independent Model of Erythropoiesis Control: A

Species Comparison of Normal Values in the Human, Squirrel Monkey, Rat, and

Mouse Models" (4).

2.2.1 Validation Simulations

In order to verify that the reformulation of the human and mouse models

produced results identical to the original models and to validate the squirrel

monkey and rat models of erythropoiesis, all four models were

validated/revalidated against experimental data that were not us-d to develop

the models (i.e., not used to establish the species-specific data sets for

each animal). Simulations of hypoxia, based upon actual experiments, were

12



performed using each of the four species models of erythropoiesis. The

results of the simulations were compared with the experimental findings in

order to verify the fact that the models compare both quantitatively, with

respect to red cell mass, and qualitatively, with respect to red ;ell

production and erythropoietin concentrations, associated with other ;typical

hypoxia experiments. This combination of quantitative vs. qualitative

comparison of results was necessary since there are few, if any, experiments

which have studied all three of the model variables over periods of both

hypoxic stress and recovery from hypoxic stress.

2.2.1.1 Human Model Revalidation. The human model was revalidated using the

experimental data set used to validate the original erythropoiesis model (1).

Buderer and Pace (8) studied the dynamic changes in red cell mass, hematocrit,

and plasma volume in sea-level pig-tailed monkeys during and after a 6-month

exposure to 3800 m altitude. Since comparable data for humans were not

available, the experimental data were scaled to represent changes frcm normal.

The original human model of erythropoiesis was validated using the same set of

experimental data (3); therefore, a simulation of this experiment was

performed in order to provide a verification of the model reformulation (see

figure 2). This simulation was performed by changing arterial oxygen tension

(Pa 0) in a step fashion from 95 (normal P a o at sea level) to 50 mmHg (P a 0 at

an altitudE of 3800 m). This value of P a o was selected from human altitude

experimentation (9,10,11). The normalized red cell mass response of the model

was adjusted by changing the bone marrow controller gain until agreement the

simulation response was in agreement with the experimental red cell mass data.

The niodel is also capable of predicting other variables that were not measured

such as normalized plasma erythropoietin concentration and normalized red cell

destruction rate as well as other hematological parameters that can be derived

from these three variables.

The simulation shown in Figure 2 shows the squence of events that are assumed

to generally characterize the hematological response to hypoxic stress,

including reduced tissue oxygen tension, knot shown), elevated erythropoietin

concentration, and increased red cell production levels, all of which promote

13
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an increase in the circulating red blood cell mass (1). The opposite response

for the descent phase is also shown. The difference between production and

destruction rates in the simulation provide a visual indication of the

magnitude of the stress that drives the system from the normal steady-state.

The slow approach to equilibrium at altitude that is seen experimentally is

evident in the simulation from the asymptotic nature of the model response to

the hypoxic stress. Upon return to sea level, the increased hematocrit serves

as a prolonged stimulus for tissue hyperoxia to the extent that red cell

production is predicted to be totally inhibited for several weeks.

In order to obtain the agreement between normalized red cell mass and the

normalized experimental red cell mass shown in Figure 2, two different values

for the overall controller gain, 	 G, (i.e., the product of G 1 , gain, renal

erythropoietin production and G 2 , gain of marrow RCP) were required. A value

of 2.2 was used during the altitude phase, while a value of 12.0 was required

during the descent phase of the simulation. These values for G concur with

the results obtained by Leonard et al. (1) for the validation of the original

model of erythropoiesis. This difference in effective gains may reflect other

circulatory ventilatory and biochemical adjustments that are known to occur in

response to disturbances in oxygen transport. While some of these other

factors could be simulated using this model, for the purposes of these

simulations only the overall gain, G, was changed. The qualitative and

quantitative response of the reformulated model to the identified hypoxic

stress, along with the use of identical controller values, verifies and

revalidates the model.

2.2.1.2 Squirrel Monkey Model Validation. The squirrel monkey version of the

model was validated in the same fashion as the human model and against the

same data (8). The results of this validation simulation is shown in Figure

3. In the squirrel monkey simulation, 1' a 0 was reduced from the normal value

of 85.2 mmHg at sea level to 44.8 mmHg, in order to simulate exposure to an

altitude of 3800 m. Since P a o was not measured experimentally in the

pig-tailed monkey, the Pa o value of 44.8 mmHg was determined by scaling the

normal squirrel monkey Pa o value (5) by the equivalent percent decrease that

is observed to occur in humans for the same altitude. While this is only an

approximation of the true squirrel monkey Pa o at this altitude, it is the most

!i<

15



N
Q1 N

'O	 C1 F- s L
3 r- C +-+

1 >> N
C C Ti ^ O C	 I

C +-I L GJ

In ^ C_ i ^ L rp

N ^ C ^►- U ^ O
J r O L .65

`=c ^a a y
- •r rp L L

3 4- O
-^ m U

ev
- - Z GJ L
_ X G O

^_ O C C
- R7 N

^O > m Cy L SD? 3 a,
C•,'r- G1w^ C^

L C 1: O
^ Q1

t	 72 >
-,

X i..^ tl^ O
^ >> I'J Q = N

- O N

Q1 :t7

-r X L C
,/'I C	 a^ O O

pole^¢o^o
= C C C G S-

C)  O 0
0 wp C L	 O

^ea M^yo
-	 Q! w O	 a!
- = N u -V U J >

- eu mavCv7 N=2: L L G—

11

U Y
z

c •^
•a o up
L v ^
41 U

Fu
L 7 =
-,^ O S

^
L
s 11

n a
rpU ^
f C

curz
U II cd >
y Y p

rp C C

C '^ 'C
4J v

L -^ 1!
CU

X J
W ^ `
II U p
J
= C u
x •^ v

C: Ly
N O N
N ^ 41

L

CU L UU u _

I1

r

i
•

J
r

71

U
D

w

I •
•	 1

i
•

•
•

i

•

•

• •

r

©m mm6i mWGo mCD O©
a)CD ©m m dd mdd Y1 117 In 117
^^ mm CS) GO mm© NN Ncd

MM mm MwhM mmm 0

I ! I^ 1 I I

E U 0 r >- a 0 O a} ►- ►-
^^ iY 12 U O< U Li U U Of '` 'J V
s I x s uJ Or Ot GC m W a = = rL

W W

1

1
r
J

y
Z

16



reasonable estimate available without direct P a o measurements. As in the

human model validation, the overall controller gain, G, was adjusted until the

simulation response was in agreement with the experimental red cell mass data.

However, unlike the human model, only a single value of G, 2.0, was required

to model both the altitude and recovery phases of the simulation. This value

of G is in agreement with the G value used during the altitude portion of the

human simulation.

2.2.1.3 Rat Model Validation. The rat version of the species-independent

model of erythropoiesis was validated against experimental data from Pepelko

(12).	 In this experiment, male Charles River strain rats were exposed to a

total barometric pressure of 380 torr (equivalent to an altitude of 5600 m).

Rats were sacrificed after 1, 3, 8, 16, and 24 days of exposure to hypoxia and

the following hematological measurements taken: red cell mass, hematocrit,

and plasma volume. Figure 4 compare3 the results of the experiment and the

model simulation. This simulation was performed by reducing P a o stepwise from

80.2 to 34 mmHg and by reducing plasma volume from .0056 to .0046 1. Since

Pa o was not experimentally determined for these rats, the P a o of 34 mmHg used

in the simulation was obtained by scaling the normal sea-level P a o value of

80.2 mmHg (5) down by the same percentage change that occurs in a human at the

same altitude. Plasma volume was reduced by the same amount observed in the

experimental rats during exposure to hypoxia (12). The normalized red cell

mass response of the model was adjusted by changing the overall control gain,

G, until the simulation results were in agreement with the experimental data.

Even though the rat strain used in the simulation model was different from

that used in the experimental study, good simulation results were obtained.

This could be due to the fact that there is very little hemopoietic difference

between the two rat species, and rats used in the simulation and experiment

were of approximately the same body weight. For this simulation, a value of

2.0 for the overall controller gain, G, was found to yield the best fit to the

experimental red cell mass data.

2.2.1.4 Mouse Model Validation. The mouse version of the species-independent

model was validated against experimental data from Mylrea (13). In this

experiment, female ICR Swiss Webster strain mice were placed in hypoxic

chambers in which they were exposed to an atmosphere of 360 torr to simulate

17
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an altitude of 6000 m. Mice were sacrificed at periodic into 	 Is to show the
time course of change in hematocrit, reticulocytes, hemoglobin concentration,

blood volume, red cell mass, and plasma volume. The simulation of this

experiment was performed by decreasing P a o from 78 to 29 mmHg and by

decreasing plasma volume from .00077 to .00064 1. Since P 0 was not
k	 a

experimentally determined in the mice, the Pa o of 29 mmHg which was used in

M1the simulation, was based on the percent change in human Pao that is known to

occur at the same altitude. The plasma volume decrease was based on the

i	 percent decrease that occurred in the experiment (13). The results of this

simulation are shown in Figure 5, along with the experimental red cell mass

data. The overall controller gain, G, was udjusted until the simulated

normalized red cell mass agreed with the experimental data. The best fit

occurred at a G level of 1.0.

2.2.2 Discussion on Model Validations

All four validation studies required overall controller gain factors between

1.0 and 2.2 for the hypoxia portion of the simulations. This indicates that

the species-independent modal of erythropoiesis provides a good overall

representation of the physiology for these species. The fact that the human

model required a significantly different value of G, overall controller gain,

for the recovery phase of the simulation may be due to the fact that the

simulation was being compared with primate data. This difference in G values

may have to do with the differences in the location of the normal operating

point on the oxyhemoglobin dissociation curve between man and the squirrel

monkey (see the discussion on steady-state sensitivities, Figure 22). With

the normal operating point for the two species falling in different areas of

t^2 oxyhemoglobin Equilibrium curve, it is expected that the two species would

respond somewhat differently to an hypoxic stress, with the human response

less dramatic than the squirrel monkey. 	 If human data were available to

compare with the simulation results, a different value for G during the

recovery phase may not be necessary. Further experimental work and

corresponding validation studies are required in order to clarify the need for

different G values or additional modeling work.
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As discussed previously, other circulatory, ventilatory, and biochemical

adjustments are known to occur in response to disturbances in oxygen transport

such as exposure to hypoxia, and were not included in these simulations.

S	 These regulatory elements can provide partial compensation of tissue hypoxia

and may contribute to the finding that in humans erythropoietin returns toward

control levels more rapidly than predicted in the simulations shown in Figures

2-5. The erythropoietin response can be more realistically simulated by

assuming that changes occur in P 50 
capillary diffusivity, arterial oxygen

tension due to ventilatory compensation, sensitivity of erythropoietin

secretion to tissue oxygenation, and sensitivity of erythropoiet i n responsive

cells.



	

3.0	 SPECIES COMPARISON

The primary objective of this study was to compare the erythropoiesis control

systems of the human, squirrel monkey, rat, and mouse using the

species-specific versions of the erythropoiesis model. This objective was

carried out in two parts: first, a detailed sensitivity analysis of how the

model functions for each of the four species was performed, and second, the

response of the model to a variety of impulse and step stresses relevant to

the space-flight program were studied for each species. The following

discussion presents of the results of the species comparison study.

	

3.1	 SENSITIVITY ANALYSIS

Using the model formulation discussed earlier, a comparative sensitivity

analysis was performed using the species-specific models for the human, mouse,

rat, and monkey. Since, in this formulation, species-specific physiology only

enters the model through the independent parameters, and since one of the

primary issues related to model operation is the effect of parameter changes

on the dependent variables, a detailed sensitivity analysis was the logical

form for performing both a qualitative and quantitative comparison of the four

species models. This analysis was performed on the steady-state and dynamic

versions of the model for each of the four species.

3.1.1 Stead y -State Sensitivit y Analysis

The steady-state sensitivity analysis consisted of parameter -variation studies

and the direct analytical determination of steady-state parameter sensivities.

3.1.1.1 Parameter Variation. A parameter-variation study was performed for

each species by plotting the new steady-state solutions of the model equations

obtained when each of the mathematical and physiological parameters were

varied from 50 to 150 percent of their normal values. Figures 6 through 9

present the results obtained for variable X (^ed cell mass) for each of the

major mathematical parameters (A,B,C, and D) with each figure representing

results for the human, squirrel monkey, rat, and mouse, respectively. Figures

10 through 13 present similar results, but for variable Y (erythropoietin

22
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concentration). Since Z = X in the steady state, the effect of parameter

variation on Z would be the same as shown in Figures 6-9. 	 In each figure, the

curves shown were determined by the actual solution of the model equations.

Figures 14 through 17 and 18 through 21 present the results of the parameter

variation study, for the physiological parameters, on the model variables X

and Y, respectively.	 In these cases, the variation of one physiological

parameter can affect several of the mathematical parameters, but the numerical

approach is no different regardless of the parameters involved. The

convergence of the iterative method of solution of the steady-state model

equations was always rapid (see section 2.3).

3.1.1.2 Parameter Sensivities. Parameter sensitivities were also calculated

for each of the mathematical and physiological parameters. These

sensitivities are defined generally as

SY z Pp a Y

P V^ aPo

(25)

where V is any dependent variable, p is any parameter, and the subscript o

denotes that the right side of equation (25) is evaluated a lk: a normal or

reference state. The utility of the above definition arises from the fact

that (under suitable mathematical restrictions), for small parameter changes,

the parameter sensitivities are the constants of proportionality that directly

relate changes in parameter p to changes in Variable V, and that multiple

parameter changes are additive, to a first approximation. in other words,

N
V

DV	

t=1	 SPR. 
APk	

(26)

where G V represents the fractional change in V and G p, represents the

fractional change in parameter p

For the multi-species model in the steady state, it is possible to determine

the sensitivites analytically. The details of this analytical determination

31
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for both the mathematical and the physiological parameters can be found in

Appendix A. The sensitivities for each species with respect to mathematical

and physiological parameters are given in Tables 4 and 5, respectively. Note

that these sensitivities are (essentially) the slopes of the parameter

variation curves (Figures 6 through 21) about the normal operating point

(Reference State), a fact utilized in less tractable situations to estimate

the sensitivities. The values of the slopes were used to verify the values of

the sensitivity coefficients determined analytically. The sensitivity

coefficients can be used to rank model parameters, both mathematically and

physiologically, according to the relative influence that chances in each

parameter have in determining the new steady-state solutions. Tables 6 and 7

show the relative ranking of the mathematical and physiological parameters

according to how sensitive the model solutions are to changes in parameter

values (a ranking of one indicates the parameter to which the model is most

sensitive).

3.1.1.3 Discussion on Steady-State Sensitivities. The results from

steady-state analysis showed that the model exhibits non-linear parameter

dependence for all tour species. However, it also showed that over the range

of red cell mass that contains physiologically meaningful information (that

is, +50 percent of normalized red cell mass), the model responds in an

approximately linear fashion. This is important because the parameter

sensitivities can be used to estimate new values of red cell mass and

erythropoietin concentration, not only for small changes in a single or

combinations of parameters (that is, changes of less than 5%), but also to

accurately estimate steady-state solutions for moderate changes (5 to 10%) in

the parameter values without the need of an iterative solution scheme as shown

in Equation 26.

The steady-state sensitivity analysis allows the model parameters to he ranked

according to the impact that changes in parameter value have on the

steady-state solutions, and to identify how those solutions vary between

species. If the erythropoietic systems show identical responses to parameter

changes (that is, if the mouse, rat, and squirrel monkey are perfect models of

human erythropoiesis), the mathematical parameters should be identical, even

though the specific physiological parameters would be expected to be
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Table 4. Steady-State Sensitivity Coefficients for Major
Mathematical Parameters

SYMBOL HUMAN SQUIRREL MONKEY RAT MOUSE

(P) SPX SPY SPX SPY SPX SPY SPX SPY

A 0.5779 .1445 0.4877 0.2439 0.6997 0.3498 0.6357 0.3179

B -4.795 -1.1989 -3.524 -1.762 -6.843 -3.421 -5.609 -2.804

C -1.736 -0.4340 -1.430 -0.7149 -2.455 •1.227 -2.082 -1.041

D 6.8805 0.2201 0.6737 0.3369 1.805 0.9023 1.399 0.6997
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Table	 5. Steady-State Sensitivity Coefficients 	 For Some
Physiological Parameters

SYMBOL HUMAN MONKEY RAT MOUSE

(P) SPX SPY SPX	 SPY SPX	 SPY SPX SPY

KD -3.061 -0.7654 -2.060	 -1.030 -4.744 -2.372 -3.701 -1.851

P50 -3.612 -0.9030 -2.375	 -1.1.87 -2.492 -1.246 -2.355 -1.178

PAO -1.183 -0.2958 -1.148	 -0.5741 -4.350 -2.175 -3.254 -1.627

PV 0.8555 0.2139 0.7561	 0.3781 0.6502 0.3251 0.6821 0.3411

Q -1.426 -0.3565 -1.284	 -0.6421 -1.161 -0.5805 -1.2403 -0.6201

VM 4.487 1.128 4.942	 2.471 5.905 2.952 4.942 2.471



Table b. Numerical Ranking of the Steady-State

Sensitiv;ty Coefficients For Some of the Major

Mathematical Parameters

SYMBOL HUMAPr SQUIRREL MONKEY RAT MOUSE

(P) SPX SPY SPX SPY SPX SPY SPX SPY

A 4 4 4 4 4 4 4 4

B 1 1 1 1 1 1 1 1

C 2 2 2 2 2 2 2 2

U 3 3 3 3 3 3 3 3
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Table 7. Numerical Ranking of Steady-State Sensitivity Coefficients
For Some Physiological Parameters

SYMBOL HUMAN MONKEY RAT MOUSE

(P) SPX SPY SPX SPY SPX SPY SPX SPY

KD 3 3 3 3 2 2 2 2

P50 2 2 2 2 4 4 4 4

PAO 5 5 5 5 3 3 3 3

PV 6 6 6 6 6 6 6 6

Q 4 4 4 4 5 5 5 5

VM i 1 1 1 1 1 1 1
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different. In fact, the mathematical parameters calculated for the four

models are different, but within the same order of magnitude (see Table 3).

The qualitative responses of the four models to independent variations in the

mathematical parameter, while slightly different at the extremes of the

parameter variation, are similar about the normal operating point (see Figures

6 throuyh 21). The parameter sensitivities for the four models are slightly

different; the magnitude and overall ranking of the sensitivities of the

mathematical parameters remain the same between the species (see Table 4 and

6). The sensitivity coefficients for the physiological parameters can be

grouped into two groups of two species each, based on the magnitude and

numerical ranking of the sensitivities. The human and squirrel monkey belong

to one of the groups while the rat and mouse belong to the other (see Tables 5

and 7).

The interesting analysis from a physiological point of view is the species-to-

species model response to changes in the physiological parameters. Changes in

renal blood flow (Q), plasma volume (PV), and renal oxygen uptake (V m ) produce

qualitatively the same results in all species. This 'is confirmed by the

magnitude of the sensitivity coefficients for these parameters. However, the

model response to changes in arterial oxygen tension (P a 0) and the partial

pressure at which hemoglobin is 50 percent saturated with oxygen (P 50 ) varies

significantly between species.	 In fact, the curves actually change positions

as body mass decreases (that is, from man down to the mouse, see Tables 5 and

7). This reverse in parameter sensitivities can be traced back to the species

difference in the ration of P
50 to 

Pa 0. The ratio increases as body mass

decreases as can be seen in Table 8. This ratio determines the shape of the

oxygen-hemoglobin dissociation curve and the location of the operating point

on that curve. A change in P 50 will change the curve shape, a change in Pao

will change the location of the operating point, and a change in e4ther will

change the value of arterial oxygen saturation (S a 0) which is used to

calculate several of the mathematical parameters. Figure 22 shows the

oxygen-hemoglobin equilibrium curve for all four species. Note that arterial

oxygen tension decreases and P 50 increases as body mass decreases. Each of

these changes alone cause a small decrease in arterial oxygen saturation;

however, the combined changes result in a significant difference in saturation

between species with the trend being towards a decrease in saturation as body

mass decreases.
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Table 8. Ratio of P 50 to Arterial Oxygen Tension (PAO)

For All Four Species

Speciescies	 P50/PAO

Human	 .28

Squirrel Monkey	 .41

Rat	 .47

Mouse	 .50
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The	 steady-state sensitivity	 analysis yielded the	 following two main results:

1)	 all	 four models qualitatively	 respond the same way	 to changes	 in the

mathematical parameters,	 and	 2)	 the models	 respond qualitatively the same way

to changes	 in all	 of	 the major physiological	 parameters,	 except	 for Pa o and

P	 due to a
50:

species	 difference associated with oxy-hemoglobin dissociation.

3.1.2 Dynamic Sensitivity Analysi s

Dynamic sensitivities were calculated for all parameters, both "mathematical"

and physiological. Dynamic sensitivities describe how the indepenaent

variable values change with respect to changes in parameter values as a

function of simulation time. Appendix B provides a brief description and

derivation of the equations used to calculate the dynamic sensitivities.

Figure 23 shows an example of how the sensitivities for red cell mass (x),

erythropoietin concentration (y), and red blood cell production (z), each with

respect to the mathematical parameter A, change as a function of simulation

time for the human, squirrel monkey, rat, and mouse. The sensitivity curves

for x and y show that the model is more sensitive to changes in parameter A

early in a simulation where the sensitivities peak in value (0 to 25 days),

than later in a simulation where the sensitivities slowly decrease until they

are equal to the steady-state sensitivity value. The sensitivity curves for y

with respect to A peak sooner than the curves for z. The curves for x,

however, show that the sensitivity increases slowly until 4 t approaches the

steady-state sensitivity value. Similar results were found for all

parameters, both mathematical and physiological, for all four species (see

Figures 22 through 28). Figures 23 through 26 show the dynamic sensitivities

of x, y, and z for all four species w,th respect to the mathematical

parameters A, B, C, and C. Figures 27 through 29 show how the dynamic

sensitivities for variables x, y, and z with respect to the physiological

parameters P 50' Pa 0, PV, Q, and V
III 

vary between each species. The only major

difference between the dynamic sensitivities is that some of the parameters

are associated with negative sensitivities. However, the trends for the

absolute values of the sensitivities remain the same for all parameters. That

is. y and z are more sensitive to parameter changes early in a simulation,

while x is more sensitive to parameter changes at the end of a simulation.

These trends are related to the time constants K1, K2, and K3 association with
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Figure 27. Dynamic Sensitivities of X with respect to the Physiological

Parameters P50, PAO, PV, Q, ana VII for the Human (	 ) Squirrel

Monkey (°	 °), Rat (- - -) and Mouse (— — ).
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Figure 28. D ynamic Sensitivities of Y with respect to the Physiological
Parameters P50, PAO, PV, Q, and VM for the Human !--- ), Squirrel
Mon Key (° ' '), Rat (- - - ), and Mouse (—• —) .
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Figur e 	29.	 Dynamic	 Sensitivities of Z	 with respect	 to	 the	 Physiological
Parameters	 P-50,	 PAO, PV, Q,	 and V14	 for	 the	 Human	 (	 ),
Squirrel	 Monkey	 (° °), Rat	 (- -	 -),	 arid	 Mouse
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the equations for X, Y, and Z. For all species, the values of K1 are at least

an order of magnitude smaller than the values of K2 and K3 (see Table 3).

Values of the parameter K,3 are within the same order of magnitude as K2

values, but are consistently smal'er. The three constants correspond to the

time f rames associated with the physiology of the three variables, X, Y, and

Z. Changes in variable Y, erythropoietin concentration, can take place within

a few hours (K2); changes in Z, red blood cell production, occur within a few

days (0); while changes in X, red cell mass, only begin to take place after

many days (K1).

No consistent patterns were discovered to link the dynamic sensitivities

between species except for the sequence in which the curves for a given

parameter would peak in value. These sequences always followed the ranking of

the individual time constants between species. For example, in Figure 23 the

third set of curves represent the dynamic sensitivities of Z with respect to

A. The sequence in which these four curves peak in value is directly related

to the species specific values of K3 (see Table 3). 	 fable 9 presents a

ranking of the constants K1, K2, and K3 for all four species with a numerical

value of 1 being given to the shortest values and a 4 to the longest values.

3.2	 SIMULATED STRESSES

The second half of the species comparison study of the erythropoiesis control

system involved a series of comparative simulations performed using the four

species specific models. These simulations were performed in order to study

the species-to-species (between species) response to the following stresses:

Long-term hypoxic exposure and recovery, red cell infusion, loss of red cell

mass, and plasma volume depletion. For each of these simulations, the two

gain factors in the model, G1 (the gain of the erythropoietin control

function) and G2 (the gain of the marrow red blood cell production-control

function), were held constant in order to examine how the known differences in

physiological parameters values between species affect model operation.
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1

Table 4. Numerical Ranking of the Time Constants K1, K2, and K3
	 f

Species
	

K1	 K2	 K3

Man 1 1	 1

Squirrel	 Monkey 2 3	 4

Rat 3 4	 2

Mouse 4 2	 2
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3.2.1 Lona-Term HV p oxic Ex posure and Recover

One environmental stress that is typically used to study the erythropoietic

system is altitude hypoxia and descent from altitude (recovery).	 In order to

determine how the four species models respond to these two stresses, the

following simulation was performed using each of the ;models. First, the model

was run for 10 days to provide baseline control data, the arterial oxygen

tension level (P a 0) was then decreased by 10 percent and the model run for 100

days to simulate long-term exposure to altitude hypoxia. P a l was then

returned to its normal (sea level) value and the model run for an additional

100 days to simulate descent from altitude (recovery). Even though this may

be a simplistic way of simulating the effects of hypoxia on the erythropoietic

system, the comparison between models should still be valid (unless there is a

species difference in the process of altitude adaptation), since all four

models were exposed to the same relative stresses. Altitude adaptation

involves more than a simple change in red cell mass in response to the

decrease in Pa O. The adaptation process typically includes an increase in

pulmonary ventilation, a change in P 50 , a change in oxygen diffusing capacity,

and an increase in whole-body vascularity.

Figure 30 shows the results of this simulation on a selected subset of model

variables for all four species. The values for the variables have been scaled

to represent changes from normal (that is, pre-stressed levels are equal to

1.0).

All four species models show a qualitatively similar response tc the step

decrease in P a o (altitude hypoxia) and the stet increase in P a o back to the

o r iginal value (recovery from altitude). 	 In the model, the decrease in

arterial oxygen tension causes the oxygen balance at the kidney to be changed,

this change is sensed by renal tissues sensitive to oxygen tension levels, and

results in an increase in erythropoietin release which in turn increases red

cell production (RCP). With this increase in RCP, red cell mass (RCM) and

hematocrit (HCT) increase slowly over time until a new balance between RCP and

red cell destruction (RCD) is reached and all of the variables reach a new

"adapted" steady-state. During descent from altitude (recovery), essentially

the reverse procedure as described above takes place. At the end of 100 days
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Figure 3U, Simulation of Long Term Exposure to 10b Hypoxia and Recovery from
Hypoxia in Man I—), Squirrel Monkey (°	 °), Rat (- - -), and
Mouse (— —).
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the model has "adapted" to the hypoxic state, returning the P a o to normal is

equivalent to increasing Pa o in a sea level adapted model. This relative

increase in Pa o I is interpreted by the renal oxygen tension sensor in the

model as a positive oxygen balance and decreases erythropoietin production and

zoncentration. The decrease in erythropoietin conce-itration brings about a

corresponding decrease in RCP. Over time, the decreased RCP causes the Red

Cell Mass (RCM) and hematocrit to slowly return to the normal sea level values.

While the species response to these two stresses are qualitatively the same,

the responses (model) differ in two fundamentally different ways. First, there

are species differences in the amplitudes of the response to the stress. The

rat and mouse models show a much more marked response to changes in P a o than

do the human and squirrel monkey models. For example, in response to a 10

percent decrease in Pa O, RCM is predicted by the rat and mouse models to

increase by 50 to 70 percent, while in the human and squirrel monkey models

RCM increases only 14 to 15 percent for the same percent reduction (this

agrees with the steady state sensitivities and ranking of steady state

sensitivities shown in Tables 4 and 7). The second difference involves how

quickly Pach model responds to the stresses. For example, RCM reaches the new

steady-state value (adapted value) in the mouse and squirrel monkey

approximately 50 days following exposure to hypoxia while the rat and human

models are just reaching steady-state after 100 days. These differences are

associated with the inter-species differences in the time constants (see

Tables 3 and 9).

3.2.2 Red Cell Infusion/Red Cell Loss

Two additional and closely related stresses that were studied with respect to

interspecies differences were an acute increase in red cell mass (red cell

infusion) and an acute decrease in red cell mass (blood loss). The response

of the models to a simulated 10 percent increase in red cell mass is shown in

Figure 31, while the model response to a sudden 10 percent decrease in red

cell mass is shown in Figure 32.	 In these simulations, the response of the

mode to the two stresses are identical if the direction of change about the

normal operating point is ignored (that is, the absolute value of the of the

percent change from normal is identical for the two stresses for any given
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Figure 31. Simulation of a 10 percent RCM Infusion in Man (	 ), Squirrel
Monkey (° ° °), Rat (- - -), and Mouse (— — ).
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Fi cure 32. Simulation of a 10 aer:ent RCM Loss in Man !	 Squirrel
MonKey (°	 °), Rat (- - -), and Mouse
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species). A comparison of Figures 31 and 32 show that an ir+fusion of red

blood cells causes the model to respond ;n a nearly opposite fashion to a red

cell loss for all species. For this reason, this discussion has been limited

to only one of the stresses, red cell loss (the other stress causes the

opposite senario to take place). The decrease in red cell mass caused by the

loss causes a decrease in the oxygen supplied to the kidney (renal tissues

sensitive to oxygen balance). This decrease causes an in balance of oxygen at

the renal oxygen sensor and renal oxygen tissue tension decreases. This

decrease results in the increased production of erythropoietin and the

corresponding increase in red cell production. k red cell mass increases

back towards normal, the oxygen balance at the renal oxygen sensor returns

towards normal and erythropoietin production drops accordingly until the

system returns to normal (that is until the red cell mass returns to it normal

value).

By examining the species results for red cell production following a 10

percent artificial decrease in red cell mass, two types of interspecies

differences exist. First, there 'is the magnitude of the responses, and second

there is how quickly the model responds to the stress and consequently, how

quickly the model reaches a new steady-state. The magnitude of the response

is related to the steady-state sensitivity of the model to changes in the

normal value of red cell mass, RCMO, with man and squirrel monkey being more

sensitive to the blood loss than the rat and mouse. The frequency (or

"quickness") with wiich the model reacts to the blood loss is related to the

three time constants K1, K2, K3. For red cell production, the time constant

of interest is K3. Based on the senstivity values in Table 2, it would be

predicted that the mouse model would respond most quickly to a blood loss

followed b y the rat, squirrel monkey, and human. This predicted result was

shown to be true in Figure 31.

3.2.3 Eryt hropoietin Infusion

An interesting experiment to perform (if it were possible) would be to study

the effect that injections of erythropoietin would have on the control of

erythopoiesis and how the effect varies between species. In order to study

how the four species models respond to step increases in erythropoietin
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concentration, the following simulation was performed using each of the

models. The model was run for 10 days to generate simulated control data. A

stress equivalent to a 10 times normal injection of erythropoietin was then

applied to the model. The model was run for 100 days in order to show the

species response to the stress. The results of this simulation for all four

species is shown in Figure 33. All four species showed the same qualitatiie

response to the erythropoietin injection. In the model the increased

erythropoietin caused a corresponding increase in red cell production which

causes an increase in red cell mass. As the injected erythropoietin is

metabolized (see erythropoietin half life, TE 112 , in Table 2), the

erythropoietin concentration and red cell production decreases to below normal

since red cell mass (the controlled variable) has increased to above normal

(due to the increased erythrpoietin concentration). Erythropoietin and red

cell production then gradually increase back towards normal as redcell mass

decreases down to normal. The species difference in the magnitude of the

model response to the erythropoietin injection is related to the species

differences in sensitivities to changes in E  with the human being most

sensitive and the squirrel monkey, rat, and mouse producing approximately the

same magnitude of response. The rate of the model response to the stress is

related to the species difference for the time constants K1, K2, and K3

respectively (see Table -)). In all cases, the human responded the slowest and

the general trend was for the response to decrease as the body mass of the

animal decreased (see Table 7).

3.2.4 Plasma Volume Depletion

Plasma volume depletion has been used previously with the human model to

simulate the effects of space flight on the erythropoietis system. In order

to study the species response and to compare the use of the squirrel monkey,

rat, and mouse as analogs of human erythropoietis control during space flight,

plasma volume depletion simulations were performed for the human, squirrel

monkey, rat, and mouse. The simulations consisted of seven days of control,

followed by 7 days of plasma volume dep l etion, which in turn was followed by

14 days of recovery. These time periods were selected as being representative

of a one-week Spacelab mission. The plasma volume was decreased by 10 percent

for each species the first inflight day, held at this level for seven days,

W
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then returned to normal at the end of the seventh day. Figure 34 shows the

results of this simulation for all four species. The data shown represent a

selected set of hematological variables for each species. The values for the

variables shown in Figure 34 have been scaled to represent changes from

normal.

The qualitative response of all four species to a 10 percent decrease in

plasma volume i- approximately the same. All four show gradual decreases in

red cell mass and red blood cell destruction, along with more dramatic

decreases in erythropoietin concentration and red blood cell production during

the treatment phase. These decreases are all caused by the increase in

hematocrit which in turn is due to the plasma volume depletion. The species

differences that are observed have to do with the magnitude and the rate at

which the changes take place. As can be seen, there is no uniform ranking

between the species as to how they respond to the stress for each of the

variables. This is due to the fact that for the selected combination of

parameters for each species there no consistent ranking betweel species for

the steady-state sensitivities (magnitude of response, see Tabie 5), or for

the time constants (rate of responses, see Table 3). However, the simulations

do show that the qualitative response to the stress is consistent between the

species; that is, the variable values respond in a similar fashion for all

four species.
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4.0 DISCUSSION

This appearc to he tha first timo th?t a sin gl e model formulation has been

used to represent (model) the same physiological system for several different

species. In the past, parameter values and experimental erythropoietic data

from one animal species have been used to validate models and to estimate

model parameters for other species, but they have not previously been used to

develop separate species specific models for the same physiological system.

The approach presented in this paper for creating species specific models is

based on the assumption that the basic concept of erythropoiesis control is

identical among the species of interest. The overall model formulation

described 4n the first part of the paper is general and it is assumed that the

erythropoiesis control system for all four species is identical. This does

not necessarily imply that either the detailed physiology or the anatomical

correspondence between species is identical. For example, in the model, all

of the hemopoietic tissue is grouped into one compartment. This one

compartment, however, may be anatomically equivalent to several different

org., ns.	 In man, this compartment is equivalent tc active bone marrow, while

in the mouse this compartment may consist of two or more anatomical components

(bone marrow, spleen, etc.).

The significance of being able to simulate several different species using the

same g eneral model description is that, while *here may be anatomical

differences, the physiologies are governed by the same factors. This implies

that one species can be used to study the physiology of another species. The

differences between the response of two different species to erythropoietic

stresses may be due to differences in operating points rather rather than

differences in physiological control mechanisms. An example of this is shown

in Figure 22, where each spec i es has significantly different arterial

oxy-hemoglobin saturations, due to inherent (species dependent) differeoces in

arterial oxygen tension and P50. The location of the normal operating point

for the model on the non-linear oxy-hemoglobin dissociation curve can cause

two species with the same control mechanisms to respond to stresses in

significantly different ways. For example, a small decrease in P a o in the

human will cause arterial saturation to decrease Blighty and will have very

little impact on model operation while the same percent decrease in arterial
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oxygen tension in the mouse will cause a more dramatic change in saturation

and a corresopndingly larger impact on model operation. This is due to the

fact that the normal operating point for the mouse is lower on the

dissociation curve and a change in arterial oxygen tension will drop the new

operating point down into the nonlinear portion of the curve where saturation

values decrease rapidly as arterial oxygen tension decreases.

While there are differences in the simulation results between species, all

four models respond qualitatively the same to the simulated stresses th a t have

beer applied. Any differences were accounted for by either species

differences in operating points on the oxy-hemoglobin dissociation curve (see

Figure 22), or differences in the time constants.

The overall results of this study are encouraging, for they show that there is

promise in using the same model formulation, to study the response of several

different species to erthropoietic stresses. However, caution must be taken

at this point in time due to the lack of experimental data with which to

completely validate the squirrel monkey and rat version of the rnodel. The

most ideal set of experimental data would be the collection of data from all

four species under identical experimental conditions, thus providing not only

validation data, but additional data as to the nature of the species

differences in erythrepoietin regulation.

This computer simulation study demonstrates the utility of performing

sensitivity analyses in conjunction with model formulation. They clearly

demonstrate the role and importance of parameter values it interpreting and
understanding the functioning of the model and in helping to analyze the

physiology of a given system as is currently understood.
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ENDIX

SENSITIVITIES FOR ERYTHROPOIESIS MODEL
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I. The sensitivity coefficient of the dependent variable, V, with respect

to the independent variable, p is defined as

aV	
Sensitivity Coefficient

o p

aV = Lp { ap I

normalized version

t.V = ^k P o aV
V  Po

V0 oP

Let the sensitivity of V with respect to p , 	 , be defined as

S  = p  
6

p	 Vo \a )o.

Note: for the normalized model, V o = 1,

V	 _
S = ^o a

p	 ap o.

II. To determine the stead	
AV\

	

y-state sensitivities,	 ap	 must be calculated.
c

(1)

Recall from the main text of this paper that in the steady-state

A-2



X = F 3 (y) and

y = F2(x)

z = X

Go

y
	

y < 1

4/G2

3where F(y)
1 + G 2 1og(Y)	 1 < y < e

6 - e G2exp	 -G2 
, y . e-4/G2	

y > e4/G2

and	 F2(x) =	 A exp 
L
- B-Wn	

W = CX-1
'	 DX+1

It can be shown that	

(a--lp

	 for the dependent variable x and y

3F 3 	( 3F 3	^F2

p
y 

+	 3p	 p	 Op	 x

^X
(2)

1 -	 3F 3 ( y )	 F aFq(X)

	

3y	 p	 3x	 p

dy	
3F2 	 3F2	

3X
 (^ jp -	 3p 	T	 3xdp	 and	 (3)

x	 p	 ,
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yZ =	 ^X	 (4)

' p 	')P

Where, about the normal operating point of y o = y = 1

oFJ	
'2

3y	P	 y	 G2

;F-
='	 = loo y = loC(1) = 0	 for p = G2

^ p y

;F3

^p	 y
0	 for p # G2

^y2 

P _	 -n•6• (2+D)	 li	 F2(X)	 J

(DX+1)	 ( )

F2

for the mathematical parameters A, B, C, D, and n are
^+ p

as follows:

aF 2 	F., X)	
(6)

aB2 = -W
n• F 2 (X)	 (7)

aF2 	 _n•B•X	 n-1

3C	 ^DX+71	
W	 F2(X)	 (8)

e -A



3F2
	 n•B , X	 kn	 .	 F (X)	 and	 (9)

oD	 TDX+1)	 2

of	 =	 _	
F2
	 (10)

an

About the normalized operating poin-1, x o = y o = z o = 1, the following

state ,nents are true:

' F 3	 = G 2	F2 (1)= 1 , F 3 (1) = 1, and

Jy 0

oF2_ -n • B • (C+D)	 W(1)n-1	 W(1) __ C-1

"X	 o	 (D+1)2	 D+1

Therefore,	
ap	

for V = X and Y , and p = A, B, C, D, or n (that is,

equations 2, 3, and 4) become

ax

\ 

-	 G2	 ;F2

C3 p)o	 1 -2
	

°p

	

z Ox	
o

0

N) 	 1	 /;X\and

/0	 C.
	 { Jp f

\	 o

Cep/ o	 (")o
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when 
oF2 

and
	 ---
F2	 are defined in Equation 5 through 10 above.

;p	 ^X

The sensitivities of the mathematical parameters about the operating

point Xo , Y o , Z  tnen become

X	 ^XSp	 -	 P	
'p/	

Xo=1 )
0

y	 _	 p^p	
P) _	 Yo-1)

X

with	 S=	 G^	 for all p # GZ.

S 
P

II1. The steady-state sensitivities for any physiological parameter p can be

expressed in terms of the mathematical parameters as follows:

X	 A +	 dB	 aX 1	 aC	 3X	 +

Sp - p op(	

oXn) 	 3p jB 1 + op ( C)

	

o	 c	 o

aD 	 +	 2n	 (; X )
odp

	

( ^X
)o 

0
D 	 dp	 an

S 
and	 SP

2
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The components of these equations are defined as follows: The partial

derivative of x with respect to A, B, C, D, and n are the same as shown

in equation 6 through 10. The partials of A, B, C, 0, and n witn respect

to the physiological parameters p = Vm' K 
d 9 P 50 , P a 0, Q, PV, and k are

shown below

for p = V 

3A	
G1	 A

3V rr 	K 	 Pt0o

3C	 _	 -r	
S 
a 
0 
o

3V^n 	u	 V2
m

3D	 _	 a0
3V 	

Vm

P = K 

3A	 -G1•Vm•A

aKd	
Kd2•PtOo

P	 P50

3B	 _	 G1
3P 50	P 

t 
0

F
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ac	 _	 - k-r'Sa0
•'	 ^

;p 50-
	 —

P 
0 k

u ,vm. P50 1 +10 l
50

.I

^^	 I

K	 _ -ac

a p 50	 dp50

p = P 
a 

0

^c

a

k.r•S0
a

u • vm . P 
a 

0

k
P50
PO

a

aD 	 -oC

dPa 0	 opa0

p = Q

	

ac	
r . S 

a 
0

	

aQ	 Q ' u ' vm

^D	 r	 (1-Sa0)

	

3	 Q- u - vm

p = Pv

K- — c
5 v 	 pv

aD

=	

-D
5 	 Pv

A-g



p = k

^oC	 =	
-r	 S a o • (1-Sa0)	 p50

ok	
V	

109 Pao

m

oD	 _ - ;C
o k	 A

an	 _	 -1
A	 k2

The actual steady-state sensitivity values for each parameter, both

mathematical and physiological, for each of the four species are shown in

Tables 4 and 5 of the main text of this paper.
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APPENDIX B

DERIVATION OF THE EQUATIONS USED TO DETERMINE DYNAMIC SENSITIVITIES
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The model can be generally described by the three differential equations,

	

X	 H1(X,Z),	 X(o)=X0

and	 Y	 = H2(X,Y),	 , Y(o)=Y0

	

Z	 = H3(Y,Z)	
, Z(o)=Zo

Let p = any mathematical ( in dependent) parameter, the following relations
can be defined

_ ax

	

s1	 ap	 ,	 s 2 =	 , and s	 =	 L,z

	° p	 3	 ^p

then it follows that

0H1	 off	
aH^1 =	 = s	 1 +	 s	 oH1	 ,

	

1 ax	 1ap	 3 oZ	 + F
x,Z

^
where: s 1 (o) =	

F	
x 

	

1	 p = X
0

(1)
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2	 3H2 
	

^ ^H2

	

S 2 ^1 ox	 +	 s2 oy	 t ` 7p x,y

0	 p
where: s 2 (o) _

1	 p =

aH3	 ^H3	 ^H3

5	
y^

3	 s 2 ay	 s3 dZ	 + C ep	 z

G	 p

where: s3(o)

1	 p	 =

and

The derivatives of H 19 N 2 , and H3 can be derived and are shown below.

H 1 = K1 (z-x)

aHl

ax	 K1

aH 1 -

az	 K1

a HI -

a Kl -	 z- x
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H 2 = K 2 (F2(x)-Y)

'H2 -	 t 2	 F2

oX	 cX

' H2 _
Y	 -K2

2	
F2(X)	 Y

;K 
2

^H2	K	 oF2(x)

op	 2 ap

p # K2

H 3 = K 3 (F3(y)-z)

oH 3 _	
K	

oF3

ay	 3 oY

^oH'^

^zv	K3

oN3 	
F3(Y) -	 z

oK3

ofg3	
K	 oF3

op	
=	

3 op

p^K3
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The partial derivative required to evaluate the above equations are:

;F 2 (X)	 -	 -n • 6	 (^*D)	
•4:'. X)

-1 	
FL(Xi

(DX+".

	

where:	 F2 (X)	 = A • exp(-Bb,,n ) and

W 
	

(CX-1

(DX+1)

(G2-1)
^F 3
	G 2
	 Y < 1

CY 
-

G 2
/Y	

1	
Y _
< e 4/G2

G 2	 -4/G.,	 -4/G2	
4/GG2 • e	 • e	 exp -G 2 • y• e	 y> e	 2

^F2

;p
=	 for p - A, B, C, D, n are defined by equations 6-10 in appendix A

2F 3 =

ap	
0	 when p # G2

oF 3	IF

oG 2	K3 oG2
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oF3
where	 G

°2
is defined as follows:

y 
G 
2 log (Y)

oF3	 log (Y)

G -	 -4/G2
2	 1-e	 • y 1 +

^	 y< 1

4/G2
y<e

4/G 2	G2	 -4/G9	 4/Ge	 exP -G2,y-e	 /' Y > 
e	 e

Substit.iting the above information into equations 1, 2, and 3 yields the

following results:

\\ 	0	 P # K 1	(4)
s 1 : 1 (s 3 -s 1 1 +	 (Z-x	

p=K//	
1	 ^	 J

where: S i (o) _
G	 P t );o

1 , p =Xo

M
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^F„

s L = K 2 I s i 	-	 s^ +	 (5)

	

F 2 ( X ) - y	 p = 1:2

	

G	 p#ye

where: s2(o)=

	

1	 p = yo

G

s J = KJ 	s,, °F3	 ^.	 F, (y)- z

C^dy	 -s3/l
K dF3(y)
3 G

2

P # K , , G,,

	

J	 L

	p = K J	 (6)

P = C 2

p # `o
where: s 3 (o)=

1	 p =

The dynamic sensitivity coefficients for the mathematical parameters

(p = A, B, C, D, n) are then defined as

X
S p	 =	 -^ s 1

B-7
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r

The dynamic sensitivities in Figures 23-26 of the main text, were

obtained by solving Equations 4, 5, and 6 numerically for S 1 , S 2 , and S3,
then substituting the results into Equations 7, 8, and 9.

The dynamic sensitivities for the physiological parameter shown in

Figures 27-29 were obtained in the following manner

SG	 q I q	 ?^ + q̂ —6 I + °q (aV	 +

an C-V^^

	 (10)

where	 V = dependent variables x, y, or z,

q = physiological parameters K
d , "m ' P 50' Pao .. ..

and	 p = mathematical parameter A, B, C, D, n
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00

Equation 10 can be rewritten as

n

S^^ = q
q	 V 21

p=IA

,	 ^v

oq J
)

^p

where the.q s are defined in Appendix A.

and the	 - s are defined in Appendix A, Equations 6-10.
1p
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